Lawrence Berkeley National Laboratory

Recent Work

Title

Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age.

Permalink https://escholarship.org/uc/item/6cr0589z

Journal Infection and immunity, 86(11)

ISSN 0019-9567

Authors

Barrila, Jennifer Crabbé, Aurélie Yang, Jiseon <u>et al.</u>

Publication Date 2018-11-01

DOI

10.1128/iai.00282-18

Peer reviewed

IAI Accepted Manuscript Posted Online 4 September 2018 Infect. Immun. doi:10.1128/IAI.00282-18 This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

2	Modeling Host-Pathogen Interactions in the Context of the Microenvironment:
3	3-D Cell Culture Comes of Age
4	
5	Jennifer Barrila ¹ , Aurélie Crabbé ² , Jiseon Yang ¹ , Karla Franco ¹ , Seth D. Nydam ¹ ,
6	Rebecca J. Forsyth ^{1†} , Richard R. Davis ¹ , Sandhya Gangaraju ¹ , C. Mark Ott ³ ,
7	Carolyn B. Coyne ⁴ , Mina J. Bissell ⁵ , and Cheryl A. Nickerson ^{1,6*}
8	
9	¹ Center for Immunotherapy, Vaccines and Virotherapy
10	The Biodesign Institute, Arizona State University
11	Tempe, AZ, USA
12	
13	² Laboratory of Pharmaceutical Microbiology
14	Ghent University
15	Ghent, Belgium
16	
17	³ Biomedical Research and Environmental Sciences Division
18	NASA Johnson Space Center,
19	Houston, TX USA
20	
21	⁴ Department of Pediatrics,
22	University of Pittsburgh,
23	Pittsburgh, PA USA
24	

o.=	
25	⁵ Division Biological Systems and Engineering,
26	Lawrence Berkeley National Laboratory,
27	Berkeley, CA, USA.
28	
29	⁶ School of Life Sciences
30	Arizona State University
31	Tempe, AZ, USA
32	
33	[†] Passed away on October 15, 2017
34	
35	Running Head: Host-Microbe Interactions: 3-D Cell Culture
36	
37	*Address correspondence to Cheryl A. Nickerson, Cheryl.Nickerson@asu.edu
38	

39 Abstract

 pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review select 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe and their local microenvironments. 	40	Tissues and organs provide the structural and biochemical landscapes upon which microbial
understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review select 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial	41	pathogens and commensals function to regulate health and disease. While flat two-dimensional
reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review select 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial	42	(2-D) monolayers composed of a single cell type have provided important insight into
 that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review select 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial 	43	understanding host-pathogen interactions and infectious disease mechanisms, these
 complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review select 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial 	44	reductionist models lack many essential features present in the native host microenvironment
 relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review select 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial 	45	that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular
tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review select 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial	46	complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically
49 microenvironment (biological, chemical, physical/mechanical) to more accurately model the 50 initiation and progression of host-pathogen interactions in the laboratory. Here we review select 51 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious 52 pathogens and an important niche for commensal microbiota. We highlight seminal studies that 53 have used these models to interrogate host-pathogen interactions and infectious disease 54 mechanisms, and we present this literature in the appropriate historical context. Models 55 discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) 56 bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) 57 models. Collectively, these technologies are providing a more physiologically relevant and 58 predictive framework for investigating infectious disease mechanisms and antimicrobial	47	relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in
 initiation and progression of host-pathogen interactions in the laboratory. Here we review select 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial 	48	tissue engineering for infectious disease research is recreating this dynamic 3-D
3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial	49	microenvironment (biological, chemical, physical/mechanical) to more accurately model the
pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial	50	initiation and progression of host-pathogen interactions in the laboratory. Here we review select
 have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial 	51	3-D models of human intestinal mucosa, which represent a major portal of entry for infectious
 mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial 	52	pathogens and an important niche for commensal microbiota. We highlight seminal studies that
 discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial 	53	have used these models to interrogate host-pathogen interactions and infectious disease
 bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC) models. Collectively, these technologies are providing a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial 	54	mechanisms, and we present this literature in the appropriate historical context. Models
57 models. Collectively, these technologies are providing a more physiologically relevant and 58 predictive framework for investigating infectious disease mechanisms and antimicrobial	55	discussed include 3-D organotypic cultures engineered in the Rotating Wall Vessel (RWV)
58 predictive framework for investigating infectious disease mechanisms and antimicrobial	56	bioreactor, extracellular matrix (ECM)-embedded/organoid models and organ-on-a-chip (OAC)
	57	models. Collectively, these technologies are providing a more physiologically relevant and
59 therapies at the intersection of the host, microbe and their local microenvironments.	58	predictive framework for investigating infectious disease mechanisms and antimicrobial
	59	therapies at the intersection of the host, microbe and their local microenvironments.

 \mathbb{A}

60 Introduction

61 Mucosal surfaces lining the gastrointestinal, respiratory and urogenital tracts continuously 62 interface with the external environment and serve as a barrier against pathogens, commensals, 63 chemicals, drugs and toxins. These tissues possess a complex architecture with multiple cell 64 types organized into 3-D structures that facilitate tissue-specific functions. The biological, 65 chemical, and biomechanical characteristics that define microenvironmental niches along these 66 surfaces provide the structure and context upon which infection takes place. Pathogens have 67 adapted to detect specific host structures, polarity, and changes in local environmental stimuli 68 (pH, temperature, oxygen, nutrients, hormones, physical forces, etc.) to know where and when 69 to activate specific virulence programs during different infection stages (1-7). A major challenge 70 in tissue engineering for infectious disease research is recreating in vivo spatiotemporal 71 properties of dynamic 3-D microenvironments to more accurately model host-pathogen 72 interactions in the laboratory.

73

74 Historically, infectious disease has been commonly studied in vitro by assessing the interaction 75 of a single microbe with a single host cell type, with the latter grown as flat 2-D monolayers. This 76 reductionist approach has enabled important discoveries and advanced our understanding of 77 mechanisms that underlie infection and disease. However, the study of disease in isolation or 78 out of context can change the native behavior of both host and microbe, thus creating a barrier 79 for researchers to correlate in vitro and in vivo responses. In this data-rich period where multiple 80 -omics technologies are being synergistically applied for unparalleled insight into host-pathogen 81 interactions, it is critical to consider the context under which these investigations are performed. 82 Reconstructing host microenvironments is key, including 3-D tissue architecture, multicellular 83 complexity, microbiota composition/localization, oxygen tension, transport processes and 84 biomechanical forces (e.g., fluid shear, stretch, compression) (1, 8-11). Within this context, in 85 vitro models are positioned along a continuum between 2-D and 3-D, with flat monolayers of a

86 single cell type representing the most basic system with more complex models located further 87 down the spectrum that recreate multiple aspects of the native tissue microenvironment (Fig. 1). 88 Since tissues and organs function in a 3-D context, consideration of proper structure is essential 89 for development of models that better mimic in vivo responses. Since no current in vitro model 90 fully accomplishes this task, multidisciplinary teams of biologists, engineers, physicists, 91 mathematicians and clinicians are creatively working together to develop next-generation 3-D 92 models with enhanced predictive capabilities to open new avenues for clinical translation. 93 94 Present-day 3-D culture techniques result from a series of progressive advances in tissue 95 engineering over the past century to better mimic the native structure and microenvironment of 96 normal and diseased tissues (reviewed in (12)). Indeed, long ago the cancer research 97 community recognized that appropriate modeling of the 3-D microenvironment is important for 98 mimicking disease, leading to development and application of 3-D organoid models developed 99 within or on top of extracellular matrix (ECM) (12-16). The bidirectional exchange of biological 100 and physical signals between cells and their microenvironment regulates cell structure/function 101 and is largely manifested by tensile connections between ECM, cell surface receptors (e.g., 102 integrins), and the cytoskeleton to transduce signals to and from the nucleus (17-31). This same 103 structural network is also engaged by certain invasive pathogens (e.g., Salmonella, Shigella, 104 Listeria, rotavirus, influenza virus) that hijack and remodel host cell architecture to facilitate their 105 internalization, intracellular trafficking, and/or dissemination (9, 32-34). Similarly, we and others 106 have demonstrated that bacteria also respond to biomechanical forces like fluid shear, which 107 can regulate virulence, gene expression and/or stress responses (1-5, 35-47). Indeed, the 108 discovery of biomechanical forces as environmental regulators of microbial pathogenesis was 109 made by our team almost two decades ago with the discovery that fluid shear forces globally 110 reprogram Salmonella gene expression, stress responses and virulence (35). Fluid shear also 111 plays a central role in regulating a number of host responses, including differentiation (48-50).

137

112

113	Although 3-D models have long been applied for cancer research (12-16), their utility remained
114	largely unincorporated by the infectious disease community until the late 1990s and early
115	2000s. As expected for many new ideas in an established field, the use of 3-D models to study
116	host-pathogen interactions was initially met with skepticism. The first reports of 3-D models to
117	study viral infections were by Long et al. in 1998 (rhinovirus) and bacterial infections by
118	Nickerson et al. in 2001 (Salmonella enterica serovar Typhimurium/S. Typhimurium) (11, 51).
119	Recently, infectious disease researchers have broadly embraced 3-D models for studying
120	pathogenesis mechanisms, biomarker discovery, and drug candidate screening. In this review,
121	we highlight key microenvironmental factors to consider when selecting in vitro 3-D intestinal
122	models to study host-pathogen interactions. We focus on three key technologies for model
123	development, 1) the RWV bioreactor, 2) ECM-embedded/organoid models, and 3) gut-on-a-chip
124	models, and propose a vision for future model advancements. We also provide proper historical
125	context for use of 3-D cell cultures in studying host-pathogen interactions, which is finally
126	gaining a critical mass of scientists who understand and appreciate the value of studying
127	disease in the proper context of tissue form and function.
128	
129	I. Microenvironmental cues in host-microbe interactions
130	Mucosal tissue function and homeostasis are meticulously controlled by complex bidirectional
404	
131	interactions between cells and their microenvironment (15, 20, 25, 27-29, 52-55). The
131 132	interactions between cells and their microenvironment (15, 20, 25, 27-29, 52-55). The microenvironment includes 3-D tissue architecture, multiple cell types, ECM , innate immunity
132	microenvironment includes 3-D tissue architecture, multiple cell types, ECM , innate immunity
132 133	microenvironment includes 3-D tissue architecture, multiple cell types, ECM , innate immunity mediators, indigenous microbiota, and physical forces. These factors are regulatory signals for

6

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

120

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

138	Cellular factors. Intestinal mucosal epithelium contains an array of specialized epithelial and
139	immune cells that work in synergy to protect against infection by: (i) serving as a barrier against
140	luminal toxins, commensals and pathogens, (ii) sampling microbial antigens, and (iii) recruiting
141	innate and adaptive immune effectors (65). The intestine contains multiple epithelial cell types,
142	including enterocytes (absorptive functions), enteroendocrine cells (hormone secretion), Paneth
143	cells (antimicrobial production), goblet cells (mucin production), M cells (luminal antigen
144	sampling/induction of mucosal immunity), Tuft cells (Th2 immunity), and Cup cells (unknown
145	function) (66, 67). The intestine also contains immune cells for innate and adaptive responses to
146	pathogen attack, including macrophages, dendritic cells, T and B cells, including those
147	organized in lymphoid structures termed Peyer's patches, sites of induction of mucosal
148	immunity. As the body's largest immune organ, the composition, organization and function of
149	the intestine varies by region and consists of integrated cross-communication networks of
150	different cell types and effectors critical for protection against pathogens (described in (65, 68-
151	73)).
152	

Intertinal museus anithalium contains on arroy of appaialized anithalial and

153 Epithelial cell polarity establishes barrier function, regulates uptake/transport of nutrients, and 154 maintains epithelial architecture (65, 74-76). In the intestine, apical surfaces face the lumen and 155 regions between villi/folds, lateral surfaces face adjacent cells, and basal surfaces face the 156 basement membrane and lamina propria. Along Peyer's patches and isolated lymphoid follicles, 157 the basal side of the follicle-associated epithelium overlies a subepithelial dome region 158 containing a mixture of immune cells (77). The distinct biochemical composition (e.g., protein, 159 lipid) of apical and basolateral surfaces facilitates their specific functions (76). Given that many 160 pathogens have evolved to recognize surface-specific molecules for attachment and/or to 161 disrupt barrier integrity to enable their uptake and dissemination (6, 75, 78-80), appropriately 162 modeling polarity in vitro is critical as pathogens infect host cells differently depending on 163 whether they are polarized or non-polarized (81-84). Maintaining barrier integrity requires proper

 \triangleleft

Infection and Immunity

164	expression and localization of tight and adherens junctions. Adherens junctions are mediated by
165	E-cadherin and catenin interactions, while tight junctions are composed of transmembrane
166	proteins (e.g., claudins, occludins) and cytoplasmic plaque proteins (e.g., zonula occludens).
167	While generally protective, junctional complexes are also exploited by pathogens to facilitate
168	invasion (75) and some enteric viruses utilize receptors localized to these junctions (78, 79).
169	
170	Another major cellular component encountered by enteric pathogens is the diverse microbial
171	community - termed microbiota (referring to microorganisms) or microbiome (referring to
172	microbial genomes). The intestinal tract contains prokaryotes, viruses, archaea, and eukaryotes,
173	some of which protect the host against pathogen colonization by a variety of mechanisms,
174	including epithelial cell turnover, mucin synthesis, and triggering bacterial sensors on host cells
175	(85-87). Reciprocal interactions between host and microbiota contribute to tissue function and
176	homeostasis and determine microbiota composition, thereby playing an important role in
177	infection and disease (88). For example, intestinal microbiota regulate production of
178	antimicrobial peptides by Paneth cells (89) and shape immune responses by regulating
179	numbers, subsets, and/or functions of T, B and myeloid cells (65). Microbiota-induced changes
180	in immunity also determine intestinal microbiota composition (86, 90).
181	
182	The intestinal microbiota is comprised of $\sim 10^{14}$ bacteria (>1000 species), with Firmicutes and
183	Bacteroidetes most abundant (91-94). Interpersonal variation in intestinal microbiome occurs,
184	with each individual carrying a subset of the total known microbiome (95). Temporal and spatial
185	variation occurs throughout the intestinal tract (96, 97). Increasing data suggest a relationship
186	between an imbalanced intestinal microbiome and various diseases, including obesity,
187	inflammatory bowel disorders and cancer (98). The importance of gut microbiota to health is
188	highlighted by successful clinical application of fecal microbiota transplants from healthy

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

 \triangleleft

189 individuals to patients with recurrent, antibiotic resistant Clostridioides difficile (C. difficile) (99-

190 101).

191

192 Biochemical cues. Mucosal tissues contain an array of small molecules, including innate 193 defense mediators that target pathogens and regulate downstream host defenses. Intestinal 194 mucus harbors compounds from the innate and adaptive systems that protect against microbial 195 insult, including digestive enzymes (e.g., lysozyme), lactoferrin, antimicrobial peptides, 196 complement, and antibodies (e.g., secretory immunoglobulin A/slgA) (65). In addition, cells of 197 the innate defense system respond to pathogen-associated molecular patterns (PAMPs) using 198 pathogen recognition receptors (PRRs). Depending on the pathogen, PRR-mediated signal 199 transduction results in different cellular outcomes (e.g., cell proliferation, apoptosis, antimicrobial 200 peptide production, autophagy, cytokine secretion). Cytokine production leads to recruitment of 201 innate and adaptive immune effectors to the infection site, representing a bridge between these 202 two arms of immunity (65, 102).

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

203

204 Mucins are complex mixtures of high molecular weight, glycosylated macromolecules that bind 205 and remove pathogens and their products (7, 102). Enteric pathogens sense and respond to 206 cues within mucus and overcome this barrier to reach underlying epithelium (7). Normal 207 intestinal mucus consists of two layers: an outer layer colonized by microbes and a sterile inner 208 layer (103-105). The composition and thickness of these mucin layers varies throughout 209 intestinal regions to accommodate their different functions and microbial burdens. Within the 210 small intestine the inner and outer mucosal layers are thinner to facilitate nutrient absorption, 211 with thicker regions found towards the ileum where microbial burden is heavier (7). In the colon, 212 both layers are thicker to accommodate the burden of several trillion commensals (7). The 213 presence of slgA and other mucin antimicrobials also serves to reduce bacterial colonization 214 (106).

infection and Immunity

2	1	5
		-

216	The ECM is another key contributor to tissue homeostasis. Historically neglected as a signaling
217	entity, seminal discoveries have revealed the central role of ECM in regulating tissue
218	architecture/function (20, 53). The ECM is a three-dimensional non-cellular scaffold comprised
219	of proteins (e.g., collagens, elastins, laminins, fibronectins), proteoglycans and water. Two main
220	types of ECM include: (i) interstitial connective tissue matrix, which serves as a cellular scaffold,
221	and (ii) basement membrane matrix, which separates epithelium from interstitium (107, 108).
222	ECM components also serve as ligands for cell receptors like integrins, which transduce
223	physical forces into biological responses (mechanotransduction). Additionally, immune
224	responses are mediated through interactions with the ECM (108, 109). Furthermore, the ECM
225	controls availability/release of growth factors and other signaling molecules (hormones,
226	cytokines) (108). The complexity, composition and structure of ECM are highly dynamic and
227	specific (as are the biochemical gradients it contains) and depend on tissue type, developmental
228	stage, and health/disease state (108).
229	
230	Biophysical forces. The role of physical forces in cell and tissue development/function is as
231	important as those of genes and biochemical signals (28, 110). Physical forces regulate cell
232	proliferation, differentiation and homeostasis (111, 112). Forces experienced by intestinal cells
233	include fluid shear, pressure (113), and contractile peristalsis of muscles (114). Hydrodynamic
234	calculations suggest that fluid shear forces on the exposed epithelial brush border microvilli are
235	\sim 200 times greater than those between microvilli (< 0.01 dynes/cm ²) (115).
236	
237	The cytoskeleton and its linkage with ECM play an essential role in enabling cells to sense and
238	respond to biophysical forces. While the governing role of ECM as a dynamic signaling entity
239	that regulates tissue form/function is now appreciated, it was initially considered a purely static
240	scaffold. However, tissue-specific architecture and function are regulated by the biophysical
	10

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

M

241 properties of ECM (20, 116, 117), which exerts physical influences transduced by cell surface 242 receptors through the cytoskeleton to the nucleus to ultimately alter cellular and molecular 243 properties. These structural networks are critical for regulating cell shape/architecture, and have 244 been modeled using the principle of tensegrity, which refers to structures that are stabilized 245 under continuous tension by balancing opposing tension and compression forces (27-29, 31). 246 The integration of biophysical forces across cells and tissues using this structural network 247 regulates a wide range of biological processes (e.g., cell proliferation, apoptosis, differentiation, 248 adhesion, migration, gene expression, architecture)(8, 20, 21, 23, 25, 27, 29-31, 55, 118). 249 Accordingly, ECM composition and stiffness are critical regulators of cellular responses (119, 250 120). These properties are continuously remodeled through the process of "dynamic reciprocity" 251 (17, 20, 53, 118), theorized by Bissell in 1982 to explain how signaling between the ECM and 252 nucleus regulate tissue function. This laid the foundation for modern 3-D cell culture approaches 253 used today (20, 108, 121). Not surprisingly, pathogen-ECM interactions play an important role in 254 mediating infection (122-127). In addition to impacting the host, physical forces also globally 255 alter bacterial gene expression, stress responses, and virulence in unexpected ways to 256 contribute to infection (5, 36-40, 47, 62-64). 257 258 II. Modeling the microenvironment: 3-D models for infectious disease 259 Several cell culture systems exist for the development and application of 3-D models of human 260 tissues for infectious disease research, including the RWV bioreactor, ECM-embedded scaffolds 261 (e.g., ECM extracts, purified ECM, or synthetic/semi-synthetic hydrogels), and organ-on-a-chip

- 262 (OAC) models. The choice of system to use depends on several factors, including the
- 263 experimental question being addressed, technical complexity, and cost and expertise for model
- 264 development. Different cell types in the native tissue (including immune cells) can be co-
- 265 cultured in these models to further enhance physiological relevance. Additionally, a single
- 266 epithelial cell type can spontaneously differentiate into multiple epithelial cell types normally

found in the parental tissue and undergo self-assembly into tissue-like structures using all of these 3-D technologies. To date, most *in vitro* infection studies have been performed using cell lines; however, there is a push to develop models using either primary and/or stem cells to better mimic the native tissue. To explore the integration of different environmental signals in regulating infection, a hierarchical series of increasingly complex 3-D model systems comprised of different cells types can be developed and applied in parallel under differing experimental conditions (e.g., different oxygen tensions, physical forces).

