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The coronavirus disease 2019 (COVID-19) pandemic has trig-
gered the fastest vaccine development efforts so far, as well as 
urgent global vaccination rollouts. Yet, limited vaccine sup-

plies are hindering our ability to fight the pandemic1,2. Enormous 
efforts are ongoing to develop new vaccines. As of 14 October 2021, 
there were 332 vaccine candidates under development, of which 
113 were in clinical testing3. The ability to predict vaccine efficacies 
may expedite vaccine development by helping to shortlist promising 
candidates and/or minimize the subsequent reliance on expensive 
and time-consuming clinical trials for assessing their efficacies4. 
Simultaneously, it may help identify optimal vaccination strate-
gies5,6. For example, although several approved vaccines are admin-
istered in two doses separated by a few weeks, it would be useful to 
know the protection conferred by a single dose, by lower dosages or 
by doses separated by longer intervals, especially in less vulnerable 
populations, so as to ease demand7–9.

Approved COVID-19 vaccines have shown remarkable but vary-
ing efficacies in clinical trials, reducing the incidence of ‘symptomatic’ 
infections with the wild-type severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) strain by 62–96% (refs. 7,10–16). The protection 
has been argued to be due to neutralizing antibodies (NAbs) elicited by 
the vaccines. Cellular immunity appears to play a less important role, 
especially after the recommended doses of the vaccine are adminis-
tered10,11,17–22. The protection due to NAbs is consistent with indepen-
dent observations, in which higher levels of pre-existing NAbs were 
correlated with protection and lower risk of infection, respectively, in 
an early outbreak in a fishery vessel23 and in a longitudinal study of 
healthcare workers24. Protection from seasonal coronaviruses too has 
been associated with pre-existing NAbs25. Strong statistical correla-
tions have been identified between COVID-19 vaccine efficacies and 
the NAb responses they elicit17,18. An important question that arises 
is how the NAb responses confer the protection observed. An under-
standing of the dependence of the level of protection on the NAb titers 
and their neutralization efficiencies is lacking.

In this Article, we develop a theoretical framework that describes 
and integrates several key phenomena associated with SARS-CoV-2 

infection and vaccination, across length and time scales spanning 
the range from the workings of individual NAbs to the responses 
of clinical cohorts to vaccination. The framework employs testable, 
mechanistic hypotheses and quantitatively predicts the population-
level protection conferred by vaccines as a function of the NAb titers 
they elicit.

Results
Construction of the SARS-CoV-2 NAb landscape. A major chal-
lenge to describing the effects of vaccination is the diversity of the 
NAb responses elicited. The NAb response to primary SARS-CoV-2 
infection in unvaccinated individuals is diverse, spanning >1,000-fold 
variation in Ab titers and in vitro neutralization efficiencies across 
individuals26,27. NAb titers following vaccination have been found to be 
comparable to those from convalescent patients10,11,28. No formalism 
exists to predict this diversity or its effects on protection. We addressed 
this challenge by adapting the classic idea of ‘shape space’, which has 
aided quantification of the immune repertoire29, for characterizing 
NAbs. Accordingly, we sought features (also termed shape param-
eters) of the NAbs that would predict their neutralization efficiencies. 
Numerous studies have isolated individual NAbs from patients and 
assessed their neutralization efficiencies in vitro. We compiled dose–
response curves (DRCs) of ~80 NAbs26,27,30–44 thus isolated and fit them 
using the median-effect equation45 (Methods, Supplementary Fig. 1 
and Supplementary Data 1). The equation fit the data well (Fig. 1a and 
Supplementary Fig. 2), indicating that two parameters, the 50% inhibi-
tory concentration (IC50) and the slope (m) of the DRC, were sufficient 
to characterize the neutralization efficiency of individual NAbs (Fig. 
1a and Supplementary Data 1). The best-fit IC50 and m varied widely 
across NAbs (Fig. 1b). IC50 values ranged from ~10−3 to ~140 µg ml−1 
(Fig. 1b), in close agreement with reported estimates (Supplementary 
Fig. 3a and Supplementary Data 1). The values of m, the importance of 
which has been recognized with HIV-1 and hepatitis C45,46 but has not 
typically been reported for SARS-CoV-2, ranged from ~0.2 to 2 (Fig. 1c).  
This variability in IC50 and m was not restricted to a particular pseu-
dotyped virus construct or backbone (Supplementary Fig. 3b,c),  
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cell line (Supplementary Fig. 3d,e) or assay conditions, which could 
vary across studies (Supplementary Fig. 3f,g). The variability was thus 
not attributable to these potential confounding factors and appeared 
to be intrinsic to the NAbs, indicating the spectrum of NAbs elic-
ited. Furthermore, akin to HIV-1 antibodies45, the variations in IC50 
and m appeared independent. For example, the NAbs BD-361 and 
REGN10954 had similar IC50 values (both ~0.04 µg ml−1) but vastly 
different m (~0.7 and ~1.5, respectively), whereas the NAbs CC12.3 
and 515-5 had different IC50 values (~0.02 µg ml−1 and 1.6 µg ml−1, 
respectively) but similar m (both ~1). IC50 and m were thus not only 
sufficient but also necessary for quantifying the neutralization effi-
ciencies of NAbs. We therefore employed IC50 and m as the shape 
parameters. Plotting the NAbs on an IC50–m plot, we identified the 
NAb shape space (Fig. 2), which, because of its two-dimensional 
nature, we termed the ‘landscape of SARS-CoV-2 NAbs’.

