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 3 

Abstract  39 

Tissues and organs provide the structural and biochemical landscapes upon which microbial 40 

pathogens and commensals function to regulate health and disease. While flat two-dimensional 41 

(2-D) monolayers composed of a single cell type have provided important insight into 42 

understanding host-pathogen interactions and infectious disease mechanisms, these 43 

reductionist models lack many essential features present in the native host microenvironment 44 

that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular 45 

complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically 46 

relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in 47 

tissue engineering for infectious disease research is recreating this dynamic 3-D 48 

microenvironment (biological, chemical, physical/mechanical) to more accurately model the 49 

initiation and progression of host-pathogen interactions in the laboratory. Here we review select 50 

3-D models of human intestinal mucosa, which represent a major portal of entry for infectious 51 

pathogens and an important niche for commensal microbiota. We highlight seminal studies that 52 

have used these models to interrogate host-pathogen interactions and infectious disease 53 

mechanisms, and we present this literature in the appropriate historical context. Models 54 

discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) 55 

bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) 56 

models. Collectively, these technologies are providing a more physiologically relevant and 57 

predictive framework for investigating infectious disease mechanisms and antimicrobial 58 

therapies at the intersection of the host, microbe and their local microenvironments.  59 

 o
n
 S

e
p
te

m
b
e
r 2

6
, 2

0
1
8
 b

y
 g

u
e
s
t

h
ttp

://ia
i.a

s
m

.o
rg

/
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://iai.asm.org/


 4 

Introduction  60 

Mucosal surfaces lining the gastrointestinal, respiratory and urogenital tracts continuously 61 

interface with the external environment and serve as a barrier against pathogens, commensals, 62 

chemicals, drugs and toxins. These tissues possess a complex architecture with multiple cell 63 

types organized into 3-D structures that facilitate tissue-specific functions. The biological, 64 

chemical, and biomechanical characteristics that define microenvironmental niches along these 65 

surfaces provide the structure and context upon which infection takes place. Pathogens have 66 

adapted to detect specific host structures, polarity, and changes in local environmental stimuli 67 

(pH, temperature, oxygen, nutrients, hormones, physical forces, etc.) to know where and when 68 

to activate specific virulence programs during different infection stages (1-7). A major challenge 69 

in tissue engineering for infectious disease research is recreating in vivo spatiotemporal 70 

properties of dynamic 3-D microenvironments to more accurately model host-pathogen 71 

interactions in the laboratory.  72 

 73 

Historically, infectious disease has been commonly studied in vitro by assessing the interaction 74 

of a single microbe with a single host cell type, with the latter grown as flat 2-D monolayers. This 75 

reductionist approach has enabled important discoveries and advanced our understanding of 76 

mechanisms that underlie infection and disease. However, the study of disease in isolation or 77 

out of context can change the native behavior of both host and microbe, thus creating a barrier 78 

for researchers to correlate in vitro and in vivo responses. In this data-rich period where multiple 79 

-omics technologies are being synergistically applied for unparalleled insight into host-pathogen 80 

interactions, it is critical to consider the context under which these investigations are performed.  81 

Reconstructing host microenvironments is key, including 3-D tissue architecture, multicellular 82 

complexity, microbiota composition/localization, oxygen tension, transport processes and 83 

biomechanical forces (e.g., fluid shear, stretch, compression) (1, 8-11). Within this context, in 84 

vitro models are positioned along a continuum between 2-D and 3-D, with flat monolayers of a 85 
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 5 

single cell type representing the most basic system with more complex models located further 86 

down the spectrum that recreate multiple aspects of the native tissue microenvironment (Fig. 1). 87 

Since tissues and organs function in a 3-D context, consideration of proper structure is essential 88 

for development of models that better mimic in vivo responses. Since no current in vitro model 89 

fully accomplishes this task, multidisciplinary teams of biologists, engineers, physicists, 90 

mathematicians and clinicians are creatively working together to develop next-generation 3-D 91 

models with enhanced predictive capabilities to open new avenues for clinical translation.       92 

 93 

Present-day 3-D culture techniques result from a series of progressive advances in tissue 94 

engineering over the past century to better mimic the native structure and microenvironment of 95 

normal and diseased tissues (reviewed in (12)). Indeed, long ago the cancer research 96 

community recognized that appropriate modeling of the 3-D microenvironment is important for 97 

mimicking disease, leading to development and application of 3-D organoid models developed 98 

within or on top of extracellular matrix (ECM) (12-16). The bidirectional exchange of biological 99 

and physical signals between cells and their microenvironment regulates cell structure/function 100 

and is largely manifested by tensile connections between ECM, cell surface receptors (e.g., 101 

integrins), and the cytoskeleton to transduce signals to and from the nucleus (17-31). This same 102 

structural network is also engaged by certain invasive pathogens (e.g., Salmonella, Shigella, 103 

Listeria, rotavirus, influenza virus) that hijack and remodel host cell architecture to facilitate their 104 

internalization, intracellular trafficking, and/or dissemination (9, 32-34). Similarly, we and others 105 

have demonstrated that bacteria also respond to biomechanical forces like fluid shear, which 106 

can regulate virulence, gene expression and/or stress responses (1-5, 35-47). Indeed, the 107 

discovery of biomechanical forces as environmental regulators of microbial pathogenesis was 108 

made by our team almost two decades ago with the discovery that fluid shear forces globally 109 

reprogram Salmonella gene expression, stress responses and virulence (35). Fluid shear also 110 

plays a central role in regulating a number of host responses, including differentiation (48-50). 111 
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 112 

Although 3-D models have long been applied for cancer research (12-16), their utility remained 113 

largely unincorporated by the infectious disease community until the late 1990s and early 114 

2000s. As expected for many new ideas in an established field, the use of 3-D models to study 115 

host-pathogen interactions was initially met with skepticism. The first reports of 3-D models to 116 

study viral infections were by Long et al. in 1998 (rhinovirus) and bacterial infections by 117 

Nickerson et al. in 2001 (Salmonella enterica serovar Typhimurium/S. Typhimurium) (11, 51). 118 

Recently, infectious disease researchers have broadly embraced 3-D models for studying 119 

pathogenesis mechanisms, biomarker discovery, and drug candidate screening. In this review, 120 

we highlight key microenvironmental factors to consider when selecting in vitro 3-D intestinal 121 

models to study host-pathogen interactions. We focus on three key technologies for model 122 

development, 1) the RWV bioreactor, 2) ECM-embedded/organoid models, and 3) gut-on-a-chip 123 

models, and propose a vision for future model advancements. We also provide proper historical 124 

context for use of 3-D cell cultures in studying host-pathogen interactions, which is finally 125 

gaining a critical mass of scientists who understand and appreciate the value of studying 126 

disease in the proper context of tissue form and function.    127 

 128 

I. Microenvironmental cues in host-microbe interactions  129 

Mucosal tissue function and homeostasis are meticulously controlled by complex bidirectional 130 

interactions between cells and their microenvironment (15, 20, 25, 27-29, 52-55). The 131 

microenvironment includes 3-D tissue architecture, multiple cell types, ECM , innate immunity 132 

mediators, indigenous microbiota, and physical forces. These factors are regulatory signals for 133 

mucosal pathogens and may be beneficial or detrimental for infection (1-5, 8, 35-45, 47, 56-64). 134 