274

275 RWV-derived 3-D models. The RWV bioreactor is an optimized form of suspension culture that 276 facilitates formation of self-organizing 3-D tissue-like aggregates by allowing cells the spatial 277 freedom to co-localize and self-assemble based on natural affinities within a low fluid shear 278 environment (Fig. 1B, panel a) (8, 128). Fluid shear influences cell proliferation, differentiation, 279 morphology and function (30, 115, 129-141). Models developed within the dynamic RWV 280 environment experience excellent mass transfer of nutrients/wastes and exhibit enhanced 281 structure, differentiation, function, and multicellular complexity relative to 2-D monolayers (11, 282 81, 142-155). Along these lines, observations from the 1970s showed that flotation of collagen 283 gels led to a more permissive environment for cellular differentiation (12, 156, 157). Moreover, 284 the low fluid shear environment in the RWV is also physiologically relevant to that encountered 285 by pathogens in low shear regions of the infected host, including intestine (38, 115, 130-132). 286 Accordingly, the RWV is also used to culture pathogens to study the role of fluid shear and 287 mechanotransduction in regulating microbial pathogenesis and host-pathogen/commensal 288 interactions (1, 35-41, 45-47, 62, 64, 146, 158-168).

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

289

290 The RWV is among the most extensively used approaches to develop 3-D models to study host-

291 pathogen interactions. It was the first technology used to develop 3-D models for infection

studies with bacterial (Salmonella) and viral (rhinovirus) pathogens (11, 51). A range of RWV-

294 including small and large intestine (11, 81, 142, 144, 146, 147, 153, 169-178), lung (145, 148, 295 179-183), liver (149, 154, 175, 184, 185), bladder (8, 186-188), reproductive tissues (150-152, 296 189-191), heart (192-194), prostate (143, 187, 195), pancreas (196, 197), nervous tissue (183, 297 198-200), blood-brain barrier (201), skin (202), eye (203), bone, joint or disc (204-208) and 298 tonsil (209), among others. These studies demonstrated that RWV-derived models exhibit 299 enhanced in vivo-like characteristics, including: spontaneous differentiation into multiple cell 300 types that self-organize into 3-D structures (Fig. 1B, panel d), polarization, appropriate 301 expression/localization of adherens/tight junctional complexes, metabolic product secretion, 302 gene expression, cytokine production, responses to antimicrobials and microbial products, 303 support of commensals, and/or susceptibility to infection (8, 11, 81, 142-154, 169-195, 198-304 209). In addition, RWV models have been advanced to incorporate immune cells to study their 305 role in host-microbe interactions (172, 176, 178, 181). 306 307 Models are typically initiated by harvesting monolayers, combining cells with porous ECM-308 coated microcarrier scaffolds and loaded into the RWV. Scaffold and ECM porosity allow the 309 basal side of cells to experience autocrine/paracrine communications, aiding cellular 310 differentiation/responses in a manner reflecting in vivo tissues. This differs from monolayers 311 where cells proliferate on impermeable surfaces, thus hindering proper communications across 312 apical and basolateral surfaces. Additionally, models may be developed scaffold-free or using 313 non-microcarrier scaffolds (e.g., decellularized tissues) for transplantation (180, 182, 210). Once 314 developed, distribution of 3-D models into multi-well plates lends to their experimental

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

derived 3-D models have been developed using cell lines, stem cells, and/or primary cells,

315 tractability for infection assays, as their structural/functional integrity remains intact following

- 316 seeding. Alternatively, pathogens or compounds can be directly added to the RWV to study
- 317 interactions under physiological fluid shear. One key advantage of RWV culture is the

293

318 production of large numbers of cells (~10⁷-10⁸ per culture). Below we discuss RWV-derived 3-D
 319 models of human intestinal mucosa.
 320

321 RWV-derived intestinal models. We began using the RWV to engineer 3-D models of human 322 intestine for infection studies in the late 1990s after realizing that available models for studying 323 bacterial pathogenesis lacked multiple aspects of the in vivo microenvironment (11). RWV-324 derived 3-D models have enabled the study of host-microbe interactions relevant to different 325 regions of the intestinal tract, including small intestine (11, 170) and colon (81, 144, 146, 147, 326 153, 172, 173, 176, 178). Imaging of these models revealed enhanced 3-D architecture relative 327 to monolayers, including the presence of extensive 3-D folds and microvilli, that more closely 328 resembled what is observed in vivo (Fig. 1B, panel d). These 3-D models are essentially 329 "inside-out" such that the apical/luminal side faces the media and the basal side faces the 330 scaffold, allowing for straightforward introduction of pathogens, toxins, and antimicrobials at the 331 apical surface, as commonly occurs in vivo. Collectively, these models have shown 332 physiologically relevant expression and localization of key cellular components, including 333 junctional proteins (e.g., ZO-1, occludin, symplekin, E-cadherin, β -catenin, desmosomes), 334 secretion of basal lamina components (e.g., collagen types II, III, IV, laminin, vimentin, 335 fibronectin), brush border formation with villin, and/or mucus secretion (11, 81, 144, 146, 147, 336 153, 170, 172, 173, 176, 178). Spontaneous cellular differentiation into multiple lineages found 337 in the intestinal epithelium is also observed, including enterocytes, M cells, goblet cells, and/or 338 Paneth cells (enteroendocrine cells were not evaluated) (11, 81, 147, 153, 172, 176). The 339 presence of multiple cell types within a model (e.g., epithelial and immune cells) enables study 340 of their combined effects on infection, and in particular, pathogen co-localization patterns with 341 different cell types. An example is described below using an advanced 3-D RWV co-culture 342 model that combined human colonic epithelium with phagocytic macrophages to study infection 343 by different Salmonella pathovars (172). Primary human lymphocytes have also been

344 incorporated in a 3-D co-culture model of intestinal epithelium to study Salmonella infection

345 (176).

346

347	RWV-derived intestinal models have contributed to the study of a variety of pathogens such as
348	S. Typhimurium (including multidrug resistant ST313), S. Typhi, Enteropathogenic Escherichia
349	coli (EPEC), Enterohemorrhagic E. coli (EHEC), Cryptosporidium parvum, and human
350	enteroviruses including coxsackievirus B (CVB) and poliovirus (11, 81, 144, 146, 147, 153, 172,
351	173, 176). Studies with S. Typhimurium using 3-D models of small and large intestine displayed
352	marked differences from monolayers in colonization, tissue morphology, apoptosis,
353	prostaglandin and cytokine expression (11, 81, 153). The responses of these 3-D intestinal
354	models to S. Typhimurium challenge were highly predictive of in vivo responses in
355	humans/animals (11, 81, 153), including rapid repair of the small intestine (initial site of
356	Salmonella pathogenesis) and significant damage to the colon (primary site of pathogenesis)
357	(211). These models were also the first in vitro systems to challenge the widely accepted
358	paradigm established using monolayers that Salmonella Pathogenicity Island-1 (SPI-1) Type
359	Three Secretion System (T3SS) is required for invasion of intestinal epithelium (81, 153).
360	Historically, studies with monolayers contradicted in vivo observations wherein successful
361	animal infections were possible with T3SS SPI-1 mutants (212, 213), and clinical isolates of
362	Salmonella lacking SPI-1 function were isolated from foodborne disease outbreaks in patients
363	experiencing gastroenteritis (214). Using a 3-D intestinal model comprised solely of epithelial
364	cells, Radtke et al. demonstrated that SPI-1 mutants and a Salmonella mutant lacking all known
365	T3SS (SPI-1, SPI-2, and the flagellar system) still exhibited high levels of invasion relative to
366	wild type (although approximately 0.5-1 log lower) (153). As expected, in monolayers these
367	mutants exhibited little-to-no invasion (<10 CFU); a finding which does not reflect in vivo
368	observations (153). Thus for the first time, an in vitro intestinal epithelial model was able to
369	parallel in vivo results by supporting Salmonella invasion independently of SPI-1. These findings

 \mathbb{A}

A

370 demonstrate the enhanced capability of RWV models to predict *in vivo*-like pathogenic

371 mechanisms.

372

373 Host-pathogen-commensal and host-commensal interactions have also been investigated using 374 RWV 3-D intestinal models (173, 178). Commensal microbes naturally enhance intestinal 375 mucosal barrier function against pathogen colonization through complex mechanisms not yet 376 fully characterized (215). Naturally occurring probiotic strains of bacteria are being exploited as 377 a strategy against pathogens to combat ongoing problems of antibiotic resistance. Treatment of 378 a 3-D intestinal model with Lactobacillus reuteri or its antimicrobial metabolite, reuterin, before 379 or after challenge with S. Typhimurium reduced adhesion, invasion and intracellular survival of 380 this pathogen as compared to untreated cells (173). This was the first study to report the effect 381 of reuterin on the enteric infection process for any mammalian cell type. A 3-D intestinal co-382 culture model containing immune cells was used to profile responses to both free secretory IgA 383 (SIgA) and SIgA complexed with a commensal strain of E. coli (178). Application of free SIgA to 384 the model induced upregulation of MUC2, IL-8, and polymeric immunoglobulin receptor (plgR), 385 secretion. When SIgA was complexed with E. coli and applied to the model, these responses 386 were down-regulated relative to models treated with free SIgA.

387

388 Barrila and Yang et al. reported advancement of a 3-D HT-29 colon model to include phagocytic 389 macrophages, thereby improving its physiological relevance to study aspects of the innate 390 immune response to infection (172). Characterization of this co-culture model revealed 391 macrophages integrated between and underneath epithelial cells, while preserving epithelial 392 tight junctions and presence of multiple epithelial cell types, including enterocytes, M cells and 393 goblet cells (172). Macrophage phagocytosis was confirmed by evaluating their ability to engulf 394 inert, bacteria-sized beads. Contribution of macrophages to Salmonella infection was assessed 395 using S. enterica pathovars with differing host tropisms and disease phenotypes, including the

396 well-studied sequence type ST19 Typhimurium strain SL1344, which causes disease in a wide 397 range of hosts, the multi-drug resistant ST313 Typhimurium strain D23580, and the human-398 specific S. Typhi strain Ty2. Although classified as Typhimurium, ST313 strains display genome 399 degradation similar to human-adapted Typhi, and are associated with devastating epidemics of 400 blood-borne infections in sub-Saharan Africa (216). Bacteria were cultured aerobically or 401 microaerobically prior to infection to simulate oxygen environments encountered before and 402 during intestinal infection. Colonization of all strains was reduced in the co-culture model 403 containing macrophages relative to the epithelial model, indicating antimicrobial function of 404 macrophages. Although ST313 are considered 'highly invasive' due to the systemic infection 405 they cause, D23580 was not highly invasive in the 3-D models, but instead exhibited enhanced 406 survival/replication, thus providing clues as to what drives their pathogenicity. Pathovar- and 407 oxygen-specific differences in host cell co-localization patterns were also observed (Fig. 1B,

408 panel g), indicating the ability of these advanced models to distinguish between closely related
409 *Salmonella* serovars, thus providing a unique advantage over models composed of a single cell
410 type (172).

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

411

412 RWV-derived intestinal models are also valuable for investigating host-pathogen interactions for 413 which conventional cultivation strategies are unable to adequately model in vivo complexity. 414 Recently, a 3-D colonic model was applied to study human CVB (147); a pathogen for which in 415 vitro and in vivo models may not fully model the enteral infection route in humans (147, 217-416 220). Comparisons between polarized 2-D and 3-D cells revealed that the 3-D model displayed 417 an enhanced number of viral particles secreted into the media at early stages of the viral life 418 cycle, which did not coincide with increased host cell destruction relative to monolayers (147). 419 These data suggest that 3-D models exhibit an enhancement in non-lytic release of viral 420 particles, which might result from morphological changes (e.g., enhanced brush border 421 formation) in 3-D cells. Similarly, another 3-D colonic model was used to study Cryptosporidium

parvum, a parasite for which there is a lack of physiologically relevant *in vitro* and *in vivo* models
(144). Following *C. parvum* infection, morphological changes were observed that were
consistent with those from colonic biopsies of infected patients (144). These studies further
emphasize the critical importance of model complexity and physiological relevance as
determinants in enabling host-pathogen interactions.

427

In summary, 3-D RWV intestinal models are powerful tractable research tools that advance the study of host-pathogen interactions. These models can be modularly altered to incorporate different cell types (including patient-derived cells), ECM, commensal microbiota, physical forces, etc, akin to *in vivo* scenarios, increasing their relevance. Their tissue-like architecture, differentiation and polarization, enhanced expression/localization of junctional proteins, and mucin production are necessary components of an effective barrier to invading pathogens.

434

435 Limitations and future directions of RWV-derived 3-D models. Although many key 436 structural/functional characteristics of parental tissues have been successfully recapitulated 437 using RWV models, several limitations remain. The full extent of 3-D architecture, multicellular 438 complexity and array of physical forces of in vivo tissues has not yet been attained. Ongoing 439 studies are further enhancing these features, plus incorporating patient-specific immune cells 440 and fecal microbiota, and achieving vascularization and innervation. Models can be costly due 441 to high media consumption required for culturing large numbers of cells, however researchers 442 can scale down. Although bead porosity facilitates apical/basal cytokine secretion and there is 443 excellent access to the apical side of the models, there is currently an inability to sample the 444 basal side. This also prevents measurement of transepithelial electrical resistance (TEER), 445 which measures electrical resistance across a monolayer as a proxy for assessing barrier 446 integrity (221). The technique involves using two electrodes, one in contact with cells on a 447 semipermeable membrane (e.g., apical side) and the other in a different chamber containing

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

448 culture medium (e.g., basal side). With most RWV models grown on tiny (~175 μm) microcarrier 449 beads, these measurements are not currently possible with off-the-shelf technology. This 450 challenge will likely be surmounted with custom electrode design to accommodate current RWV 451 models or the use of alternative scaffolds. Currently, immunofluorescence imaging of 452 cytoskeletal and tight junctional markers represents an alternative method to evaluate model 453 integrity. As these models grow in size and complexity, introduction of vasculature and nerve 454 cells will be important. Finally, current models are not easily amenable to chronic infection due 455 to lack of perfusion once removed from the RWV, however inclusion of automated waste 456 removal and nutrient delivery during infection will facilitate this approach.

457

458 3-D organoid models. The term organoid ('organ-like') has been used to describe a variety of 459 3-D models that resemble in vivo tissues. Historically, this included models engineered with 460 different technologies using cell lines, stem cells, primary cells, or tissue explants either 461 embedded in, or cultured on top of, ECM scaffolds that allow cells to self-assemble into 3-D 462 structures (8, 12, 144, 146, 147, 170, 172, 222-230). Advances in stem cell biology led to a 463 recent terminology shift to more specifically define organoids as 3-D models derived from stem 464 cells, progenitor cells or primary explants (223, 231-239). Herein, we focus on 3-D models 465 cultured within a 3-D ECM matrix that fit this definition. It is important to emphasize that current 466 models are based on decades of work by pioneering cell biologists that laid the foundation for 467 the current organoid field (reviewed in (12)), representing an advancement and merging of old 468 and new technologies to enable novel discoveries (12, 229, 240). Models cultivated using thick 469 ECM matrices have deep roots in tissue engineering and cancer biology, where they were 470 applied to develop advanced models enabling the study of a variety of biological mechanisms, 471 particularly with regards to understanding the interrelationship between tissue structure and 472 function (12). This effort resulted in a critical mass of scientists who now recognize the

infection and Immunity

 \triangleleft

 \triangleleft

473 importance of 3-D models for infection and are bringing elegant advances to the field, but may 474 not be fully aware of their historical context.

475

476 A range of different organoid models have been established, including small and large intestine 477 (230, 231, 233, 235, 241-269), lung (270-275), stomach (276-283), breast (55, 284, 285), brain 478 (286-288), liver (223, 289, 290), pancreas (223, 291, 292), gall bladder (293), eye (294), kidney 479 (295), prostate (223, 296, 297) and reproductive tract (298, 299), among others. Relative to 480 monolayers, these models more closely mimic endogenous tissues, including organization and 481 spontaneous differentiation of multiple cell types into physiologically relevant 3-D structures 482 (Fig. 1B, panel e), expression and localization of tight junctions, mucus production, polarity, 483 gene expression, cell viability and proliferation, cytokine production, responses to antimicrobials, 484 support of commensals and susceptibility to infection (12, 55, 223, 227, 229-236, 238, 239, 241-485 267, 270-320).

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

486

487 To develop 3-D organoid models, stem cells or tissue explants containing stem cells are used. 488 Biopsies may be treated with a dissociation agent and/or mechanically disrupted prior to 489 embedding into ECM. Stem cells isolated from biopsies can be pre-differentiated into progenitor 490 cells and further differentiated into ECM-embedded organoids. Differentiation into committed 491 cell types is enabled by stepwise supplementation and/or removal of signaling factors during 492 culture (250, 252, 253, 255, 265, 276, 279, 304, 321-323). Purified ECM components and 493 mixtures can be used, including Matrigel, a laminin-rich ECM isolated from chondrosarcomas 494 (324, 325). Synthetic hydrogels help circumvent challenges associated with Matrigel, including 495 batch-to-batch variation and potential carcinogenic issues connected with tumor-derived 496 matrices (230).

499 conditions enabling long-term in vitro culture of mouse intestinal crypts containing Lgr5+ stem 500 cells (as well as purified Lgr5+ stem cells that generate villus-crypt-like structures (250)). These 501 approaches used either Matrigel (250) or collagen (254) in combination with supplementation of 502 Wnt agonist R-spondin1. Sato et al. also included epidermal growth factor to enable crypt 503 growth, and noggin to facilitate passaging (250). These models displayed a polarized, 504 multicellular epithelium (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) organized 505 into a central lumen lined by villus-crypt-like structures (250, 254). Murine intestinal organoids 506 developed from single Lgr5+ stem cells also developed into these multicellular structures (250). 507 Subsequently, additional factors were included to enable human colonoid culture (265). 508 509 The NIH Intestinal Stem Cell Consortium defined a standardized nomenclature to reflect model 510 sources, approaches and in vitro structures (326). Structures directly isolated include epithelial 511 sheets, crypts and organoids (crypts and surrounding mesenchymal elements) (326). Various 512 structures produced in vitro from small intestine include enterospheres (rounded epithelial cyst-513 like structures); enteroids (formation of budding crypts from enterospheres); and induced 514 intestinal organoids (multicellular clusters from induced embryonal or pluripotent stem cells; 515 e.g., induced human intestinal organoids) (326). Analogous colonic structures include 516 colonospheres, colonoids and colonic organoids (326). It is common to see terms used 517 interchangeably and the nomenclature will likely evolve as the field expands. 518 519 Model infection can be accomplished by: 1) addition of pathogen directly to the media (basal 520 side), 2) microinjection into the lumen (Fig. 1B, panel b), 3) shearing of models followed by 521 pathogen addition, and 4) disruption of 3-D models into flat monolayers followed by pathogen 522 addition (231, 238). Consideration of the normal infection route is critical. Direct addition to the 523 media is easiest; however, for pathogens that infect via the apical/luminal side, this represents a

3-D intestinal organoids. Sato et. al. (250) and Ootani et al. (254) independently reported

498

526	microinjection, there is a growing tendency to mechanically dissociate organoids into smaller
527	pieces or completely dissociate into monolayers on Transwell inserts or plastic (238, 262, 282,
528	314, 315). This approach has been successful for a number of studies, including cultivation of
529	norovirus (315), a major advance in the field. Use of Transwell inserts also facilitates TEER
530	analysis and easier cytokine sampling from the apical/luminal side of the model.
531	
532	When dissociating 3-D models prior to infection, it is important to note that this disconnects their
533	form and function similar to disrupting primary tissue into monolayers and may render them less
534	predictive for some (not all) phenotypes. In this approach, use of Transwell inserts are
535	preferable over plastic as the former display improved physiological relevance over conventional
536	monolayers (327). Additional profiling should confirm the extent to which the dissociated model
537	may have de-differentiated and additional culture time may be required to re-establish
538	polarity/barrier function. Key findings should be validated using intact organoids and
539	microinjection to avoid artifacts. Additionally, since ECM-pathogen interactions are important for
540	infection dynamics (61), infection surfaces should not contain ECM components not typically
541	found in that location in vivo (e.g., lumen) if the pathogen would not normally encounter it.
542	
543	A variety of pathogens have been studied using 3-D enteroid/colonoid/organoid models
544	including Salmonella, C. difficile, EHEC, EPEC, Enterotoxigenic E. coli (ETEC), Norovirus,
545	rotavirus, enteroviruses, Toxoplasma gondii and Coronaviruses (231, 232, 234-236, 239, 241-
546	246, 258-264, 267, 269, 308-320, 328). The first infection using induced human intestinal
547	organoids (iHIOs) was performed using human rotavirus, which lacks robust in vitro culture
548	systems (316). Both laboratory and clinical rotaviruses replicated in iHIOs and were detected in
549	epithelial and mesenchymal cells (316). Crypt-derived enteroids also supported rotavirus
	22

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

non-physiological route of infection. Microinjection is technically challenging, but preferable for

pathogens that normally infect from the lumen. Due to challenges associated with

524

525

 \mathbb{A}

replication and were used to assess antiviral efficacy against patient isolates (245, 267). 551 Ettayebi et al. made a significant advance by the successful in vitro culture of human norovirus 552 (HuNoV), known for its lack of a reproducible culture system (315). The authors initially cultured 553 3-D intestinal organoids and then dissociated them into monolayers on plastic or Transwell 554 inserts (315). Successful viral replication was observed and only enterocytes were infected with 555 HuNoVs regardless of strain or intestinal region from which the model was derived. Additional 556 viral models including those using enteroviruses (e.g., CVB, Echovirus 11, and Enterovirus 71) 557 have identified the cell type-specific nature of these infections and the virus-specific nature of 558 innate immune signaling in response to infection (328).