The landscape contains potent NAbs, with low IC50 and high 
m, as well as weak NAbs, with the opposite traits. To compare the 
NAbs, we employed the instantaneous inhibitory potential (IIP), 
a composite metric of IC50 and m (refs. 45–47). IIPD represents the 
log10 decline in viral load in a single round infection assay due to 
the NAb present at concentration D. Thus, the higher the IIPD, the 
more potent is the NAb at that concentration. NAbs displayed a 
wide distribution of IIP100 values: six NAbs had the highest IIP100 
values, >5, and seven had the least, ≤1 (D = 100 µg ml−1) (Fig. 2b 
and Supplementary Data 1). This distribution demonstrated fur-
ther the wide spectrum of neutralization efficiencies of NAbs. Using 
another NAb concentration did not affect this distribution substan-
tially (Supplementary Fig. 4).

Prediction of the NAb responses of convalescent patients. The 
landscape established bounds on the neutralization efficiencies of 

the NAbs elicited. We reasoned next that the diversity of the NAb 
responses across individuals would arise from the way NAbs are 
sampled from the landscape. Although a large number of NAbs 
can be isolated from individuals, studies of convalescent patient pla
sma26,27,48–50 as well as on NAb epitope profiling51 have argued that 
the NAb response of an individual can be attributed to a small sub-
set of five to ten distinct NAbs. Furthermore, although some epit-
opes on the SARS-CoV-2 spike protein, S, are targeted more than 
others by NAbs, the collection of NAbs produced differs substan-
tially across individuals52. We therefore assumed that the response 
elicited by an infected individual would be a small, random subset 
of the landscape. We analyzed DRCs of NAbs isolated from indi-
vidual patients and found that they indeed constituted such subsets 
(Supplementary Fig. 5). Accordingly, we sampled random combina-
tions of ten NAbs each, each combination representing the response 
of an individual. Our results were robust to an increase in the num-
ber of NAbs sampled beyond ten (Supplementary Fig. 6). We let 
NAb concentrations vary across individuals, to mimic the observed 
variation of the NAb titers48–50. We quantified the neutralization effi-
ciency of the NAb response by simulating standard plasma dilution 
assays (Methods and Fig. 3a). Experimental plasma dilution assay 
results follow an inverse sigmoidal pattern and are characterized 
by NT50, the dilution at which the neutralization efficiency of the 
plasma decreases by 50% (Fig. 3b). In our simulations, we let the 
NAbs exhibit Bliss independence or Loewe additivity, the former 
representing NAbs targeting distinct, non-occluding epitopes and 
the latter the same or occluding epitopes53. Our simulations recapit-
ulated the dilution curves associated with patient plasma (Fig. 3b). 
Furthermore, the values of NT50 we predicted were in close agree-
ment with experimental observations49 (Fig. 3c). (Note that immu-
noglobulin-G (IgG) targeting the receptor binding domain of the 
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of the fraction of infection events blocked (fa) as a function of NAb concentration, shown for two NAbs, BD-236 (left) and 47D11 (right). Experimental data 
points with 1% < fa < 99% (circles) were considered for parameter estimation. Fits for the remaining NAbs are provided in Supplementary Fig. 2. fu and fa 
are the fraction of infection events that are unaffected and affected respectively, by the NAbs in a single round of infection. b,c, The best-fit estimates of 
IC50 (b) and m (c) for all the NAbs analyzed (Supplementary Data 1).

