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The concept of fitness is often reduced to a single component, such as the replication rate in a given habitat.6

For species with complex life cycles, this can be an unjustified oversimplification, as every step of the life cycle7

can contribute to reproductive success in a specific way. In particular, this applies to microbes that spend8

part of their life cycles associated to a host, i.e. in a microbiota. In this case, there is a selection pressure9

not only on the replication rates, but also on the phenotypic traits associated to migrating from the external10

environment to the host and vice-versa. Here, we investigate a simple model of a microbial population living,11

replicating, migrating and competing in and between two compartments: a host and its environment. We12

perform a sensitivity analysis on the global growth rate to determine the selection gradient experienced by the13

microbial population. We focus on the direction of selection at each point of the phenotypic space, defining an14

optimal way for the microbial population to increase its fitness. We show that microbes can adapt to the two-15

compartment life cycle through either changes in replication or migration rates, depending on the initial values16

of the traits, the initial distribution of the population across the compartments, the intensity of competition,17

and the time scales involved in the life cycle versus the time scale of adaptation (which determines the adequate18

probing time to measure fitness). Overall, our model provides a conceptual framework to study the selection19

on microbes experiencing a host-associated life cycle.20
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1 Introduction23

Fitness is a central concept in evolutionary biology, of particular importance for the theory of natural selection.24

Fitness measures how well a phenotype performs in terms of reproductive success, i.e. in terms of its ability to25

survive and reproduce. Natural selection, acting through reproduction and inheritance of the phenotypic traits,26

then leads to an increase in the population of the genotypes producing high fitness phenotypes [1].27

In any system, fitness emerges mechanistically from birth and death events [2]. However, when it comes to28

the study of particular experimental systems or models, the question of how to measure fitness is often delicate,29

and fitness is often defined from the outset, as a phenomenological parameter. For example, fitness may be30

quantified as a net replication rate measured over a limited period of time in fixed laboratory conditions, or as a31

proportion of habitats successfully colonized. But none of these fitness components alone provides a holistic view32

of what fitness encompasses in natural conditions. Indeed, in nature, individuals undergo complex life cycles to33

produce new offspring, which makes fitness a multivariable function of all the life-history traits characterizing34

that organism’s life cycle. In addition to offspring production, this may include, for example, the ability of that35

offspring to migrate or disperse to the appropriate environments, or the ability to find mates in the case of36

sexual reproduction.37

Life cycle complexity has been repeatedly shown to be important for the characterization of fitness. Histor-38

ically, age-structured models have been developed to study human demography [3]. In the context of species39

conservation, or, at the other end of the spectrum, pest management, the focus has been on finding the "Achilles40

heels" of species life cycles to design efficient strategies to act upon them, in order to shape and preserve biodiver-41

sity [3]. This idea has further been developed theoretically, within the conceptual framework of metapopulation42

dynamics [4, 5]. Finally, life cycle complexity is also a concept central to the study of the onset of multicellularity,43

to understand why and how group replication can be selected for [6, 7].44

The question of how life cycle components contribute to fitness is of particular relevance for the study of45

microbial communities that associate with hosts – microbiotas. Intricate life cycles are common in nature, where46

microbes can for example use hosts as vectors between different habitats [8, 9]. Having a living host as a habitat47

adds complexity to the assessment of fitness, given that the presence of the microbes may impact the host fitness48

and vice-versa. It is in fact the whole life cycle of host-associating microbes that is intertwined with the one49

of their host. Research has often been biased towards the host perspective, and has focused on how microbes50

can contribute to host fitness by extending the host functional repertoire, e.g. performing digestive or immune51

tasks [10, 11, 12]. An exception is epidemiology and parasitology, that have specifically addressed the impact52

of the host fitness on the pathogen, in the form of trade-offs between transmission and within-host virulence53

[13, 14, 15, 16]. But what about commensal relationships, where bacteria do not have a negative impact on the54

host fitness? In this context, what are the factors that determine a microbial population’s fitness?55

Here, we propose a framework to assess the selection gradient acting upon the life history traits of a microbial56

population with a life cycle including host association. The gradient of selection determines the direction in the57

phenotypic space that evolution is expected to follow to maximize fitness. Our general aim is to provide a tool to58
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compare the relative importance of the different life-history traits of a microbial population, starting only from59

the equations that describe the population dynamics experienced throughout the life cycle. We explore a simple60

continuous-time two-compartment model that allows microbes to migrate between a host and its environment.61

