
Modelling High-Dimensional Data by Combining Simple Experts

Geoffrey E. Hinton
Gatsby Computational Neuroscience Unit

University College London
17 Queen Square, London WC1N 3AR, U.K.
http://www.gatsby.ucl.ac.uk/

Abstract

It is possible to combine multiple non-linear probabilistic
models of the same data by multiplying the probability dis-
tributions together and then renormalizing. A “product of ex-
perts” is a very efficient way to model data that simultane-
ously satisfies many different constraints. It is difficult to fit a
product of experts to data using maximum likelihood because
the gradient of the log likelihood is intractable, but there is an
efficient way of optimizing a different objective function and
this produces good models of high-dimensional data.

Introduction

One way of modeling a complicated, high-dimensional da-
ta distribution is to use a large number of relatively simple
probabilistic models and to somehow combine the distribu-
tions specified by each model. A well-known example of
this approach is a mixture of Gaussians in which each sim-
ple model is a Gaussian and the combination rule consists
of taking a weighted arithmetic mean of the individual dis-
tributions. This is equivalent to assuming an overall gener-
ative model in which each data vector is generated by first
choosing one of the individual generative models and then
allowing that individual model to generate the data vector.
Combining models by forming a mixture is attractive be-
cause it is easy to fit mixtures of tractable models to data
using EM or gradient ascent and, if sufficiently many mod-
els are included in the mixture, it is possible to approximate
complicated smooth distributions arbitrarily accurately.

Unfortunately, mixture models are very inefficient in
high-dimensional spaces. Consider, for example, the mani-
fold of face images. It takes about 35 real numbers to specify
the shape, pose, expression and illumination of a face and,
under good viewing conditions, our perceptual systems pro-
duce a sharp posterior distribution on this 35-dimensional
manifold. This cannot be done using a mixture of simple
models each of which is tuned in the 35-dimensional man-
ifold because the posterior distribution cannot be sharper
than the individual models in the mixture and the individ-
ual models must be broadly tuned to allow them to cover the
35-dimensional manifold.

Copyright c 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A very different way of combining distributions is to mul-
tiply them together and renormalize. If the individual distri-
butions are uni- or multivariate Gaussians, their product will
also be a multivariate Gaussian so, unlike mixtures of Gaus-
sians, products of Gaussians cannot approximate arbitrary
smooth distributions. If, however, the individual models are
a bit more complicated and each contain one or more laten-
t (i.e. hidden) variables, multiplying their distributions to-
gether (and renormalizing) can be very powerful. Individual
models of this kind will be called “experts”.

Products of Experts (PoE) have the advantage that they
can produce much sharper distributions than the individ-
ual expert models. For example, each expert model can
constrain a different subset of the dimensions in a high-
dimensional space and their product will then constrain all of
the dimensions. For modeling handwritten digits, one low-
resolution model can generate images that have the approx-
imate overall shape of the digit and other more local mod-
els can ensure that small image patches contain segments
of stroke with the correct fine structure. For modeling sen-
tences, each expert can enforce a nugget of linguistic knowl-
edge. For example, one expert could ensure that the tenses
agree, one could ensure that there is number agreement be-
tween the subject and verb and one could ensure that strings
in which colour adjectives follow size adjectives are more
probable than the the reverse.

The idea of combining the opinions of multiple differ-
ent expert models by using a weighted average in the log
probability domain (i.e. a product) is far from new (Genest
and Zidek, 1986; Heskes 1998), but research has focussed
on how to find the best weights for combining experts that
have already been learned separately rather than training the
experts cooperatively. This may be because fitting a PoE
to data appears very difficult. It appears to be necessary
to compute the derivatives, with repect to the parameters,
of the partition function that is used in the renormalization.
As we shall see, however, these derivatives can be finessed
by optimizing a less obvious objective function than the log
likelihood of the data.

Learning PoE’s by maximizing likelihood

We consider individual expert models for which it is
tractable to compute the derivative of the log probability of a
data vector with respect to the parameters of the expert. We

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



combine individual expert models as follows:

(1)

where is a data vector in a discrete space, is all the
parameters of individual model , is the proba-
bility of under model , and indexes all possible vectors
in the data space 1. For continuous data spaces the sum is re-
placed by the appropriate integral.

