
Modeling How Students Learn to Program
Chris Piech1, Mehran Sahami1, Daphne Koller1, Stephen Cooper1, Paulo Blikstein2

1
Computer Science Department,

2
School of Education

Stanford University
Stanford, CA. 94305

{piech, sahami, koller, coopers}@cs.stanford.edu, paulob@stanford.edu

ABSTRACT

Despite the potential wealth of educational indicators expressed

in a student’s approach to homework assignments, how students

arrive at their final solution is largely overlooked in university

courses. In this paper we present a methodology which uses

machine learning techniques to autonomously create a graphical

model of how students in an introductory programming course

progress through a homework assignment. We subsequently show

that this model is predictive of which students will struggle with

material presented later in the class.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:

Computer Science Education.

General Terms

Algorithms, Measurement, Experimentation, Languages

Keywords

Probabilistic Graphical Models, Hidden Markov Model, Program

Dissimilarity Metric, Intelligent Tutor, Student Progress Model

1. INTRODUCTION
In analyzing student learning in introductory programming

courses, there is a wealth of information not only in the final

products (i.e., programs) that students submit for evaluation, but

also in the development path they took to produce their programs.

In traditional settings, the data on how students developed their

programs over time is either not available or not analyzed. In this

work, we show that temporal traces of the development paths

taken by students in an introductory programming class can be

mined to build graphical models that compactly capture the

common major milestones in such development paths. More

significantly, we show that these models also carry predictive

capability in that the paths students take in these models are

correlated with their future performance in the class.

We gathered and analyzed the development paths for students in

Stanford’s CS1 course, which begins with an initial assignment in

Karel the Robot that is subsequently followed by five or six Java

programming assignments. While students’ final submitted

solutions to course assignments can be used to identify which

individuals need extra assistance or are struggling with the

material, there are surprisingly a substantial number of novice

programmers who do not grasp important core concepts, but are

able to somehow still produce a fully functional final solution to

the first programming assignment. As a result, the submitted

work is devoid of any indication that the student actually needs

help. Though the student’s solution might not contain obvious

warning signs of missed concepts, there tends to be evidence of

such misunderstandings hidden in the development path by which

the student arrived at his/her final solution.

It is easy to claim that understanding how students progress

through an assignment allows educators to better identify students

that need interventions. It is difficult to implement a process to

record and analyze students' progress. Manual observation and

analysis of students as they program raises privacy concerns, and

it is tedious and difficult to personally interpret raw snapshots of

student code over time, especially in large courses. Rather, we

take an automated approach, developing machine learning

techniques that can be applied to code snapshots captured

periodically by an instrumented IDE. Our machine learning

algorithm produces a finite state machine of development

―milestones‖ that provide a high-level graphical view of student

development paths through an assignment. Such graphical models

help provide a better understanding of how novice programmers

go about solving a problem. More significantly, these models

allow us to then cluster students into groupings that are predictive

of students’ future performance. We applied this technique to one

of the problems given as part of the first programming assignment

in our CS1 class. This problem, dubbed "Checkerboard Karel",

requires that Karel the Robot produce a checkerboard pattern of

beepers in his world.

As we show later in this paper, the patterns that our machine

learning algorithm found in how students solved the

Checkerboard Karel problem were more informative at predicting

how well students would perform on the class midterm than the

grades students received on the assignment. We demonstrate that

the algorithm captured a meaningful general trend in how

students were solving this programming problem by using the

model generated from student development traces in the spring

offering of the course to predict student performance in the

subsequent summer term. While our results initially focus on a

programming problem in the limited domain of Karel the Robot,

we show the more general applicability of our methodology by

applying our algorithm to a Java assignment in which students

write an open-ended version of the graphical arcade game

Breakout (also known as Brick Breaker).

There are many potential applications for high-level

representations of student progress in programming assignments.

These include using such models to track the progress of new

students and suggest possible interventions if it has been

determined that the development path the student is on is not

likely to lead to a positive outcome. Similarly, such information

can be logged, compiled, and relayed to the course instructor to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

help provide a more accurate picture of the concepts in the course

with which the students are truly struggling.

As mentioned previously, our machine learning algorithm

autonomously produces a probabilistic finite state machine

representation of how students in the class traversed through

various ―milestones‖ in the Karel assignment. The patterns that

the machine learning algorithm finds provide insight into what

programming motifs are common for students who would

struggle later on in the course, and also provides a visualization of

how the class as a whole approached the Karel assignment.