We use the method of sensitivity analysis [3] to infer how strongly the population growth rate depends on the62

traits we are considering. In the baseline version of the model, we consider unconstrained growth. Subsequently,63

we extend our framework numerically to include population size constraints.We define the local direction of the64

selection gradient as the optimal strategy for a microbial population to adapt to its life cycle, starting from65

the local values of the traits. We show the existence of defined regions of different optimal strategies in the66

phenotypic space in which it is either more beneficial to optimize growth or transmission. The boundaries of67

these regions are driven by modeling assumptions such as competition, and the probing time chosen to measure68

fitness.69

2 Model70

We focus on a single microbial type and ask how the growth rate of its whole population is affected by its life71

history traits. We study the population in two compartments corresponding to communicating habitats: the72

host and its environment. Let us write nH for the number of host-associated microbes and nE for the number of73

environmental ones. We define the life history traits of the microbial population as the rates at which individuals74

of the compartmental populations reproduce and die, compete and migrate from one compartment to another75

(Figure 1A). The net replication rates in the environment and within the host are rE and rH , respectively.76

They could encompass both offspring production and death, and thus could be negative. The migration rates77

from the host to the environment and from the environment to the host are mE and mH , respectively. We78

start with exponentially growing populations. We later introduce a competition of intensity kij experienced79

by the microbes of compartment i due to the abundance of microbes in the compartment j. We assume that80

the number of microbes is large enough to be described by differential equations and assume that all rates81

introduced above are constant.82

This leads to the general equations

∂nH

∂t
= rHnH +mHnE �mEnH � kHEnHnE � kHHn2

H

∂nE

∂t
= rEnE +mEnH �mHnE � kEHnEnH � kEEn

2
E .

(1)

In the following, we first consider unconstrained growth, where there is no competition (kEE = kHH = kEH =83

kHE = 0), before adding global competition (kEE = kHH = kEH = kHE = k), competition limited to one of84

the compartments (kEH = kHE = 0 and kEE 6= 0 or kHH 6= 0), and finally, equal competition in each of the85

compartments (kEH = kHE = 0 and kEE = kHH = k). While in nature it is likely that none of the kij vanishes86

and that a wide range of values are possible, the study of these limit cases gives powerful insights into what is87
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to be expected in a wide range of situations.88

3 Results89

3.1 Baseline model: no competition90

We start by assuming no competition and consider unconstrained growth in each of the two compartments. In91

this case, the equations describing our model become linear and can be rewritten in matrix form [3] as92

✓
∂nH

∂t
∂nE

∂t

◆

=

✓
rH �mE mH

mE rE �mH

◆

| {z }

projection matrix

✓
nH

nE

◆

. (2)93

The dominant eigenvalue λ of the above-defined projection matrix gives the asymptotic growth rate of the94

whole population. This quantity is an appropriate measure of fitness [3] insofar as it measures reproductive95

success and recapitulates the effects of all the life history traits. The dominant right eigenvector represents the96

stable distribution in the two compartments of an exponentially growing population. The value of λ can be97

calculated at each point of the phenotypic space defined by the ranges of possible values that could be taken by98

the life-history traits rE , rH ,mE , and mH . The dependence of λ on these traits tells us at which points of the99

phenotypic space fitness is maximized and how it can be increased at all other points.100

From the projection matrix, we calculate the dominant eigenvalue as101

λ =
1

2

⇣p

(rE + rH �mE �mH)2 � 4(rErH � rEmE � rHmH) + rE + rH �mE �mH

⌘

. (3)102

Note that if microbes replicate at the same rate in the host and in the environment, i.e. if rE = rH = r, λ103

simplifies to r, regardless of the migration rates mH and mE . When there is an asymmetry between the two104

replication rates however, which is very likely to be the case in nature, then the migration rates also affect the105

population growth rate. In the following sections, we study this effect compared to the effect of the replication106

rates. We arbitrarily set rH  rE , and rE > 0 – otherwise the population gets extinct. In biological terms, this107

corresponds to the situation where the microbial population is initially more adapted to the environment than108

to the host and thus grows faster in the environment. But mathematically, in this model, host and environment109

are symmetrical, i.e. they only differ by the rates defined above. Thus, the chosen direction of this inequality110

does not carry any strong meaning, and there is no loss of generality in making this choice. In particular, one111

can access the opposite biological situation where microbes replicate faster in the host than in the environment112

– as is the case for viruses, that can only replicate in the host (rH > 0) but decay in the environment (rE < 0)113

– by a single switch of the index E and H.114

Let us first study the case where the migration rates from and towards the environment are equal, i.e.115

mE = mH = m > 0. Let us denote ρ = rH
rE

 1 the ratio of the replication rates. Then, setting rE = 1 to scale116

time (and thus, measuring all other rates in units of the replication rate of the microbe in the environment), λ117
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reduces to118

λsym =
1

2

⇣

1 + ρ� 2m+
p

(1� ρ)2 + 4m2

⌘

. (4)119

For any fixed positive value of m, λsym is a strictly increasing function of ρ, which reflects the fact that increasing120