For an individual expert to fit the data well it must give
high probability to the observed data and it must waste as
little probability as possible on the rest of the data space.
A PoE, however, can fit the data well even if each expert
wastes a lot of its probability on inappropriate regions of
the data space provided different experts waste probability
in different regions.

The obvious way to fit a PoE to a set of observed iid data
vectors is to compute the derivative of the log likelihood of
each observed vector, , under the PoE. This is given by:

The second term on the RHS of Eq. 2 is just the expected
derivative of the log probability of an expert on fantasy data,

, that is generated from the PoE. So, assuming that each of
the individual experts has a tractable derivative, the obvious
difficulty in estimating the derivative of the log probability
of the data under the PoE is generating correctly distributed
fantasy data. This can be done in various ways. For discrete
data it is possible to use rejection sampling: Each expert
generates a data vector independently and this process is re-
peated until all the experts happen to agree. Rejection sam-
pling is a good way of understanding how a PoE specifies an
overall probability distribution and how different it is from a
causal model, but it is typically very inefficient. A Markov
chain Monte Carlo method that uses Gibbs sampling is typi-
cally much more efficient. In Gibbs sampling, each variable
draws a sample from its posterior distribution given the cur-
rent states of the other variables. Given the data, the hidden
states of all the experts can always be updated in parallel
because they are conditionally independent. This is a very
important consequence of the product formulation. If the in-
dividual experts also have the property that the components
of the data vector are conditionally independent given the
hidden state of the expert, the hidden and visible variables
form a bipartite graph and it is possible to update all of the
components of the data vector in parallel given the hidden
states of all the experts. So Gibbs sampling can alternate
between parallel updates of the hidden and visible variables.
To get an unbiased estimate of the gradient for the PoE it is

1The symbol has no simple relationship to the symbol
used on the LHS of Eq. 1. Indeed, so long as is positive
it does not need to be a probability at all, though it will generally
be a probability in this paper.

necessary for the Markov chain to converge to the equilibri-
um distribution.

Unfortunately, even if it is computationally feasible to ap-
proach equilibrium before taking samples, there is a second
serious difficulty. Samples from the equilibrium distribution
generally have very high variance since they come from al-
l over the model’s distribution. This high variance swamps
the derivative. Worse still, the variance in the samples de-
pends on the parameters of the model. This variation in the
variance causes the parameters to be strongly repelled from
regions of high variance even if the gradient is zero. To
understand this subtle but powerful effect, consider a hor-
izontal sheet of tin which is resonating in such a way that
some parts have strong vertical oscillations and other parts
are motionless. Sand scattered on the tin will accumulate in
the motionless areas even though the time-averaged gradient
is zero everywhere.

Learning by maximizing contrastive likelihood

There is a simple and very effective alternative to maximum
likelihood learning which eliminates almost all of the com-
putation required to get samples from the equilibrium dis-
tribution and also eliminates almost all of the variance that
masks the gradient signal. Instead of maximizing the log
likelihood of the data, we maximize the difference between
the log likelihood of the data vectors and the log likelihood
of “one-step” reconstructions of the data vectors. This ob-
jective function will be called the “contrastive log likeli-
hood”. The reconstructions are generated by one full step of
Gibbs sampling, which involves the following four stages:

1. Compute, for each expert separately, the posterior proba-
bility distribution over its hidden variables given the data
vector, .

2. Pick a value for each latent variable from its posterior dis-
tribution.

3. Given the chosen values of all the latent variables, com-
pute the conditional distribution over each visible variable
by multiplying together the conditional distributions spec-
ified by each expert.

4. Pick a value for each visible variable from its condition-
al distribution. These values constitute the reconstructed
data vector, .

Each expert is chosen to be tractable, so it is possible to
compute the exact value of the first term on the RHS of Eq.

2 for both and . The second term on the RHS is the same
for and . So if we ignore the fact that, unlike the data,
the distribution of the reconstructions depends on the param-
eters of the experts, we get a simple rule for approximately
following the gradient of the contrastive log likelihood:

(3)

where the angle brackets denote expectations over the distri-
bution of the one-step reconstructions of . This works very
well in practice even when a single reconstruction of each



data vector is used in place of the full probability distribu-
tion over reconstructions. Changing changes the distri-

bution of but this effect only makes a small contribution
to the derivative of the contrastive log likelihood so the ex-
pected vector of changes in the parameters given by Eq. 3
almost always has a positive cosine with the true gradient of
the contrastive log likelihood (see Hinton (1999) for details).