559

550

560 Enteroid models were also used to study S. Typhimurium and E. coli. Zhang et al. (241) and 561 Wilson et al. (244) used crypt-derived enteroids to study Salmonella infection. S. Typhimurium 562 successfully colonized the model (241, 244) and infection responses aligned well with in vivo 563 observations, including disruption of tight junctions, inflammatory responses, and decreased 564 stem cell numbers (241). Forbester et al. infected iHIOs with S. Typhimurium and observed 565 physiological transcriptomic and cytokine profiles (258). Injection of E. coli O157:H7 into iHIOs 566 containing neutrophils led to loss of actin, epithelial integrity disruption, induction of 567 inflammatory cytokines, and neutrophil recruitment (Fig. 1B, panel h) (261). In contrast, 568 commensal E. coli was retained within the lumen with no loss of model integrity. Infection of 569 colonoid-derived Transwell models identified MUC2 and protocadherin-24 as early EHEC 570 infection targets (262). Colonoids were initially cultured in 3-D followed by dissociation onto 571 Transwells. Model differentiation correlated with expression of differentiation markers, increased 572 TEER, and microvilli (262). EHEC preferentially colonized the differentiated model relative to an 573 undifferentiated control, reducing colonic mucus and inducing microvilli damage. A similar 574 approach was applied to study EPEC and ETEC infections in co-culture models containing 575 macrophages (314). Inclusion of macrophages in the bottom chamber of the enteroid-derived

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

Accepted Manuscript Posted Online

576 Transwell model enhanced barrier function, increased epithelial height, and altered cytokine 577 responses relative to the control. EPEC increased total macrophage numbers and induced 578 projections that extended into the epithelium, while ETEC induced macrophage extensions 579 across the epithelium to the apical surface. Presence of macrophages in the co-culture model 580 enhanced barrier function and correlated with decreased numbers of ETEC relative to the model 581 lacking immune cells.

582

583 iHIOs were also used to study C. difficile infection (CDI) (259, 260, 263, 264). CDI patients 584 secrete acidic mucus consisting primarily of MUC1, with decreased MUC2 and altered 585 oligosaccharide composition relative to healthy patients (260). Injection of the pathogen alone 586 into iHIOs decreased MUC2, while whole CDI stool supernatant was required to induce patient-587 like oligosaccharide composition changes (260). iHIOs were also used to investigate non-588 toxigenic and toxigenic strains of C. difficile and purified toxins, TcdA and TcdB (263). Injection 589 of the toxigenic isolate or purified TcdA led to loss of barrier function, while iHIOs injected with 590 the non-toxigenic strain remained intact. Separately, colonoids helped identify Frizzled proteins 591 as receptors for the TcdB toxin (264).

592

593 In summary, 3-D organoid models are advancing mechanistic understanding of host-microbe 594 interactions due to their enhanced 3-D architecture, presence of Lgr5+ stem cells together with 595 multiple cell types and other functional properties. In addition, patient organoid 'biobanks' have 596 been established and are facilitating fundamental research and clinical applications (231, 232, 597 329, 330). One exciting example of the applicability of these models is the use of patient-derived 598 organoids to predict drug responses for cystic fibrosis treatment (223, 232, 251, 308, 330, 331). 599

600 Limitations and future directions of 3-D organoids. As for other models, organoids have

601 limitations that researchers are working to overcome. Variability and quality control challenges

602 between experimental preparations includes: 1) heterogeneity in size, shape and viability of 603 organoids within a culture and across different samples; 2) batch-to-batch variability in Matrigel 604 or other ECM, and 3) batch-to-batch variability in growth factor sources. Organoid infection 605 presents challenges as described above. Media cost is high if scaling up due to reliance on 606 specific growth factors. Incorporation of the full array of cell types found in vivo, including the 607 diverse collection of immune cells and microbiota has not been attained. Organoid models also 608 lack spontaneous M cell formation (252, 332). Pre-treatment of in vitro models with RANKL, 609 exposure to lymphocytes or infection with pathogens like S. Typhimurium can induce M cell 610 formation (332-334). Although the mechanism by which M cells spontaneously differentiate in 611 RWV models (11, 153, 172, 176) is unknown, it is possible that the low fluid shear suspension 612 culture environment is important, since flotation of ECM scaffolds was more permissive for 613 differentiation as compared to surface-attached ECM (12, 156, 157). Since organoid models are 614 typically ECM-embedded, another limitation is that the application of the range of biomechanical 615 forces found in vivo is limited; however, an iHIO model containing functional neurons that 616 enabled peristalsis-like contractions was reported (257). Combinations of technologies, 617 including organoid-derived 3-D models developed using the RWV bioreactor (203) and organ-618 on-a-chip (335) are further expanding these capabilities. TEER measurements are also not

> 619 currently possible with intact organoid models due to their size, structure and because they are 620 ECM-embedded. Some studies have dissociated organoids into 2-D on Transwells to facilitate 621 these measurements, although there can be disadvantages to using this approach, as

622 discussed.

623

624 Organ-on-a-chip models. Advanced microfluidic and microfabrication technologies are being 625 broadly applied to develop "organ-on-a-chip" (OAC) models that mimic key aspects of in vivo 626 microenvironments. Rather than focusing on recreating the 3-D structure of the entire tissue, 627 this technology aims to recreate a microscale model of the local 3-D architecture and spatial

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

across the tissue to model fluid shear and peristalsis (335, 341-344). OAC models vary in complexity, ranging from simple systems containing a single perfused chamber and cell type, to more advanced chips that contain several microchannels, membranes, and assorted cell types, thereby allowing the reconstruction of multiple tissue interfaces (336). Microengineering techniques for these devices have been extensively reviewed (336, 339, 345-350). Chips are commonly made of a silicone polymer called polydimethylsiloxane (PDMS), which is compatible with many cell types and has several advantages, including optical transparency for easy imaging, low cost, flexibility, and high gas permeability (336, 340, 345, 351). PDMS does carry some disadvantages (discussed below), so other options are being explored (351, 352). Depending on experimental requirements, chip design and approaches for tissue development can be altered. Porous membranes can be coated with a variety of matrices/scaffolds (336, 340, 345, 346, 353). Moreover, 3-D bioprinting techniques are facilitating complex spatial patterning of cells and scaffolds (353). Although

distribution of dynamic tissue interfaces to mimic tissue- and organ-level functions (336). These

devices are designed with micrometer-sized fluidic channels separated by thin, flexible porous

membranes that enable development of different tissues in adjacent chambers, while retaining

active processes within a tissue, such as vascular-like perfusion. One exciting functional feature

engineered into the design of many of these devices is the capability to apply dynamic forces

their ability to interact (Fig. 1B, panel c) (336-340). These features allow flexibility to model

648 traditional electrodes used for TEER measurements do not accommodate the small culture area

649 of most OAC models (221), recent studies have integrated custom electrodes (354).

650

651 A variety of OAC platforms have been derived from cell lines, stem cells, and/or primary cells,

- 652 including small and large intestine (335, 341-343, 354-357), lung (358-362), liver (363-370),
- 653 kidney (371-373), heart (374-378), cornea (379), skin (380), nervous tissue (381-384), bone

654

655

656	integrity for several weeks (model-specific), further lending to their experimental tractability.
657	Similar to the other 3-D models discussed, OAC models exhibit in vivo-like characteristics,
658	including spontaneous differentiation into multiple cell types, polarity/barrier function, formation
659	of local 3-D structures (Fig. 1B, panel f), responses to biophysical forces, cytokine production,
660	gene expression, mucus production, responses to nanoparticles and drugs, support of
661	commensals, responses to microbial components (e.g., LPS), and/or susceptibility to microbial
662	infections (335, 336, 340-343, 355-378, 380-395). The application of physical forces across
663	several of these models alters physiological responses, including changes in:
664	expression/localization of tight junctions, barrier integrity/function, polarity and differentiation,
665	cell viability, size, morphology, ECM production, integrin expression, enzyme activity, cytokine
666	responses, chemical/gas exchange gradients, molecular transport, drug responses, bacterial
667	colonization, virion-related cytopathic effects, and/or formation of 3-D structures (e.g., villi) (335,
668	341-344, 346, 359, 360, 362, 372, 373, 377, 378, 385, 388, 389, 396). Importantly, several
669	models have been advanced to incorporate immune cells (343, 360, 397). Below we discuss
670	examples of gut-on-a-chip models that have been applied to study pathogens or commensals.
671	
672	Gut-on-a-chip models. The Ingber laboratory developed a series of 'mechanically active' gut-on-
673	a-chip models and applied them to study host-microbe interactions (341, 343, 344). They initially
674	constructed a PDMS chip containing two microfluidic channels separated by a flexible, porous
675	ECM-coated membrane (341). Colonic cells were seeded in the upper channel under low fluid
676	shear stress (0.006 - 0.06 dyne/cm ²) and medium also flowed in the bottom chamber. The chip
677	was engineered with dual vacuum chambers on either side of the main microchamber to enable
678	application of a physiological cyclic strain across the membrane to mimic intestinal peristalsis.
679	This led to a highly polarized columnar epithelium and spontaneous formation of 3-D villi-like

(385, 386), reproductive tract (387), blood/endothelium and blood-brain barrier (388-394),

among others. Once developed, these models typically retain their structural and functional

 \mathbb{A}

680 folds with basal proliferative cells in the crypt region. Model characterization revealed well-681 formed tight junctions, mucus production, and multiple intestinal epithelial cell types (absorptive, 682 goblet, enteroendocrine and Paneth cells) (341, 342). The ability of this model to support 683 commensal colonization was assessed using Lactobacillus rhamnosus (LGG). Colonization of 684 LGG improved barrier function and was supported for greater than a week without impacting 685 model integrity, consistent with previous in vivo observations for probiotics. The model was also 686 applied to study host-virus interactions using CVB (Fig. 1B, panel i) (344). Exposure of CVB to 687 the apical surface led to successful viral replication, induction of cytopathic effects (CPE) and 688 polarized (apical) release of pro-inflammatory cytokines. Infection of the basal side led to 689 decreased viral titers and lower CPE, with apical secretion of pro-inflammatory cytokines. 690 691 The above gut-on-a-chip model was further advanced to include immune cells (peripheral blood 692 mononuclear cells/PBMCs) and/or endothelial cells (vascular or lymphatic) (343). This 693 combination of models enabled exploration of the interplay between these factors (and others) 694 in bacterial overgrowth and inflammation in the onset of intestinal injury. Synergistic effects 695 between PBMCs and either non-pathogenic *E. coli*, pathogenic enteroinvasive *E. coli* (EIEC), or 696 purified LPS led to altered barrier function and changes in villus architecture. Similarly, the 697 presence of both PBMCs and LPS led to polarized secretion of basal pro-inflammatory 698 cytokines, which stimulates recruitment of additional immune cells in an in vivo scenario. 699 Exposure of the PBMC-containing model to a therapeutic formulation of probiotic bacteria 700 increased barrier function. The formulation reduced EIEC-induced intestinal damage in the 701 model lacking PBMCs, but in the presence of immune cells only delayed injury onset. Cessation 702 of cyclic stretching led to enhanced bacterial overgrowth, even under constant media flow. 703 704 Limitations and future directions of OAC models. While there are many advantages to OAC

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

models, there are limitations. Many of these models have multiple cell types which exhibit

706 enhanced 3-D architecture; however, the vast array of native heterogeneous cell types found in 707 vivo still need to be incorporated and different laboratories are optimizing ECM composition and 708 structure. Along these lines, to our knowledge, no one has yet reported the presence of M cells 709 in gut-on-a-chip models. There is also a strong push for physically linked multi-organ models, or 710 "humans-on-chips" (339, 398). Another limitation is the PDMS material commonly used for chip 711 construction which can absorb small hydrophobic molecules, and interfere with drug screening 712 and cell signaling analysis (339, 351, 352). There are also risks of uncrosslinked PDMS 713 leaching into the culture if the curing process is incomplete, causing cell damage (351, 352). 714 While the small number of cells required can be considered advantageous, in some cases, 715 larger numbers of cells (10⁷-10⁸) may be required depending on the experiment. Infection 716 studies typically involve many permutations, and it is not uncommon to use several multi-well 717 plates within a single experiment. For example, during colonization assays, samples are 718 harvested at different times and plated for viable bacteria, while others are processed for 719 downstream analyses. Thus, it will be beneficial to incorporate multiple 3-D model systems into 720 infectious disease research depending on the experimental question being addressed, as no 721 single model system is sufficient to address all infectious disease experimental scenarios. 722

723 Conclusions

Over the past two decades, a multidisciplinary consortia of researchers have been creative in
developing 3-D intestinal models of increasing complexity that better mimic the biological,
chemical and physical microenvironments of the endogenous tissue for studying host-microbe

interactions. These models have been developed using a variety of approaches and are beingapplied to understand the dynamic relationship between the host, pathogens and commensals

that dictate infection outcome and for development of new treatment/prevention strategies.

- 730 Collectively, these models have ushered in a new era for infectious disease research by offering
- 731 predictive in vitro translational platforms. Indeed, the establishment of 3-D intestinal models and

their application as human surrogates for infectious disease research have provided specific
examples of how the study of microbial pathogenesis can be advanced by using appropriate,
biologically meaningful models.

735

736 We are still in the infancy of learning how to build more realistic 3-D tissue models and there 737 remain an endless number of questions and hypotheses to test about how infection actually 738 happens in the body. Continued model advancement to better recapitulate the in vivo tissue 739 microenvironment coupled with the application of multiple 3-D model systems will lead to 740 increased translation of research discoveries to practical and significant outcomes. Such 741 advances will be pivotal for the success of personalized medicine approaches using patient-742 specific normal and diseased cells, and incorporation of the full repertoire of immune cells to 743 predict clinical correlates of protection for vaccine development.

744

745 Toward this goal, we must deeply comprehend 3-D tissue/organ structure and function, the 746 associated microenvironment, and the microorganisms to be studied. It is likewise important that 747 we are aware of and acknowledge the rich history and work of researchers who have long 748 applied 3-D tissue modeling to study host-pathogen interactions. Accordingly, we should revisit 749 past research in the field to help us understand and guide our direction. While it remains a 750 daunting task to gain a complete understanding of infectious disease, the alignment of 751 multidisciplinary research teams dedicated to the establishment of 3-D models that reconstruct 752 the architecture and function of the *in vivo* organ and their application for host-pathogen 753 interaction studies make this an exciting time to be a scientist! 754

Acknowledgements. We thank Michael Northrop for his illustration in Figure 1. We apologize
to authors whose work we were unable to cite due to length limitations given the extensive

- 757 literature available for each model system. Funded by NASA grants NNX13AM01G and
- 758 NNX15AL06G (C.A.N., J.B., C.M.O.), and NIH R01-Al081759 (C.B.C, C.A.N.).

760

Accepted Manuscript Posted Online

Infection and Immunity

761	Figure 1. Recreating the complex intestinal microenvironment to study host-pathogen
762	interactions. (A) In vitro model advancement from 2-D to 3-D by incorporation of physiological
763	factors to better mimic the in vivo environment. (B) Three-dimensional approaches routinely
764	used to develop advanced intestinal models: (a) RWV bioreactor, (b) organoids, and (c) OAC.
765	(d) Scanning electron micrograph/SEM showing an RWV colon model. (e) Light micrograph of
766	an enteroid model. (f) SEM of a gut-on-a-chip model. (g) Oxygen-dependent host cell co-
767	localization of S. Typhimurium in RWV 3-D co-culture model of intestinal epithelium and
768	macrophages. Following aerobic culture of bacteria, no macrophages were found, but following
769	microaerobic culture macrophages were present and either empty (left inset) or contained
770	internalized bacteria (right inset). Macrophages (CD45, yellow), Salmonella (green; white when
771	overlaid with CD45), nuclei (DAPI, blue). Scale bar = 10 μ m. (h) iHIOs injected with <i>E. coli</i>
772	O157:H7. Nuclei (blue), neutrophils (CD11b, red) and <i>E. coli</i> (green). Scale bar = 100 μ m. (i)
773	CVB-infected gut-on-a-chip. CVB (green), F-actin (red), nuclei (blue). Lumen shown in (A)
774	copyright: nobeastsofierce / 123RF
775	Stock Photo. Panel (b) from (308) (2017) Cell Press; (c) from (345)(2011) Elsevier Ltd.,
776	arrow removed; (d) from (153) under CC Attribution License; (e) from (241) under CC BY 3.0; (f)
777	from (342) (2013) Royal Society of Chemistry. (g) from (172) under CC Attribution 4.0
778	International License. (h) from (261) under CC Attribution License/cropped from original. (i) from
779	(344) under CC Attribution 4.0 International License. Panels c-e, g-i cropped from original.
780	

 \mathbb{A}

 \mathbb{A}

781		References
782 783	1.	Nickerson C, Ott CM, Wilson JW, Pierson DL. 2004. Microbial responses to microgravity
784		and other low shear environment Microbiology and Molecular Biology Reviews 68:345-
785		361.
786	2.	Persat A. 2017. Bacterial mechanotransduction. Curr Opin Microbiol 36:1-6.
787	3.	Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A, Drescher K, Wingreen NS,
788		Bassler BL, Gitai Z, Stone HA. 2015. The mechanical world of bacteria. Cell 161:988-97.
789	4.	Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. 2002. Bacterial adhesion
790		to target cells enhanced by shear force. Cell 109:913-23.
791	5.	Alsharif G, Ahmad S, Islam MS, Shah R, Busby SJ, Krachler AM. 2015. Host attachment
792		and fluid shear are integrated into a mechanical signal regulating virulence in
793		Escherichia coli O157:H7. Proc Natl Acad Sci U S A 112:5503-8.
794	6.	Fang FC, Frawley ER, Tapscott T, Vazquez-Torres A. 2016. Bacterial Stress Responses
795		during Host Infection. Cell Host Microbe 20:133-43.
796	7.	McGuckin MA, Linden SK, Sutton P, Florin TH. 2011. Mucin dynamics and enteric
797		pathogens. Nat Rev Microbiol 9:265-78.
798	8.	Barrila J, Radtke AL, Crabbe A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson
799		CA. 2010. Organotypic 3D cell culture models: using the rotating wall vessel to study
800		host-pathogen interactions. Nat Rev Microbiol 8:791-801.
801	9.	Ibarra JA, Steele-Mortimer O. 2009. Salmonellathe ultimate insider. Salmonella
802		virulence factors that modulate intracellular survival. Cell Microbiol 11:1579-86.
803	10.	Costello CM, Sorna RM, Goh YL, Cengic I, Jain NK, March JC. 2014. 3-D intestinal
804		scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm 11:2030-9.
805	11.	Nickerson CA, Goodwin TJ, Terlonge J, Ott CM, Buchanan KL, Uicker WC, Emami K,
806		LeBlanc CL, Ramamurthy R, Clarke MS, Vanderburg CR, Hammond T, Pierson DL.

807		2001. Three-dimensional tissue assemblies: novel models for the study of Salmonella
808		enterica serovar Typhimurium pathogenesis. Infect Immun 69:7106-20.
809	12.	Simian M, Bissell MJ. 2017. Organoids: A historical perspective of thinking in three
810		dimensions. J Cell Biol 216:31-40.
811	13.	Bissell MJ. 1981. The Differentiated State of Normal and Malignant Cells or How to
812		Define a "Normal" Cell in Culture. International Review of Cytology 70:27-100.
813	14.	Schwarz RI, Bissell MJ. 1977. Dependence of the differentiated state on the cellular
814		environment: modulation of collagen synthesis in tendon cells. Proceedings of the
815		National Academy of Sciences of the United States of America 74:4453-4457.
816	15.	Griffith LG, Swartz MA. 2006. Capturing complex 3D tissue physiology in vitro. Nat Rev
817		Mol Cell Biol 7:211-24.
818	16.	Yamada KM, Cukierman E. 2007. Modeling tissue morphogenesis and cancer in 3D.
819		Cell 130:601-10.
820	17.	Bissell MJ, Aggeler J. 1987. Dynamic reciprocity: how do extracellular matrix and
821		hormones direct gene expression? Prog Clin Biol Res 249:251-62.
822	18.	Jorgens DM, Inman JL, Wojcik M, Robertson C, Palsdottir H, Tsai WT, Huang H, Bruni-
823		Cardoso A, Lopez CS, Bissell MJ, Xu K, Auer M. 2017. Deep nuclear invaginations are
824		linked to cytoskeletal filaments - integrated bioimaging of epithelial cells in 3D culture. J
825		Cell Sci 130:177-189.
826	19.	Maniotis AJ, Chen CS, Ingber DE. 1997. Demonstration of mechanical connections
827		between integrins, cytoskeletal filaments, and nucleoplasm that stabilize
828		nuclear structure. Proceedings of the National Academy of Sciences 94:849-854.
829	20.	Bissell MJ, Hall HG, Parry G. 1982. How does the extracellular matrix direct gene
830		expression? Journal of Theoretical Biology 99:31-68.
831	21.	Boudreau N, Myers C, Bissell MJ. 1995. From laminin to lamin: regulation of tissue-
832		specific gene expression by the ECM. Trends Cell Biol 5:1-4.