ρ allows for additional growth within the host. We will limit ourselves to the study of ρ � �1, which guaranties121

a positive value for λsym. For any fixed value of ρ, λsym is a decreasing function of m, which reflects the122

fact that for increasing m, microbes are increasingly lost towards the host, where growth is slower than in123

the environment. Figure 1B shows the value of λsym on the reduced phenotypic space defined by ρ and m.124

The maximum possible value for λ is 1 (in units of rE). This value is achieved either by increasing the ratio125

of replication rates between host and environment, so that both microbial populations grow at the same rate126

(strategy I), or by reducing migration between host and environment (strategy II). This second strategy allows127

microbes to spend a longer time in the environment on average. Note however, that this strategy is limited,128

since setting m to zero decouples the two compartments completely, in which case the two subpopulations grow129

independently at different rates.130

How strong is the selection on these traits? This question can be approached by inferring how strongly the131

population growth rate depends on the traits we are considering. One standard approach to measure this is132

sensitivity analysis [3]. One defines the sensitivity of the population growth rate λ achieved by the phenotype133

described by the vector x = (x1, ..., xN ) in the trait space to its ith life-history trait as134

si(x) =
∂λ

∂xi

�
�
�
�
x

. (5)135

This quantity gives the change in the value of λ that results from a small increment of the trait i. It is a local136

property that can be calculated for each point x of the trait space. The vector of the sensitivities at point x gives137

the direction of the selection gradient on the fitness landscape. In other words, to achieve efficient phenotypic138

adaptation, the population should move in the trait space following the direction of this gradient.139

If the population can invest in phenotypic adaptation only by tuning one of its life-history traits at a140

time, then it should act upon the trait that has the largest (absolute) sensitivity at the current position of141

the population in the trait space. This reasoning allows to divide the trait space into regions of distinct142

optimal strategies, as shown in Figure 1B. In the regime of high migration rates (i.e. when the switch between143

the compartments is so rapid that the population is almost experiencing a habitat having average properties144

between the host and the environment), strategy I (increasing ρ) becomes almost always optimal, except for145

small replication ratios, where there is almost no replication in the host. In summary, migration rates are146

important when replication in the host is slow compared to the environment, and when migration itself is slow.147

These conclusions remain qualitatively unchanged with asymmetric migration rates, as discussed in more detail148

in the electronic supplementary material (ESM) section A.1.149
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A

rH : within-host replication rate

rE : environmental replication rate

mE : migration rate from the host to the environment

mH : migration rate from the environment to the host
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Figure 1: Optimal strategies in the baseline model (no competition). (A) Schematic diagram and definition of

the rates for a microbial population migrating between a host and its environment and replicating in each compartment.

For rE > 0, the population increases exponentially and we ask how the exponential growth rate can be increased by

changing the parameters of the model. (B) Population growth rate λ (color scale) on the trait space determined by

ρ = rH/rE and m = mH = mE . The population growth rate λ is maximized for small m or for large ρ. In addition, we

focus on sensitivities, which capture how strongly the population growth rate depends on the two traits. The contour

line shows the line of the traits space that equalizes the absolute values of the two sensitivities derived analytically from

equations 4 and 5, |sm|/|sρ| = 1, delimiting the regions of optimality of the two different strategies. Note that we take the

absolute values of the sensitivities, because in the baseline model the sensitivity of λ to increase in m is always negative,

while it is always positive to increase in ρ. When |sm|/|sρ| < 1, the optimal strategy is to increase the replication rates

ratio (strategy I). When |sm|/|sρ| > 1, the optimal strategy is to decrease the migration rate (strategy II).

3.2 Model with global competition between all microbes150

In the baseline model, there are no constraints on population growth. In nature, however, microbial populations151

do face limits to their growth. Since the equations above are linear and can only give rise to exponential growth152

or exponential decay, they can only describe the dynamics of a population over a limited period of time. In153

order to account for saturation and competition during growth, we thus need to introduce non-linear terms to154

the equations 1. The study of this kind of systems often focus on long term dynamics, yet it can be of high155

practical relevance to study the transient optimal strategies, as shorter timescales are often relevant in the real156

world – whether it be due to experimental constraints or to ecological disturbances and perturbations [17].157

Since we are going to consider some out-of equilibrium dynamics, in particular in the section with competition158

limited to one of the compartments, and because we are also interested in transient properties, we will adopt a159

numerical approach based on population sizes [18, 19].160

In this section we study the case of a microbial population limited in size by global competition occurring161

at rate k = kHH = kEE = kEH = kHE . This situation could correspond to a microbiota living in direct contact162

with an external environment, e.g. on the surface of an organism. Alternatively, what we call the “environment”163

in our model could represent another host compartment in direct contact with the other, like the gut lumen and164

the colonic crypts. In that case, microbes living in association with the host are in direct contact with those in165

the environment and can mutually impact each other’s growth. This is of particular relevance if both microbial166

subpopulations rely on and are limited by the same nutrients for growth.167
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From the microbial abundances in the different compartments obtained by numerically solving the equations,168

one can build a proxy for the population growth rate. To remain coherent with the previous section, we define169