Nature Computational Science | VOL 2 | February 2022 | 123–131 | www.nature.com/natcomputsci124

http://www.nature.com/natcomputsci


ArticlesNAtuRe COmPutAtIOnAl ScIence

SARS-CoV-2 spike protein, reported in the experiments in Fig. 3c, 
do not represent all NAbs. They are, however, a major component of 
the NAbs. The dilution assays in Fig. 3b do include all NAbs, indi-
cating that our predictions capture the measured NT50 values reli-
ably.) The latter data were described better by Bliss independence at 
low NAb titers and Loewe additivity at high titers. This is expected, 
because, at low titers, the NAbs are unlikely to interact with each 
other and would thus follow Bliss independence, whereas at high 
titers, they may compete for binding sites on S or occlude each other 
and exhibit Loewe additivity53. At any NAb titer, there existed sub-
stantial variation in NT50, attributed to the random combinations 
of NAbs sampled. The variation, however, was outweighed by the 
overall rise of NT50 with the NAb titer, consistent with patient data 
(Fig. 3c). For example, the geometric mean NT50 computed using 
Loewe additivity was 7.2 at an IgG titer of 0.1 µg ml−1 and 455.1 
at 10 µg ml−1. Sampling from the NAb landscape thus successfully 
recapitulated patient responses. Note that no adjustable parameters 
were involved in this comparison. We were thus able to describe the 
diversity of the NAb responses elicited across patients. Armed with 
this description, we examined next the protection accorded by vac-
cines in clinical trials.

Prediction of COVID-19 vaccine efficacies. Following vaccina-
tion, NAb titers rise and are expected to remain stable (or decay 
slowly) over weeks to months54, protecting individuals exposed to 
the virus during this period. Individuals were assumed to be pro-
tected if they did not report symptomatic infection. Loss of pro-
tection involved symptoms and a positive result on a nucleic acid 
amplification test10,11. Protection with NAbs is not expected to be 
sterilizing, as suggested by animal studies21,55; NAbs help suppress 
virus load and facilitate more rapid clearance of the infection. We 
assumed that the severity of the symptoms would be proportional 
to the virus load. If the peak is sufficiently suppressed, no symptoms 
may result, as is the case with naturally asymptomatic infections56. 
Here we assumed that an individual would be detected as symptom-
atically infected if the viral load rose above a threshold.

To estimate the peak viral load, we developed a mathematical 
model (Fig. 4a) of the early time course of the infection, where the 
viral load typically rises, attains a peak and declines57. To ascertain 
its ability to describe these dynamics in vivo, we fit the model to 
longitudinal viral load data from individual patients from three 
cohorts57–59. The model fit the data well (Fig. 4b and Supplementary 