 \mathbb{A}

Infection and Immunity

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

833

834

22.

835	23.	Xu R, Spencer VA, Groesser DL, Bissell MJ. 2010. Laminin regulates PI3K basal
836		localization and activation to sustain STAT5 activation. Cell Cycle 9:4315-22.
837	24.	Kim DH, Wirtz D. 2015. Cytoskeletal tension induces the polarized architecture of the
838		nucleus. Biomaterials 48:161-72.
839	25.	Hagios C, Lochter A, Bissell MJ. 1998. Tissue architecture: the ultimate regulator of
840		epithelial function? Philos Trans R Soc Lond B Biol Sci 353:857-70.
841	26.	Doyle AD, Yamada KM. 2016. Mechanosensing via cell-matrix adhesions in 3D
842		microenvironments. Exp Cell Res 343:60-6.
843	27.	Ingber DE. 2003. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci
844		116:1157-73.
845	28.	Ingber DE. 2003. Mechanobiology and diseases of mechanotransduction. Ann Med
846		35:564-77.
847	29.	Ingber DE. 2003. Tensegrity II. How structural networks influence cellular information
848		processing networks. Journal of Cell Science 116:1397-1408.
849	30.	Ingber DE. 2008. Tensegrity-based mechanosensing from macro to micro. Prog Biophys
850		Mol Biol 97:163-79.
851	31.	Ingber DE. 2006. Cellular mechanotransduction: putting all the pieces together again.
852		FASEB J 20:811-27.
853	32.	Gruenheid S, Finlay BB. 2003. Microbial pathogenesis and cytoskeletal function. Nature
854		422:775-81.
855	33.	Taylor MP, Koyuncu OO, Enquist LW. 2011. Subversion of the actin cytoskeleton during
856		viral infection. Nat Rev Microbiol 9:427-39.
857	34.	Delorme-Axford E, Coyne CB. 2011. The Actin Cytoskeleton as a Barrier to Virus
858		Infection of Polarized Epithelial Cells. Viruses 3:2462.

Tapley EC, Starr DA. 2013. Connecting the nucleus to the cytoskeleton by SUN-KASH

bridges across the nuclear envelope. Curr Opin Cell Biol 25:57-62.

 \mathbb{A}

859	35.	Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL. 2000.
860		Microgravity as a Novel Environmental Signal Affecting Salmonella enterica Serovar
861		Typhimurium Virulence. Infection and Immunity 68:3147-3152.
862	36.	Wilson JW, Ott CM, Ramamurthy R, Porwollik S, McClelland M, Pierson DL, Nickerson
863		CA. 2002. Low-Shear modeled microgravity alters the Salmonella enterica serovar
864		typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol
865		68:5408-16.
866	37.	Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P, Ott CM,
867		Pierson DL, Nickerson CA. 2002. Microarray analysis identifies Salmonella genes
868		belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci U S A
869		99:13807-13812.
870	38.	Nauman EA, Ott CM, Sander E, Tucker DL, Pierson D, Wilson JW, Nickerson CA. 2007.
871		Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Appl
872		Environ Microbiol 73:699-705.
873	39.	Crabbé A, De Boever P, Van Houdt R, Moors H, Mergeay M, Cornelis P. 2008. Use of
874		the rotating wall vessel technology to study the effect of shear stress on growth
875		behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol 10:2098-110.
876	40.	Crabbé A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, Cornelis P. 2010.
877		Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity
878		involves AlgU regulation. Environ Microbiol 12:1545-1564.
879	41.	Pacello F, Rotilio G, Battistoni A. 2012. Low-Shear Modeled Microgravity Enhances
880		Salmonella Enterica Resistance to Hydrogen Peroxide Through a Mechanism Involving
881		KatG and KatN. Open Microbiol J 6:53-64.
882	42.	Aprikian P, Interlandi G, Kidd BA, Le Trong I, Tchesnokova V, Yakovenko O, Whitfield
883		MJ, Bullitt E, Stenkamp RE, Thomas WE, Sokurenko EV. 2011. The bacterial fimbrial tip
884		acts as a mechanical force sensor. PLoS Biol 9:e1000617.

Cell 110:1-4.

112:7563-8.

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

890	45.	Yang J, Barrila J, Roland KL, Ott CM, Nickerson CA. 2016. Physiological fluid shear
891		alters the virulence potential of invasive multidrug-resistant non-typhoidal Salmonella
892		Typhimurium D23580. NPJ Microgravity 2:16021.
893	46.	Dingemans J, Monsieurs P, Yu SH, Crabbe A, Forstner KU, Malfroot A, Cornelis P, Van
894		Houdt R. 2016. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the
895		Cystic Fibrosis Lung. MBio 7.
896	47.	Castro SL, Nelman-Gonzalez M, Nickerson CA, Ott CM. 2011. Induction of attachment-
897		independent biofilm formation and repression of Hfq expression by low-fluid-shear
898		culture of Staphylococcus aureus. Appl Environ Microbiol 77:6368-78.
899	48.	Tarbell JM, Weinbaum S, Kamm RD. 2005. Cellular fluid mechanics and
900		mechanotransduction. Ann Biomed Eng 33:1719-23.
901	49.	Kaul H, Ventikos Y. 2015. Dynamic reciprocity revisited. J Theor Biol 370:205-8.
902	50.	Rutkowski JM, Swartz MA. 2007. A driving force for change: interstitial flow as a
903		morphoregulator. Trends in Cell Biology 17:44-50.
904	51.	Long JP, S. Pierson S, Hughes JH. 1998. Rhinovirus replication in HeLa cells cultured
905		under conditions of simulated microgravity. Aviation, Space, and Environ Med 69:851-
906		856.
907	52.	Bissell MJ, Rizki A, Mian IS. 2003. Tissue architecture: the ultimate regulator of breast
908		epithelial function. Curr Opin Cell Biol 15:753-62.

Isberg RR, Barnes P. 2002. Dancing with the host; flow-dependent bacterial adhesion.

Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. 2015. Type IV pili mechanochemically

regulate virulence factors in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A

909 53. Correia AL, Bissell MJ. 2012. The tumor microenvironment is a dominant force in 910 multidrug resistance. Drug Resist Updat 15:39-49.

 $\overline{\triangleleft}$

911	54.	Nelson CM, Bissell MJ. 2006. Of extracellular matrix, scaffolds, and signaling: tissue
912		architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol
913		22:287-309.
914	55.	Schmeichel KL, Bissell MJ. 2003. Modeling tissue-specific signaling and organ function
915		in three dimensions. J Cell Sci 116:2377-88.
916	56.	Bals R, Hiemstra PS. 2004. Innate immunity in the lung: how epithelial cells fight against
917		respiratory pathogens. European Respiratory Journal 23:327-333.
918	57.	Crabbé A, Ledesma MA, Nickerson CA. 2014. Mimicking the host and its
919		microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa.
920		Pathog Dis 71:1-19.
921	58.	Duerkop BA, Vaishnava S, Hooper LV. 2009. Immune Responses to the Microbiota at
922		the Intestinal Mucosal Surface. Immunity 31:368-376.
923	59.	Kraehenbuhl JP, Corbet M. 2004. Keeping the gut microflora at bay. Science 303:1624-
924		1625.
925	60.	Lopetuso LR, Scaldaferri F, Franceschi F, Gasbarrini A. 2014. The gastrointestinal
926		microbiome - functional interference between stomach and intestine. Best Pract Res Clin
927		Gastroenterol 28:995-1002.
928	61.	Singh B, Fleury C, Jalalvand F, Riesbeck K. 2012. Human pathogens utilize host
929		extracellular matrix proteins laminin and collagen for adhesion and invasion of the host.
930		FEMS Microbiol Rev 36:1122-80.
931	62.	Allen CA, Niesel DW, Torres AG. 2008. The effects of low-shear stress on Adherent-
932		invasive Escherichia coli. Environ Microbiol 10:1512-25.
933	63.	Fonseca AP, Sousa JC. 2007. Effect of shear stress on growth, adhesion and biofilm
934		formation of Pseudomonas aeruginosa with antibiotic-induced morphological changes.
935		Int J Antimicrob Agents 30:236-41.

Infection and Immunity

936

64.

937 coli biofilms formed under low-shear modeled microgravity in a ground-based system. 938 Appl Environ Microbiol 72:7701-10. 939 65. Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroutre H, Lambrecht BN. 2015. 940 Mucosal Immunology. Elsevier, United States of America. 941 66. Gerbe F, Legraverend C, Jay P. 2012. The intestinal epithelium tuft cells: specification 942 and function. Cell Mol Life Sci 69:2907-17. 943 67. Peterson LW, Artis D. 2014. Intestinal epithelial cells: regulators of barrier function and 944 immune homeostasis. Nat Rev Immunol 14:141-53. 945 68. Mowat AM, Agace WW. 2014. Regional specialization within the intestinal immune 946 system. Nat Rev Immunol 14:667-685. 947 69. Cerutti A. 2008. The regulation of IgA class switching. Nat Rev Immunol 8:421-34. 948 70. Cerutti A, Rescigno M. 2008. The biology of intestinal immunoglobulin A responses. 949 Immunity 28:740-50. 950 71. Holmgren J, Czerkinsky C. 2005. Mucosal immunity and vaccines. Nat Med 11:S45-53. 951 72. Kraehenbuhl JP, Corbett M. 2004. Immunology. Keeping the gut microflora at bay. 952 Science 303:1624-5. 953 73. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. 2008. The immune geography 954 of IgA induction and function. Mucosal Immunol 1:11-22. 955 74. Engel J, Eran Y. 2011. Subversion of mucosal barrier polarity by Pseudomonas 956 aeruginosa. Front Microbiol 2:114. 957 75. Zihni C, Balda MS, Matter K. 2014. Signalling at tight junctions during epithelial 958 differentiation and microbial pathogenesis. J Cell Sci 127:3401-13. 959 76. Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. 2018. Intestinal epithelial 960 cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model 961 Mech 11.

Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A. 2006. Escherichia

 \triangleleft

962	77.	Jung C, Hugot JP, Barreau F. 2010. Peyer's Patches: The Immune Sensors of the
963		Intestine. Int J Inflam 2010:823710.
964	78.	Cohen CJ, Shieh JTC, Pickles RJ, Okegawa T, Hsieh J-T, Bergelson JM. 2001. The
965		coxsackievirus and adenovirus receptor is a transmembrane component of the tight
966		junction. Proceedings of the National Academy of Sciences 98:15191-15196.
967	79.	Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos
968		CA, Dermody TS. Junction Adhesion Molecule Is a Receptor for Reovirus. Cell 104:441-
969		451.
970	80.	Bonazzi M, Cossart P. 2011. Impenetrable barriers or entry portals? The role of cell-cell
971		adhesion during infection. J Cell Biol 195:349-58.
972	81.	Höner zu Bentrup K, Ramamurthy R, Ott CM, Emami K, Nelman-Gonzalez M, Wilson
973		JW, Richter EG, Goodwin TJ, Alexander JS, Pierson DL, Pellis N, Buchanan KL,
974		Nickerson CA. 2006. Three-dimensional organotypic models of human colonic
975		epithelium to study the early stages of enteric salmonellosis. Microbes and Infection
976		8:1813-1825.
977	82.	Fleiszig SM, Evans DJ, Do N, Vallas V, Shin S, Mostov KE. 1997. Epithelial cell polarity
978		affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infection and
979		Immunity 65:2861-2867.
980	83.	Hurley BP, McCormick BA. 2003. Translating tissue culture results into animal models:
981		the case of Salmonella typhimurium. Trends in Microbiology 11:562-569.
982	84.	Law RJ, Gur-Arie L, Rosenshine I, Finlay BB. 2013. In Vitro and In Vivo Model Systems
983		for Studying Enteropathogenic Escherichia coli Infections. Cold Spring Harbor
984		Perspectives in Medicine 3.
985	85.	Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. 2012. Bacteria and host
986		interactions in the gut epithelial barrier. Nat Chem Biol 8:36-45.

6			
<u>b</u>			
scn	987	86.	Clemente JC, Ursell LK, Parfrey LW, Knight R. 2012. The impact of the gut microbiota
UU	988		on human health: an integrative view. Cell 148:1258-70.
Mo	989	87.	Krishnan S, Alden N, Lee K. 2015. Pathways and functions of gut microbiota metabolism
Accepted Manuscript Po	990		impacting host physiology. Curr Opin Biotechnol 36:137-145.
e o	991	88.	Chu H, Mazmanian SK. 2013. Innate immune recognition of the microbiota promotes
Acc	992		host-microbial symbiosis. Nat Immunol 14:668-75.
	993	89.	Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland
	994		EK, Hooper LV. 2011. The antibacterial lectin RegIIIgamma promotes the spatial
	995		segregation of microbiota and host in the intestine. Science 334:255-8.
	996	90.	Maynard CL, Elson CO, Hatton RD, Weaver CT. 2012. Reciprocal interactions of the
	997		intestinal microbiota and immune system. Nature 489:231-41.
Ę.	998	91.	Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson
Infection and Immunity	999		KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. Science
and li	1000		308:1635-1638.
ction	1001	92.	Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability
Infe	1002		and resilience of the human gut microbiota. Nature 489:220-30.

1003 93. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The 1004 human microbiome project. Nature 449:804-10.

- 1005 94. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N,
- 1006 Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng
- 1007 H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A,
- 1008 Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian
- 1009 M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F,
- 1010 Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, et al. 2010. A human gut
- 1011 microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65.

Infection and Immunity

1012	95.	Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR,
1013		Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L,
1014		Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F,
1015		Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims
1016		S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM,
1017		Brunak S, Dore J, Meta HITC, Antolin M, Artiguenave F, Blottiere HM, Almeida M,
1018		Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, et al. 2011.
1019		Enterotypes of the human gut microbiome. Nature 473:174-80.
1020	96.	Donaldson GP, Lee SM, Mazmanian SK. 2015. Gut biogeography of the bacterial
1021		microbiota. Nat Rev Microbiol doi:10.1038/nrmicro3552.
1022	97.	Lavelle A, Lennon G, O'Sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE,
1023		Doherty G, O'Donoghue D, Hyland J, Ross RP, Coffey JC, Sheahan K, Cotter PD,
1024		Shanahan F, Winter DC, O'Connell PR. 2015. Spatial variation of the colonic microbiota
1025		in patients with ulcerative colitis and control volunteers. Gut 64:1553-61.
1026	98.	Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN,
1027		Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. 2015. The gut
1028		microbiota and host health: a new clinical frontier. Gut doi:10.1136/gutjnl-2015-309990.
1029	99.	Lynch SV, Pedersen O. 2016. The Human Intestinal Microbiome in Health and Disease.
1030		N Engl J Med 375:2369-2379.
1031	100.	Kassam Z, Lee CH, Yuan Y, Hunt RH. 2013. Fecal microbiota transplantation for
1032		Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol
1033		108:500-8.
1034	101.	Gianotti RJ, Moss AC. 2017. Fecal Microbiota Transplantation: From Clostridium difficile
1035		to Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) 13:209-213.
1036	102.	Parker D, Prince A. 2011. Innate immunity in the respiratory epithelium. Am J Respir Cell
1037		Mol Biol 45:189-201.

1038	103.	Johansson ME, Ambort D, Pelaseyed T, Schutte A, Gustafsson JK, Ermund A,
1039		Subramani DB, Holmen-Larsson JM, Thomsson KA, Bergstrom JH, van der Post S,
1040		Rodriguez-Pineiro AM, Sjovall H, Backstrom M, Hansson GC. 2011. Composition and
1041		functional role of the mucus layers in the intestine. Cell Mol Life Sci 68:3635-41.
1042	104.	Johansson ME, Larsson JM, Hansson GC. 2011. The two mucus layers of colon are
1043		organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial
1044		interactions. Proc Natl Acad Sci U S A 108 Suppl 1:4659-65.
1045	105.	Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, Brugiroux S, Keller I,
1046		Macpherson JA, Rupp S, Stolp B, Stein JV, Stecher B, Sauer U, McCoy KD,
1047		Macpherson AJ. 2015. The outer mucus layer hosts a distinct intestinal microbial niche.
1048		Nat Commun 6:8292.
1049	106.	Rogier EW, Frantz AL, Bruno MEC, Kaetzel CS. 2014. Secretory IgA is Concentrated in
1050		the Outer Layer of Colonic Mucus along with Gut Bacteria. Pathogens 3:390-403.
1051	107.	Frantz C, Stewart KM, Weaver VM. 2010. The extracellular matrix at a glance. Journal of
1052		Cell Science 123:4195-4200.
1053	108.	Bonnans C, Chou J, Werb Z. 2014. Remodelling the extracellular matrix in development
1054		and disease. Nat Rev Mol Cell Biol 15:786-801.
1055	109.	Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V, Sprague AG, Doherty PC, de
1056		Fougerolles AR, Topham DJ. 2004. The collagen binding alpha1beta1 integrin VLA-1
1057		regulates CD8 T cell-mediated immune protection against heterologous influenza
1058		infection. Immunity 20:167-79.
1059	110.	Mammoto T, Mammoto A, Ingber DE. 2013. Mechanobiology and developmental control.
1060		Annu Rev Cell Dev Biol 29:27-61.
1061	111.	Button B, Boucher RC, University of North Carolina Virtual Lung G. 2008. Role of
1062		mechanical stress in regulating airway surface hydration and mucus clearance rates.
1063		Respir Physiol Neurobiol 163:189-201.

Infection and Immunity

1064 112. Gayer CP, Basson MD. 2009. The effects of mechanical forces on intestinal physiology1065 and pathology. Cell Signal 21:1237-44.

1066 113. Scott SM, Knowles CH, Wang D, Yazaki E, Picon L, Wingate DL, Lindberg G. 2006. The
1067 nocturnal jejunal migrating motor complex: defining normal ranges by study of 51 healthy
1068 adult volunteers and meta-analysis. Neurogastroenterol Motil 18:927-35.

- 1069 114. Otterson MF, Sarr MG. 1993. Normal physiology of small intestinal motility. Surg Clin
 1070 North Am 73:1173-92.
- 1071 115. Guo P, Weinstein AM, Weinbaum S. 2000. A hydrodynamic mechanosensory

1072 hypothesis for brush border microvilli. Am J Physiol Renal Physiol 279:F698-712.

- 1073116.Ashida N, Takechi H, Kita T, Arai H. 2003. Vortex-mediated mechanical stress induces1074integrin-dependent cell adhesion mediated by inositol 1,4,5-trisphosphate-sensitive10750.0 and the structure in the initial structure in the structure integrin.
- 1075 Ca2+ release in THP-1 cells. J Biol Chem 278:9327-31.
- 1076 117. Kim M, Javed NH, Yu JG, Christofi F, Cooke HJ. 2001. Mechanical stimulation activates
 1077 Galphaq signaling pathways and 5-hydroxytryptamine release from human carcinoid
 1078 BON cells. J Clin Invest 108:1051-9.
- 1079 118. Roskelley CD, Bissell MJ. 1995. Dynamic reciprocity revisited: a continuous,
- 1080 bidirectional flow of information between cells and the extracellular matrix regulates
- 1081 mammary epithelial cell function. Biochem Cell Biol 73:391-7.
- 1082 119. Zhang J, Owen CR, Sanders MA, Turner JR, Basson MD. 2006. The motogenic effects
 1083 of cyclic mechanical strain on intestinal epithelial monolayer wound closure are matrix
 1084 dependent. Gastroenterology 131:1179-89.
- 1085 120. Zhang S, Kingsley RA, Santos RL, Andrews-Polymenis H, Raffatellu M, Figueiredo J,
- 1086 Nunes J, Tsolis RM, Adams LG, Baumler AJ. 2003. Molecular pathogenesis of
- 1087 Salmonella enterica serotype typhimurium-induced diarrhea. Infect Immun 71:1-12.
- 1088 121. Lu P, Takai K, Weaver VM, Werb Z. 2011. Extracellular matrix degradation and
- 1089 remodeling in development and disease. Cold Spring Harb Perspect Biol 3.

 \triangleleft

-	1090	122.	Abbott A. 2003. Cell culture: biology's new dimension. Nature 424:870-2.
-	1091	123.	de Bentzmann S, Plotkowski C, Puchelle E. 1996. Receptors in the
-	1092		Pseudomonas aeruginosa adherence to injured and repairing airway epithelium.
-	1093		Am J Respir Crit Care Med 154:S155-62.
-	1094	124.	de Bentzmann S, Roger P, Dupuit F, Bajolet-Laudinat O, Fuchey C, Plotkowski MC,
-	1095		Puchelle E. 1996. Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to
-	1096		regenerating respiratory epithelial cells. Infect Immun 64:1582-8.
-	1097	125.	Ljungh A, Moran AP, Wadstrom T. 1996. Interactions of bacterial adhesins with
-	1098		extracellular matrix and plasma proteins: pathogenic implications and therapeutic
-	1099		possibilities. FEMS Immunol Med Microbiol 16:117-26.
-	1100	126.	Ljungh A, Wadstrom T. 1996. Interactions of bacterial adhesins with the extracellular
-	1101		matrix. Adv Exp Med Biol 408:129-40.
-	1102	127.	Plotkowski MC, Tournier JM, Puchelle E. 1996. Pseudomonas aeruginosa strains
-	1103		possess specific adhesins for laminin. Infect Immun 64:600-5.
-	1104	128.	Wolf DA, Schwarz RP. 1991. Analysis of gravity-induced particle motion and fluid
-	1105		perfusion flow in the NASA-designed rotating zero-head space tissue culture vessel.,
-	1106	129.	Basson MD. 2003. Paradigms for mechanical signal transduction in the intestinal
-	1107		epithelium. Category: molecular, cell, and developmental biology. Digestion 68:217-25.
-	1108	130.	Beeson JG, Rogerson SJ, Cooke BM, Reeder JC, Chai W, Lawson AM, Molyneux ME,
-	1109		Brown GV. 2000. Adhesion of Plasmodium falciparum-infected erythrocytes to
-	1110		hyaluronic acid in placental malaria. Nat Med 6:86-90.
-	1111	131.	Cai Z, Xin J, Pollock DM, Pollock JS. 2000. Shear stress-mediated NO production in
-	1112		inner medullary collecting duct cells. American Journal of Physiology - Renal Physiology
	1113		279:F270-F274.