Λ(x) =
1

tmax

log

✓
nE(tmax) + nH(tmax)

nE(0) + nH(0)

◆

, (6)170

i.e. the effective exponential growth rate of the whole microbial population – which captures the individual level171

reproductive success, since we consider a homogeneous population – over the chosen period of time [0, tmax].172

There are several fundamental differences between the effective exponential growth rate Λ in a non-linear173

system and the population growth rate λ in a linear system, the dominant eigenvalue of the projection matrix174

as defined in the baseline model. First, Λ only provides a measure of growth for the whole population, but175

does not correspond to the asymptotic growth rate of each subpopulations as it was the case with λ in the176

baseline model. In fact, it is not either the asymptotic growth rate of the whole population: in the case of global177

saturation, replication stops when the carrying capacity is reached, and the asymptotic growth rate for the whole178

population is thus zero. Therefore, the choice of the probing time tmax has an impact on Λ, which we will see in179

more detail below. Second, the choice of the exact form of Λ now implies biological assumptions on the selection180

pressure felt by the population: choosing the effective exponential growth rate over the whole population as we181

do implies that selection is acting on the whole population evenly. There may be some situations, for example182

experiments in which the population of one of the compartments is artificially selected for, where it would make183

more sense to define Λ as the effective exponential growth rate over just this subpopulation. This may lead to184

different conclusions, in particular at the transient scale. One must thus adapt Λ to the specifics of the modeled185

system. In addition, the choice of tmax itself has a biological meaning, and should in particular not exceed the186

time upon which the dynamics of the system are accurately described by the set of equations. This may also187

be determined by experimental times.188

We now calculate the sensitivity of Λ in the direction of the trait i at the point x of the phenotypic space as189

Si =
Λ(x1, x2, ..., xi−1, xi + δxi, xi+1, ..., xN )� Λ(x1, x2, ..., xN )

δxi

(7)190

with δxi the discretization interval, and N the number of traits defining a phenotype x.191

For the numerical approach, additional choices need to be made. First, the trait space needs to be discretized.192

Then, to calculate Eq. 7, one needs to choose a set of initial conditions and a probing time at which to measure193

the population sizes, as exposed in details for the linear case in [17]. Finally, we need to choose the discretization194

interval δxi. In the following, we always choose δxi sufficiently small for convergence, i.e. so that it does not195

significantly impact the numerical values of the sensitivities, and focus on the choices of the other parameters196

(probing time and initial conditions) and the influence of the competition intensity k. One strategy to explore197

the possible impact of initial conditions is to use “stage biased vectors” [17], i.e. extreme distributions of the198

population. This corresponds to initial conditions where microbes either exist only in the host or only in the199

environment.200
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Figure 2: Optimal strategies in the model with global competition. (A) Change in the contour line delimiting

the regions of optimality of the two strategies (strategy I: increasing the replication rates ratio; strategy II: decreasing

migration) with tmax, the time chosen to measure the final population size, measured in units of 1/rE . Initially all the

microbes are in the environment. Because in this model all the microbes are equally impacted by competition, with tmax

large enough, one recovers the contour line of the baseline model calculated analytically (black line). Continuous lines:

k = 0, i.e. no competition. Dashed lines: increasing values of k (competition intensity). (B) Extension of A with all the

microbes in the host initially. In this case the convergence to the case without competition appears to be slower, while

increasing the value of k seems to accelerate it. A third optimal strategy (III: increasing migration) appears around

m = 0, delimited from strategy I by thicker lines.

In Figure 2, we show how the contour lines delimiting the two optimal strategies change with the final201

time tmax chosen to measure the population growth rate and with the intensity of competition k, for these two202

extreme cases: nE(0) = 0, nH(0) = 1 and nE(0) = 1, nH(0) = 0. In all cases, with sufficiently long tmax, the203

contours converge to the contour plot of the baseline model in the previous section. This is expected, since204

competition here affects all the microbes in the same way, so that the equilibrium distribution is the same as205

the asymptotic distribution of the baseline model (given by the dominant eigenvector). Mathematically, global206

competition can be seen as a modification of the baseline projection matrix by subtracting an identity matrix207

times a scalar depending on time. This does neither affect the eigenvectors nor the dependence of the dominant208

eigenvalue on the traits.209

In the case where all the microbes are initially in the host (Figure 2B), the convergence to the baseline case210

requires higher values of tmax than in the case where all the microbes are initially in the environment (Figure211