The difference in the derivatives of the data vectors and
their reconstructions has some variance because the recon-
struction procedure is stochastic. But when the PoE is mod-
elling the data moderately well, the one-step reconstructions
will be very similar to the data so the variance will be very
small. The close match between a data vector and its re-
construction reduces sampling variance in much the same
way as the use of matched pairs for experimental and con-
trol conditions in a clincal trial. The low variance makes it
feasible to perform online learning after each data vector is
presented, though the simulations described in this paper use
batch learning in which the parameter updates are based on
the summed gradients measured on all of the training set or
on relatively large mini-batches.

The idea of simultaneously maximizing the log likelihood
of the data and minimizing the log likelihood of the one-step
reconstructions is central to this paper. Its main justification
is that it is computationally easy and it works well in prac-
tice, but it also has a number of intuitive justifications.

In high-dimensional datasets, the data nearly always lies
on, or close to, a much lower-dimensional, smoothly curved
manifold. The PoE needs to find parameters that make a
sharp ridge of log probability along the low-dimensional
manifold. By starting with a point on the manifold and en-
suring that this point has higher log probability than the typ-
ical reconstructions from the latent variables of all the ex-
perts, the PoE ensures that the probability distribution has
the right local curvature (provided the reconstructions are
close to the data). It is possible that the PoE will accidental-
ly assign high probability to other distant and unvisited parts
of the data space, but this is unlikely if the log probabilty
surface is smooth and if both its height and its local curva-
ture are constrained at the data points. It is also possible
to find and eliminate such points by performing prolonged
Gibbs sampling without any data, but this is just a way of
improving the learning and not, as in Boltzmann machine
learning, an essential part of it.

Perhaps the best intuitive justification comes from con-
sidering the convergence of the Gibbs sampling procedure
towards the equilibrium distribution. To maximize the log
likelihood of the observed data we need to minimize the
Kullback-Liebler divergence between the data distribution
and the marginal over the visible variables of the equilib-
rium distribution. If we already have a perfect model and
we use the data distribution to initialize the Gibbs sampling,
we will already be at equilibrium. So maybe we can find a
good model by initializing the Gibbs sampling with the data,
observing how one step of convergence to equilibrium caus-
es us to diverge from the initial distribution, and adjusting
the parameters to cancel out this divergence. The obvious
way to reduce the tendency to wander away from the data
distribution is to increase the log likelihood of the data vec-

tors we start with and to decrease the log likelihood of the
reconstructed data vectors. Because Gibbs sampling moves
towards the equilibrium distribution of the model, the recon-
structed vectors cannot, on average, be less likely under the
model than the data vectors and they can only have the same
average likelihood when the model is perfect (assuming that
the Markov chain mixes).

Although these intuitive justifications are each somewhat
vague, their product is sharper.

PoE’s and Boltzmann machines

The Boltzmann machine learning algorithm (Hinton and Se-
jnowski, 1986) is easy to implement in hardware, but it is
very slow in networks with interconnected hidden units. S-
molensky (1986) introduced a restricted type of Boltzmann
machine with one visible layer, one hidden layer, and no in-
tralayer connections. Freund and Haussler (1992) realised
that in this restricted Boltzmann machine (RBM), the prob-
ability of generating a visible vector is proportional to the
product of the probabilities that the visible vector would be
generated by each of the hidden units acting alone. An RBM
is therefore a PoE with one expert per hidden unit2. When
the hidden unit of an expert is off it specifies a factorial prob-
ability distribution in which each visible unit is equally like-
ly to be on or off. When the hidden unit is on, it specifies a
different factorial distribution by using the weight on its con-
nection to each visible unit to specify the log odds that the
visible unit is on. Multiplying together the distributions over
the visible states specified by different experts is achieved by
simply adding the log odds. Exact inference is tractable in
an RBM because the states of the hidden units are condition-
ally independent given the data.

The learning algorithm given by Eq. 2 is exactly equiv-
alent to the standard Boltzmann learning algorithm for an
RBM. Consider the derivative of the log probability of the
data with respect to the weight between a visible unit
and a hidden unit . The first term on the RHS of Eq. 2 is:

(4)

where is the vector of weights connecting hidden unit

to the visible units, is the expected value of
when is clamped on the visible units and is sampled

from its posterior distribution given , and is
the expected value of when alternating Gibbs sampling
of the single hidden unit and the visible units is iterated to
get samples from the equilibrium distribution in a network
whose only hidden unit is .