1115		Saunders Company, Philadelphia.
1116	133.	Stock UA, Vacanti JP. 2001. Cardiovascular physiology during fetal development and
1117		implications for tissue engineering. Tissue Eng 7:1-7.
1118	134.	Vetsch JR, Betts DC, Muller R, Hofmann S. 2017. Flow velocity-driven differentiation of
1119		human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and
1120		computational approach. PLoS One 12:e0180781.
1121	135.	Liu YS, Lee OK. 2014. In search of the pivot point of mechanotransduction:
1122		mechanosensing of stem cells. Cell Transplant 23:1-11.
1123	136.	Geuss LR, Suggs LJ. 2013. Making cardiomyocytes: How mechanical stimulation can
1124		influence differentiation of pluripotent stem cells. Biotechnology Progress 29:1089-1096.
1125	137.	Chen G, Lv Y, Guo P, Lin C, Zhang X, Yang L, Xu Z. 2013. Matrix mechanics and fluid
1126		shear stress control stem cells fate in three dimensional microenvironment. Curr Stem
1127		Cell Res Ther 8:313-23.
1128	138.	Adamo L, Garcia-Cardena G. 2011. Directed stem cell differentiation by fluid mechanical
1129		forces. Antioxid Redox Signal 15:1463-73.
1130	139.	Ando J, Yamamoto K. 2009. Vascular mechanobiology: endothelial cell responses to
1131		fluid shear stress. Circ J 73:1983-92.
1132	140.	Patwari P, Lee RT. 2008. Mechanical control of tissue morphogenesis. Circ Res
1133		103:234-43.
1134	141.	Miura S, Sato K, Kato-Negishi M, Teshima T, Takeuchi S. 2015. Fluid shear triggers
1135		microvilli formation via mechanosensitive activation of TRPV6. Nat Commun 6:8871.
1136	142.	Jessup JM, Frantz M, Sonmez-Alpan E, Locker J, Skena K, Waller H, Battle P,
1137		Nachman A, Weber ME, Thomas DA, Curbeam RL, Jr., Baker TL, Goodwin TJ. 2000.
1138		Microgravity Culture Reduces Apoptosis and Increases the Differentiation of a Human

Creasy RK, Reznik R. 1984. Maternal-Fetal Medicine: Principles and Practice. WB

1114

132.

- 1139 Colorectal Carcinoma Cell Line. In Vitro Cellular & Developmental Biology Animal1140 36:367-373.
- 1141 143. Zhau HE, Goodwin TJ, Chang SM, Baker TL, Chung LW. 1997. Establishment of a
 1142 three-dimensional human prostate organoid coculture under microgravity-simulated
 1143 conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell
 1144 Dev Biol Anim 33:375-80.
- 1145 144. Alcantara Warren C, Destura RV, Sevilleja JE, Barroso LF, Carvalho H, Barrett LJ,
 1146 O'Brien AD, Guerrant RL. 2008. Detection of epithelial-cell injury, and quantification of
- infection, in the HCT-8 organoid model of cryptosporidiosis. J Infect Dis 198:143-9.
- 1148 145. Carterson AJ, Honer zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR,
- 1149 Buchanan KL, Nickerson CA, Schurr MJ. 2005. A549 lung epithelial cells grown as
- three-dimensional aggregates: alternative tissue culture model for *Pseudomonas aeruginosa* pathogenesis. Infect Immun 73:1129-40.
- 1152 146. Carvalho HM, Teel LD, Goping G, O'Brien AD. 2005. A three-dimensional tissue culture
 1153 model for the study of attach and efface lesion formation by enteropathogenic and
 1154 enterohaemorrhagic Escherichia coli. Cell Microbiol 7:1771-81.
- 1155 147. Drummond CG, Nickerson CA, Coyne CB. 2016. A Three-Dimensional Cell Culture
- 1156 Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells. mSphere 1.
- 1157 148. David J, Sayer NM, Sarkar-Tyson M. 2014. The use of a three-dimensional cell culture
 1158 model to investigate host-pathogen interactions of *Francisella tularensis* in human lung
 1159 epithelial cells. Microbes Infect 16:735-45.
- 1160 149. Chang TT, Hughes-Fulford M. 2014. Molecular mechanisms underlying the enhanced
 1161 functions of three-dimensional hepatocyte aggregates. Biomaterials 35:2162-71.
- 1162 150. Hjelm BE, Berta AN, Nickerson CA, Arntzen CJ, Herbst-Kralovetz MM. 2010.
- 1163 Development and characterization of a three-dimensional organotypic human vaginal
- 1164 epithelial cell model. Biol Reprod 82:617-27.

 \triangleleft

Infection and Immunity

1165	151.	Lamarca HL, Ott CM, Honer Zu Bentrup K, Leblanc CL, Pierson DL, Nelson AB,
1166		Scandurro AB, Whitley GS, Nickerson CA, Morris CA. 2005. Three-dimensional growth
1167		of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta 26:709-
1168		20.
1169	152.	McConkey CA, Delorme-Axford E, Nickerson CA, Kim KS, Sadovsky Y, Boyle JP, Coyne
1170		CB. 2016. A three-dimensional culture system recapitulates placental
1171		syncytiotrophoblast development and microbial resistance. Sci Adv 2:e1501462.
1172	153.	Radtke AL, Wilson JW, Sarker S, Nickerson CA. 2010. Analysis of interactions of
1173		Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One
1174		5:e15750.
1175	154.	Sainz B, Jr., TenCate V, Uprichard SL. 2009. Three-dimensional Huh7 cell culture
1176		system for the study of Hepatitis C virus infection. Virol J 6:103.
1177	155.	Duray PH, Hatfill SJ, Pellis NR. 1997. Tissue culture in microgravity. Science & medicine
1178		4:46-55.
1179	156.	Michalopoulos G, Pitot HC. 1975. Primary culture of parenchymal liver cells on collagen
1180		membranes. Morphological and biochemical observations. Exp Cell Res 94:70-8.
1181	157.	Emerman JT, Pitelka DR. 1977. Maintenance and induction of morphological
1182		differentiation in dissociated mammary epithelium on floating collagen membranes. In
1183		Vitro 13:316-28.
1184	158.	Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Honer zu Bentrup K,
1185		Hammond T, Pierson DL. 2003. Low-shear modeled microgravity: a global
1186		environmental regulatory signal affecting bacterial gene expression, physiology, and
1187		pathogenesis. J Microbiol Methods 54:1-11.
1188	159.	Soni A, O'Sullivan L, Quick LN, Ott CM, Nickerson CA, Wilson JW. 2014. Conservation
1189		of the Low-shear Modeled Microgravity Response in Enterobacteriaceae and Analysis of
1190		the trp Genes in this Response. Open Microbiol J 8:51-8.

1191	160.	Grant KC, Khodadad CLM, Foster JS. 2013. Role of Hfq in an animal-microbe
1192		symbiosis under simulated microgravity conditions. International Journal of Astrobiology
1193		13:53-61.
1194	161.	Altenburg SD, Nielsen-Preiss SM, Hyman LE. 2008. Increased filamentous growth of
1195		Candida albicans in simulated microgravity. Genomics Proteomics Bioinformatics 6:42-
1196		50.
1197	162.	Baker PW, Meyer ML, Leff LG. 2004. Escherichia coli growth under modeled reduced
1198		gravity. Microgravity Sci Technol 15:39-44.
1199	163.	Demain AL, Fang A. 2001. Secondary metabolism in simulated microgravity. Chem Rec
1200		1:333-346.
1201	164.	Fang A, Pierson DL, Koenig DW, Mishra SK, Demain AL. 1997. Effect of simulated
1202		microgravity and shear stress on microcin B17 production by Escherichia coli and on its
1203		excretion into the medium. Appl Environ Microbiol 63:4090-2.
1204	165.	Lynch SV, Brodie EL, Matin A. 2004. Role and regulation of sigma S in general
1205		resistance conferred by low-shear simulated microgravity in Escherichia coli. J Bacteriol
1206		186:8207-12.
1207	100	Tucker DL Ott CM Lluff C Extensiv V Disease DL William DC Eav CE 2007

1207	166.	Tucker DL, Ott CM, Huff S, Fofanov Y, Pierson DL, Willson RC, Fox GE. 2007.
------	------	---

1208 Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity 1209 environment. BMC Microbiol 7:15.

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

1210 Abshire CF, Prasai K, Soto I, Shi R, Concha M, Baddoo M, Flemington EK, Ennis DG, 167.

1211 Scott RS, Harrison L. 2016. Exposure of Mycobacterium marinum to low-shear modeled

- 1212 microgravity: effect on growth, the transcriptome and survival under stress. NPJ
- 1213 Microgravity 2:16038.
- 1214 168. Orsini SS, Lewis AM, Rice KC. 2017. Investigation of simulated microgravity effects on 1215 Streptococcus mutans physiology and global gene expression. NPJ Microgravity 3:4.

 \triangleleft

Infection and Immunity

 \triangleleft

1216 169. Goodwin TJ, Schroeder WF, Wolf DA, Moyer MP. 1993. Rotating-wall vessel coculture 1217 of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. 1218 Proc Soc Exp Biol Med 202:181-92. 1219 Straub TM, Honer zu Bentrup K, Orosz-Coghlan P, Dohnalkova A, Mayer BK, 170. 1220 Bartholomew RA, Valdez CO, Bruckner-Lea CJ, Gerba CP, Abbaszadegan M, 1221 Nickerson CA. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg 1222 Infect Dis 13:396-403. 1223 Skardal A, Sarker SF, Crabbé A, Nickerson CA, Prestwich GD. 2010. The generation of 171. 1224 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating 1225 wall vessel bioreactor. Biomaterials 31:8426-8435. 1226 172. Barrila J, Yang J, Crabbe A, Sarker SF, Liu Y, Ott CM, Nelman-Gonzalez MA, Clemett 1227 SJ, Nydam SD, Forsyth RJ, Davis RR, Crucian BE, Quiriarte H, Roland KL, Brenneman 1228 K, Sams C, Loscher C, Nickerson CA. 2017. Three-dimensional organotypic co-culture 1229 model of intestinal epithelial cells and macrophages to study Salmonella enterica 1230 colonization patterns. NPJ Microgravity 3:10. 1231 De Weirdt R, Crabbe A, Roos S, Vollenweider S, Lacroix C, van Pijkeren JP, Britton RA, 173. 1232 Sarker S, Van de Wiele T, Nickerson CA. 2012. Glycerol Supplementation Enhances L. 1233 reuteri's Protective Effect against S.Typhimurium Colonization in a 3-D Model of Colonic 1234 Epithelium. PLoS One 7:e37116. 1235 Goodwin TJ, Jessup JM, Wolf DA. 1992. Morphologic differentiation of colon carcinoma 174. 1236 cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell Dev Biol 28A:47-60. 1237 175. Devarasetty M, Wang E, Soker S, Skardal A. 2017. Mesenchymal stem cells support 1238 growth and organization of host-liver colorectal-tumor organoids and possibly resistance 1239 to chemotherapy. Biofabrication 9:021002. 1240 Salerno-Goncalves R, Fasano A, Sztein MB. 2011. Engineering of a multicellular 176. 1241 organotypic model of the human intestinal mucosa. Gastroenterology 141:e18-20.

1242	177.	Salerno-Goncalves R, Fasano A, Sztein MB. 2016. Development of a Multicellular
1243		Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under
1244		Microgravity. J Vis Exp doi:10.3791/54148.
1245	178.	Salerno-Goncalves R, Safavie F, Fasano A, Sztein MB. 2016. Free and complexed-
1246		secretory immunoglobulin A triggers distinct intestinal epithelial cell responses. Clin Exp
1247		Immunol 185:338-47.
1248	179.	Crabbe A, Liu Y, Matthijs N, Rigole P, De La Fuente-Nunez C, Davis R, Ledesma MA,
1249		Sarker S, Van Houdt R, Hancock RE, Coenye T, Nickerson CA. 2017. Antimicrobial
1250		efficacy against Pseudomonas aeruginosa biofilm formation in a three-dimensional lung
1251		epithelial model and the influence of fetal bovine serum. Sci Rep 7:43321.
1252	180.	Crabbe A, Liu Y, Sarker SF, Bonenfant NR, Barrila J, Borg ZD, Lee JJ, Weiss DJ,
1253		Nickerson CA. 2015. Recellularization of decellularized lung scaffolds is enhanced by
1254		dynamic suspension culture. PLoS One 10:e0126846.
1255	181.	Crabbe A, Sarker SF, Van Houdt R, Ott CM, Leys N, Cornelis P, Nickerson CA. 2011.
1255 1256	181.	Crabbe A, Sarker SF, Van Houdt R, Ott CM, Leys N, Cornelis P, Nickerson CA. 2011. Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a
	181.	
1256	181. 182.	Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a
1256 1257		Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiol 13:469-81.
1256 1257 1258		Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiol 13:469-81. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S,
1256 1257 1258 1259		Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiol 13:469-81. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE. 2010. Influence of acellular natural lung matrix on murine embryonic stem
1256 1257 1258 1259 1260	182.	Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiol 13:469-81. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE. 2010. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16:2565-80.
1256 1257 1258 1259 1260 1261	182.	Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiol 13:469-81. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE. 2010. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16:2565-80. Goodwin TJ, McCarthy M, Cohrs RJ, Kaufer BB. 2015. 3D tissue-like assemblies: A
1256 1257 1258 1259 1260 1261 1262	182. 183.	Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiol 13:469-81. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE. 2010. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16:2565-80. Goodwin TJ, McCarthy M, Cohrs RJ, Kaufer BB. 2015. 3D tissue-like assemblies: A novel approach to investigate virus-cell interactions. Methods 90:76-84.

1268In Vitro Cell Dev Biol Anim 35:501-9.1269186.Prewett TL, Goodwin TJ, Spaulding GF. 1993. Three-dimensional modeling of T-241270human bladder carcinoma cell line: A new simulated microgravity culture vessel. J Tis1271Cult Meth 15:29-36.1272187.187.Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding O12731997. Three-dimensional growth patterns of various human tumor cell lines in simulat1274microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology - Anima127533:459-466.1276188.188.Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional1277organoid model for evaluation of the interaction of uropathogenic Escherichia coli with1278terminally differentiated human urothelial cells. Infect Immun 74:750-7.1279189.Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three-1280Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina1281Bacteria and Neisseria gonorrhoeae. Infect Immun 85.1282190.McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013.1283Mycoplasma genitalium infection activates cellular host defense and inflammation1284pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis1285207:1857-68.1286191.Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal1287microbiome alter the innate immune response and barrier	1266	185.	Khaoustov VI, Darlington GJ, Soriano HE, Krishnan B, Risin D, Pellis NR, Yoffe B. 1999.
 Prewett TL, Goodwin TJ, Spaulding GF. 1993. Three-dimensional modeling of T-24 human bladder carcinoma cell line: A new simulated microgravity culture vessel. J Tis Cult Meth 15:29-36. Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding O 1997. Three-dimensional growth patterns of various human tumor cell lines in simulat microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology - Anima 33:459-466. Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1267		Induction of three-dimensional assembly of human liver cells by simulated microgravity.
 human bladder carcinoma cell line: A new simulated microgravity culture vessel. J Tis Cult Meth 15:29-36. I87. Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding O 1997. Three-dimensional growth patterns of various human tumor cell lines in simulat microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology - Anima 33:459-466. 188. Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1268		In Vitro Cell Dev Biol Anim 35:501-9.
 Cult Meth 15:29-36. Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding O 1997. Three-dimensional growth patterns of various human tumor cell lines in simulat microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology - Anima 33:459-466. 188. Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1269	186.	Prewett TL, Goodwin TJ, Spaulding GF. 1993. Three-dimensional modeling of T-24
 Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding O 1997. Three-dimensional growth patterns of various human tumor cell lines in simulat microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology - Anima 33:459-466. Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1270		human bladder carcinoma cell line: A new simulated microgravity culture vessel. J Tiss
 1273 1997. Three-dimensional growth patterns of various human tumor cell lines in simulat microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology - Anima 33:459-466. 1276 188. Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. 1279 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 1282 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 1286 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1271		Cult Meth 15:29-36.
 microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology - Anima 33:459-466. 1276 188. Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. 1279 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 1282 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1272	187.	Ingram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding GF.
 1275 33:459-466. 1276 188. Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. 1279 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three-Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 1282 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 1286 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1273		1997. Three-dimensional growth patterns of various human tumor cell lines in simulated
 1276 188. Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. 1279 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three-Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 1282 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 1286 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1274		microgravity of a NASA bioreactor. In Vitro Cellular & Developmental Biology - Animal
 organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750-7. 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1275		33:459-466.
 terminally differentiated human urothelial cells. Infect Immun 74:750-7. 1279 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 1282 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 1286 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1276	188.	Smith YC, Grande KK, Rasmussen SB, O'Brien AD. 2006. Novel three-dimensional
 1279 189. Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three- Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 1282 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1277		organoid model for evaluation of the interaction of uropathogenic Escherichia coli with
 Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vagina Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1278		terminally differentiated human urothelial cells. Infect Immun 74:750-7.
 Bacteria and Neisseria gonorrhoeae. Infect Immun 85. 1282 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1279	189.	Laniewski P, Gomez A, Hire G, So M, Herbst-Kralovetz MM. 2017. Human Three-
 1282 190. McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1280		Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vaginal
 Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1281		Bacteria and Neisseria gonorrhoeae. Infect Immun 85.
 pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207:1857-68. 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1282	190.	McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. 2013.
 207:1857-68. 1286 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1283		Mycoplasma genitalium infection activates cellular host defense and inflammation
 1286 191. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. 1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1284		pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis
 microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1285		207:1857-68.
 vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue 	1286	191.	Doerflinger SY, Throop AL, Herbst-Kralovetz MM. 2014. Bacteria in the vaginal
1289 192. Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissue	1287		microbiome alter the innate immune response and barrier properties of the human
	1288		vaginal epithelia in a species-specific manner. J Infect Dis 209:1989-99.
1290 studies of electrical propagation. Biochemical and biophysical research communication	1289	192.	Bursac N, Loo Y, Leong K, Tung L. 2007. Novel anisotropic engineered cardiac tissues:
	1290		studies of electrical propagation. Biochemical and biophysical research communications
1291 361:847-853.	1291		361:847-853.

 \mathbb{A}

1292	193.	Rungarunlert S, Klincumhom N, Bock I, Nemes C, Techakumphu M, Pirity MK, Dinnyes
1293		A. 2011. Enhanced cardiac differentiation of mouse embryonic stem cells by use of the
1294		slow-turning, lateral vessel (STLV) bioreactor. Biotechnology Letters 33:1565-1573.
1295	194.	Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. 2001.
1296		Tissue engineering of functional cardiac muscle: molecular, structural, and
1297		electrophysiological studies. Am J Physiol Heart Circ Physiol 280:H168-78.
1298	195.	Margolis L, Hatfill S, Chuaqui R, Vocke C, Emmert-Buck M, Linehan WM, Duray PH.
1299		1999. Long term organ culture of human prostate tissue in a NASA-designed rotating
1300		wall bioreactor. J Urol 161:290-7.
1301	196.	Rose MI, Brown DC, Pellis NR, Crisera CA, Colen KL, Longaker MT, Gittes GK. 1999.
1302		Effects of microgravity on the embryonic pancreas. In Vitro Cell Dev Biol Anim 35:560-3.
1303	197.	Murray HE, Paget MB, Downing R. 2005. Preservation of glucose responsiveness in
1304		human islets maintained in a rotational cell culture system. Mol Cell Endocrinol 238:39-
1305		49.
1306	198.	Lelkes PI, Galvan DL, Hayman GT, Goodwin TJ, Chatman DY, Cherian S, Garcia RM,
1307		Unsworth BR. 1998. Simulated microgravity conditions enhance differentiation of
1308		cultured PC12 cells towards the neuroendocrine phenotype. In Vitro Cell Dev Biol Anim
1309		34:316-25.
1310	199.	Myers TA, Nickerson CA, Kaushal D, Ott CM, Höner zu Bentrup K, Ramamurthy R,
1311		Nelman-Gonzalez M, Pierson DL, Philipp MT. 2008. Closing the phenotypic gap
1312		between transformed neuronal cell lines in culture and untransformed neurons. Journal
1313		of Neuroscience Methods 174:31-41.
1314	200.	Valmikinathan CM, Hoffman J, Yu X. 2011. Impact of Scaffold Micro and Macro
1315		Architecture on Schwann Cell Proliferation under Dynamic Conditions in a Rotating Wall
1316		Vessel Bioreactor. Mater Sci Eng C Mater Biol Appl 31:22-29.