Figs. 7 and 8) and yielded parameter estimates quantifying inter-
patient variability in the within-host dynamics (Supplementary 
Tables 2 and 3). We applied the model to describe the effect of vac-
cination (Methods). We assumed that NAbs generated following 
vaccination would exist at the start of infection. Although NAbs 
may perform many functions, including stimulating the cellular 
adaptive response56,60, direct evidence of these functions in SARS-
CoV-2-infected humans is yet to be gathered56. (The vaccines may 
stimulate other immune arms independently of the NAbs, which, as 
we argue above, is expected to make limited contributions to vac-
cine efficacy against the wild-type SARS-CoV-2 strain10,11,17,18.) We 
therefore focused on their ability to neutralize free viruses, effec-
tively reducing viral infectivity. We recall that protection due to 
NAbs is not expected to be sterilizing21,55. The reduced infectivity 
is also consistent with in vitro pseudovirus neutralization assays, 
which measure the drop in infectivity with increasing NAb con-
centrations. Our model captures these in vitro assays quantitatively 
(Fig. 3). The greater the reduction in infectivity, the lower the peak 
viral load in vivo (Fig. 4c, curves with efficacy ε > 0). This assump-
tion of the activity of NAbs is thus also consistent with the inverse 
correlation between the peak viral load and NAb titers elicited by 
vaccination in mouse models21 and in macaques61.

Substantial de novo NAb production post-infection typically 
occurs after the peak in virus load56 and has been argued to have 
limited impact on viral clearance62. We therefore considered pre-
existing NAbs as responsible for protection and assumed their titers 
not to vary substantially during the course of the infection, given 
the typically short course of the infection and the much longer dura-
bility of the NAb response to vaccination54. We let the pre-existing 
NAbs be drawn as random subsets from the landscape, as we did 
above. We assumed that the NAbs neutralized free viruses with an 
efficiency that we estimated using Loewe additivity. NAb titers in the 
lung airways are expected to be similar to those in the blood given 
the close coupling between the lungs and the circulatory system56. 
The efficiency of NAbs in vivo can differ from that in vitro63, which 
we took into account. We simulated a virtual patient population of 
3,500 individuals, similar to the number of individuals infected in 
the placebo arms of clinical trials. The individuals all had distinct 
viral dynamics parameters drawn from previously known and/or 
estimated ranges (Supplementary Tables 1 and 2), to mimic inter-
patient variability in addition to the variability arising from NAb 
sampling from the landscape. Our model predicted wide variability 
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in the peak viral load (Fig. 4d). At low pre-existing NAb concentra-
tions (0.01 µg ml−1), indicative of the scenario without vaccination, 
the predicted peak viral load ranged from ~103 to 109 copies per mil-
liliter, consistent with the range in symptomatic individuals64. The 
peaks declined as NAb titers increased. Following clinical trials, we 
set the limit of detection to ~102 copies per milliliter (ref. 65). (Note 
that, even if symptoms were to arise with lower viral loads in some 
individuals, such individuals would not be diagnosed as infected 
because of assay limitations.) The fraction of individuals with peaks 
below detection would indicate the level of protection due to the 
vaccine.

To quantify the mean level of protection and test it against data 
from clinical trials, we used viral dynamics parameters representa-
tive of detectable infections66,67 (Supplementary Tables 1 and 2) and 
simulated the dynamics in a cohort of 10,000 infected individuals. 
Vaccination studies report the NT50 values of the NAb responses 
elicited and the associated mean protection level, or efficacy7,10,12,68–70 
(Supplementary Table 4). We binned individuals into narrow NT50 
bands and calculated the mean protection and 95% confidence 
interval (CI) in each band. We found that the mean protection was 
low for an NT50  of ~1. It increased in a sigmoidal manner to 50% at 
an NT50 of ~15 and asymptotically reached 100% at an NT50 of ~200 
(Supplementary Fig. 9).

To compare these predictions with clinical data across trials, 
we normalized the data using the NT50 values from convalescent 

patients reported by the respective trials (Supplementary Table 4). 
This ensured that assay variations across studies did not confound 
our comparisons. We accordingly also normalized our predictions 
of NT50 with those corresponding to convalescent patients captured 
by our model (Methods, Fig. 3 and Supplementary Fig. 10). For the 
set of parameters employed, the data for all the eight approved vac-
cines we considered fell on this ‘protection curve’ (Fig. 5). Thus, for 
example, a single dose of the vaccine Ad26.COV2.S elicited NAbs 
with a scaled NT50 of 0.43 and accorded 66.1% protection. Following 
two doses of the vaccine BNT162b2, the corresponding values were 
3.84% and 94%, respectively. These values were captured accurately 
by our model predictions. This agreement extended to data from 
phase III trials of the other vaccines we considered as well (Fig. 5).