The main results presented in this paper are:

 the development of machine learning methods that build

models of high-level student development pathways in

programming assignments,

 the application of these methods to a large set of student trace

data by which the algorithm is successfully able to

autonomously extract novel features of a student’s progress

over the course of an assignment, and

 the use of these features to predict students’ future

performance in the class as measured by their midterm grades.

The novelty of this work stems from:

 the collection of a unique dataset of student development trace

data,

 the presentation of an application of unsupervised machine

learning concepts to a new domain, and

 the potential pedagogical insights that can be gained from the

model generated by the machine learning algorithm. This

research is particularly pertinent to large lecture-based classes

and online courses.

2. RELATED WORK
This research expands upon previous attempts to find a symbolic

representation of student progress. Reiser [19] made the argument

that development of an autonomous system that could understand

a student’s current state as the student solves a programming

problem would have profound educational implications.

Spohrer and Soloway [27] tried to represent how students learned

to program through an investigation of the bugs in the students'

code. Students' programs were examined as soon as their code

cleanly compiled (and was thus devoid of syntax errors), and their

bugs identified and categorized. The decision to analyze student

bugs as soon as their code compiled cleanly was reasonable,

given that it would not have been possible to analyze all

intermediate versions of students' code as the analysis was done

by hand. Their strategy was limited in that it would not be useful

for trying to analyze the students who solve a problem one part at

a time (those initial clean compiles would not include much of the

overall solution), and they did not observe the progression of

student code development throughout the assignment.

There has been work on studying students' progress at a more

fine-grained level, by focusing on specific programming language

constructs. These constructs include variables [23], conditionals

[10], looping [25], and methods [12]. The assumption in many of

these studies is that student progress can be understood through

difficulties with specific programming constructs.

Many researchers have attempted to determine students' mental

models of computers and computing (see [13] as an interesting

early example), using various qualitative techniques such as

phenomenography [1, 3]. Because such studies tend to be in-

depth and time-consuming, the number of participants tends to be

quite small.

The task of constructing a dynamic student model has had a

resurgence with the introduction of artificial intelligence

algorithms. In a paper on coached problem solving using

Bayesian networks, Conati [5] demonstrated the potential of

using an expert crafted graphical model for tutoring students

learning physics. However, in Conati’s work, as in many

instances of supervised learning applied to constructing a

dynamic student model, it is noted that supervised learning is

limited by the laborious process of expert graphical model

construction and the lack of transferability of these expert

generated models from one program to another.

Recent research has used automated log analysis analyze student

programs, especially trying to distinguish novices and experts.

Blikstein [30, 31, 32] used thousands of time-stamped snapshots

of students’ code and found markedly diverse strategies between

experienced and novice programmers. By mining snapshots from

code repositories, Berland and Martin [29] found that novice

students' developed successful program code by following one of

two progressions: planner and tinkerer. Planners found success by

carefully structuring programs over time, and tinkerers found

success by accreting programs over time. Students were generally

unsuccessful if they didn't follow one of those paths.

This common limitation in the state of the art for dynamic student

modeling highlights the need for an unsupervised (i.e., fully

autonomous) approach. However, despite the apparent utility of a

fully autonomous system, little work has been done to apply

unsupervised learning algorithms.

3. DATA COLLECTION
Over the summer of 2010 we modified the Integrated

Development Environment (IDE)—Eclipse—used by students in

Stanford’s CS1 course so that it would log snapshots, a complete

version of the student’s program at that point in time, every time

a student compiles a project (which the students must do before

they can run their program) and commits that snapshot to a local

git repository. When the student submits the final version of their

assignment, they can elect (opt-in) to also submit the full git

repository of their progress (i.e., code snapshots) in developing

their solution. For this investigation we analyzed data from two

assignments, Checkerboard Karel and Breakout, described below.

Checkerboard Karel: Karel the Robot is used in the first week of

CS1 to teach students basic program flow and decomposition.

The particular variant of the Karel programming language we use

is a Java-based language [20], which most notably does not

include variables or parameters. In this assignment the students

were asked to make Karel the Robot place beepers in a

checkerboard fashion with an alternating pattern of beepers and

no beepers, filling up the whole world. The full solution needs to

work on any sized Karel world. It is hard to get an algorithm to

work on worlds with an odd number of columns, particularly so if

there is only one column. At this point in the course most students

struggle with understanding nested while loops and how to

identify pre and post conditions for their methods and loops.

Breakout: This assignment asks students to implement a classic

arcade game [16]. The students need to write an animation loop,

incorporate mouse events and keep track of game state. It is the

third assignment given in CS1 and the first large programming

project written in Java using the ACM graphics library [28].