1317	201.	Bramley JC, Drummond CG, Lennemann NJ, Good CA, Kim KS, Coyne CB. 2017. A
1318		Three-Dimensional Cell Culture System To Model RNA Virus Infections at the Blood-
1319		Brain Barrier. mSphere 2.
1320	202.	Lei XH, Ning LN, Cao YJ, Liu S, Zhang SB, Qiu ZF, Hu HM, Zhang HS, Liu S, Duan EK.
1321		2011. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem
1322		cells and supports formation of 3D epidermis-like structure. PLoS One 6:e26603.
1323	203.	DiStefano T, Chen HY, Panebianco C, Kaya KD, Brooks MJ, Gieser L, Morgan NY,
1324		Pohida T, Swaroop A. 2018. Accelerated and Improved Differentiation of Retinal
1325		Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors. Stem Cell
1326		Reports 10:300-313.
1327	204.	Botchwey EA, Pollack SR, Levine EM, Laurencin CT. 2001. Bone tissue engineering in a
1328		rotating bioreactor using a microcarrier matrix system. Journal of biomedical materials
1329		research 55:242-253.
1330	205.	Detamore MS, Athanasiou KA. 2005. Use of a Rotating Bioreactor toward Tissue
1331		Engineering the Temporomandibular Joint Disc. Tissue engineering 11:1188-1197.
1332	206.	Yang X, Wang D, Hao J, Gong M, Arlet V, Balian G, Shen FH, Li XJ. 2011.
1333		Enhancement of matrix production and cell proliferation in human annulus cells under
1334		bioreactor culture. Tissue Eng Part A 17:1595-603.
1335	207.	Rauh J, Milan F, Gunther KP, Stiehler M. 2011. Bioreactor systems for bone tissue
1336		engineering. Tissue Eng Part B Rev 17:263-80.
1337	208.	Ulbrich C, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, Magnusson N,
1338		Infanger M, Grosse J, Eilles C, Sundaresan A, Grimm D. 2014. The impact of simulated
1339		and real microgravity on bone cells and mesenchymal stem cells. Biomed Res Int
1340		2014:928507.

Accepted Manuscript Posted Online

1341	209.	Duray PH, Yin SR, Ito Y, Bezrukov L, Cox C, Cho MS, Fitzgerald W, Dorward D,
1342		Zimmerberg J, Margolis L. 2005. Invasion of human tissue ex vivo by Borrelia
1343		burgdorferi. J Infect Dis 191:1747-54.
1344	210.	Duke J, Daane E, Arizpe J, Montufar-Solis D. 1996. Chondrogenesis in aggregates of
1345		embryonic limb cells grown in a rotating wall vessel. Advances in space research : the
1346		official journal of the Committee on Space Research (COSPAR) 17:289-293.
1347	211.	Darwin KH, Miller VL. 1999. Molecular basis of the interaction of Salmonella with the
1348		intestinal mucosa. Clin Microbiol Rev 12:405-28.
1349	212.	Coombes BK, Coburn BA, Potter AA, Gomis S, Mirakhur K, Li Y, Finlay BB. 2005.
1350		Analysis of the Contribution of Salmonella Pathogenicity Islands 1 and 2 to Enteric
1351		Disease Progression Using a Novel Bovine Ileal Loop Model and a Murine Model of
1352		Infectious Enterocolitis. Infection and Immunity 73:7161-7169.
1353	213.	Hapfelmeier S, Stecher B, Barthel M, Kremer M, Muller AJ, Heikenwalder M, Stallmach
1354		T, Hensel M, Pfeffer K, Akira S, Hardt WD. 2005. The Salmonella pathogenicity island
1355		(SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to
1356		trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J Immunol
1357		174:1675-85.
1358	214.	Hu Q, Coburn B, Deng W, Li Y, Shi X, Lan Q, Wang B, Coombes BK, Finlay BB. 2008.
1359		Salmonella enterica serovar Senftenberg human clinical isolates lacking SPI-1. J Clin
1360		Microbiol 46:1330-6.
1361	215.	Kamada N, Chen GY, Inohara N, Nunez G. 2013. Control of pathogens and pathobionts
1362		by the gut microbiota. Nat Immunol 14:685-90.
1363	216.	Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D,
1364		Clarke L, Whitehead S, Sangal V, Marsh K, Achtman M, Molyneux ME, Cormican M,
1365		Parkhill J, MacLennan CA, Heyderman RS, Dougan G. 2009. Epidemic multiple drug

 \mathbb{A}

1366

1367		a distinct genotype. Genome Res 19:2279-87.
1368	217.	Shieh JTC, Bergelson JM. 2002. Interaction with Decay-Accelerating Factor Facilitates
1369		Coxsackievirus B Infection of Polarized Epithelial Cells. Journal of Virology 76:9474-
1370		9480.
1371	218.	Patel KP, Coyne CB, Bergelson JM. 2009. Dynamin- and lipid raft-dependent entry of
1372		decay-accelerating factor (DAF)-binding and non-DAF-binding coxsackieviruses into
1373		nonpolarized cells. J Virol 83:11064-77.
1374	219.	Coyne CB, Bergelson JM. Virus-Induced Abl and Fyn Kinase Signals Permit
1375		Coxsackievirus Entry through Epithelial Tight Junctions. Cell 124:119-131.
1376	220.	Pan J, Zhang L, Odenwald MA, Shen L, Turner JR, Bergelson JM. 2015. Expression of
1377		human decay-accelerating factor on intestinal epithelium of transgenic mice does not
1378		facilitate infection by the enteral route. J Virol 89:4311-8.
1379	221.	Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. 2015. TEER
1380		measurement techniques for in vitro barrier model systems. J Lab Autom 20:107-26.
1381	222.	Nickerson CA, Ott CM. 2004. A new dimension in modeling infectious disease. ASM
1382		News 70:169-175.
1383	223.	Fatehullah A, Tan SH, Barker N. 2016. Organoids as an in vitro model of human
1384		development and disease. Nat Cell Biol 18:246-54.
1385	224.	Flora AD, Teel LD, Smith MA, Sinclair JF, Melton-Celsa AR, O'Brien AD. 2013. Ricin
1386		Crosses Polarized Human Intestinal Cells and Intestines of Ricin-Gavaged Mice without
1387		Evident Damage and Then Disseminates to Mouse Kidneys. PLOS ONE 8:e69706.
1388	225.	Bergmann S, Steinert M. 2015. From Single Cells to Engineered and Explanted Tissues:
1389		New Perspectives in Bacterial Infection Biology. Int Rev Cell Mol Biol 319:1-44.

resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have

 \mathbb{A}

Infection and Immunity

1390	226.	Astashkina A, Grainger DW. 2014. Critical analysis of 3-D organoid in vitro cell culture
1391		models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev
1392		69-70:1-18.
1393	227.	Shamir ER, Ewald AJ. 2014. Three-dimensional organotypic culture: experimental
1394		models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647-64.
1395	228.	Bhat R, Bissell MJ. 2014. Of plasticity and specificity: dialectics of the microenvironment
1396		and macroenvironment and the organ phenotype. Wiley Interdiscip Rev Dev Biol 3:147-
1397		63.
1398	229.	Bissell MJ. 2017. Goodbye flat biology - time for the 3rd and the 4th dimensions. J Cell
1399		Sci 130:3-5.
1400	230.	Cruz-Acuna R, Quiros M, Farkas AE, Dedhia PH, Huang S, Siuda D, Garcia-Hernandez
1401		V, Miller AJ, Spence JR, Nusrat A, Garcia AJ. 2017. Synthetic hydrogels for human
1402		intestinal organoid generation and colonic wound repair. Nat Cell Biol 19:1326-1335.
1403	231.	Bartfeld S. 2016. Modeling infectious diseases and host-microbe interactions in
1404		gastrointestinal organoids. Dev Biol 420:262-270.
1405	232.	Bartfeld S, Clevers H. 2017. Stem cell-derived organoids and their application for
1406		medical research and patient treatment. Journal of Molecular Medicine 95:729-738.
1407	233.	Finkbeiner SR, Spence JR. 2013. A gutsy task: generating intestinal tissue from human
1408		pluripotent stem cells. Dig Dis Sci 58:1176-84.
1409	234.	Hill DR, Spence JR. 2017. Gastrointestinal Organoids: Understanding the Molecular
1410		Basis of the Host-Microbe Interface. Cell Mol Gastroenterol Hepatol 3:138-149.
1411	235.	In JG, Foulke-Abel J, Estes MK, Zachos NC, Kovbasnjuk O, Donowitz M. 2016. Human
1412		mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat
1413		Rev Gastroenterol Hepatol 13:633-642.
1414	236.	Zachos NC, Kovbasnjuk O, Foulke-Abel J, In J, Blutt SE, de Jonge HR, Estes MK,
1415		Donowitz M. 2016. Human Enteroids/Colonoids and Intestinal Organoids Functionally

1416		Recapitulate Normal Intestinal Physiology and Pathophysiology. J Biol Chem 291:3759-
1417		66.
1418	237.	Merker SR, Weitz J, Stange DE. 2016. Gastrointestinal organoids: How they gut it out.
1419		Developmental Biology 420:239-250.
1420	238.	Dutta D, Clevers H. 2017. Organoid culture systems to study host-pathogen interactions.
1421		Curr Opin Immunol 48:15-22.
1422	239.	Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. 2016. Organoid Models of Human
1423		Gastrointestinal Development and Disease. Gastroenterology 150:1098-1112.
1424	240.	Anonymous. 2018. Method of the Year 2017: Organoids. Nature Methods 15:1.
1425	241.	Zhang YG, Wu S, Xia Y, Sun J. 2014. Salmonella-infected crypt-derived intestinal
1426		organoid culture system for host-bacterial interactions. Physiol Rep 2.
1427	242.	Bhushal S, Wolfsmuller M, Selvakumar TA, Kemper L, Wirth D, Hornef MW, Hauser H,
1428		Koster M. 2017. Cell Polarization and Epigenetic Status Shape the Heterogeneous
1429		Response to Type III Interferons in Intestinal Epithelial Cells. Front Immunol 8:671.
1430	243.	Davies JM, Santaolalla R, von Furstenberg RJ, Henning SJ, Abreu MT. 2015. The Viral
1431		Mimetic Polyinosinic:Polycytidylic Acid Alters the Growth Characteristics of Small
1432		Intestinal and Colonic Crypt Cultures. PLoS One 10:e0138531.
1433	244.	Wilson SS, Tocchi A, Holly MK, Parks WC, Smith JG. 2014. A small intestinal organoid
1434		model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol
1435		8:352-61.
1436	245.	Yin Y, Bijvelds M, Dang W, Xu L, van der Eijk AA, Knipping K, Tuysuz N, Dekkers JF,
1437		Wang Y, de Jonge J, Sprengers D, van der Laan LJW, Beekman JM, ten Berge D,
1438		Metselaar HJ, de Jonge H, Koopmans MPG, Peppelenbosch MP, Pan Q. 2015.
1439		Modeling rotavirus infection and antiviral therapy using primary intestinal organoids.
1440		Antiviral Research 123:120-131.

1441	246.	Aladegbami B, Barron L, Bao J, Colasanti J, Erwin CR, Warner BW, Guo J. 2017.
1442		Epithelial cell specific Raptor is required for initiation of type 2 mucosal immunity in small
1443		intestine. Scientific Reports 7:5580.
1444	247.	Cao L, Kuratnik A, Xu W, Gibson JD, Kolling Ft, Falcone ER, Ammar M, Van Heyst MD,
1445		Wright DL, Nelson CE, Giardina C. 2015. Development of intestinal organoids as tissue
1446		surrogates: cell composition and the epigenetic control of differentiation. Mol Carcinog
1447		54:189-202.
1448	248.	Fischer JC, Bscheider M, Eisenkolb G, Lin CC, Wintges A, Otten V, Lindemans CA,
1449		Heidegger S, Rudelius M, Monette S, Porosnicu Rodriguez KA, Calafiore M, Liebermann
1450		S, Liu C, Lienenklaus S, Weiss S, Kalinke U, Ruland J, Peschel C, Shono Y, Docampo
1451		M, Velardi E, Jenq RR, Hanash AM, Dudakov JA, Haas T, van den Brink MRM, Poeck
1452		H. 2017. RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and
1453		immune-mediated tissue injury. Sci Transl Med 9.
1454	249.	Foulke-Abel J, In J, Yin J, Zachos NC, Kovbasnjuk O, Estes MK, de Jonge H, Donowitz
1455		M. 2016. Human Enteroids as a Model of Upper Small Intestinal Ion Transport
1456		Physiology and Pathophysiology. Gastroenterology 150:638-649.e8.
1457	250.	Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH,
1458		Abo A, Kujala P, Peters PJ, Clevers H. 2009. Single Lgr5 stem cells build crypt-villus
1459		structures in vitro without a mesenchymal niche. Nature 459:262-5.
1460	251.	Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de
1461		Groot KM, Brandsma AM, de Jong NWM, Bijvelds MJC, Scholte BJ, Nieuwenhuis EES,
1462		van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM. 2013. A
1463		functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature
1464		Medicine 19:939.
1465	252.	de Lau W, Kujala P, Schneeberger K, Middendorp S, Li VS, Barker N, Martens A,
1466		Hofhuis F, DeKoter RP, Peters PJ, Nieuwenhuis E, Clevers H. 2012. Peyer's patch M

Posted (
cript	1467	
snu	1468	
Ma	1469	253.
leo	1470	
Geb	1471	254.
Act	1472	
	1473	
	1474	255.
	1475	
	1476	
	1 4 7 7	

Online

1472		IL, Capecchi MR, Kuo CJ. 2009. Sustained in vitro intestinal epithelial culture within a
1473		Wnt-dependent stem cell niche. Nature Medicine 15:701.
1474	255.	Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE,
1475		Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM. 2011. Directed
1476		differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature
1477		470:105-9.
1478	256.	Rodríguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J, Pras-Raves M,
1479		Sacchetti A, Hornsveld M, Oost KC, Snippert HJ, Verhoeven-Duif N, Fodde R, Burgering
1480		BMT. 2017. Interplay between metabolic identities in the intestinal crypt supports stem
1481		cell function. Nature 543:424.
1482	257.	Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N, Chang C-F,
1483		Schiesser J, Aubert P, Stanley EG, Elefanty AG, Miyaoka Y, Mandegar MA, Conklin BR,
1484		Neunlist M, Brugmann SA, Helmrath MA, Wells JM. 2016. Engineered human
1485		pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system.
1486		Nature Medicine 23:49.

tissue from pluripotent stem cells in vitro. Nat Protoc 6:1920-8.

cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured

McCracken KW, Howell JC, Wells JM, Spence JR. 2011. Generating human intestinal

Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman

"miniguts". Mol Cell Biol 32:3639-47.

1487 258. Forbester JL, Goulding D, Vallier L, Hannan N, Hale C, Pickard D, Mukhopadhyay S,
1488 Dougan G. 2015. Interaction of Salmonella enterica Serovar Typhimurium with Intestinal
1489 Organoids Derived from Human Induced Pluripotent Stem Cells. Infect Immun 83:29261490 34.

 \triangleleft

1491	259.	Engevik MA, Engevik KA, Yacyshyn MB, Wang J, Hassett DJ, Darien B, Yacyshyn BR,
1492		Worrell RT. 2015. Human Clostridium difficile infection: inhibition of NHE3 and
1493		microbiota profile. Am J Physiol Gastrointest Liver Physiol 308:G497-509.
1494	260.	Engevik MA, Yacyshyn MB, Engevik KA, Wang J, Darien B, Hassett DJ, Yacyshyn BR,
1495		Worrell RT. 2015. Human Clostridium difficile infection: altered mucus production and
1496		composition. Am J Physiol Gastrointest Liver Physiol 308:G510-24.
1497	261.	Karve SS, Pradhan S, Ward DV, Weiss AA. 2017. Intestinal organoids model human
1498		responses to infection by commensal and Shiga toxin producing Escherichia coli. PLoS
1499		One 12:e0178966.
1500	262.	In J, Foulke-Abel J, Zachos NC, Hansen A-M, Kaper JB, Bernstein HD, Halushka M,
1501		Blutt S, Estes MK, Donowitz M, Kovbasnjuk O. 2016. Enterohemorrhagic Escherichia
1502		coli Reduces Mucus and Intermicrovillar Bridges in Human Stem Cell-Derived
1503		Colonoids. Cellular and Molecular Gastroenterology and Hepatology 2:48-62.e3.
1504	263.	Leslie JL, Huang S, Opp JS, Nagy MS, Kobayashi M, Young VB, Spence JR. 2015.
1505		Persistence and toxin production by Clostridium difficile within human intestinal
1506		organoids result in disruption of epithelial paracellular barrier function. Infect Immun
1507		83:138-45.
1508	264.	Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, Zhang X, Stallcup WB, Miao
1509		J, He X, Hurdle JG, Breault DT, Brass AL, Dong M. 2016. Frizzled proteins are colonic
1510		epithelial receptors for C. difficile toxin B. Nature 538:350-355.
1511	265.	Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ,
1512		Pronk A, Van Gorp J, Siersema PD, Clevers H. 2011. Long-term expansion of epithelial
1513		organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.
1514		Gastroenterology 141:1762-72.
1515	266.	Cristobal A, van den Toorn HWP, van de Wetering M, Clevers H, Heck AJR, Mohammed
1516		S. 2017. Personalized Proteome Profiles of Healthy and Tumor Human Colon Organoids

		,
1518		18:263-274.
1519	267.	Yin Y, Wang Y, Dang W, Xu L, Su J, Zhou X, Wang W, Felczak K, van der Laan LJ,
1520		Pankiewicz KW, van der Eijk AA, Bijvelds M, Sprengers D, de Jonge H, Koopmans MP,
1521		Metselaar HJ, Peppelenbosch MP, Pan Q. 2016. Mycophenolic acid potently inhibits
1522		rotavirus infection with a high barrier to resistance development. Antiviral Res 133:41-9.
1523	268.	Senger S, Ingano L, Freire R, Anselmo A, Zhu W, Sadreyev R, Walker WA, Fasano A.
1524		2018. Human Fetal-Derived Enterospheres Provide Insights on Intestinal Development
1525		and a Novel Model to Study Necrotizing Enterocolitis (NEC). Cell Mol Gastroenterol
1526		Hepatol 5:549-568.
1527	269.	Nickerson KP, Senger S, Zhang Y, Lima R, Patel S, Ingano L, Flavahan WA, Kumar
1528		DKV, Fraser CM, Faherty CS, Sztein MB, Fiorentino M, Fasano A. 2018. Salmonella
1529		Typhi Colonization Provokes Extensive Transcriptional Changes Aimed at Evading Host
1530		Mucosal Immune Defense During Early Infection of Human Intestinal Tissue.
1531		EBioMedicine 31:92-109.
1532	270.	Chen YW, Huang SX, de Carvalho A, Ho SH, Islam MN, Volpi S, Notarangelo LD,
1533		Ciancanelli M, Casanova JL, Bhattacharya J, Liang AF, Palermo LM, Porotto M,
1534		Moscona A, Snoeck HW. 2017. A three-dimensional model of human lung development
1535		and disease from pluripotent stem cells. Nat Cell Biol 19:542-549.
1536	271.	Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN,
1537		Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR. 2015. In vitro generation of
1538		human pluripotent stem cell derived lung organoids. Elife 4.
1539	272.	Firth AL, Dargitz CT, Qualls SJ, Menon T, Wright R, Singer O, Gage FH, Khanna A,
1540		Verma IM. 2014. Generation of multiciliated cells in functional airway epithelia from
1541		human induced pluripotent stem cells. Proc Natl Acad Sci U S A 111:E1723-30.