Below we address key cellular, biochemical and biophysical cues that dictate infection outcome 135 

and are important considerations when modeling host-enteric pathogen interactions. 136 

 137 
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 7 

Cellular factors. Intestinal mucosal epithelium contains an array of specialized epithelial and 138 

immune cells that work in synergy to protect against infection by: (i) serving as a barrier against 139 

luminal toxins, commensals and pathogens, (ii) sampling microbial antigens, and (iii) recruiting 140 

innate and adaptive immune effectors (65). The intestine contains multiple epithelial cell types, 141 

including enterocytes (absorptive functions), enteroendocrine cells (hormone secretion), Paneth 142 

cells (antimicrobial production), goblet cells (mucin production), M cells (luminal antigen 143 

sampling/induction of mucosal immunity), Tuft cells (Th2 immunity), and Cup cells (unknown 144 

function) (66, 67). The intestine also contains immune cells for innate and adaptive responses to 145 

pathogen attack, including macrophages, dendritic cells, T and B cells, including those 146 

organized in lymphoid structures termed Peyer’s patches, sites of induction of mucosal 147 

immunity. As the body’s largest immune organ, the composition, organization and function of 148 

the intestine varies by region and consists of integrated cross-communication networks of 149 

different cell types and effectors critical for protection against pathogens (described in (65, 68-150 

73)).  151 

 152 

Epithelial cell polarity establishes barrier function, regulates uptake/transport of nutrients, and 153 

maintains epithelial architecture (65, 74-76). In the intestine, apical surfaces face the lumen and 154 

regions between villi/folds, lateral surfaces face adjacent cells, and basal surfaces face the 155 

basement membrane and lamina propria. Along Peyer’s patches and isolated lymphoid follicles, 156 

the basal side of the follicle-associated epithelium overlies a subepithelial dome region 157 

containing a mixture of immune cells (77). The distinct biochemical composition (e.g., protein, 158 

lipid) of apical and basolateral surfaces facilitates their specific functions (76). Given that many 159 

pathogens have evolved to recognize surface-specific molecules for attachment and/or to 160 

disrupt barrier integrity to enable their uptake and dissemination (6, 75, 78-80), appropriately 161 

modeling polarity in vitro is critical as pathogens infect host cells differently depending on 162 

whether they are polarized or non-polarized (81-84). Maintaining barrier integrity requires proper 163 
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 8 

expression and localization of tight and adherens junctions. Adherens junctions are mediated by 164 

E-cadherin and catenin interactions, while tight junctions are composed of transmembrane 165 

proteins (e.g., claudins, occludins) and cytoplasmic plaque proteins (e.g., zonula occludens). 166 

While generally protective, junctional complexes are also exploited by pathogens to facilitate 167 

invasion (75) and some enteric viruses utilize receptors localized to these junctions (78, 79).  168 

 169 

Another major cellular component encountered by enteric pathogens is the diverse microbial 170 

community – termed microbiota (referring to microorganisms) or microbiome (referring to 171 

microbial genomes). The intestinal tract contains prokaryotes, viruses, archaea, and eukaryotes, 172 

some of which protect the host against pathogen colonization by a variety of mechanisms, 173 

including epithelial cell turnover, mucin synthesis, and triggering bacterial sensors on host cells 174 

(85-87). Reciprocal interactions between host and microbiota contribute to tissue function and 175 

homeostasis and determine microbiota composition, thereby playing an important role in 176 

infection and disease (88). For example, intestinal microbiota regulate production of 177 

antimicrobial peptides by Paneth cells (89) and shape immune responses by regulating 178 

numbers, subsets, and/or functions of T, B and myeloid cells (65). Microbiota-induced changes 179 

in immunity also determine intestinal microbiota composition (86, 90).   180 

 181 

The intestinal microbiota is comprised of ~1014 bacteria (>1000 species), with Firmicutes and 182 

Bacteroidetes most abundant (91-94). Interpersonal variation in intestinal microbiome occurs, 183 

with each individual carrying a subset of the total known microbiome (95). Temporal and spatial 184 

variation occurs throughout the intestinal tract (96, 97).  Increasing data suggest a relationship 185 

between an imbalanced intestinal microbiome and various diseases, including obesity, 186 

inflammatory bowel disorders and cancer (98). The importance of gut microbiota to health is 187 

highlighted by successful clinical application of fecal microbiota transplants from healthy 188 
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 9 

individuals to patients with recurrent, antibiotic resistant Clostridioides difficile (C. difficile) (99-189 

101).  190 

 191 

Biochemical cues. Mucosal tissues contain an array of small molecules, including innate 192 

defense mediators that target pathogens and regulate downstream host defenses. Intestinal 193 

mucus harbors compounds from the innate and adaptive systems that protect against microbial 194 

insult, including digestive enzymes (e.g., lysozyme), lactoferrin, antimicrobial peptides, 195 

complement, and antibodies (e.g., secretory immunoglobulin A/sIgA) (65). In addition, cells of 196 

the innate defense system respond to pathogen-associated molecular patterns (PAMPs) using 197 

pathogen recognition receptors (PRRs). Depending on the pathogen, PRR-mediated signal 198 

transduction results in different cellular outcomes (e.g., cell proliferation, apoptosis, antimicrobial 199 

peptide production, autophagy, cytokine secretion). Cytokine production leads to recruitment of 200 

innate and adaptive immune effectors to the infection site, representing a bridge between these 201 

two arms of immunity (65, 102).  202 

 203 

Mucins are complex mixtures of high molecular weight, glycosylated macromolecules that bind 204 

and remove pathogens and their products (7, 102). Enteric pathogens sense and respond to 205 

cues within mucus and overcome this barrier to reach underlying epithelium (7). Normal 206 

intestinal mucus consists of two layers: an outer layer colonized by microbes and a sterile inner 207 

layer (103-105). The composition and thickness of these mucin layers varies throughout 208 

intestinal regions to accommodate their different functions and microbial burdens. Within the 209 

small intestine the inner and outer mucosal layers are thinner to facilitate nutrient absorption, 210 

with thicker regions found towards the ileum where microbial burden is heavier (7). In the colon, 211 

both layers are thicker to accommodate the burden of several trillion commensals (7). The 212 

presence of sIgA and other mucin antimicrobials also serves to reduce bacterial colonization 213 

(106).  214 
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 215 

The ECM is another key contributor to tissue homeostasis. Historically neglected as a signaling 216 

entity, seminal discoveries have revealed the central role of ECM in regulating tissue 217 

architecture/function (20, 53). The ECM is a three-dimensional non-cellular scaffold comprised 218 

of proteins (e.g., collagens, elastins, laminins, fibronectins), proteoglycans and water. Two main 219 

types of ECM include: (i) interstitial connective tissue matrix, which serves as a cellular scaffold, 220 

and (ii) basement membrane matrix, which separates epithelium from interstitium (107, 108). 221 

ECM components also serve as ligands for cell receptors like integrins, which transduce 222 

physical forces into biological responses (mechanotransduction). Additionally, immune 223 

responses are mediated through interactions with the ECM (108, 109). Furthermore, the ECM 224 

controls availability/release of growth factors and other signaling molecules (hormones, 225 

cytokines) (108). The complexity, composition and structure of ECM are highly dynamic and 226 

specific (as are the biochemical gradients it contains) and depend on tissue type, developmental 227 

stage, and health/disease state (108).  228 

 229 

Biophysical forces. The role of physical forces in cell and tissue development/function is as 230 

important as those of genes and biochemical signals (28, 110). Physical forces regulate cell 231 

proliferation, differentiation and homeostasis (111, 112). Forces experienced by intestinal cells 232 

include fluid shear, pressure (113), and contractile peristalsis of muscles (114). Hydrodynamic 233 

calculations suggest that fluid shear forces on the exposed epithelial brush border microvilli are 234 