2A). Intuitively, this corresponds to the fact that convergence to the baseline distribution requires population212

growth, and growth is slower if all the microbes are initially in the host compartment – where replication is213

slower. There is thus a time delay between these two situations, corresponding to the time it takes for migration214

to carry microbes into the environment – where replication is faster. When all the microbes are initially in the215

host (Figure 2B), we also observe the appearance of a third optimal strategy around m = 0: increasing the216

migration rate. In this unfavorable condition (m = 0 and an initially empty environment), increasing the217

microbial flux towards the environment becomes more important than limiting the flux of microbes leaving it218

(which is nonexistent when m = 0). At large tmax there is a direct transition between strategy II and strategy219

8



III when increasing m from zero, thus the two contour lines overlap.220

Finally, we observe that the intensity of competition has only a small effect on the contours when all the221

microbes are initially in the environment but a larger effect when all the microbes are initially in the host.222

In both cases, adding competition (k > 0) appears to accelerate convergence to the baseline contour. This223

is because during the transient dynamics, the distribution balances to the expected asymptotic distribution224

from the initial conditions. In most cases, this equilibrium distribution is a mixed state, where a part of the225

population lives in the environment and another in the host. To reach this balance quickly from a pure biased226

state necessitates immigration to and replication in the initially empty compartment, while immigration to and227

replication in the other compartment remain slow. Competition limits the growth in the compartment that is228

not initially empty, and thus helps this balancing process. This effect is even stronger if the initially empty229

compartment happens to be the environment, where microbes replicate faster. This explains why the effect of230

k is stronger in this case, see Figure 2B.231

3.3 Model with competition within one of the compartments only232

In this section we consider competition happening inside one of the compartments only (i.e. kEH = kHE = 0233

and kEE 6= 0 or kHH 6= 0). We will start by considering competition in the host only, as it seems likely, from234

the biological point of view, that resources may be more limited in the host than in the environment. However,235

in a second step we also look at the case with competition limited to the environment. Even if this situation236

may seem less likely at first sight, one should bear in mind that it also covers the case of competition limited to237

a host where replication is faster than in the environment (rH > rE), provided a switch of the H and E index.238

In the case where competition is limited to only one of the compartments, we do not expect an equilibrium239

population size to be reached for all traits combination of the phenotypic space. If migration is not sufficiently240

important, the subpopulation in the unconstrained compartment keeps growing exponentially faster than the241

other subpopulation, which contribution to the global population thus becomes rapidly negligible. At sufficiently242

high migration rates however, an equilibrium is expected, because the microbes switch habitats sufficiently243

rapidly for competition to be globally effective, although it directly affects only one of the compartments.244

3.3.1 Competition in the host only (slow-replicating compartment)245

When there is competition in the host only, there is no (positive) equilibrium for all m < 1. In this case,246

replication inside the host should have less importance because the host subpopulation size becomes negligible247

compared to the one of the environment. On this region of the phenotypic space we thus expect the sensitivity248

of parameter ρ to tend to zero with increasing probing times tmax, and the contour lines to be shifted to249

increase the area of optimality of strategy II, whatever be the other parameters (initial conditions, intensity of250

competition).251

Figure 3 verifies this verbal argument: as expected, for a fixed tmax, we recover the shape of the fitness252

landscape of the baseline model for small values of k. Strategy I (increasing the replication rates ratio) however,253
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sees its area of optimality reduced with increasing values of k (Figure 3A). The values of Λ also become smaller254

overall: growth is slower due to competition.255

As expected, for a fixed value of k = kHH , the contours delimiting the two optimal strategies shift to reduce256

the area of optimality of strategy I with large values of tmax (Figure 3B-C). The disappearance of the contours257

from the region where m < 1 takes place in two steps. First, with small tmax values, the effect of competition is258

not yet apparent due to the low initial abundance of microbes, and the contours start by getting closer to the259

reference contour of the baseline model, just as was observed in Figure 2. In the second step, with larger tmax,260

the effect of competition becomes apparent and the contours are shifted out of the m < 1 region, ultimately261

reaching a close-to horizontal limit which can be calculated analytically by performing sensitivity analysis on262

the equilibrium population sizes.263

Additionally, when initially the microbes are in the host (Figure 3C), for the same reasons as in the previous264

section, we can again observe the appearance of the third strategy, increasing the migration rate, around m = 0.265

The impact of increasing competition k at fixed tmax on the contour lines delimiting the two optimal266

strategies is clear in Figure 3D and E. We see that increasing k and increasing tmax have very similar effects:267

with small values of k, the baseline case is recovered, as expected. When increasing k sufficiently, the contour268

line is shifted out of the m < 1 region with strategy I, i.e.increasing the replication rates ratio, until reaching269

the equilibrium limit. This is because increasing growth in the host can only have a limited effect when growth270

in the host is limited by competition, which makes strategy II comparatively more efficient.271

10



-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D

Replication rates ratio ! = "!/""

M
ig

ra
ti

o
n
 r

a
te

 #
"

=
#

!
=

#

Initial 

conditions:

#!(0) = 1

#"(0) = 0

$ = 10−10

$ = 10−9

$ = 10−8

$ = 10−7

$ = 10−6

$ = 10−5

$ = 10−4

$ = 10−3

$ = 10−2

II

I

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Replication rates ratio ! = "!/""

M
ig

ra
ti

o
n
 r

a
te

 #
"

=
#

!
=

#

Initial 

conditions:

#!(0) =  0

#"(0) =  1

$ = 10−10

$ = 10−9

$ = 10−8

$ = 10−7

$ = 10−6

$ = 10−5

$ = 10−4

$ = 10−3

$ = 10−2

$ = 10−1

I

II

E

III

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B

Replication rates ratio ! = "!/""

M
ig

ra
ti

o
n
 r

a
te

 #
"

=
#

!
=

#

Initial 

conditions:

#!(0) = 1

#"(0) = 0

%$%& = 0.1
%$%& = 1
%$%& = 10

%$%& = 30
%$%& = 35

%$%& = 40
%$%& = 45
%$%& = 50

%$%& = 60

%$%& = 70

(1)

II

I

(2)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0
C

Initial 

conditions:

#!(0) =  0

#"(0) =  1

%$%& = 5

%$%& = 10
%$%& = 20

%$%& = 30
%$%& = 40
%$%& = 50

%$%& = 60
%$%& = 70

Replication rates ratio ! = "!/""

M
ig

ra
ti

o
n
 r

a
te

 #
"

=
#

!
=

#

II

I

III

(2)

(1)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

ig
ra

ti
o
n
 r

a
te

 #
"

=
#

!
=

#

Replication rates ratio ! = "!/""

A

$ = 10−12
																																																									$ = 10−8

																																																											$ = 10−4

Weak competition Intermediate competition Strong competition

Replication rates ratio ! = "!/"" Replication rates ratio ! = "!/""

I

II II

I

II

Λ

0.2

0.4

0.6

0.8

1.0
I

Figure 3: Optimal strategies in the model with competition in the host only. (A) Change in the fitness

landscape with the within-host competition intensity k = kHH . Black line: contour of equal sensitivities. Thin dashed

line: contour of equal sensitivities of the equilibrium population sizes. Other parameters: tmax = 30, nE(0) = 1, nH(0) =

0. (B-E) Change in the contour lines delimiting the regions of optimality of the strategies with (B-C) tmax (probing

time chosen to measure the population size) and (D-E) k (within-host competition intensity), with initial conditions

where all the microbes are in the environment (B and D, nE(0) = 1, nH(0) = 0) or where all the microbes are initially in

the host (C and E, nE(0) = 1, nH(0) = 1). Solid lines: limit between the regions of optimality of strategy I (increasing the

replication rates ratio) and II (decreasing migration). Dashed lines: between strategies I and III (increasing migration).

Other parameters: k = 10−8 (B-C), tmax = 30 (D-E). In the case of competition limited to the host, whatever be the

initial conditions, at sufficiently large tmax, or sufficiently large k, the region of optimality of strategy I (increasing the

replication rates ratio) tends to narrow down and shift out of the m < 1 region to reach the contour of equal sensitivities

of the equilibrium population sizes (thin dashed line). The arrows in panels (B) and (C) indicate the two steps of contour

shift with increasing tmax: in the first phase, when competition has a limited effect due to low abundances, the contours

approach the limit of no competition (black line, as in Figure 2). In the second phase, competition in the host kicks in,

and the contours move away from the baseline limit.
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3.3.2 Competition in the environment only (fast-replicating compartment)272

When there is competition in the environment only, there is no (positive) equilibrium for all m < ρ. In273

this region of the phenotypic space, the size of the environmental population becomes substantially smaller274

than that of the host-associated population after some time. As a consequence, strategy I (increasing the275

replication rate within the host) becomes more important, so that we see its area of optimality extend, see276

Figure A.2. For a fixed tmax, with a small value of k we recover the shape of the fitness landscape from the277

baseline model with no competition, but increasing k shifts the contour line to lower ρ until the strategy II278

(decreasing migration) disappears from the m < ρ region and the delimitation of the strategies approaches the279

contour of equal sensitivities of the equilibrium population sizes, calculated analytically. Like in the previous280

sections, we also observe the appearance of a third optimal strategy around m = 0, increasing migration.281

Unlike in the previous sections, this time the third strategy also appears when the microbes are all initially282

in the environment (Figure A.2B and D), and is also predicted by the sensitivity analysis of the equilibrium283

population sizes. Intuitively, having competition in the fast-replicating environment reduces the advantage of284

starting with a microbial population exclusively located there, and in this case too migration towards the host285

becomes initially more important than limiting migration out of the environment. For a fixed value of k, with286

increasing tmax the contour line starts by getting closer to the baseline model contour, before diverging from this287

limit and approaching the contour of equal sensitivities of the equilibrium population sizes. This finally leaves288

strategy I as the only optimal strategy on almost all the phenotypic space at sufficiently long times (Figure289