We tested the robustness of these predictions to model parameter 
variations. Using local (Supplementary Fig. 11a) and global sensitiv-
ity analysis (Supplementary Fig. 11b), we found that our predictions 
of vaccine efficacy were robust to parameter variations so long as the 
parameter values were consistent with patient data (Supplementary 
Fig. 11c–e). One parameter not involved in the patient data fit-
ting was ω, the assumed ratio of the IC50 values of the NAbs in 
vivo and in vitro, because NAb responses, given their limited role, 
were not part of our model of unvaccinated individuals62. The pro-
tection curve was sensitive to ω (Supplementary Fig. 11f). Recent 
studies71,72 have estimated ω for a few NAbs of SARS-CoV-2 and 
found it to be in the range ~5–40 (Supplementary Table 1), similar  
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to estimates for other viruses63,73. In the above predictions we set 
ω to ~10, which lies in the above range and yielded the protection 
curve that captured clinical data. Future studies may provide inde-
pendent estimates of the model parameters, limiting these uncer-
tainties and sharpening the mechanistic links between COVID-19 
vaccine efficacies and NAb responses assumed in our formalism.

Discussion
Our formalism for predicting COVID-19 vaccine efficacies as 
a function of the NAb responses they elicit required the descrip-
tion and integration of several key phenomena, varying over many 
length and time scales. These include (1) the neutralization poten-
tial of individual NAbs, (2) the diversity of the NAb response within 
and across individuals, (3) the relationship between NAb titers in 
individuals and their neutralization potential, (4) the within-host 
dynamics of disease progression, (5) the influence of vaccination on 

the within-host dynamics and (6) the variability of the latter influ-
ence across a patient population in clinical trials. At each step, we 
established quantitative connects with experimental data, rendering 
our approach rigorous.

Identifying correlates of the protection offered by COVID-19 
vaccines has been challenging74. Several recent studies have pointed 
to NAb responses as strong correlates of vaccine-mediated protec-
tion17–20. Our study independently arrived at the correlation between 
vaccine efficacy and NT50 and generated testable hypotheses of its 
mechanistic origins. Briefly, our study assumed that, in response 
to vaccination, different individuals in a population produce NAbs 
that are well represented by random samples from the NAb land-
scape. The neutralization potential of the NAbs elicited, quantified 
by NT50, accordingly varies across individuals in a dose-dependent 
manner. The presence of the NAbs, in our model, caused a reduction 
in the peak viral load following infection, also in a dose-dependent  
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manner. A sufficient reduction in the peak viral load was assumed 
to prevent symptoms and manifest as protection conferred by vac-
cination, potentially giving rise to the correlation of vaccine efficacy 
with NT50. Thus, our study suggests a plausible mechanism that can 
be tested experimentally for how multiple NAbs generated within an 
individual following vaccination provide protection by being mem-
bers of a shape space. Our model proposes a mechanism to reduce 
the net neutralization effect of these antibodies into a single metric. 
Further, our formalism deduced a relationship between NT50 and 
the concentration of NAbs in plasma, so that the latter may also be 
used to estimate vaccine efficacies.