Reveal Both Individual Diversity and Basic Features of Colorectal Cancer. Cell Reports

1543		T. 2015. Mimicking the niche of lung epithelial stem cells and characterization of several
1544		effectors of their in vitro behavior. Stem Cell Research 15:109-121.
1545	274.	Nikolić MZ, Rawlins EL. 2017. Lung Organoids and Their Use To Study Cell-Cell
1546		Interaction. Current Pathobiology Reports 5:223-231.
1547	275.	Shen Y, Chen L, Wang M, Lin D, Liang Z, Song P, Yuan Q, Tang H, Li W, Duan K, Liu
1548		B, Zhao G, Wang Y. 2017. Flagellar Hooks and Hook Protein FlgE Participate in Host
1549		Microbe Interactions at Immunological Level. Scientific Reports 7:1433.
1550	276.	Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P, Vries R, Peters
1551		PJ, Clevers H. 2015. In vitro expansion of human gastric epithelial stem cells and their
1552		responses to bacterial infection. Gastroenterology 148:126-136 e6.
1553	277.	Mahe MM, Aihara E, Schumacher MA, Zavros Y, Montrose MH, Helmrath MA, Sato T,
1554		Shroyer NF. 2013. Establishment of Gastrointestinal Epithelial Organoids. Curr Protoc
1555		Mouse Biol 3:217-40.
1556	278.	Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, Engevik AC, Javier JE,
1557		Peek RM, Jr., Ottemann K, Orian-Rousseau V, Boivin GP, Helmrath MA, Zavros Y.
1558		2015. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell
1559		proliferation. PLoS Pathog 11:e1004663.
1560	279.	McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE,
1561		Tsai YH, Mayhew CN, Spence JR, Zavros Y, Wells JM. 2014. Modelling human
1562		development and disease in pluripotent stem-cell-derived gastric organoids. Nature
1563		516:400-4.
1564	280.	Sigal M, Rothenberg ME, Logan CY, Lee JY, Honaker RW, Cooper RL, Passarelli B,
1565		Camorlinga M, Bouley DM, Alvarez G, Nusse R, Torres J, Amieva MR. 2015.
1566		Helicobacter pylori Activates and Expands Lgr5+ Stem Cells Through Direct
1567		Colonization of the Gastric Glands. Gastroenterology 148:1392-1404.e21.
		63

Hegab AE, Arai D, Gao J, Kuroda A, Yasuda H, Ishii M, Naoki K, Soejima K, Betsuyaku

1542

273.

1568	281.	McCracken KW, Aihara E, Martin B, Crawford CM, Broda T, Treguier J, Zhang X,
1569		Shannon JM, Montrose MH, Wells JM. 2017. Wnt/beta-catenin promotes gastric fundus
1570		specification in mice and humans. Nature 541:182-187.
1571	282.	Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, Bartfeld
1572		S, Mollenkopf HJ, Meyer TF. 2016. A novel human gastric primary cell culture system for
1573		modelling Helicobacter pylori infection in vitro. Gut 65:202-13.
1574	283.	Burkitt MD, Duckworth CA, Williams JM, Pritchard DM. 2017. Helicobacter pylori-
1575		induced gastric pathology: insights from in vivo and ex vivo models. Dis Model Mech
1576		10:89-104.
1577	284.	Li ML, Aggeler J, Farson DA, Hatier C, Hassell J, Bissell MJ. 1987. Influence of a
1578		reconstituted basement membrane and its components on casein gene expression and
1579		secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A 84:136-40.
1580	285.	Vidi PA, Bissell MJ, Lelievre SA. 2013. Three-dimensional culture of human breast
1581		epithelial cells: the how and the why. Methods Mol Biol 945:193-219.
1582	286.	Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T,
1583		Penninger JM, Jackson AP, Knoblich JA. 2013. Cerebral organoids model human brain
1584		development and microcephaly. Nature 501:373-9.
1585	287.	Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M,
1586		Wataya T, Nishiyama A, Muguruma K, Sasai Y. 2008. Self-organized formation of
1587		polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell
1588		Stem Cell 3:519-32.
1589	288.	Qian X, Nguyen Ha N, Song Mingxi M, Hadiono C, Ogden Sarah C, Hammack C, Yao B,
1590		Hamersky Gregory R, Jacob F, Zhong C, Yoon K-j, Jeang W, Lin L, Li Y, Thakor J, Berg
1591		Daniel A, Zhang C, Kang E, Chickering M, Nauen D, Ho C-Y, Wen Z, Christian
1592		Kimberly M, Shi P-Y, Maher Brady J, Wu H, Jin P, Tang H, Song H, Ming G-I. 2016.

1593		Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure.
1594		Cell 165:1238-1254.
1595	289.	Huch M, Dorrell C, Boj SF, van Es JH, Li VSW, van de Wetering M, Sato T, Hamer K,
1596		Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H. 2013. In vitro
1597		expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature
1598		494:247.
1599	290.	Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang R-R, Ueno Y,
1600		Zheng Y-W, Koike N, Aoyama S, Adachi Y, Taniguchi H. 2013. Vascularized and
1601		functional human liver from an iPSC-derived organ bud transplant. Nature 499:481.
1602	291.	Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJM, van de Wetering M, Sojoodi M, Li
1603		VSW, Schuijers J, Gracanin A, Ringnalda F, Begthel H, Hamer K, Mulder J, van Es JH,
1604		de Koning E, Vries RGJ, Heimberg H, Clevers H. 2013. Unlimited in vitro expansion of
1605		adult bi $$ - potent pancreas progenitors through the Lgr5/R $$ - spondin axis. The EMBO
1606		Journal 32:2708-2721.
1607	292.	Greggio C, De Franceschi F, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H, Lutolf
1608		M, Grapin-Botton A. 2013. Artificial three-dimensional niches deconstruct pancreas
1609		development in vitro . Development 140:4452-4462.
1610	293.	Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shukla VK,
1611		Kumar M, Janssen H, Song JY, Neefjes-Borst EA, te Riele H, Holden DW, Nath G,
1612		Neefjes J. 2015. Salmonella Manipulation of Host Signaling Pathways Provokes Cellular
1613		Transformation Associated with Gallbladder Carcinoma. Cell Host Microbe 17:763-74.
1614	294.	Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi
1615		T, Sasai Y. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture.
1616		Nature 472:51-6.

 \mathbb{A}

1617	205	Togushi A. Koku V. Ohmari T. Charmin C. Ogowa M. Capaki H. Nishinakamura D. 2014
1617	295.	Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. 2014.
1618		Redefining the in vivo origin of metanephric nephron progenitors enables generation of
1619		complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53-67.
1620	296.	Karthaus Wouter R, Iaquinta Phillip J, Drost J, Gracanin A, van Boxtel R, Wongvipat J,
1621		Dowling Catherine M, Gao D, Begthel H, Sachs N, Vries Robert GJ, Cuppen E, Chen Y,
1622		Sawyers Charles L, Clevers Hans C. 2014. Identification of Multipotent Luminal
1623		Progenitor Cells in Human Prostate Organoid Cultures. Cell 159:163-175.
1624	297.	Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren Sarah K, Badani KK,
1625		McKiernan JM, Benson MC, Hibshoosh H, Shen MM. 2014. Single luminal epithelial
1626		progenitors can generate prostate organoids in culture. Nature Cell Biology 16:951.
1627	298.	Zhu Y, Yang Y, Guo J, Dai Y, Ye L, Qiu J, Zeng Z, Wu X, Xing Y, Long X, Wu X, Ye L,
1628		Wang S, Li H. 2017. Ex vivo 2D and 3D HSV-2 infection model using human normal
1629		vaginal epithelial cells. Oncotarget 8:15267-15282.
1630	299.	Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H,
1631		Mollenkopf HJ, Mangler M, Sehouli J, Fotopoulou C, Meyer TF. 2015. The Notch and
1632		Wnt pathways regulate stemness and differentiation in human fallopian tube organoids.
1633		Nat Commun 6:8989.
1634	300.	Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White
1635		ES, Niklason LE. 2013. Human iPS cell-derived alveolar epithelium repopulates lung
1636		extracellular matrix. J Clin Invest 123:4950-62.
1637	301.	Finkbeiner SR, Freeman JJ, Wieck MM, El-Nachef W, Altheim CH, Tsai YH, Huang S,
1638		Dyal R, White ES, Grikscheit TC, Teitelbaum DH, Spence JR. 2015. Generation of
1639		tissue-engineered small intestine using embryonic stem cell-derived human intestinal
1640		organoids. Biol Open 4:1462-72.
1641	302.	Quantius J, Schmoldt C, Vazquez-Armendariz AI, Becker C, El Agha E, Wilhelm J, Morty
1642		RE, Vadasz I, Mayer K, Gattenloehner S, Fink L, Matrosovich M, Li X, Seeger W,

1643		Lohmeyer J, Bellusci S, Herold S. 2016. Influenza Virus Infects Epithelial
1644		Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair.
1645		PLoS Pathog 12:e1005544.
1646	303.	Al Shammari B, Shiomi T, Tezera L, Bielecka MK, Workman V, Sathyamoorthy T, Mauri
1647		F, Jayasinghe SN, Robertson BD, D'Armiento J, Friedland JS, Elkington PT. 2015. The
1648		Extracellular Matrix Regulates Granuloma Necrosis in Tuberculosis. J Infect Dis
1649		212:463-73.
1650	304.	Clevers H. 2016. Modeling Development and Disease with Organoids. Cell 165:1586-97.
1651	305.	Lancaster MA, Knoblich JA. 2014. Organogenesis in a dish: modeling development and
1652		disease using organoid technologies. Science 345:1247125.
1653	306.	Bissell MJ, Labarge MA. 2005. Context, tissue plasticity, and cancer: are tumor stem
1654		cells also regulated by the microenvironment? Cancer Cell 7:17-23.
1655	307.	Chingwaru W, Glashoff RH, Vidmar J, Kapewangolo P, Sampson SL. 2016. Mammalian
1656		cell cultures as models for Mycobacterium tuberculosis-human immunodeficiency virus
1657		(HIV) interaction studies: A review. Asian Pacific Journal of Tropical Medicine 9:832-838.
1658	308.	Dutta D, Heo I, Clevers H. 2017. Disease Modeling in Stem Cell-Derived 3D Organoid
1659		Systems. Trends Mol Med 23:393-410.
1660	309.	Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM,
1661		Howitt MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett
1662		WS, Rozenblatt-Rosen O, Shi HN, Yilmaz O, Xavier RJ, Regev A. 2017. A single-cell
1663		survey of the small intestinal epithelium. Nature 551:333-339.
1664	310.	Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K, Blutt SE, Hyser JM, Zeng
1665		XL, Crawford SE, Broughman JR, Estes MK, Donowitz M. 2014. Human enteroids as an
1666		ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med
1667		(Maywood) 239:1124-34.

1668	311.	Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC, Roeselers G. 2014.
1669		Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of
1670		Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids.
1671		mBio 5.
1672	312.	Naito T, Mulet C, De Castro C, Molinaro A, Saffarian A, Nigro G, Bérard M, Clerc M,
1673		Pedersen AB, Sansonetti PJ, Pédron T. 2017. Lipopolysaccharide from Crypt-Specific
1674		Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance.
1675		mBio 8.
1676	313.	Nigro G, Rossi R, Commere PH, Jay P, Sansonetti PJ. 2014. The cytosolic bacterial
1677		peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut
1678		epithelial regeneration. Cell Host Microbe 15:792-8.
1679	314.	Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, Zachos NC. 2017.
1680		A primary human macrophage-enteroid co-culture model to investigate mucosal gut
1681		physiology and host-pathogen interactions. Sci Rep 7:45270.
1682	315.	Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, Neill
1683		FH, Blutt SE, Zeng XL, Qu L, Kou B, Opekun AR, Burrin D, Graham DY, Ramani S,
1684		Atmar RL, Estes MK. 2016. Replication of human noroviruses in stem cell-derived
1685		human enteroids. Science 353:1387-1393.
1686	316.	Finkbeiner SR, Zeng XL, Utama B, Atmar RL, Shroyer NF, Estes MK. 2012. Stem cell-
1687		derived human intestinal organoids as an infection model for rotaviruses. MBio
1688		3:e00159-12.
1689	317.	Huang L, Hou Q, Ye L, Yang Q, Yu Q. 2017. Crosstalk between H9N2 avian influenza
1690		virus and crypt-derived intestinal organoids. Veterinary Research 48:71.
1691	318.	Zhang D, Tan M, Zhong W, Xia M, Huang P, Jiang X. 2017. Human intestinal organoids
1692		express histo-blood group antigens, bind norovirus VLPs, and support limited norovirus
1693		replication. Sci Rep 7:12621.

1694	319.	Zhou J, Li C, Zhao G, Chu H, Wang D, Yan HH-N, Poon VK-M, Wen L, Wong BH-Y,
1695		Zhao X, Chiu MC, Yang D, Wang Y, Au-Yeung RKH, Chan IH-Y, Sun S, Chan JF-W, To
1696		KK-W, Memish ZA, Corman VM, Drosten C, Hung IF-N, Zhou Y, Leung SY, Yuen K-Y.
1697		2017. Human intestinal tract serves as an alternative infection route for Middle East
1698		respiratory syndrome coronavirus. Science Advances 3.
1699	320.	Burger E, Araujo A, Lopez-Yglesias A, Rajala MW, Geng L, Levine B, Hooper LV,
1700		Burstein E, Yarovinsky F. 2018. Loss of Paneth Cell Autophagy Causes Acute
1701		Susceptibility to Toxoplasma gondii-Mediated Inflammation. Cell Host Microbe
1702		doi:10.1016/j.chom.2018.01.001.
1703	321.	Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A,
1704		Korving J, Begthel H, Peters PJ, Clevers H. 2007. Identification of stem cells in small
1705		intestine and colon by marker gene Lgr5. Nature 449:1003-7.
1706	322.	Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, Auer H, Gallardo
1707		M, Blasco MA, Sancho E, Clevers H, Batlle E. 2011. Isolation and in vitro expansion of
1708		human colonic stem cells. Nat Med 17:1225-7.
1709	323.	Hannan NR, Fordham RP, Syed YA, Moignard V, Berry A, Bautista R, Hanley NA,
1710		Jensen KB, Vallier L. 2013. Generation of multipotent foregut stem cells from human
1711		pluripotent stem cells. Stem Cell Reports 1:293-306.
1712	324.	Kleinman HK, Martin GR. 2005. Matrigel: basement membrane matrix with biological
1713		activity. Semin Cancer Biol 15:378-86.
1714	325.	Orkin RW, Gehron P, McGoodwin EB, Martin GR, Valentine T, Swarm R. 1977. A
1715		murine tumor producing a matrix of basement membrane. J Exp Med 145:204-20.
1716	326.	Stelzner M, Helmrath M, Dunn JC, Henning SJ, Houchen CW, Kuo C, Lynch J, Li L,
1717		Magness ST, Martin MG, Wong MH, Yu J, Consortium NIHISC. 2012. A nomenclature
1718		for intestinal in vitro cultures. Am J Physiol Gastrointest Liver Physiol 302:G1359-63.

1719	327.	Nossol C, Diesing AK, Walk N, Faber-Zuschratter H, Hartig R, Post A, Kluess J,
1720		Rothkotter HJ, Kahlert S. 2011. Air-liquid interface cultures enhance the oxygen supply
1721		and trigger the structural and functional differentiation of intestinal porcine epithelial cells
1722		(IPEC). Histochem Cell Biol 136:103-15.
1723	328.	Drummond CG, Bolock AM, Ma C, Luke CJ, Good M, Coyne CB. 2017. Enteroviruses
1724		infect human enteroids and induce antiviral signaling in a cell lineage-specific manner.
1725		Proc Natl Acad Sci U S A 114:1672-1677.
1726	329.	van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt
1727		W, van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S,
1728		Bartfeld S, Volckman R, van Sluis P, Li VS, Seepo S, Sekhar Pedamallu C, Cibulskis K,
1729		Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R,
1730		van Oudenaarden A, Saez-Rodriguez J, Vries RG, Getz G, Wessels L, Stratton MR,
1731		McDermott U, Meyerson M, Garnett MJ, Clevers H. 2015. Prospective derivation of a
1732		living organoid biobank of colorectal cancer patients. Cell 161:933-45.
1733	330.	Kingwell K. 2016. 3D cell technologies head to the R&D assembly line. Nat Rev Drug
1734		Discov 16:6-7.
1735	331.	Noordhoek J, Gulmans V, van der Ent K, Beekman JM. 2016. Intestinal organoids and
1736		personalized medicine in cystic fibrosis: a successful patient-oriented research
1737		collaboration. Curr Opin Pulm Med 22:610-6.
1738	332.	Ohno H, Kanaya T, Williams IR. 2012. M cell differentiation: distinct lineage or
1739		phenotypic transition? Salmonella provides answers. Cell Host Microbe 12:607-9.
1740	333.	Tahoun A, Mahajan S, Paxton E, Malterer G, Donaldson David S, Wang D, Tan A,
1741		Gillespie Trudi L, O'Shea M, Roe Andrew J, Shaw Darren J, Gally David L, Lengeling A,
1742		Mabbott Neil A, Haas J, Mahajan A. 2012. Salmonella Transforms Follicle-Associated
1743		Epithelial Cells into M Cells to Promote Intestinal Invasion. Cell Host & Microbe 12:645-
1744		656.

Infection and Immunity

1747		277:949-952.
1748	335.	Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A,
1749		Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA, Li H, Breault DT, Ingber
1750		DE. 2018. Development of a primary human Small Intestine-on-a-Chip using biopsy-
1751		derived organoids. Scientific Reports 8:2871.
1752	336.	Bhatia SN, Ingber DE. 2014. Microfluidic organs-on-chips. Nat Biotechnol 32:760-72.
1753	337.	Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ,
1754		MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R,
1755		Yadid M, Parker KK, Ingber DE. 2015. Engineered in vitro disease models. Annu Rev
1756		Pathol 10:195-262.
1757	338.	Selimovic S, Dokmeci MR, Khademhosseini A. 2013. Organs-on-a-chip for drug
1758		discovery. Curr Opin Pharmacol 13:829-33.
1759	339.	Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. 2012. Microengineered
1760		physiological biomimicry: organs-on-chips. Lab Chip 12:2156-64.
1761	340.	Esch EW, Bahinski A, Huh D. 2015. Organs-on-chips at the frontiers of drug discovery.
1762		Nat Rev Drug Discov 14:248-60.
1763	341.	Kim HJ, Huh D, Hamilton G, Ingber DE. 2012. Human gut-on-a-chip inhabited by
1764		microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip
1765		12:2165-74.
1766	342.	Kim HJ, Ingber DE. 2013. Gut-on-a-Chip microenvironment induces human intestinal
1767		cells to undergo villus differentiation. Integr Biol (Camb) 5:1130-40.
1768	343.	Kim HJ, Li H, Collins JJ, Ingber DE. 2016. Contributions of microbiome and mechanical
1769		deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-
1770		chip. Proc Natl Acad Sci U S A 113:E7-15.

Kernéis S, Bogdanova A, Kraehenbuhl J-P, Pringault E. 1997. Conversion by Peyer's

Patch Lymphocytes of Human Enterocytes into M Cells that Transport Bacteria. Science

1771	344.	Villenave R, Wales SQ, Hamkins-Indik T, Papafragkou E, Weaver JC, Ferrante TC,
1772		Bahinski A, Elkins CA, Kulka M, Ingber DE. 2017. Human Gut-On-A-Chip Supports
1773		Polarized Infection of Coxsackie B1 Virus In Vitro. PLoS One 12:e0169412.
1774	345.	Huh D, Hamilton GA, Ingber DE. 2011. From 3D cell culture to organs-on-chips. Trends
1775		Cell Biol 21:745-54.
1776	346.	Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, Hamilton GA, Ingber DE.
1777		2013. Microfabrication of human organs-on-chips. Nat Protoc 8:2135-57.
1778	347.	Folch A, Toner M. 2000. Microengineering of cellular interactions. Annu Rev Biomed
1779		Eng 2:227-56.
1780	348.	Khademhosseini A, Langer R, Borenstein J, Vacanti JP. 2006. Microscale technologies
1781		for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480-7.
1782	349.	Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. 2001. Soft lithography in
1783		biology and biochemistry. Annu Rev Biomed Eng 3:335-73.
1784	350.	Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442:368-73.
1785	351.	Halldorsson S, Lucumi E, Gomez-Sjoberg R, Fleming RM. 2015. Advantages and
1786		challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens
1787		Bioelectron 63:218-31.
1788	352.	Sackmann EK, Fulton AL, Beebe DJ. 2014. The present and future role of microfluidics
1789		in biomedical research. Nature 507:181-9.
1790	353.	Yi H-G, Lee H, Cho D-W. 2017. 3D Printing of Organs-On-Chips. Bioengineering 4:10.
1791	354.	Henry OYF, Villenave R, Cronce MJ, Leineweber WD, Benz MA, Ingber DE. 2017.
1792		Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance
1793		(TEER) measurements of human epithelial barrier function. Lab Chip 17:2264-2271.
1794	355.	Kim J, Hegde M, Jayaraman A. 2010. Co-culture of epithelial cells and bacteria for
1795		investigating host-pathogen interactions. Lab Chip 10:43-50.

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

1796

356.