A.2B-C), except for a region of small ρ and intermediate m. Increasing k for a fixed value of tmax (Figure290

A.2D-E) has a very similar effect on the contour, except for the initial dynamics towards the baseline model.291

3.4 Competition of same intensity in each compartment292

When there is competition of equal intensity in the host and the environment (i.e. kEH = kHE = 0 and293

kEE = kHH = k), we observe very similar results to the previous section, with competition in the environment294

only (see Figure 4): increasing k or increasing tmax leads to the disappearance, at long times, of the area of295

optimality of strategy II (decreasing migration), except for a distinct region of small ρ and intermediate m,296

predicted by the contour of equal sensitivities of the equilibrium population sizes. This implies that the effect of297

competition in the fast-replicating compartment has a dominating effect on the global population growth rate.298
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Figure 4: Optimal strategies in the model with limited growth in the host and the environment. (A) Change

in the fitness landscape with the competition intensity kHH = kEE = k. Black thick lines: contours of equal sensitivities

(solid line: between strategy I and II, dashed line: between I and III). Black thin lines: contours of equal sensitivities of

the equilibrium population sizes (dashed: between I and II and dotted: between I and III). Other parameters: tmax = 30,

nE(0) = 1, nH(0) = 0. (B-E) Change in the contour lines delimiting the regions of optimality of the strategies with

(B-C) tmax (time chosen to measure the population size) and (D-E) k (competition intensity), in the case of initial

conditions where all the microbes are in the environment (B and D, nE(0) = 1, nH(0) = 0) or in the case where all the

microbes are initially in the host (C and E, nE(0) = 0, nH(0) = 1). Solid lines: limit between the regions of optimality

of strategies I (increasing the replication rates ratio) and II (decreasing migration), and dashed lines: between I and III

(increasing migration). Other parameters: k = 10−8 (B-C) and tmax = 30 (D-E). In the case of competition in the host

and in the environment, the effect of the competition in the environment (the fast-replicating compartment) seems to

dominate, so that at sufficiently large times, the region of optimality of strategy II (decreasing migration) is reduced,

and its limit approaches the contour of equal sensitivities of the equilibrium population sizes (black dashed line: between

I and II). The black dotted line shows the contour of equal sensitivities of the equilibrium population sizes delimiting

strategies I and III. The arrows in panels (B) and (C) indicate the two steps of contour disappearance with increasing

tmax: in the first phase, when competition has a limited effect due to low abundances, the contours approach the limit

of no competition (black solid line, as in Figure 2). In the second phase, competition kicks in and the contours move

away from the baseline limit.
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4 Discussion299

Out in the wild, microbes experience complex life cycles. Each of their steps can contribute to the overall300

reproductive success. In general, microbial fitness is thus more complex than the common approximation of301

growth yield used in the lab. This is particularly true for microbes experiencing life cycles that involve only302

a limited phase of host association, which translates as a selection pressure on phenotypic traits associated to303

migrating from an external environment to the host and vice-versa. A framework to study fitness in all its304

complexity is needed in the field of microbiome studies, which could benefit from approaches first introduced305

in demography. Here, we investigate a model of a microbial population living, replicating, migrating, and306

competing in and between two compartments: a host – assumed to be, throughout the paper, a compartment307

where replication is slower – and its environment. To analyze the selection gradient experienced by the microbial308

population going through this biphasic life cycle – with phases in the environment and phases in the host – we309

perform sensitivity analysis. We focus on the leading direction of the selection gradient at each point of the310

phenotypic space, thereby defining an optimal strategy for the microbial population to maximize its fitness.311

We show that in the case of unconstrained exponential growth in both the compartments, there are two312

optimal strategies: increasing the replication rate in the host compared to the environment (strategy I), and313

decreasing the migration rates (strategy II) to maximize the time spent in the fast-replicating compartment.314

The first strategy is optimal at initially high ratios of replication rates and high migration rates, while the315

second strategy is optimal at initially small migration rates and small ratio of replication rates.316

Next, we extend the model to a scenario where microbial growth is limited by competition. We start with317

global competition, a case which could describe competition for a resource homogeneously shared between318

the host and the environment. Biologically, this corresponds to communities of microbes that are associated319

with hosts, i.e. microbiotas, but have extensive contact with the environment, as the skin or other epithelial320

microbiotas for example [20, 21]. In this case, we show that apart from a transient effect, the optimality of321

the strategies is conserved from the case without competition. With competition in the host only (the slow-322

replicating compartment), at longer probing times, or at higher competition intensities, the strategy I (increasing323

the ratio of replication rates) is disfavored when migration out of the environment is slower than replication in324

the environment, i.e. where there is no equilibrium. Strategy II (decreasing the migration rates) thus increases325

its area of optimality. Inversely, with competition in the environment only (the fast-replicating compartment),326

or with competition of same intensity within the host and within the environment, the strategy II is selected327

against when migration out of the host is slower than replication in the host, leaving strategy I as the only328

optimal strategy on this region of the parameter space. Unsurprisingly, this suggests that competition within329

the fast-replicating compartment dominates the effect on the selection gradient.330