The second term on the RHS of Eq. 2 is:

(5)

2Boltzmann machines and Products of Experts are very differ-
ent classes of probabilistic generative model and the intersection of
the two classes is RBM’s



where is all of the weights in the RBM and is
the expected value of when alternating Gibbs sampling
of all the hidden and all the visible units is iterated to get
samples from the equilibrium distribution of the RBM.

Subtracting Eq. 5 from Eq. 4 gives the gradient of the log
likelihood of :

(6)

The high sampling variance in makes learning
difficult. It is much more effective to follow the approximate
gradient of the contrastive log likelihood. For an RBM this
approximate gradient is particularly easy to compute:

(7)
where is the expected value of when a one-
step reconstruction of is clamped on the visible units and

is sampled from its posterior given the reconstruction.

Learning the features of handwritten digits

When presented with real, high-dimensional data, a restrict-
ed Boltzmann machine trained to maximize the contrastive
log likelihood using Eq. 7 should learn a set of probabilistic
binary features that model the data well. To test this con-
jecture, an RBM with hidden units and visible units
was trained on real-valued images of handwrit-
ten digits from all classes. The images, from the training
set on the USPS Cedar ROM, were normalized but highly
variable in style. The pixel intensities were normalized to
lie between and so that they could be treated as proba-
bilities and Eq. 7 was modified to use probabilities in place
of stochastic binary values for both the data and the hidden
units. The binary values of the hidden units were still used
for generating the one-step reconstructions.

It took two days in matlab on a second millenium work-
station to perform epochs of learning. In each epoch,
the weights were updated times using the approximate
gradient of the contrastive log likelihood computed on mini-
batches of size that contained exemplars of each digit
class. To improve the learning speed a momentum method
was used. Except for the first epochs, the parameter up-
dates were supplemented by adding times the previous
update.

The PoE learned localised features whose binary states
yielded almost perfect reconstructions. For each image
about one third of the features were turned on. Some of the
learned features had on-center off-surround receptive fields
or vice versa, some looked like pieces of stroke, and some
looked like Gabor filters or wavelets. The weights of of
the hidden units, selected at random, are shown in figure 1.

Learning to discriminate handwritten digits

An attractive aspect of PoE’s is that it is easy to compute the
numerator in Eq. 1 so it is easy to compute the log probabil-
ity of a data vector up to an additive constant, , which

Figure 1: The receptive fields of a randomly selected subset
of the hidden units in a PoE trained on images
of digits with equal numbers from each class. Each block
shows the learned weights connecting a hidden unit to
the pixels. The scale goes from (white) to (black).

is the log of the denominator in Eq. 1. Unfortunately, it is
hard to compute this additive constant. This does not matter
if we only want to compare the probabilities of two differ-
ent data vectors under the PoE, but it makes it difficult to
evaluate the model learned by a PoE by summing the log
probabilities that the PoE assigns to test data vectors.

An alternative way to evaluate the learning procedure is
to learn two different PoE’s on different datasets such as im-
ages of the digit 2 and images of the digit 3. After learning,
a test image, , is presented to PoE and PoE and they com-
pute and respective-
ly. If the difference between and is known it
is easy to pick the most likely class of the test image, and s-
ince this difference is only a single number it is quite easy to
estimate it discriminatively using a set of validation images
whose labels are known.

Figure 2 shows features learned by a PoE that contains a
layer of 100 hidden units and is trained on images of the
digit . Figure 3 shows some previously unseen test images
of 2’s and their one-step reconstructions from the binary ac-
tivities of the PoE trained on ’s and from an identical PoE
trained on ’s.