~ 200 times greater than those between microvilli (< 0.01 dynes/cm2) (115).   235 

 236 

The cytoskeleton and its linkage with ECM play an essential role in enabling cells to sense and 237 

respond to biophysical forces. While the governing role of ECM as a dynamic signaling entity 238 

that regulates tissue form/function is now appreciated, it was initially considered a purely static 239 

scaffold. However, tissue-specific architecture and function are regulated by the biophysical 240 
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 11 

properties of ECM (20, 116, 117), which exerts physical influences transduced by cell surface 241 

receptors through the cytoskeleton to the nucleus to ultimately alter cellular and molecular 242 

properties. These structural networks are critical for regulating cell shape/architecture, and have 243 

been modeled using the principle of tensegrity, which refers to structures that are stabilized 244 

under continuous tension by balancing opposing tension and compression forces (27-29, 31). 245 

The integration of biophysical forces across cells and tissues using this structural network 246 

regulates a wide range of biological processes (e.g., cell proliferation, apoptosis, differentiation, 247 

adhesion, migration, gene expression, architecture)(8, 20, 21, 23, 25, 27, 29-31, 55, 118). 248 

Accordingly, ECM composition and stiffness are critical regulators of cellular responses (119, 249 

120). These properties are continuously remodeled through the process of “dynamic reciprocity” 250 

(17, 20, 53, 118), theorized by Bissell in 1982 to explain how signaling between the ECM and 251 

nucleus regulate tissue function. This laid the foundation for modern 3-D cell culture approaches 252 

used today (20, 108, 121). Not surprisingly, pathogen-ECM interactions play an important role in 253 

mediating infection (122-127). In addition to impacting the host, physical forces also globally 254 

alter bacterial gene expression, stress responses, and virulence in unexpected ways to 255 

contribute to infection (5, 36-40, 47, 62-64). 256 

 257 

II. Modeling the microenvironment: 3-D models for infectious disease  258 

Several cell culture systems exist for the development and application of 3-D models of human 259 

tissues for infectious disease research, including the RWV bioreactor, ECM-embedded scaffolds 260 

(e.g., ECM extracts, purified ECM, or synthetic/semi-synthetic hydrogels), and organ-on-a-chip 261 

(OAC) models. The choice of system to use depends on several factors, including the 262 

experimental question being addressed, technical complexity, and cost and expertise for model 263 

development. Different cell types in the native tissue (including immune cells) can be co-264 

cultured in these models to further enhance physiological relevance. Additionally, a single 265 

epithelial cell type can spontaneously differentiate into multiple epithelial cell types normally 266 
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 12 

found in the parental tissue and undergo self-assembly into tissue-like structures using all of 267 

these 3-D technologies. To date, most in vitro infection studies have been performed using cell 268 

lines; however, there is a push to develop models using either primary and/or stem cells to 269 

better mimic the native tissue. To explore the integration of different environmental signals in 270 

regulating infection, a hierarchical series of increasingly complex 3-D model systems comprised 271 

of different cells types can be developed and applied in parallel under differing experimental 272 

conditions (e.g., different oxygen tensions, physical forces). 273 

 274 

RWV-derived 3-D models. The RWV bioreactor is an optimized form of suspension culture that 275 

facilitates formation of self-organizing 3-D tissue-like aggregates by allowing cells the spatial 276 

freedom to co-localize and self-assemble based on natural affinities within a low fluid shear 277 

environment (Fig. 1B, panel a) (8, 128). Fluid shear influences cell proliferation, differentiation, 278 

morphology and function (30, 115, 129-141). Models developed within the dynamic RWV 279 

environment experience excellent mass transfer of nutrients/wastes and exhibit enhanced 280 

structure, differentiation, function, and multicellular complexity relative to 2-D monolayers (11, 281 

81, 142-155). Along these lines, observations from the 1970s showed that flotation of collagen 282 

gels led to a more permissive environment for cellular differentiation (12, 156, 157). Moreover, 283 

the low fluid shear environment in the RWV is also physiologically relevant to that encountered 284 

by pathogens in low shear regions of the infected host, including intestine (38, 115, 130-132). 285 

Accordingly, the RWV is also used to culture pathogens to study the role of fluid shear and 286 

mechanotransduction in regulating microbial pathogenesis and host-pathogen/commensal 287 

interactions (1, 35-41, 45-47, 62, 64, 146, 158-168).  288 

 289 

The RWV is among the most extensively used approaches to develop 3-D models to study host-290 

pathogen interactions. It was the first technology used to develop 3-D models for infection 291 

studies with bacterial (Salmonella) and viral (rhinovirus) pathogens (11, 51). A range of RWV-292 
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 13 

derived 3-D models have been developed using cell lines, stem cells, and/or primary cells, 293 

including small and large intestine (11, 81, 142, 144, 146, 147, 153, 169-178), lung (145, 148, 294 

179-183), liver (149, 154, 175, 184, 185), bladder (8, 186-188), reproductive tissues (150-152, 295 

189-191), heart (192-194), prostate (143, 187, 195), pancreas (196, 197), nervous tissue (183, 296 

198-200), blood-brain barrier (201), skin (202), eye (203), bone, joint or disc (204-208) and 297 

tonsil (209), among others. These studies demonstrated that RWV-derived models exhibit 298 

enhanced in vivo-like characteristics, including: spontaneous differentiation into multiple cell 299 

types that self-organize into 3-D structures (Fig. 1B, panel d), polarization, appropriate 300 

expression/localization of adherens/tight junctional complexes, metabolic product secretion, 301 

gene expression, cytokine production, responses to antimicrobials and microbial products, 302 

support of commensals, and/or susceptibility to infection (8, 11, 81, 142-154, 169-195, 198-303 

209). In addition, RWV models have been advanced to incorporate immune cells to study their 304 

role in host-microbe interactions (172, 176, 178, 181).  305 

 306 

Models are typically initiated by harvesting monolayers, combining cells with porous ECM-307 

coated microcarrier scaffolds and loaded into the RWV. Scaffold and ECM porosity allow the 308 

basal side of cells to experience autocrine/paracrine communications, aiding cellular 309 

differentiation/responses in a manner reflecting in vivo tissues. This differs from monolayers 310 

where cells proliferate on impermeable surfaces, thus hindering proper communications across 311 

apical and basolateral surfaces. Additionally, models may be developed scaffold-free or using 312 

non-microcarrier scaffolds (e.g., decellularized tissues) for transplantation (180, 182, 210). Once 313 

developed, distribution of 3-D models into multi-well plates lends to their experimental 314 

tractability for infection assays, as their structural/functional integrity remains intact following 315 

seeding. Alternatively, pathogens or compounds can be directly added to the RWV to study 316 

interactions under physiological fluid shear. One key advantage of RWV culture is the 317 
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 14 

production of large numbers of cells (~107-108 per culture). Below we discuss RWV-derived 3-D 318 

models of human intestinal mucosa.  319 

 320 

RWV-derived intestinal models. We began using the RWV to engineer 3-D models of human 321 

intestine for infection studies in the late 1990s after realizing that available models for studying 322 

bacterial pathogenesis lacked multiple aspects of the in vivo microenvironment (11). RWV-323 

derived 3-D models have enabled the study of host-microbe interactions relevant to different 324 

regions of the intestinal tract, including small intestine (11, 170) and colon (81, 144, 146, 147, 325 