While this analysis provides crucial information on the selection gradient that shapes microbial adaptation331

to life cycles involving host association, it does not take into account the evolvability of the traits themselves.332

Although the selection gradient is a good indicator of the expected evolutionary path in the phenotypic space,333

the underlying genotype/phenotype mapping does not always allow for this path to be taken [22, 23, 24, 25],334
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and the outcome of evolution may thus be different. The discrete nature, the non-additivity and non-linearity335

of genetic information, as well as the existence of costs, trade-offs and evolutionary constraints may prevent the336

predicted continuous change on the phenotypic trait. In addition, using sensitivities is built on the assumption337

that adaptation generates additive changes in life history traits. Although this is a common assumption,338

different choices are sometimes made. For example, multiplicative changes of the traits are assumed in elasticity339

analysis [3, 18, 24, 26], which presents the advantage of manipulating only proportional changes and thus340

non-dimensional quantities, but deals poorly with traits that can take the value of zero. These fundamental341

assumptions can sometimes result in different inferred selection gradients, as was shown for example in the342

context of age-classified populations [27]. However, although the exact shapes of the contours are modified, we343

have checked that our qualitative results remain robust when applying elasticity instead of sensitivity analysis.344

Stepping back, we can evaluate the predictions of our model in the light of biological observations. Evo-345

lution experiments where microbial populations are serially passaged through a host and an environment are346

of particular interest here, to assess the response to selection resulting from biphasic life cycles. The key role347

of microbial immigration during the initial adaptation to their zebrafish host has for example been highlighted348

in [28]. In Drosophila [29] and in C. elegans [30], experimental selection towards host association resulted in349

adaptive changes in microbial life history with a direct impact on host fitness. In detail, in the first case, there is350

evolution towards by-product mutualism, and in the second, which concerns an initially pathogenic population,351

evolution towards less virulence and an increased carrying capacity.352

Conceptually, using the effective population growth rate as a measure of fitness provides a complementary353

insight to invasion fitness approaches [31, 32] developed to analyze such evolution experiments, for example in354

[33, 34]. While invasion fitness analysis relies on assessing the long term chances of successful invasion of an355

established population at equilibrium by a new mutant strain of defined traits values, sensitivity analysis of356

the effective population growth rate provides a systematic framework that can be applied to out-of-equilibrium357

systems, and provides information on shorter time scales. Both frameworks rely on different proxies to assess a358

fitness capturing its different components - in one case, the frequency of patches where the microbe is present,359

and in the other, the microbial population growth, but both frameworks converge on the key role of migration360

between compartments. In fact, in many common cases like global competition, the long-term predictions of361

invasion fitness are recovered with the sensitivity analysis of the effective growth rate by setting tmax sufficiently362

large [18].363

In future work, our framework could be extended in different directions to capture additional characteristics364

of microbial life cycles in host association. The first extension could be to increase the number of compartments.365

While the question of fluctuating environments has been studied before, in discrete times or in a different context366

[7, 18], in our context it may be profitable to consider and include host population dynamics. This would367

notably allow us to include microbial traits that affect host fitness in our analysis. A second direction could be368

to include stochasticity and non-homogeneities. Indeed, our deterministic description is valid only if the size of369

the microbial population is sufficiently large at all times and can only describe the average selection gradient370

experienced by the population. Introducing stochasticity would allow the study of differentiation, which may371
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play a role in the response to complex life cycles. Differentiation, in the form of speciation, phenotypic plasticity,372

or bet-hedging is indeed observed in evolution experiments and natural microbial populations [35, 36, 37, 38, 39,373

40]. It is also observed in host-associated populations [41] and may thus be expected in evolution experiments374

that include a host-association phase. Finally, a key aspect that we have so far excluded is spatiality. Effects375

of spatiality on the selection gradient are known for example in a simple Petri dish system, where the existence376

of an optimal expansion speed for a given habitat size is shown [42, 43]. Generally, hosts are highly structured377

habitats with variation in nutrients and chemical and physical gradients shaping for example the gut [44, 45, 46],378

which may also favor differentiation. The introduction of several compartments or sub-compartments within379

the hosts could represent a first step in this direction.380

Thus, our model provides the key ingredients to study the consequences of host association for a microbe.381

It meets the need to conceptualize fitness as a holistic measure that captures all the aspects of microbial life382

cycles. With the development of this framework, we aim to contribute to a better understanding of the mutual383

benefits that microbes and hosts can retrieve from such associations.384
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