We collected repositories from N = 370 Karel assignments (238

from spring 2011 and 132 from summer 2011). For each student

we had on average 159 snapshots of them programming

checkerboard Karel with a standard deviation of 82 snapshots.

Each snapshot was time-stamped and could be run through a

simulator to record errors or to test functionality. We also

analyzed Breakout repositories from N = 205 students all of

which were from winter 2011 where the snapshot count per

student had a mean of 269, and a variance of 153. To protect the

privacy of our students we removed students’ names from all

snapshots. We chose to capture snapshots when the student

compiled/saved as we thought this would be the best

interpretation of a ―unit‖ of work.

4. DATA ANALYSIS

4.1 Program Distance Metric
For the machine learning algorithm to build a model of how

students progress through an assignment, it needs to compare two

programs against one other and determine the extent to which the

two pieces of code should be considered similar. Specifically, the

algorithm used requires that we calculate a real number that

accurately reflects the degree to which two programs are

dissimilar. We considered three algorithms for calculating

dissimilarity:

1. Bag of Words Difference: We built histograms of the different

key words used in a program and used the Euclidean distance

between two histograms as a naïve measure of the dissimilarity.

This is similar to distance measures of text commonly used in

information retrieval systems [22].

2. Application Program Interface (API) Call Dissimilarity: We

ran each program with standard inputs and recorded the resulting

sequence of API calls. We used Needleman-Wunsch global DNA

alignment [14] to measure the difference between the lists of API

calls generated by the two programs. Intuitively, we think of the

sequence of API calls made in the program to be the "DNA" of

that program, and we are comparing the DNA of two programs to

determine their dissimilarity. We note that we modified the

Needleman-Wunsch algorithm to allow for gap penalties which

varied based on the API call that was matched with the gap.

API calls are a particularly good representation of Karel programs

because the Karel programs do not store variables—and as a

result an assignment’s entire functionality is expressed in terms of

simple API calls (e.g., turnLeft, move, etc,). This metric is more

difficult to implement for full Java programs. For example,

Breakout makes graphics API calls but with parameters that

change the nature of the API call. This makes it more difficult to

create a single token that fully captures the effect of any call.

3. Abstract Syntax Tree (AST) Change Severity: We built AST

representations of both programs and calculated the summation of

Evolizer abstract change severities as described by Gall et al [9].

The Evolizer change severity score calculates the minimum

number of rotations, insertions and deletions that need to be

applied to the AST of one program to transform it into the AST of

another program. It uses an analysis of each syntax tree to weight

how significantly an edit changes the AST.

All of our dissimilarity metrics were normalized by sum of the

distances between the programs and the "starter" code (the small

amount of code students may have been given initially as part of

their assignment framework). To evaluate each metric we had a

group of five advanced computer science students with teaching

experience (whom we subsequently refer to as "experts") label a

set of snapshot pairs as either similar or different and measured

how well the distance metrics could replicate the expert labels.

Table 1. Distance Metric Evaluation

Metric Percent Accuracy

1. Bag of Words 55%

2. API Calls 86%

3. AST Change 75%

The experts were asked to assess similarity based on a rubric

having them identify major and minor stylistic and functional

differences between pairs of programs. We selected 90 pairs of

programs, capturing a spectrum of similar, dissimilar and slightly

similar code. For the checkerboard Karel assignment the API Call

Dissimilarity performed best (see Table 1) with an accuracy of

86% (relative to chance). The set of pairs mislabeled

by the Bag of Words and AST Change Severity largely

overlapped with the set of pairs where the human experts

disagreed.

While the distance metrics seemed to accurately measure the

dissimilarity between code snapshots, they are biased towards

assigning low dissimilarity score to snapshots from the same

student. To account for this bias, we modified all of our

algorithms to never use the dissimilarity value computed from

two snapshots that originated from the same student.

The distance metric used to build our model was a weighted sum

of the AST Change metric and a set of API Dissimilarity scores

(each generated by running the programs with a different input

world). We built a Support Vector Machine [6] trained to classify

the human labeled data using the different distance metrics as

features. The values used to weight the distance measures in our

composite dissimilarity score were the weights assigned to each

distance measure by the Support Vector Machine.