153, 172, 173, 176, 178). Imaging of these models revealed enhanced 3-D architecture relative 326 

to monolayers, including the presence of extensive 3-D folds and microvilli, that more closely 327 

resembled what is observed in vivo (Fig. 1B, panel d). These 3-D models are essentially 328 

“inside-out” such that the apical/luminal side faces the media and the basal side faces the 329 

scaffold, allowing for straightforward introduction of pathogens, toxins, and antimicrobials at the 330 

apical surface, as commonly occurs in vivo. Collectively, these models have shown 331 

physiologically relevant expression and localization of key cellular components, including 332 

junctional proteins (e.g., ZO-1, occludin, symplekin, E-cadherin, β-catenin, desmosomes), 333 

secretion of basal lamina components (e.g., collagen types II, III, IV, laminin, vimentin, 334 

fibronectin), brush border formation with villin, and/or mucus secretion (11, 81, 144, 146, 147, 335 

153, 170, 172, 173, 176, 178). Spontaneous cellular differentiation into multiple lineages found 336 

in the intestinal epithelium is also observed, including enterocytes, M cells, goblet cells, and/or 337 

Paneth cells (enteroendocrine cells were not evaluated) (11, 81, 147, 153, 172, 176). The 338 

presence of multiple cell types within a model (e.g., epithelial and immune cells) enables study 339 

of their combined effects on infection, and in particular, pathogen co-localization patterns with 340 

different cell types. An example is described below using an advanced 3-D RWV co-culture 341 

model that combined human colonic epithelium with phagocytic macrophages to study infection 342 

by different Salmonella pathovars (172). Primary human lymphocytes have also been 343 
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incorporated in a 3-D co-culture model of intestinal epithelium to study Salmonella infection 344 

(176).  345 

 346 

RWV-derived intestinal models have contributed to the study of a variety of pathogens such as 347 

S. Typhimurium (including multidrug resistant ST313), S. Typhi, Enteropathogenic Escherichia 348 

coli (EPEC), Enterohemorrhagic E. coli (EHEC), Cryptosporidium parvum, and human 349 

enteroviruses including coxsackievirus B (CVB) and poliovirus (11, 81, 144, 146, 147, 153, 172, 350 

173, 176). Studies with S. Typhimurium using 3-D models of small and large intestine displayed 351 

marked differences from monolayers in colonization, tissue morphology, apoptosis, 352 

prostaglandin and cytokine expression (11, 81, 153). The responses of these 3-D intestinal 353 

models to S. Typhimurium challenge were highly predictive of in vivo responses in 354 

humans/animals (11, 81, 153), including rapid repair of the small intestine (initial site of 355 

Salmonella pathogenesis) and significant damage to the colon (primary site of pathogenesis) 356 

(211). These models were also the first in vitro systems to challenge the widely accepted 357 

paradigm established using monolayers that Salmonella Pathogenicity Island-1 (SPI-1) Type 358 

Three Secretion System (T3SS) is required for invasion of intestinal epithelium (81, 153). 359 

Historically, studies with monolayers contradicted in vivo observations wherein successful 360 

animal infections were possible with T3SS SPI-1 mutants (212, 213), and clinical isolates of 361 

Salmonella lacking SPI-1 function were isolated from foodborne disease outbreaks in patients 362 

experiencing gastroenteritis (214). Using a 3-D intestinal model comprised solely of epithelial 363 

cells, Radtke et al. demonstrated that SPI-1 mutants and a Salmonella mutant lacking all known 364 

T3SS (SPI-1, SPI-2, and the flagellar system) still exhibited high levels of invasion relative to 365 

wild type (although approximately 0.5-1 log lower) (153). As expected, in monolayers these 366 

mutants exhibited little-to-no invasion (<10 CFU); a finding which does not reflect in vivo 367 

observations (153). Thus for the first time, an in vitro intestinal epithelial model was able to 368 

parallel in vivo results by supporting Salmonella invasion independently of SPI-1. These findings 369 
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demonstrate the enhanced capability of RWV models to predict in vivo-like pathogenic 370 

mechanisms.  371 

 372 

Host-pathogen-commensal and host-commensal interactions have also been investigated using 373 

RWV 3-D intestinal models (173, 178). Commensal microbes naturally enhance intestinal 374 

mucosal barrier function against pathogen colonization through complex mechanisms not yet 375 

fully characterized (215). Naturally occurring probiotic strains of bacteria are being exploited as 376 

a strategy against pathogens to combat ongoing problems of antibiotic resistance. Treatment of 377 

a 3-D intestinal model with Lactobacillus reuteri or its antimicrobial metabolite, reuterin, before 378 

or after challenge with S. Typhimurium reduced adhesion, invasion and intracellular survival of 379 

this pathogen as compared to untreated cells (173). This was the first study to report the effect 380 

of reuterin on the enteric infection process for any mammalian cell type. A 3-D intestinal co-381 

culture model containing immune cells was used to profile responses to both free secretory IgA 382 

(SIgA) and SIgA complexed with a commensal strain of E. coli (178). Application of free SIgA to 383 

the model induced upregulation of MUC2, IL-8, and polymeric immunoglobulin receptor (pIgR), 384 

secretion. When SIgA was complexed with E. coli and applied to the model, these responses 385 

were down-regulated relative to models treated with free SIgA.   386 

 387 

Barrila and Yang et al. reported advancement of a 3-D HT-29 colon model to include phagocytic 388 

macrophages, thereby improving its physiological relevance to study aspects of the innate 389 

immune response to infection (172). Characterization of this co-culture model revealed 390 

macrophages integrated between and underneath epithelial cells, while preserving epithelial 391 

tight junctions and presence of multiple epithelial cell types, including enterocytes, M cells and 392 

goblet cells (172). Macrophage phagocytosis was confirmed by evaluating their ability to engulf 393 

inert, bacteria-sized beads. Contribution of macrophages to Salmonella infection was assessed 394 

using S. enterica pathovars with differing host tropisms and disease phenotypes, including the 395 
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well-studied sequence type ST19 Typhimurium strain SL1344, which causes disease in a wide 396 

range of hosts, the multi-drug resistant ST313 Typhimurium strain D23580, and the human-397 

specific S. Typhi strain Ty2. Although classified as Typhimurium, ST313 strains display genome 398 

degradation similar to human-adapted Typhi, and are associated with devastating epidemics of 399 

blood-borne infections in sub-Saharan Africa (216). Bacteria were cultured aerobically or 400 

microaerobically prior to infection to simulate oxygen environments encountered before and 401 

during intestinal infection. Colonization of all strains was reduced in the co-culture model 402 

containing macrophages relative to the epithelial model, indicating antimicrobial function of 403 

macrophages. Although ST313 are considered ‘highly invasive’ due to the systemic infection 404 

they cause, D23580 was not highly invasive in the 3-D models, but instead exhibited enhanced 405 

survival/replication, thus providing clues as to what drives their pathogenicity. Pathovar- and 406 

oxygen-specific differences in host cell co-localization patterns were also observed (Fig. 1B, 407 

panel g), indicating the ability of these advanced models to distinguish between closely related 408 