Figure 4 shows the unnormalized log probability scores
of some test images under a model trained on 825 images of
the digit 7 and a model trained on 825 images of the digit
9. These two classes were chosen because they are the most
difficult to discriminate. Discrimination is not perfect on
the test images, but it is encouraging that all of the errors are
close to the decision boundary, so there are no confident mis-



Figure 2: The weights learned by hidden units trained
on x images of the digit . The scale goes from
(white) to (black). Note that the fields are mostly quite
local. A local feature like the one in column 1 row 7 looks
like an edge detector, but it is best understood as a local
deformation of a template. Suppose that all the other active
features create an image of a that differs from the data in
having a large loop whose top falls on the black part of the
receptive field. By turning on this feature, the top of the loop
can be removed and replaced by a line segment that is a little
lower in the image.

classifications. To achieve this excellent separation, it was
necessary to use models with two hidden layers and to av-
erage the scores from two separately trained models of each
digit class. For each digit class, one model had units in
its first hidden layer and in its second hidden layer. The
other model had in the first hidden layer and in the
second. The units in the first hidden layer were trained with-
out regard to the second hidden layer. After training the first
hidden layer, the second hidden layer was then trained using
the probabilities of feature activation in the first hidden layer
as the data.

If there are 10 different PoE’s for the 10 digit classes it is
slightly less obvious how to use the 10 unnormalized scores
of a test image for discrimination. One possibility is to use
a validation set to train a logistic regression network that
takes the unnormalized log probabilities given by the PoE’s
and converts them into a probability distribution across the
10 labels (see Hinton (1999) for details). This gives an er-
ror rate of 1.1% which compares very favorably with the
5.1% error rate of a simple nearest neighbor classifier on the
same training and test sets and is about the same as the very
best classifier based on elastic models of the digits (Revow,
Williams and Hinton, 1996). If 7% rejects are allowed (by

Figure 3: The center row is previously unseen images of ’s.
The top row shows the pixel probabilities when the image
is reconstructed from the binary activities of feature de-
tectors that have been trained on ’s. The bottom row shows
the reconstruction probabilities using feature detectors
trained on ’s.

400 450 500 550 600 650 700 750
400

450

500

550

600

650

700

750

Score under model 7

S
c
o

re
 u

n
d

e
r 

m
o

d
e

l 
9

Figure 4: The unnormalised log probability scores of the
previously unseen test images of ’s and ’s. Although the
classes are not linearly separable, all the errors are close to
the best separating line.

choosing an appropriate threshold for the probability level
of the most probable class), there are no errors on the 2750
test images.

Other types of expert

Binary stochastic pixels are not unreasonable for modeling
preprocessed images of handwritten digits in which ink and
background are represented as and . In real images, how-
ever, there is typically very high mutual information be-
tween the real-valued intensity of one pixel and the real-
valued intensities of its neighbors. This cannot be captured
by models that use binary stochastic pixels because a binary
pixel can never have more than bit of mutual information
with anything. An interesting approach is to use experts that
each consist of a mixture of a uniform distribution and a fac-
tor analyser with just one factor. Each expert has a binary la-
tent variable that specifies whether to use the uniform or the
factor analyser and a real-valued latent variable that speci-
fies the value of the factor. Experts of this type have been



explored in the context of directed acyclic graphs (Hinton,
Sallans and Ghahramani, 1998) but they should work better
in a product of experts.

Hidden Markov Models (HMM’s) are of great practi-
cal value in modeling sequences of discrete symbols or se-
quences of real-valued vectors because there is an efficient
algorithm for updating the parameters of the HMM to im-
prove the log likelihood of a set of observed sequences. H-
MM’s are, however, quite limited in their generative power
because the only way that the portion of a string generated
up to time can constrain the portion of the string generated
after time is via the discrete hidden state of the generator
at time . So if the first part of a string has, on average,

bits of mutual information with the rest of the string the
HMM must have hidden states to convey this mutual in-
formation by its choice of hidden state. This exponential
inefficiency can be overcome by using a product of HMM’s
as a generator. During generation, each HMM gets to pick
a hidden state at each time so the mutual information be-
tween the past and the future can be linear in the number of
HMM’s. It is therefore exponentially more efficient to have
many small HMM’s than one big one. However, to apply
the standard forward-backward algorithm to a product of H-
MM’s it is necessary to take the cross-product of their state
spaces which throws away the exponential win.