4.2 Modeling Progress
The first step in our student modeling process was to learn a high

level representation of how each student progressed through the

checkerboard Karel assignment. To learn this representation we

modeled a student’s progress as a Hidden Markov Model (HMM)

[17]. The HMM we used (see Figure 1) proposes that at each

snapshot, a student is in a "high-level milestone," referred to as a

state. While we cannot directly observe the state (it is a latent

variable), we can observe the source code of the snapshot, which

is a noisy sensor of the latent variable. Example states could be

―the student has just started‖ or ―the student has gotten Karel to

checker all worlds except for worlds with a single column.‖ Note

that these states need not be explicitly labeled in the model. They

are autonomously induced by our learning algorithm given the

student trace data provided. The HMM is parameterized by the

probabilities of a student going from one state to another and the

probability that a given snapshot came from a particular

milestone. A HMM is a relevant model of student progress

because programming is generally an incremental process. The

milestone where a student is at a given time is not independent of

the milestone that he/she was at in the previous time step. The

HMM explicitly captures this dependency.

Modeling student progress as a HMM makes the over-simplifying

Markov assumption that the future state of a student is

independent of past states that the student was in given that we

know the individual’s current state. While this assumption is not

entirely correct (a student’s current state alone does not capture

what they learned from experience), this statistical simplification

is still useful for finding patterns and making predictions while

maintaining algorithmic tractability. Similarly this HMM assumes

a relatively constant rate of change between observations.

Realizing that a commit/save is a coarse representation of a unit

of work, and that there are notably different patterns in commit

rates among different students, we smooth out the difference in

commit rates using dynamic time warping [18] to better match the

underlying assumptions of the model.

Learning a HMM is identical to learning a finite state machine

(FSM) of how students transition through the high-level

milestones. Each state from the HMM becomes a node in the

FSM and the weight of a directed edge from one node to another

provides the probability of transitioning from one state to the

next.

Figure 1. The program's Hidden Markov Model of state

transitions for a given student. The node "codet" denotes the

code snapshot of the student at time t, and the node "statet"

denotes the high-level milestone that the student is in at time t.

N is the number of snapshots for the student.

 In order to learn the HMM we must identify three variables:

1. The finite set of high-level or milestones

that a student could be in. A state is defined by a set of

snapshots where all the snapshots in the set came from the

same milestone.

2. The transition probability, , of being

in a state given the state you were in in the previous unit of

time.

3. The emission probability, , of seeing a

specific snapshot given that you are in a particular state. To

calculate the emission probability we interpreted each of the

states as emitting snapshots with normally distributed

dissimilarities. In other words, given the dissimilarity between

a particular snapshot of student code and a state’s

"representative" snapshot, we can calculate the probability

that the student snapshot came from a given state using a

Normal distribution based on the dissimilarity.

While it would be possible to learn all three variables in the

HMM in a single Expectation Maximization (EM) algorithm [8],

for computational ease the process is divided into two phases:

learning the assignment states and learning the transition and

emission probabilities.

To compute the set of high-level states (the different milestones

of the assignment), we sampled two thousand snapshots chosen

from the Karel training dataset (distributed evenly over students

and evenly over time) and clustered the sample using K-Medioids

[11]. K-Medioids is a variation of K-Means clustering where

centroids are represented by the median code snapshot instead of

being a numerical average of the set of examples in the cluster, as

it is not possible to construct a synthetic "average" code snapshot.

In a similar vein to the Buckshot algorithm [7], we initialized K-

Mediods using cluster labels from Hierarchical Agglomerative

Clustering.

Once we had established the set of states (i.e., milestones) of an

assignment, we used an EM algorithm to simultaneously compute

both the transition and emission probabilities in the state diagram.

To initialize the algorithm, we calculate the probabilities under

the assumption that all state variables are independent of one

another. In the expectation step of EM, the best guess at the

progress of a student through the HMM was made using the

forward-backwards algorithm [17]. The EM algorithm resulted in

a probabilistic assignment to the state variables for each student

at each point in time, and also provided estimates for parameters

to the HMM reflecting the state diagram induced from data over

all students in the class.

4.3 Finding Patterns in Paths
The final step in our algorithm was to find patterns in how the

students were transitioning through the HMM. To find these

patterns we clustered the paths that students took through the

HMM. To cluster the paths we ran the K-Means algorithm over

the space of HMM, using a method developed by Smyth [24]. For

each student we constructed a HMM to represent their state

transitions—these per student models also incorporated prior

probabilities based on the HMM developed using data from the

whole class. We measured dissimilarity between two students as

the symmetric (i.e., averaged) probability that student A’s

trajectory could be produced by student B’s HMM and vice versa.

Using this distance measure, we then clustered all the student

paths to create groupings of students based on the characteristics

of their entire development path for the assignment.