Salmonella serovars, thus providing a unique advantage over models composed of a single cell 409 

type (172).  410 

 411 

RWV-derived intestinal models are also valuable for investigating host-pathogen interactions for 412 

which conventional cultivation strategies are unable to adequately model in vivo complexity. 413 

Recently, a 3-D colonic model was applied to study human CVB (147); a pathogen for which in 414 

vitro and in vivo models may not fully model the enteral infection route in humans (147, 217-415 

220). Comparisons between polarized 2-D and 3-D cells revealed that the 3-D model displayed 416 

an enhanced number of viral particles secreted into the media at early stages of the viral life 417 

cycle, which did not coincide with increased host cell destruction relative to monolayers (147). 418 

These data suggest that 3-D models exhibit an enhancement in non-lytic release of viral 419 

particles, which might result from morphological changes (e.g., enhanced brush border 420 

formation) in 3-D cells. Similarly, another 3-D colonic model was used to study Cryptosporidium 421 
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parvum, a parasite for which there is a lack of physiologically relevant in vitro and in vivo models 422 

(144). Following C. parvum  infection, morphological changes were observed that were 423 

consistent with those from colonic biopsies of infected patients (144). These studies further 424 

emphasize the critical importance of model complexity and physiological relevance as 425 

determinants in enabling host-pathogen interactions.  426 

 427 

In summary, 3-D RWV intestinal models are powerful tractable research tools that advance the 428 

study of host-pathogen interactions. These models can be modularly altered to incorporate 429 

different cell types (including patient-derived cells), ECM, commensal microbiota, physical 430 

forces, etc, akin to in vivo scenarios, increasing their relevance. Their tissue-like architecture, 431 

differentiation and polarization, enhanced expression/localization of junctional proteins, and 432 

mucin production are necessary components of an effective barrier to invading pathogens.  433 

 434 

Limitations and future directions of RWV-derived 3-D models. Although many key 435 

structural/functional characteristics of parental tissues have been successfully recapitulated 436 

using RWV models, several limitations remain. The full extent of 3-D architecture, multicellular 437 

complexity and array of physical forces of in vivo tissues has not yet been attained. Ongoing 438 

studies are further enhancing these features, plus incorporating patient-specific immune cells 439 

and fecal microbiota, and achieving vascularization and innervation. Models can be costly due 440 

to high media consumption required for culturing large numbers of cells, however researchers 441 

can scale down. Although bead porosity facilitates apical/basal cytokine secretion and there is 442 

excellent access to the apical side of the models, there is currently an inability to sample the 443 

basal side. This also prevents measurement of transepithelial electrical resistance (TEER), 444 

which measures electrical resistance across a monolayer as a proxy for assessing barrier 445 

integrity (221). The technique involves using two electrodes, one in contact with cells on a 446 

semipermeable membrane (e.g., apical side) and the other in a different chamber containing 447 
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culture medium (e.g., basal side). With most RWV models grown on tiny (~175 µm) microcarrier 448 

beads, these measurements are not currently possible with off-the-shelf technology. This 449 

challenge will likely be surmounted with custom electrode design to accommodate current RWV 450 

models or the use of alternative scaffolds. Currently, immunofluorescence imaging of 451 

cytoskeletal and tight junctional markers represents an alternative method to evaluate model 452 

integrity. As these models grow in size and complexity, introduction of vasculature and nerve 453 

cells will be important. Finally, current models are not easily amenable to chronic infection due 454 

to lack of perfusion once removed from the RWV, however inclusion of automated waste 455 

removal and nutrient delivery during infection will facilitate this approach.  456 

 457 

3-D organoid models. The term organoid (‘organ-like’) has been used to describe a variety of 458 

3-D models that resemble in vivo tissues. Historically, this included models engineered with 459 

different technologies using cell lines, stem cells, primary cells, or tissue explants either 460 

embedded in, or cultured on top of, ECM scaffolds that allow cells to self-assemble into 3-D 461 

structures (8, 12, 144, 146, 147, 170, 172, 222-230). Advances in stem cell biology led to a 462 

recent terminology shift to more specifically define organoids as 3-D models derived from stem 463 

cells, progenitor cells or primary explants (223, 231-239). Herein, we focus on 3-D models 464 

cultured within a 3-D ECM matrix that fit this definition. It is important to emphasize that current 465 

models are based on decades of work by pioneering cell biologists that laid the foundation for 466 

the current organoid field (reviewed in (12)), representing an advancement and merging of old 467 

and new technologies to enable novel discoveries (12, 229, 240). Models cultivated using thick 468 

ECM matrices have deep roots in tissue engineering and cancer biology, where they were 469 

applied to develop advanced models enabling the study of a variety of biological mechanisms, 470 

particularly with regards to understanding the interrelationship between tissue structure and 471 

function (12). This effort resulted in a critical mass of scientists who now recognize the 472 
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importance of 3-D models for infection and are bringing elegant advances to the field, but may 473 

not be fully aware of their historical context.  474 

 475 

A range of different organoid models have been established, including small and large intestine 476 

(230, 231, 233, 235, 241-269), lung (270-275), stomach (276-283), breast (55, 284, 285), brain 477 

(286-288), liver (223, 289, 290), pancreas (223, 291, 292), gall bladder (293), eye (294), kidney 478 

(295), prostate (223, 296, 297) and reproductive tract (298, 299), among others. Relative to 479 

monolayers, these models more closely mimic endogenous tissues, including organization and 480 

spontaneous differentiation of multiple cell types into physiologically relevant 3-D structures 481 

(Fig. 1B, panel e), expression and localization of tight junctions, mucus production, polarity, 482 

gene expression, cell viability and proliferation, cytokine production, responses to antimicrobials, 483 

support of commensals and susceptibility to infection (12, 55, 223, 227, 229-236, 238, 239, 241-484 

267, 270-320).  485 

 486 

To develop 3-D organoid models, stem cells or tissue explants containing stem cells are used. 487 

Biopsies may be treated with a dissociation agent and/or mechanically disrupted prior to 488 

embedding into ECM. Stem cells isolated from biopsies can be pre-differentiated into progenitor 489 

cells and further differentiated into ECM-embedded organoids. Differentiation into committed 490 

cell types is enabled by stepwise supplementation and/or removal of signaling factors during 491 

culture (250, 252, 253, 255, 265, 276, 279, 304, 321-323). Purified ECM components and 492 

mixtures can be used, including Matrigel, a laminin-rich ECM isolated from chondrosarcomas 493 

(324, 325). Synthetic hydrogels help circumvent challenges associated with Matrigel, including 494 

batch-to-batch variation and potential carcinogenic issues connected with tumor-derived 495 

matrices (230).  496 

 497 
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3-D intestinal organoids. Sato et. al. (250) and Ootani et al. (254) independently reported 498 

conditions enabling long-term in vitro culture of mouse intestinal crypts containing Lgr5+ stem 499 

cells (as well as purified Lgr5+ stem cells that generate villus-crypt-like structures (250)). These 500 

approaches used either Matrigel (250) or collagen (254) in combination with supplementation of 501 