For products of HMM’s to be of practical significance
it is necessary to find an efficient way to train them. An-
drew Brown (Brown and Hinton, in preparation) has shown
that for a toy example involving a product of four HMM’s,
the learning algorithm in Eq. 3 works well. The forward-
backward algorithm is used to get the gradient of the log
likelihood of an observed or reconstructed sequence w.r.t.
the parameters of an individual expert. The one-step recon-
struction of a sequence is generated by using the forward-
backward algorithm in each expert separately to calculate
the posterior probability distribution over paths through the
hidden states, then stochastically selecting a hidden path in
each expert from the posterior. At each time step in the
reconstructed sequence, an output symbol or output vector
is then chosen from the product of the output distribution-
s specified by the hidden state selected for that time step
in each HMM. If more realistic products of HMM’s can
be trained successfully by maximizing the contrastive likeli-
hood, they should be far better than single HMM’s for many
different kinds of sequential data.

Comparison with directed acyclic graphical

models

Inference in a PoE is trivial because the experts are indi-
vidually tractable and the product formulation ensures that
the hidden states of different experts are conditionally inde-
pendent given the data. This makes them relevant as mod-
els of biological perceptual systems, which must be able to
do inference very rapidly. Alternative approaches based on
directed acyclic graphical models suffer from the “explain-
ing away” phenomenon. When such graphical models are
densely connected exact inference is intractable, so it is nec-
essary to resort to clever but implausibly slow iterative tech-

niques for approximate inference (Saul and Jordan, 1998)
or to use crude approximations that ignore explaining away
during inference and rely on the learning algorithm to find
representations for which the shoddy inference technique is
not too damaging (Hinton, Dayan, Frey and Neal, 1995).

The ease of inference in PoE’s is balanced by the difficulty
of generating fantasy data from the model. This can be done
trivially in one ancestral pass in a directed acyclic graphi-
cal model but requires an iterative procedure such as Gibbs
sampling in a PoE. If, however, Eq. 3 is used for learning,
the difficulty of generating samples from the model does not
impede learning.

The most attractive property of a set of orthogonal basis
functions is that it is possible to compute the coefficient on
each basis function separately without worrying about the
coefficients on other basis functions. If the generative model
is causal, this attractive property can only be achieved by us-
ing basis functions that are orthogonal. A product of experts,
however, retains this attractive property whilst allowing non-
orthogonal experts and non-linear generative models.

Acknowledgements

This research was funded by the Gatsby Charitable Foundation.

Thanks to Peter Dayan, Zoubin Ghahramani, David MacKay,

David Lowe, Yee-Whye Teh, Guy Mayraz, Andy Brown, and other

members of the Gatsby unit for helpful discussions.

References

Freund, Y. and Haussler, D. (1992) Unsupervised learning of dis-
tributions on binary vectors using two layer networks. Advances in
Neural Information Processing Systems 4. J. E. Moody, S. J. Han-
son and R. P. Lippmann (Eds.), Morgan Kaufmann: San Mateo,
CA.
Genest, C. & Zidek, J. V. (1986) Combining probability distribu-
tions: A critique and an annotated bibliography. Statistical Science
1, 114-148.
Heskes, T. (1998) Bias/Variance decompositions for likelihood-
based estimators. Neural Computation 10, 1425-1433.
Hinton, G. E. (1999) Training Products of Experts by Maximiz-
ing Contrastive Likelihood. Technical Report: GCNU TR1999-
001. Gatsby Computational Neuroscience Unit, University College
London (www.gatsby.ucl.ac.uk).
Hinton, G., Dayan, P., Frey, B. & Neal, R. (1995) The wake-sleep
algorithm for self-organizing neural networks. Science, 268, 1158-
1161.
Hinton, G. E. Sallans, B. and Ghahramani, Z. (1998) Hierarchical
Communities of Experts. In M. I. Jordan (Ed.) Learning in Graph-
ical Models. Kluwer Academic Press.
Hinton, G. E. & Sejnowski, T. J. (1986) Learning and relearning in
Boltzmann machines. In Rumelhart, D. E. and McClelland, J. L.,
editors, Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition. Volume 1: Foundations, MIT Press.
Revow, M., Williams, C. K. I. and Hinton, G. E. (1996) Using Gen-
erative Models for Handwritten Digit Recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 18, 592-606.
Saul, L. K., Jaakkola, T. & Jordan, M. I. (1996) Mean field the-
ory for sigmoid belief networks. Journal of Artificial Intelligence
Research, 4 61-76.
Smolensky, P. (1986) Information processing in dynamical sys-
tems: Foundations of harmony theory. In Rumelhart, D. E. and
McClelland, J. L., editors, Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition. Volume 1: Foundations,
MIT Press.