Our formalism employs several assumptions and hypotheses 
underlying the protection conferred by NAbs elicited by vaccination. 
First, NAbs are assumed to be generated randomly from the NAb 
landscape. Although this appears plausible (Supplementary Fig. 5), 
it remains to be established. Furthermore, that the NAb landscape 
in convalescent patients and following vaccination is similar needs 
to be ascertained. Second, assay variations in the estimates of NAb 
characteristics (IC50 and m) are assumed not significant. To verify 
this, estimates of IC50 and m could be standardized across studies, 
for example, by normalizing them using the IC50 and m values gen-
erated in each study for the same ‘reference’ NAb and by using the 
same viral backbone and cell line. Third, our model assumed that 
protection following vaccination is predominantly due to NAbs 
and that other immune arms play a secondary role. Although the 
extent to which COVID-19 vaccines trigger other immune arms is 
being investigated20, the high NAb titers generated after the boost 
support this assumption. Fourth, NAbs are assumed to act primar-
ily by neutralizing virus and thus reducing viral infectivity and the 
peak viral load in a dose-dependent manner. It is possible that NAbs 
trigger other immune arms, via Fc-mediated mechanisms20. Innate 
immune responses and CD8 T cells may also reduce the peak viral 
load56,75. The contributions of these mechanisms to vaccine efficacy 
remain to be ascertained. Fifth, the severity of symptoms is assumed 
to depend on the viral load. In clinical trials of vaccine efficacy, indi-
viduals are diagnosed after symptom onset. If the minimum viral 
load for symptom onset, which is unknown, is greater than the assay 
limit of 100 copies per milliliter, fewer people would display symp-
toms than would test positive on a nucleic acid test if all individuals 
were frequently monitored. Vaccine efficacy trials thus report pro-
tection against symptoms, whereas our model predicts protection 
against positivity in a nucleic acid test. The latter might be slightly 

lower than the former. Sixth, our within-host model assumes that 
innate immune responses would render target cells refractory to 
infection. Although this has been observed with other viruses76, and 
has been used in models of SARS-CoV-2 dynamics77, it remains to 
be demonstrated explicitly in vivo. Seventh, although we assessed 
the robustness of our model to parameter variations, several of the 
parameter values employed were based on previous studies or from 
other viral infection settings. For example, we assumed that the ratio 
of the neutralization efficiency of NAbs in vitro and in vivo, ω, was a 
constant. We set its value, based on estimates for a few NAbs, to one 
that helped recapitulate clinical data. However, ω might vary across 
NAbs. Knowledge of these parameter values would make our model 
more robust and improve its predictive ability. Challenge studies on 
macaques post vaccination could help test these assumptions.

Finally, we note that our study did not consider viral mutations. 
With five to ten NAbs active, viral escape from NAb responses is 
expected to be unlikely51,78. With the new circulating mutant strains7, 
however, the NAb landscape may have to be reconstructed. Future 
studies may report DRCs of NAbs against the new strains, facilitat-
ing such reconstruction. Our formalism could then be applied to 
predict the efficacies of vaccines against the new strains.

Methods
Data of DRCs. We considered data from studies that reported in vitro DRCs of 
NAbs using SARS-CoV-2 pseudotyped virions26,27,30–32,34–44. We included early 
studies in our analysis so that the NAbs considered were unlikely to be against 
mutant virus strains. The assays estimated the fraction of infection events 
unaffected by the NAbs as a function of the NAb concentration (Fig. 1 and 
Supplementary Fig. 2). We extracted the data using Engauge Digitizer 12.1 and 
ensured consistency with reported details, such as dilution levels used.

Analysis of DRCs. We used the median-effect equation (equation (1)) to analyze 
the data:

log10
( fa
fu

)

= mlog10
( D
IC50

)

(1)

where fu and fa are the fraction of infection events unaffected and affected, 
respectively, by the NAbs in a single round of infection, D is the NAb concentration, 
IC50 is the half-maximal inhibitory concentration and m is the slope. Data were 
fitted using the tool REGRESS in MATLAB R2017b. Data points with 1% < fu < 99% 
were considered for parameter estimation. We fit the data using equation (1), with 
m and −mlog10(IC50) as adjustable parameters, and obtained estimates of IC50 and 
m for each NAb. We then computed IIP100 = log10

(

1 +

(

100
IC50

)m)
. We did not 

include NAbs for which the fits were not satisfactory (R2 ≤ 0.8; Supplementary Data 
1), possibly arising from large uncertainties in the data. The details of the NAbs and 
parameter estimates are presented in Supplementary Data 1.