Wnt agonist R-spondin1. Sato et al. also included epidermal growth factor to enable crypt 502 

growth, and noggin to facilitate passaging (250). These models displayed a polarized, 503 

multicellular epithelium (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) organized 504 

into a central lumen lined by villus-crypt-like structures (250, 254). Murine intestinal organoids 505 

developed from single Lgr5+ stem cells also developed into these multicellular structures (250). 506 

Subsequently, additional factors were included to enable human colonoid culture (265).  507 

 508 

The NIH Intestinal Stem Cell Consortium defined a standardized nomenclature to reflect model 509 

sources, approaches and in vitro structures (326). Structures directly isolated include epithelial 510 

sheets, crypts and organoids (crypts and surrounding mesenchymal elements) (326). Various 511 

structures produced in vitro from small intestine include enterospheres (rounded epithelial cyst-512 

like structures); enteroids (formation of budding crypts from enterospheres); and induced 513 

intestinal organoids (multicellular clusters from induced embryonal or pluripotent stem cells; 514 

e.g., induced human intestinal organoids) (326). Analogous colonic structures include 515 

colonospheres, colonoids and colonic organoids (326). It is common to see terms used 516 

interchangeably and the nomenclature will likely evolve as the field expands.  517 

 518 

Model infection can be accomplished by: 1) addition of pathogen directly to the media (basal 519 

side), 2) microinjection into the lumen (Fig. 1B, panel b), 3) shearing of models followed by 520 

pathogen addition, and 4) disruption of 3-D models into flat monolayers followed by pathogen 521 

addition (231, 238). Consideration of the normal infection route is critical. Direct addition to the 522 

media is easiest; however, for pathogens that infect via the apical/luminal side, this represents a 523 
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non-physiological route of infection. Microinjection is technically challenging, but preferable for 524 

pathogens that normally infect from the lumen. Due to challenges associated with 525 

microinjection, there is a growing tendency to mechanically dissociate organoids into smaller 526 

pieces or completely dissociate into monolayers on Transwell inserts or plastic (238, 262, 282, 527 

314, 315). This approach has been successful for a number of studies, including cultivation of 528 

norovirus (315), a major advance in the field. Use of Transwell inserts also facilitates TEER 529 

analysis and easier cytokine sampling from the apical/luminal side of the model. 530 

 531 

When dissociating 3-D models prior to infection, it is important to note that this disconnects their 532 

form and function similar to disrupting primary tissue into monolayers and may render them less 533 

predictive for some (not all) phenotypes. In this approach, use of Transwell inserts are 534 

preferable over plastic as the former display improved physiological relevance over conventional 535 

monolayers (327). Additional profiling should confirm the extent to which the dissociated model 536 

may have de-differentiated and additional culture time may be required to re-establish 537 

polarity/barrier function. Key findings should be validated using intact organoids and 538 

microinjection to avoid artifacts. Additionally, since ECM-pathogen interactions are important for 539 

infection dynamics (61), infection surfaces should not contain ECM components not typically 540 

found in that location in vivo (e.g., lumen) if the pathogen would not normally encounter it.  541 

 542 

A variety of pathogens have been studied using 3-D enteroid/colonoid/organoid models 543 

including Salmonella, C. difficile, EHEC, EPEC, Enterotoxigenic E. coli (ETEC), Norovirus, 544 

rotavirus, enteroviruses, Toxoplasma gondii and Coronaviruses (231, 232, 234-236, 239, 241-545 

246, 258-264, 267, 269, 308-320, 328). The first infection using induced human intestinal 546 

organoids (iHIOs) was performed using human rotavirus, which lacks robust in vitro culture 547 

systems (316). Both laboratory and clinical rotaviruses replicated in iHIOs and were detected in 548 

epithelial and mesenchymal cells (316). Crypt-derived enteroids also supported rotavirus 549 
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replication and were used to assess antiviral efficacy against patient isolates (245, 267). 550 

Ettayebi et al. made a significant advance by the successful in vitro culture of human norovirus 551 

(HuNoV), known for its lack of a reproducible culture system (315). The authors initially cultured 552 

3-D intestinal organoids and then dissociated them into monolayers on plastic or Transwell 553 

inserts (315). Successful viral replication was observed and only enterocytes were infected with 554 

HuNoVs regardless of strain or intestinal region from which the model was derived. Additional 555 

viral models including those using enteroviruses (e.g., CVB, Echovirus 11, and Enterovirus 71) 556 

have identified the cell type-specific nature of these infections and the virus-specific nature of 557 

innate immune signaling in response to infection (328). 558 

 559 

Enteroid models were also used to study S. Typhimurium and E. coli. Zhang et al. (241) and 560 

Wilson et al. (244) used crypt-derived enteroids to study Salmonella infection. S. Typhimurium 561 

successfully colonized the model (241, 244) and infection responses aligned well with in vivo 562 

observations, including disruption of tight junctions, inflammatory responses, and decreased 563 

stem cell numbers (241). Forbester et al. infected iHIOs with S. Typhimurium and observed 564 

physiological transcriptomic and cytokine profiles (258). Injection of E. coli O157:H7 into iHIOs 565 

containing neutrophils led to loss of actin, epithelial integrity disruption, induction of 566 

inflammatory cytokines, and neutrophil recruitment (Fig. 1B, panel h) (261). In contrast, 567 

commensal E. coli was retained within the lumen with no loss of model integrity. Infection of 568 

colonoid-derived Transwell models identified MUC2 and protocadherin-24 as early EHEC 569 

infection targets (262). Colonoids were initially cultured in 3-D followed by dissociation onto 570 

Transwells. Model differentiation correlated with expression of differentiation markers, increased 571 

TEER, and microvilli (262). EHEC preferentially colonized the differentiated model relative to an 572 

undifferentiated control, reducing colonic mucus and inducing microvilli damage. A similar 573 

approach was applied to study EPEC and ETEC infections in co-culture models containing 574 

macrophages (314). Inclusion of macrophages in the bottom chamber of the enteroid-derived 575 
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Transwell model enhanced barrier function, increased epithelial height, and altered cytokine 576 

responses relative to the control. EPEC increased total macrophage numbers and induced 577 

projections that extended into the epithelium, while ETEC induced macrophage extensions 578 

across the epithelium to the apical surface. Presence of macrophages in the co-culture model 579 

enhanced barrier function and correlated with decreased numbers of ETEC relative to the model 580 

lacking immune cells.  581 

 582 

iHIOs were also used to study C. difficile infection (CDI) (259, 260, 263, 264). CDI patients 583 

secrete acidic mucus consisting primarily of MUC1, with decreased MUC2 and altered 584 

oligosaccharide composition relative to healthy patients (260). Injection of the pathogen alone 585 

into iHIOs decreased MUC2, while whole CDI stool supernatant was required to induce patient-586 

like oligosaccharide composition changes (260). iHIOs were also used to investigate non-587 

toxigenic and toxigenic strains of C. difficile and purified toxins, TcdA and TcdB (263). Injection 588 

of the toxigenic isolate or purified TcdA led to loss of barrier function, while iHIOs injected with 589 

the non-toxigenic strain remained intact. Separately, colonoids helped identify Frizzled proteins 590 

as receptors for the TcdB toxin (264).        591 

 592 

In summary, 3-D organoid models are advancing mechanistic understanding of host-microbe 593 

interactions due to their enhanced 3-D architecture, presence of Lgr5+ stem cells together with 594 

multiple cell types and other functional properties. In addition, patient organoid ‘biobanks’ have 595 

been established and are facilitating fundamental research and clinical applications (231, 232, 596 