1797		polymer membranes for integration of gastrointestinal tract epithelium with microfluidic
1798		'body-on-a-chip' devices. Biomed Microdevices 14:895-906.
1799	357.	Mahler GJ, Esch MB, Glahn RP, Shuler ML. 2009. Characterization of a gastrointestinal
1800		tract microscale cell culture analog used to predict drug toxicity. Biotechnology and
1801		Bioengineering 104:193-205.
1802	358.	Huh D, Fujioka H, Tung YC, Futai N, Paine R, 3rd, Grotberg JB, Takayama S. 2007.
1803		Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in
1804		microfluidic airway systems. Proc Natl Acad Sci U S A 104:18886-91.
1805	359.	Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS,
1806		McAlexander MA, Ingber DE. 2012. A human disease model of drug toxicity-induced
1807		pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147.
1808	360.	Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010.
1809		Reconstituting organ-level lung functions on a chip. Science 328:1662-8.
1810	361.	Huh DD. 2015. A human breathing lung-on-a-chip. Ann Am Thorac Soc 12 Suppl 1:S42-
1811		4.
1812	362.	Tavana H, Zamankhan P, Christensen PJ, Grotberg JB, Takayama S. 2011. Epithelium
1813		damage and protection during reopening of occluded airways in a physiologic
1814		microfluidic pulmonary airway model. Biomed Microdevices 13:731-42.
1815	363.	Kane BJ, Zinner MJ, Yarmush ML, Toner M. 2006. Liver-specific functional studies in a
1816		microfluidic array of primary mammalian hepatocytes. Anal Chem 78:4291-8.
1817	364.	Lee PJ, Hung PJ, Lee LP. 2007. An artificial liver sinusoid with a microfluidic endothelial-
1818		like barrier for primary hepatocyte culture. Biotechnol Bioeng 97:1340-6.
1819	365.	Chao P, Maguire T, Novik E, Cheng KC, Yarmush ML. 2009. Evaluation of a microfluidic
1820		based cell culture platform with primary human hepatocytes for the prediction of hepatic
1821		clearance in human. Biochem Pharmacol 78:625-32.
		73

Esch MB, Sung JH, Yang J, Yu C, Yu J, March JC, Shuler ML. 2012. On chip porous

Infection and Immunity

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

18	322	366.	Novik E, Maguire TJ, Chao P, Cheng KC, Yarmush ML. 2010. A microfluidic hepatic
18	323		coculture platform for cell-based drug metabolism studies. Biochem Pharmacol 79:1036-
18	324		44.
18	325	367.	Legendre A, Baudoin R, Alberto G, Paullier P, Naudot M, Bricks T, Brocheton J, Jacques
18	326		S, Cotton J, Leclerc E. 2013. Metabolic characterization of primary rat hepatocytes
18	327		cultivated in parallel microfluidic biochips. J Pharm Sci 102:3264-76.
18	328	368.	Cheng S, Prot JM, Leclerc E, Bois FY. 2012. Zonation related function and ubiquitination
18	329		regulation in human hepatocellular carcinoma cells in dynamic vs. static culture
18	330		conditions. BMC Genomics 13:54.
18	331	369.	Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, Fry R, Samson LD,
18	332		Tannenbaum SR, Griffith LG. 2005. A microscale in vitro physiological model of the liver:
18	333		predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 6:569-
18	334		91.
18	335	370.	Toh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H. 2009. A microfluidic 3D hepatocyte
18	336		chip for drug toxicity testing. Lab Chip 9:2026-35.
18	337	371.	Baudoin R, Griscom L, Monge M, Legallais C, Leclerc E. 2007. Development of a renal
18	338		microchip for in vitro distal tubule models. Biotechnol Prog 23:1245-53.
18	339	372.	Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE. 2013.
18	340		Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity
18	341		assessment. Integr Biol (Camb) 5:1119-29.
18	342	373.	Jang KJ, Suh KY. 2010. A multi-layer microfluidic device for efficient culture and analysis
18	343		of renal tubular cells. Lab Chip 10:36-42.
18	344	374.	Agarwal A, Goss JA, Cho A, McCain ML, Parker KK. 2013. Microfluidic heart on a chip
18	345		for higher throughput pharmacological studies. Lab Chip 13:3599-608.

74

Infection and Immunity

 \mathbb{A}

Infection and Immunity

1846	375.	Khanal G, Chung K, Solis-Wever X, Johnson B, Pappas D. 2011. Ischemia/reperfusion
1847		injury of primary porcine cardiomyocytes in a low-shear microfluidic culture and analysis
1848		device. Analyst 136:3519-26.
1849	376.	Grosberg A, Alford PW, McCain ML, Parker KK. 2011. Ensembles of engineered cardiac
1850		tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165-
1851		73.
1852	377.	Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM. 2006. Metabolic monitoring of
1853		the electrically stimulated single heart cell within a microfluidic platform. Lab on a Chip
1854		6:1424-1431.
1855	378.	Giridharan GA, Nguyen M-D, Estrada R, Parichehreh V, Hamid T, Ismahil MA, Prabhu
1856		SD, Sethu P. 2010. Microfluidic Cardiac Cell Culture Model (µCCCM). Analytical
1857		Chemistry 82:7581-7587.
1858	379.	Puleo CM, McIntosh Ambrose W, Takezawa T, Elisseeff J, Wang TH. 2009. Integration
1859		and application of vitrified collagen in multilayered microfluidic devices for corneal
1860		microtissue culture. Lab Chip 9:3221-7.
1861	380.	O'Neill AT, Monteiro-Riviere NA, Walker GM. 2008. Characterization of microfluidic
1862		human epidermal keratinocyte culture. Cytotechnology 56:197-207.
1863	381.	Xiao RR, Zeng WJ, Li YT, Zou W, Wang L, Pei XF, Xie M, Huang WH. 2013.
1864		Simultaneous generation of gradients with gradually changed slope in a microfluidic
1865		device for quantifying axon response. Anal Chem 85:7842-50.
1866	382.	Tsantoulas C, Farmer C, Machado P, Baba K, McMahon SB, Raouf R. 2013. Probing
1867		Functional Properties of Nociceptive Axons Using a Microfluidic Culture System. PLOS
1868		ONE 8:e80722.
1869	383.	Shi M, Majumdar D, Gao Y, Brewer BM, Goodwin CR, McLean JA, Li D, Webb DJ.
1870		2013. Glia co-culture with neurons in microfluidic platforms promotes the formation and
1871		stabilization of synaptic contacts. Lab Chip 13:3008-21.
		75

		Downloaded from http://iai.asm.org/ on September 26, 2018 by guest
		4

384.

385.

386.

387.

388.

389.

390.

391.

properties in aortic endothelial cells. Biotechnol Prog 27:1137-45.
Park SH, Sim WY, Min BH, Yang SS, Khademhosseini A, Kaplan DL. 2012. Chip-based
comparison of the osteogenesis of human bone marrow- and adipose tissue-derived
mesenchymal stem cells under mechanical stimulation. PLoS One 7:e46689.
Zhang Y, Gazit Z, Pelled G, Gazit D, Vunjak-Novakovic G. 2011. Patterning
osteogenesis by inducible gene expression in microfluidic culture systems. Integr Biol
(Camb) 3:39-47.
Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic
D, Rashedi AS, Haisenleder DJ, Malpani SS, Arnold-Murray CA, Chen K, Jiang M, Bai L,
Nguyen CT, Zhang J, Laronda MM, Hope TJ, Maniar KP, Pavone ME, Avram MJ, Sefton
EC, Getsios S, Burdette JE, Kim JJ, Borenstein JT, Woodruff TK. 2017. A microfluidic
culture model of the human reproductive tract and 28-day menstrual cycle. Nature
Communications 8:14584.
Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, Couraud
PO, Vermes I, van der Meer AD, van den Berg A. 2013. BBB on chip: microfluidic
platform to mechanically and biochemically modulate blood-brain barrier function.
platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15:145-50.
Biomed Microdevices 15:145-50.
Biomed Microdevices 15:145-50. Booth R, Kim H. 2012. Characterization of a microfluidic in vitro model of the blood-brain
Biomed Microdevices 15:145-50. Booth R, Kim H. 2012. Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip 12:1784-92.
Biomed Microdevices 15:145-50. Booth R, Kim H. 2012. Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip 12:1784-92. van der Helm MW, van der Meer AD, Eijkel JC, van den Berg A, Segerink LI. 2016.
Biomed Microdevices 15:145-50. Booth R, Kim H. 2012. Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip 12:1784-92. van der Helm MW, van der Meer AD, Eijkel JC, van den Berg A, Segerink LI. 2016. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers

Shayan G, Shuler ML, Lee KH. 2011. The effect of astrocytes on the induction of barrier

hydrostatic pressure and shear stress combinations. Lab Chip 13:1743-53.

1899		Lauster R, Marx U. 2015. Emulating human microcapillaries in a multi-organ-chip
1900		platform. J Biotechnol 216:1-10.
1901	393.	Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M,
1902		Vacanti JP. 2004. Endothelialized networks with a vascular geometry in microfabricated
1903		poly(dimethyl siloxane). Biomed Microdevices 6:269-78.
1904	394.	van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL. 2013. Three-
1905		dimensional co-cultures of human endothelial cells and embryonic stem cell-derived
1906		pericytes inside a microfluidic device. Lab Chip 13:3562-8.
1907	395.	Wikswo JP. 2014. The relevance and potential roles of microphysiological systems in
1908		biology and medicine. Exp Biol Med (Maywood) 239:1061-72.
1909	396.	Stucki AO, Stucki JD, Hall SR, Felder M, Mermoud Y, Schmid RA, Geiser T, Guenat OT.
1910		2015. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab
1911		Chip 15:1302-10.
1912	397.	Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee HH, Alves SE, Salmon
1913		M, Ferrante TC, Weaver JC, Bahinski A, Hamilton GA, Ingber DE. 2016. Small airway-
1914		on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat
1915		Methods 13:151-7.
1916	398.	Abaci HE, Shuler ML. 2015. Human-on-a-chip design strategies and principles for
1917		physiologically based pharmacokinetics/pharmacodynamics modeling. Integr Biol
1918		(Camb) 7:383-91.
1919 1920		
1720		

Hasenberg T, Muhleder S, Dotzler A, Bauer S, Labuda K, Holnthoner W, Redl H,

1898

392.

nfection and Immunity

1921 1922 1923

Author Bios

1924 Jennifer Barrila is an Assistant Research Professor at the Biodesign Institute, Arizona State 1925 University. She received her B.S. in Biochemistry in 2002 from Syracuse University. In 2008 she 1926 received her Ph.D. in Biology from Johns Hopkins University, where she structurally 1927 characterized the SARS coronavirus main protease to facilitate structure-based drug design. 1928 Her postdoctoral work at the Biodesign Institute used innovative culture systems to investigate 1929 how biomechanical forces regulate host and pathogen responses during infection. In 2010 she 1930 was promoted to Assistant Research Scientist and in 2013 to Assistant Research Professor. 1931 Her current research involves the development and application of multicellular 3-D models of 1932 human intestine to investigate the role of cellular biomechanics in host-pathogen-microbiota 1933 interactions. Her biomedical research has flown on several NASA spaceflight missions to the 1934 International Space Station to study the influence of biophysical forces on infection. In 2014 she 1935 received the Thora W. Halstead Young Investigator's Award. 1936

1937 1938 Aurélie Crabbé obtained her PhD in Bioscience Engineering at the Vrije Universiteit Brussel, 1939 Belgium. During her PhD she received a fellowship of the Belgian American Educational 1940 Foundation to perform research in the laboratory of Prof. Cheryl Nickerson at the Biodesign 1941 Institute at Arizona State University. She then received a postdoctoral position in the Nickerson 1942 lab, where she developed and used physiologically relevant models of the lung mucosa to 1943 explore host-pathogen interactions. She is currently a team leader in the Laboratory of 1944 Pharmaceutical Microbiology at Ghent University under the tutelage of Prof. Tom Coenye, 1945 through an Odysseus fellowship of the Research Foundation Flanders. Her research focuses on 1946 understanding how the host, microbiome and their interactions influence antimicrobial agent 1947 efficacy and inflammation in chronic lung infections. To this end, in vivo-like models of lung 1948 epithelium, the microbiome or both are used, to facilitate translation of in vitro results to novel 1949 therapeutic approaches.

Downloaded from http://iai.asm.org/ on September 26, 2018 by gues:

1950 1951

1952 Jiseon Yang is an Alfred P. Sloan postdoctoral fellow (NASA joint program) at the Biodesign 1953 Institute, Arizona State University/ASU. She received her M.S. in Microbiology studying 1954 Salmonella pathogenesis from Pusan National University(South Korea). She subsequently 1955 worked with Dr. Roy Curtiss III and Dr. Josephine Clark-Curtiss(ASU) on developing a 1956 2nd generation lysis system in recombinant attenuated Salmonella vaccines to deliver 1957 Mycobacterium tuberculosis antigens. She received her Ph.D. in Microbiology under Dr. Cheryl 1958 Nickerson(ASU), where she characterized virulence, stress and molecular genetic responses of 1959 invasive, multidrug-resistant nontyphoidal Salmonella to physiological fluid shear. She was co-1960 first author on the first report of an RWV-derived 3-D intestinal co-culture model (epithelial cells, 1961 macrophages) to study Salmonella pathogenesis. She currently studies how microbes inhabiting 1962 built environments influence human health and systems integrity using the International Space 1963 Station as a microbial observatory to reveal new insight into how interspecies interactions within 1964 microbial populations can adapt/evolve over time. 1965

1966

Karla Franco received her Bachelor's degree in General Science from Pontificia Universidad
Catolica de Puerto Rico. She became interested in microbial pathogenesis during a year-long
NIH training fellowship (ASU PREP). She enrolled in the Microbiology Ph.D. Program at Arizona
State University, where she received a two year fellowship from the NIH IMSD program. As a

1974 1975

1986

1996

2006

2020

Infection and Immunity

 \triangleleft

1971 member of the Nickerson laboratory, she has spent the last three years investigating the role of 1972 mechanotransduction in regulating the phenotypic and molecular genetic responses of 1973 Salmonella Typhimurium.

1976 Seth D. Nydam received his doctorate in veterinary medicine from Cornell University and his 1977 Ph.D. from Washington State University. His graduate studies in Dr. Douglas Call's laboratory 1978 centered on the type III secretion system of Vibrio parahaemolyticus, after which he joined Dr. 1979 Cheryl Nickerson at Arizona State University for postdoctoral training to explore 3-D cell culture 1980 and its interactions with resident microflora and Salmonella pathogenesis. He is currently the 1981 clinical veterinarian at Arizona State University's Department of Animal Care and Technologies, 1982 where he leads the clinical team and provides research support and oversight. His continuing 1983 interests include microbial pathogenesis, animal models in infectious disease research, and 1984 teaching. 1985

1987 Rebecca J. Forsyth received her B.S. in Microbiology from Arizona State University in 2008. 1988 She first joined the Nickerson laboratory as an undergraduate student, was subsequently hired 1989 as an Assistant Research Technologist and was later promoted to the positions of Associate 1990 Research Specialist and Senior Research Specialist. She used a variety of 3-D models, 1991 microbes and model host organisms in her infectious disease research. She was passionate 1992 about using "outside-of-the-box" approaches to solve important biomedical health issues, 1993 including the use of the spaceflight platform and the RWV bioreactor to study microbial 1994 physiology and host-pathogen interactions. 1995

1997 **Richard R. Davis** is a Senior Research Specialist in the Biodesign Center for Immunotherapy, 1998 Vaccines, and Virotherapy at Arizona State University. He earned his B.A. in Anthropology in 1999 2001 and a B.S. in Microbiology in 2007 from Arizona State University. He joined the Nickerson laboratory as an undergraduate student, was subsequently hired as an Assistant Research 2000 2001 Technician and was later promoted to the positions of Research Specialist and Senior Research 2002 Specialist. His research over the past eleven years has focused on using both the microgravity 2003 platform (including six spaceflight experiments) and the RWV bioreactor to study the effect of 2004 physical forces on microbial pathogenesis and host-pathogen interactions. 2005

2007 Sandhya Gangaraju received her Master's degree in Biochemistry in 2003 from the University 2008 of Ottawa, Canada. In 2003, she joined the National Research Council, Canada as a research 2009 technical officer and viral facility manager in the department of neurogenesis and brain repair. 2010 She implemented lentiviral technology to deliver neurotropic factors to neural cells and 2011 developed transwell assays to study neutrophil transmigration through endothelial cells. In 2014, 2012 she joined the Biodesign Institute, Arizona State University as a principal research specialist 2013 and compliance officer for the Center for Biosignatures Discovery Automation, where she 2014 managed the cell culture facility, lead experimental design for students and junior staff 2015 members, and optimized working protocols for microfluidic devices for studying three-2016 dimensional tissue environments. Most recently, she joined the Nickerson laboratory as a 2017 principal research specialist where she uses the RWV and the spaceflight platform to study 2018 microbial pathogenesis and for 3-D tissue engineering. 2019

3

2021 C. Mark Ott received his B.S. in Chemical Engineering from the University of Texas at Austin in 2022 1982, his M.B.A. from Louisiana State University in 1989, and his Ph.D. in Microbiology from 2023 Louisiana State University in 1998. He has published extensively in the areas of microbial 2024 ecology in spacecraft, human and microbial responses to spaceflight, and the development of 2025 advanced tissue culture models to investigate infectious disease. For the past 20 years, Dr. Ott 2026 has served as a technical lead in the Johnson Space Center Microbiology Laboratory, which is 2027 responsible for mitigating infectious disease risk during human spaceflight. His responsibilities 2028 include the assessment of microbial risk and development of spaceflight requirements based on 2029 vehicle and mission architecture as well as crewmember, food, and environmental monitoring.

2030 2031

2032 Carolyn Coyne completed her Ph.D. at the University of North Carolina at Chapel Hill, USA, 2033 where she studied the human respiratory epithelium. She then carried out her postdoctoral 2034 fellowship at the Children's Hospital of Philadelphia (CHOP), Pennsylvania, USA, and the 2035 University of Pennsylvania, Philadelphia, USA, where her research focused on identifying the 2036 mechanisms by which enteroviruses invade the gastrointestinal epithelium and blood-brain 2037 barrier endothelium. She joined the University of Pittsburgh, Pennsylvania, USA, as a faculty 2038 member in 2007, where her work continued to focus on defining the mechanisms by which 2039 viruses breach cellular barriers. Dr. Coyne's laboratory also studies how the human placenta 2040 restricts viral infections. Her research interests also include the development of primary-and 2041 cell line-based models of cellular barriers, focusing on both the GI tract and placenta. Her 2042 research interests include enteroviruses and flaviviruses, with a particular emphasis on the 2043 strategies by which these viruses bypass cellular barriers. 2044

2045

2059

2046 Mina J. Bissell is Distinguished Scientist, the highest rank bestowed at Lawrence Berkeley 2047 National Laboratory and serves as Senior Advisor to the Laboratory Director on Biology. She is 2048 also Faculty of four Graduate Groups in UC Berkeley: Comparative Biochemistry, Endocrinology, Molecular Toxicology, and Bioengineering (UCSF/UCB joint). Having challenged 2049 2050 several established paradigms, Bissell is a pioneer in breast cancer research and her body of 2051 work has provided much impetus for the current recognition of the significant role that 2052 extracellular matrix signaling and microenvironment play in gene expression regulation in both 2053 normal and malignant cells. Her laboratory developed novel 3D assays and techniques that 2054 demonstrate her signature phrase: after conception, "phenotype is dominant over genotype." 2055 Bissell has received numerous honors and awards and is an elected Fellow of most U.S. 2056 honorary scientific academies. She has published over 400 publications and continues to 2057 engage in full-time research, among other scientific activities. 2058

Downloaded from http://iai.asm.org/ on September 26, 2018 by guest

2060 Dr. Cheryl A. Nickerson is a Professor in the School of Life Sciences at the Biodesign Institute, Arizona State University. She received her Ph.D. in Microbiology from Louisiana State 2061 2062 University. Her postdoctoral training in Salmonella pathogenesis was done with Dr. Roy Curtiss 2063 III at Washington University in St. Louis. She initiated her ongoing studies into the connection 2064 between cellular biomechanics/mechanotransduction and host-pathogen systems biology after 2065 joining the faculty at the Tulane University School of Medicine in 1998. Her development of 2066 innovative model pathogenesis systems includes 3-D organotypic tissue culture models to study 2067 host-pathogen interactions, and approaches that characterize pathogen responses to 2068 physiological fluid shear forces encountered in the infected host, and in the microgravity 2069 environment of spaceflight. She received the Presidential Early Career Award for Scientists and 2070 Engineers, NASA's Exceptional Scientific Achievement Medal, is an American Society for 2071 Microbiology Distinguished Lecturer, and was selected as a NASA Astronaut candidate finalist.

Infection and Immunity

 \mathbb{A}

Infection and Immunity

Infection and Immunity

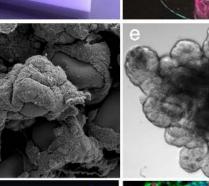
Α

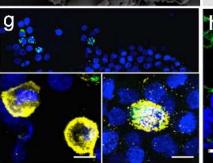
2·D

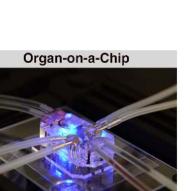
В

a

d



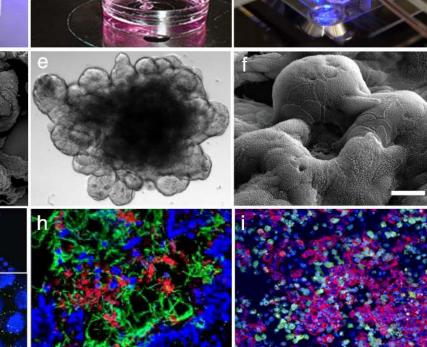

b


3·D

RWV Bioreactor

Fluid Shear Stress

Steep Oxy Gradient


Microbial Consortia

Peristalsis

Hormones, growth factors, cytokines, antibodies (e.g. SIgA)

Infection/ Co-infection

Macu.

С