In silico simulation of plasma dilution assays. We simulated plasma dilution 
experiments as follows. We assumed that the plasma contained N NAbs in 
equimolar concentrations sampled from the landscape (Fig. 2a). The reciprocal 
plasma dilution curve was predicted assuming Loewe additivity (equation (2)) or 
Bliss independence (equation (3)) between the different NAbs79–81 using

N
∑

i=1

Di/γ

IC50i

(

1
εL

− 1
)

−1/mi
= 1 (2)

εB = 1 −

N
∏

i=1

(IC50i )
mi

(IC50i )
mi + (Di/γ)mi

(3)

where γ is the plasma dilution factor, εL and εB are the fractions of infection events 
affected by the plasma in a single round of infection estimated using Loewe 
additivity and Bliss independence, respectively, Di is the concentration of the 
ith NAb in the plasma before dilution, and IC50 is its half-maximal inhibitory 
concentration and mi its slope, with i ∈ {1, 2, ..., N}. We let N = 10 in our 
simulations26. We estimated the value of γ at which ε = 0.5 as the corresponding 
NT50. We chose Di as D0/N, and varied D0 between 0.1 and 100 µg ml−1 (D0 is the 
total NAb concentration).

We repeated these simulations 100 times at different NAb titers, with each 
simulation representative of an individual patient. We compared the resulting 
predictions at D0 = 30 µg ml−1 with observations from three patients (Fig. 3b)82, 
which we also digitized. The equation fu =

(γ)n

(γ)n+(NT50)n
 was fit to the observations 

from three patients, merely to ascertain the shapes of the curves and their 
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Fig. 5 | Protection post vaccination. Model predictions of the relationship 
between vaccine efficacy and NT50 (solid line) compared with data 
from vaccination trials (symbols). The number of doses of the vaccine 
administered is indicated in parentheses. The error bars and the shaded 
region represent the 95% confidence intervals. The data from the trials 
used are summarized in Supplementary Table 5. The model equations and 
simulation procedure are described in Methods.
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similarity to those predicted by our calculations. Here, n is the Hill coefficient, γ is 
the plasma dilution and NT50 is the half-maximal inhibitory plasma neutralizing 
titer. We also compared predictions of the dependence of NT50 on NAb titers with 
experimental observations (Fig. 3c)49.

Model of SARS-CoV-2 dynamics. To predict the protection conferred by vaccines, 
we developed a mathematical model of within-host SARS-CoV-2 infection post 
vaccination. We adapted previous models58,67,77,83 by focusing on early dynamics, 
required to accurately predict the reduction in the peak viral load due to pre-
existing NAbs. The following equations described the resulting infection dynamics 
in vaccinated individuals exposed to the virus:

dT
dt = −β(1 − ε)VT − ρXXT (4)

dR
dt = ρXXT (5)

dI1
dt = β(1 − ε)VT − kI1 (6)

dI2
dt = kI1 − δI2 (7)

dV
dt = pI2 − cV (8)

dX
dt =

σXI2(1 − X)
ϕX + I2

− dXX (9)

Here, uninfected target cells, T, are infected by SARS-CoV-2 virions, V, with 
second-order rate constant β, producing infected cells in eclipse phase, I1. Cells I1 
convert to productively infected cells, I2, with a rate constant k. Cells I2 produce 
virions at rate p per cell and are lost with rate constant δ. This transition from 
target cells to infected cells in the eclipse phase and then the productive phase has 
been employed in previous models58,77. The virions are cleared with rate constant 
c. The activation of the innate immune response, quantified phenomenologically 
using X, is assumed to be a saturable function of I2, with maximal rate σX and 
half-maximal activation parameter ϕX. If I2 is not limiting, X would rise at rate 
σX at low X and cease to rise as X approaches 1. This form for the innate immune 
response has been proposed previously84. X converts uninfected cells to an 
infection-refractory state, R, at a per capita rate ρX, and decays with rate constant 
dX. The presence of the refractory population has also been proposed in previous 
models77,85,86. The pre-existing NAbs are drawn as random subsets from the 
landscape (Fig. 2a) to block new infections with an efficacy ε, which is a function 
of NAb titers and computed using

N
∑

i=1

Di/γ
ωIC50i

( 1
ε
− 1

)

−1/mi
= 1

where ω accounts for the difference between in vitro and in vivo IC50 values63,71. The 
neutralizing activity of NAbs follows from our observations above (Fig. 3), where 
this activity recapitulated plasma dilution experiments.