329, 330). One exciting example of the applicability of these models is the use of patient-derived 597 

organoids to predict drug responses for cystic fibrosis treatment (223, 232, 251, 308, 330, 331).  598 

 599 

Limitations and future directions of 3-D organoids. As for other models, organoids have 600 

limitations that researchers are working to overcome. Variability and quality control challenges 601 
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between experimental preparations includes: 1) heterogeneity in size, shape and viability of 602 

organoids within a culture and across different samples; 2) batch-to-batch variability in Matrigel 603 

or other ECM, and 3) batch-to-batch variability in growth factor sources. Organoid infection 604 

presents challenges as described above. Media cost is high if scaling up due to reliance on 605 

specific growth factors. Incorporation of the full array of cell types found in vivo, including the 606 

diverse collection of immune cells and microbiota has not been attained. Organoid models also 607 

lack spontaneous M cell formation (252, 332). Pre-treatment of in vitro models with RANKL, 608 

exposure to lymphocytes or infection with pathogens like S. Typhimurium can induce M cell 609 

formation (332-334). Although the mechanism by which M cells spontaneously differentiate in 610 

RWV models (11, 153, 172, 176) is unknown, it is possible that the low fluid shear suspension 611 

culture environment is important, since flotation of ECM scaffolds was more permissive for 612 

differentiation as compared to surface-attached ECM (12, 156, 157). Since organoid models are 613 

typically ECM-embedded, another limitation is that the application of the range of biomechanical 614 

forces found in vivo is limited; however, an iHIO model containing functional neurons that 615 

enabled peristalsis-like contractions was reported (257). Combinations of technologies, 616 

including organoid-derived 3-D models developed using the RWV bioreactor (203) and organ-617 

on-a-chip (335) are further expanding these capabilities. TEER measurements are also not 618 

currently possible with intact organoid models due to their size, structure and because they are 619 

ECM-embedded. Some studies have dissociated organoids into 2-D on Transwells to facilitate 620 

these measurements, although there can be disadvantages to using this approach, as 621 

discussed.       622 

 623 

Organ-on-a-chip models. Advanced microfluidic and microfabrication technologies are being 624 

broadly applied to develop “organ-on-a-chip” (OAC) models that mimic key aspects of in vivo 625 

microenvironments. Rather than focusing on recreating the 3-D structure of the entire tissue, 626 

this technology aims to recreate a microscale model of the local 3-D architecture and spatial 627 
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distribution of dynamic tissue interfaces to mimic tissue- and organ-level functions (336). These 628 

devices are designed with micrometer-sized fluidic channels separated by thin, flexible porous 629 

membranes that enable development of different tissues in adjacent chambers, while retaining 630 

their ability to interact (Fig. 1B, panel c) (336-340). These features allow flexibility to model 631 

active processes within a tissue, such as vascular-like perfusion. One exciting functional feature 632 

engineered into the design of many of these devices is the capability to apply dynamic forces 633 

across the tissue to model fluid shear and peristalsis (335, 341-344).  634 

 635 

OAC models vary in complexity, ranging from simple systems containing a single perfused 636 

chamber and cell type, to more advanced chips that contain several microchannels, 637 

membranes, and assorted cell types, thereby allowing the reconstruction of multiple tissue 638 

interfaces (336). Microengineering techniques for these devices have been extensively 639 

reviewed (336, 339, 345-350). Chips are commonly made of a silicone polymer called 640 

polydimethylsiloxane (PDMS), which is compatible with many cell types and has several 641 

advantages, including optical transparency for easy imaging, low cost, flexibility, and high gas 642 

permeability (336, 340, 345, 351). PDMS does carry some disadvantages (discussed below), so 643 

other options are being explored (351, 352). Depending on experimental requirements, chip 644 

design and approaches for tissue development can be altered. Porous membranes can be 645 

coated with a variety of matrices/scaffolds (336, 340, 345, 346, 353). Moreover, 3-D bioprinting 646 

techniques are facilitating complex spatial patterning of cells and scaffolds (353). Although 647 

traditional electrodes used for TEER measurements do not accommodate the small culture area 648 

of most OAC models (221), recent studies have integrated custom electrodes (354).  649 

 650 

A variety of OAC platforms have been derived from cell lines, stem cells, and/or primary cells, 651 

including small and large intestine (335, 341-343, 354-357), lung (358-362), liver (363-370), 652 

kidney (371-373), heart (374-378), cornea (379), skin (380), nervous tissue (381-384), bone 653 
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(385, 386), reproductive tract (387), blood/endothelium and blood-brain barrier (388-394), 654 

among others. Once developed, these models typically retain their structural and functional 655 

integrity for several weeks (model-specific), further lending to their experimental tractability. 656 

Similar to the other 3-D models discussed, OAC models exhibit in vivo-like characteristics, 657 

including spontaneous differentiation into multiple cell types, polarity/barrier function, formation 658 

of local 3-D structures (Fig. 1B, panel f), responses to biophysical forces, cytokine production, 659 

gene expression, mucus production, responses to nanoparticles and drugs, support of 660 

commensals, responses to microbial components (e.g., LPS), and/or susceptibility to microbial 661 

infections (335, 336, 340-343, 355-378, 380-395). The application of physical forces across 662 

several of these models alters physiological responses, including changes in: 663 

expression/localization of tight junctions, barrier integrity/function, polarity and differentiation, 664 

cell viability, size, morphology, ECM production, integrin expression, enzyme activity, cytokine 665 

responses, chemical/gas exchange gradients, molecular transport, drug responses, bacterial 666 

colonization, virion-related cytopathic effects, and/or formation of 3-D structures (e.g., villi) (335, 667 

341-344, 346, 359, 360, 362, 372, 373, 377, 378, 385, 388, 389, 396). Importantly, several 668 

models have been advanced to incorporate immune cells (343, 360, 397). Below we discuss 669 

examples of gut-on-a-chip models that have been applied to study pathogens or commensals.  670 

 671 

Gut-on-a-chip models. The Ingber laboratory developed a series of 'mechanically active' gut-on-672 

a-chip models and applied them to study host-microbe interactions (341, 343, 344). They initially 673 

constructed a PDMS chip containing two microfluidic channels separated by a flexible, porous 674 

ECM-coated membrane (341). Colonic cells were seeded in the upper channel under low fluid 675 

shear stress (0.006 - 0.06 dyne/cm2) and medium also flowed in the bottom chamber. The chip 676 

was engineered with dual vacuum chambers on either side of the main microchamber to enable 677 

application of a physiological cyclic strain across the membrane to mimic intestinal peristalsis. 678 

This led to a highly polarized columnar epithelium and spontaneous formation of 3-D villi-like 679 
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folds with basal proliferative cells in the crypt region. Model characterization revealed well-680 

formed tight junctions, mucus production, and multiple intestinal epithelial cell types (absorptive, 681 

goblet, enteroendocrine and Paneth cells) (341, 342). The ability of this model to support 682 

commensal colonization was assessed using Lactobacillus rhamnosus (LGG). Colonization of 683 