Fits to longitudinal patient data. We considered viral load data from non-
vaccinated individuals in three cohorts. One dataset57 has patients with mild 
symptoms. The second dataset59 has measurements in the viral expansion phase. 
We chose nine individuals from the latter dataset who had frequent viral load 
measurements. The third dataset58 has data from hospitalized patients classified  
by their age (above and below 65 years). We simultaneously fit our viral  
dynamics model (equations (4)–(9)) to viral loads from all three datasets 
using a population-based fitting approach via nonlinear mixed effects models 
(Supplementary Section 1).

Prediction of vaccine efficacy. Vaccine efficacy. To examine the variation in peak 
viral loads with NAb titers (Fig. 4d), we predicted the viral dynamics of 3,500 
infected individuals, each individual with different pre-existing NAbs sampled 
from the landscape as well as different values of viral dynamics parameters 
(Supplementary Tables 1 and 2). To obtain the protection curve (Fig. 5), we 
sampled antibody concentrations from a uniform distribution ranging between 
0.05 and 100 μg ml−1, mimicking the range seen experimentally, and simulated viral 
dynamics in 10,000 virtual individuals, as we describe above, and obtained peak 
viral loads. Furthermore, for each individual, we also simulated plasma dilution 
assays and estimated NT50. We then binned individuals into narrow ranges of NT50 
values. In each bin, we estimated the fraction of individuals with peak viral load 
below 100 copies per milliliter. This fraction yielded the protection curve. The error 

bars (95% CI) were obtained using the Clopper–Pearson method and following the 
protocols used in clinical trials10,87,88.

Convalescent NT50. Our model captured the experimentally observed dependence 
of NT50 on NAb titers in 15 convalescent patients (Fig. 3c)49. NT50 as a function 
of time post symptom onset has also been measured in the study described in 
ref. 49. Following vaccine immunogenicity studies28,89, we randomly sampled 
one timepoint per patient at least 20 days after initial symptoms and obtained 
a geometric mean NT50 of 565 (Supplementary Fig. 10). We used this value to 
normalize the NT50 predicted by our model.

Parameter sensitivity. The available longitudinal patient data did not allow 
estimation of all the parameters in our model. We thus fixed several parameters 
(ρX, σX, ΦX, k, c and dX) and initial conditions (T(0) and I2(0)) to values from 
previous studies and estimated the rest (β, p and δ) from fits to patient data 
(Methods). Overall, the good fits (Fig. 4b and Supplementary Fig. 7) indicate that 
the parameters recapitulate the patient viral load data. Yet, the choice of values 
of the ‘fixed’ parameters could introduce uncertainties in the overall parameter 
estimates. We therefore tested the sensitivity of model predictions of vaccine 
efficacy to fixed model parameter values and initial conditions by increasing or 
decreasing the parameter values by twofold, one at a time (Supplementary Fig. 
11a). We also performed a global sensitivity analysis and estimated the partial rank 
correlation coefficients of each parameter (Supplementary Fig. 11b). We found that 
the vaccine efficacy predictions were most sensitive to the viral clearance rate, c. 
We therefore varied c, refitted the model to patient data using the same adjustable 
parameters, and repeated our vaccine efficacy predictions. The protection curves 
were close to the one described above (Supplementary Fig. 11c). We also obtained 
protection curves using two different iterations after fitting using Monolix 
(Supplementary Fig. 11d) and when fixed parameter values were varied over a 
defined range or held constant (Supplementary Fig. 11e). Finally, we tested the 
sensitivity of the protection curve to the IC50 values of the NAbs in vivo by varying 
ω (Supplementary Fig. 11f).

Data availability
All data supporting the findings of this study are available within the paper and its 
Supplementary Information files. Source data are provided with this paper.

Code availability
The codes are written in MATLAB and are available on GitHub (https://github.
com/PraneshPadmanabhan/COVID-19-vaccine-efficacies) and on Zenodo90.
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