LGG improved barrier function and was supported for greater than a week without impacting 684 

model integrity, consistent with previous in vivo observations for probiotics. The model was also 685 

applied to study host-virus interactions using CVB (Fig. 1B, panel i) (344). Exposure of CVB to 686 

the apical surface led to successful viral replication, induction of cytopathic effects (CPE) and 687 

polarized (apical) release of pro-inflammatory cytokines. Infection of the basal side led to 688 

decreased viral titers and lower CPE, with apical secretion of pro-inflammatory cytokines.  689 

 690 

The above gut-on-a-chip model was further advanced to include immune cells (peripheral blood 691 

mononuclear cells/PBMCs) and/or endothelial cells (vascular or lymphatic) (343). This 692 

combination of models enabled exploration of the interplay between these factors (and others) 693 

in bacterial overgrowth and inflammation in the onset of intestinal injury. Synergistic effects 694 

between PBMCs and either non-pathogenic E. coli, pathogenic enteroinvasive E. coli (EIEC), or 695 

purified LPS led to altered barrier function and changes in villus architecture. Similarly, the 696 

presence of both PBMCs and LPS led to polarized secretion of basal pro-inflammatory 697 

cytokines, which stimulates recruitment of additional immune cells in an in vivo scenario. 698 

Exposure of the PBMC-containing model to a therapeutic formulation of probiotic bacteria 699 

increased barrier function. The formulation reduced EIEC-induced intestinal damage in the 700 

model lacking PBMCs, but in the presence of immune cells only delayed injury onset. Cessation 701 

of cyclic stretching led to enhanced bacterial overgrowth, even under constant media flow.  702 

 703 

Limitations and future directions of OAC models. While there are many advantages to OAC 704 

models, there are limitations. Many of these models have multiple cell types which exhibit 705 

 o
n
 S

e
p
te

m
b
e
r 2

6
, 2

0
1
8
 b

y
 g

u
e
s
t

h
ttp

://ia
i.a

s
m

.o
rg

/
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://iai.asm.org/


 29 

enhanced 3-D architecture; however, the vast array of native heterogeneous cell types found in 706 

vivo still need to be incorporated and different laboratories are optimizing ECM composition and 707 

structure. Along these lines, to our knowledge, no one has yet reported the presence of M cells 708 

in gut-on-a-chip models. There is also a strong push for physically linked multi-organ models, or 709 

“humans-on-chips” (339, 398). Another limitation is the PDMS material commonly used for chip 710 

construction which can absorb small hydrophobic molecules, and interfere with drug screening 711 

and cell signaling analysis (339, 351, 352). There are also risks of uncrosslinked PDMS 712 

leaching into the culture if the curing process is incomplete, causing cell damage (351, 352). 713 

While the small number of cells required can be considered advantageous, in some cases, 714 

larger numbers of cells (107-108) may be required depending on the experiment. Infection 715 

studies typically involve many permutations, and it is not uncommon to use several multi-well 716 

plates within a single experiment. For example, during colonization assays, samples are 717 

harvested at different times and plated for viable bacteria, while others are processed for 718 

downstream analyses. Thus, it will be beneficial to incorporate multiple 3-D model systems into 719 

infectious disease research depending on the experimental question being addressed, as no 720 

single model system is sufficient to address all infectious disease experimental scenarios.  721 

 722 

Conclusions  723 

Over the past two decades, a multidisciplinary consortia of researchers have been creative in 724 

developing 3-D intestinal models of increasing complexity that better mimic the biological, 725 

chemical and physical microenvironments of the endogenous tissue for studying host-microbe 726 

interactions. These models have been developed using a variety of approaches and are being 727 

applied to understand the dynamic relationship between the host, pathogens and commensals 728 

that dictate infection outcome and for development of new treatment/prevention strategies. 729 

Collectively, these models have ushered in a new era for infectious disease research by offering 730 

predictive in vitro translational platforms.  Indeed, the establishment of 3-D intestinal models and 731 
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their application as human surrogates for infectious disease research have provided specific 732 

examples of how the study of microbial pathogenesis can be advanced by using appropriate, 733 

biologically meaningful models. 734 

 735 

We are still in the infancy of learning how to build more realistic 3-D tissue models and there 736 

remain an endless number of questions and hypotheses to test about how infection actually 737 

happens in the body. Continued model advancement to better recapitulate the in vivo tissue 738 

microenvironment coupled with the application of multiple 3-D model systems will lead to 739 

increased translation of research discoveries to practical and significant outcomes.  Such 740 

advances will be pivotal for the success of personalized medicine approaches using patient-741 

specific normal and diseased cells, and incorporation of the full repertoire of immune cells to 742 

predict clinical correlates of protection for vaccine development.  743 

 744 

Toward this goal, we must deeply comprehend 3-D tissue/organ structure and function, the 745 

associated microenvironment, and the microorganisms to be studied. It is likewise important that 746 

we are aware of and acknowledge the rich history and work of researchers who have long 747 

applied 3-D tissue modeling to study host-pathogen interactions. Accordingly, we should revisit 748 

past research in the field to help us understand and guide our direction.  While it remains a 749 

daunting task to gain a complete understanding of infectious disease, the alignment of 750 

multidisciplinary research teams dedicated to the establishment of 3-D models that reconstruct 751 

the architecture and function of the in vivo organ and their application for host-pathogen 752 

interaction studies make this an exciting time to be a scientist!  753 

 754 
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Figure legend.  759 

 760 

Figure 1. Recreating the complex intestinal microenvironment to study host-pathogen 761 

interactions. (A) In vitro model advancement from 2-D to 3-D by incorporation of physiological 762 

factors to better mimic the in vivo environment. (B) Three-dimensional approaches routinely 763 

used to develop advanced intestinal models: (a) RWV bioreactor, (b) organoids, and (c) OAC. 764 

(d) Scanning electron micrograph/SEM showing an RWV colon model. (e) Light micrograph of 765 

an enteroid model. (f) SEM of a gut-on-a-chip model. (g) Oxygen-dependent host cell co-766 

localization of S. Typhimurium in RWV 3-D co-culture model of intestinal epithelium and 767 

macrophages. Following aerobic culture of bacteria, no macrophages were found, but following 768 

microaerobic culture macrophages were present and either empty (left inset) or contained 769 

internalized bacteria (right inset). Macrophages (CD45, yellow), Salmonella (green; white when 770 

overlaid with CD45), nuclei (DAPI, blue). Scale bar = 10 µm. (h) iHIOs injected with E. coli 771 

O157:H7. Nuclei (blue), neutrophils (CD11b, red) and E. coli (green). Scale bar = 100 µm. (i) 772 

CVB-infected gut-on-a-chip. CVB (green), F-actin (red), nuclei (blue). Lumen shown in (A) 773 

copyright: <a href='http://www.123rf.com/profile_nobeastsofierce'>nobeastsofierce / 123RF 774 

Stock Photo</a>. Panel (b) from (308) (2017) Cell Press; (c) from (345)(2011) Elsevier Ltd., 775 

arrow removed; (d) from (153) under CC Attribution License; (e) from (241) under CC BY 3.0; (f) 776 

from (342) (2013) Royal Society of Chemistry. (g) from (172) under CC Attribution 4.0 777 

International License. (h) from (261) under CC Attribution License/cropped from original. (i) from 778 

(344) under CC Attribution 4.0 International License. Panels c-e, g-i cropped from original. 779 

  780 
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