5. RESULTS
Clustering on a sample of 2000 random snapshots from the

training set returned a group of well-defined snapshot clusters

(see Figure 2). The value of K that maximized silhouette score (a

measure of how natural the clustering was) was 26 clusters. A

visual inspection of these clusters confirmed that snapshots which

clustered together were functionally similar pieces of code.

When we repeated this process with a different set of random

snapshots, 25 of the 27 clusters were the same, indicating that the

results were quite stable and that the patterns found were not due

to chance. Moreover, a manual examination of the states of the

induced HMM revealed that they made intuitive sense. The class-

wide state machine showed that there were several ―sink‖

states—milestones where the students clearly had serious

functional problems. Interestingly, once a student transitioned to

such a state, the student had a high probability of remaining there

through several code updates. For each ―sink‖ state, the state

machine showed how significant the sink state was and what

transition most students took to get out of that state. Such

revelations can be quite useful for determining how to

appropriately aid students who may have encountered significant

difficulties in programming an assignment, as revealed by the

trajectory taken in the student's development path.

In addition to finding patterns in students' development progress,

which can be indicative of a student's need for help (and the

means for providing such help), we also wanted to determine the

predictive power of such data mining in the early identification of

students who may have more difficulty with computing generally.

To this end, we sought to measure the extent to which student

development trajectories on their first assignment in the course

could be used to determine the performance of those students on

the midterm exam (generally 3 to 4 weeks later in the term).

Figure 2. Dissimilarity matrix for clustering of 2000

snapshots. Each row and column in the matrix represents a

snapshot and the entry at row i, column j represents how

similar snapshot i and j are (dark means more similar)

Figure 3. Visualization of finite state machines for Alpha and

Gamma clusters of students.

Table 2. Delineation of Alpha, Beta and Gamma clusters

Metric Alpha Beta Gamma

Num Students

(count)
84 108 46

Midterm score

(percent)

µ = 73.3,

σ = 20.0

µ = 71.4,

σ = 26.2

µ = 65.4,

σ = 23.2

Time

(days)
µ = 8.2,

 σ = 2.0

µ = 9.1,

σ = 1.8

µ = 9.3,

σ = 1.9

Karel score

(percent)
µ = 91.2,

σ = 7.0

µ = 88.6,

σ = 6.9

µ = 88.3,

σ = 7.6

We clustered students' development paths into three groups (see

Table 2), hereafter referred to as alpha, beta and gamma. The

group that a student was clustered into was indeed predictive of

the student's midterm grade. The distinction between the alpha

and gamma groups was particularly large, having a mean midterm

score difference of 7.9%. The difference in midterm performance

between the alpha and gamma groups is statistically significant,

yielding a p value of 0.04 using a two-tailed t-test.

A visualization of the finite state machine for the alpha group

versus that for the gamma group (Figure 3) shows that there are

clear differences in both the types of states that the two groups

visit and the pattern of how students transition between states.

Qualitatively, the gamma group can be described as getting stuck

into several sink states and then making a direct transition from a

semi-working program to a fully functional program. The alpha

group seems to make smaller but steadily positively accretive

steps towards the solution.

Seeking to understand the generality of such models in their

application to future (out of sample) students, we classified the

students who took the class in the summer quarter into the alpha,

beta and gamma groups, which were induced from students

taking the class during the prior quarter. The alpha group (N =

30) had midterm scores µ = 69.7, σ = 14.1 and the gamma group

(N = 42) had midterm scores µ = 63.3, σ = 15.4. Again, we found

a statistically significant difference between the mean midterm

scores of these groups as a two-tailed t-test yielded a p value of

0.08. This result shows that the induced models are quite robust,

as they capture patterns in development paths that are not specific

to a single class of students, but generalize across student

development behavior between classes (that also had different

instructors). We believe this generality of the induced models has

the potential to not only provide predictive capability in helping

address student difficulties in programming, but also yielding

deeper insights regarding fundamental misunderstandings of

programming that transcend the details of one particular class.

We used the same algorithm, with the AST dissimilarity metric

instead of the API dissimilarity metric, to build a model of how

students progressed through Breakout. Interestingly there was a

more articulated trajectory that most students followed—this

could be as a result of clear objectives laid out in the assignment

handout or it could reflect that the students at this point in the

course are more mature programmers. Clustering of the paths that

students took through the assignment resulted in two groups of

students that had a 6.9 difference of means for their midterm

scores, with a student TTest score of 0.06. Since the Breakout

samples were collected in a different quarter than the Karel

samples, we could not test the extent to which the groups of

students discovered through analyzing in breakout correlated to

the groups of students discovered through the Karel assignment.

6. DISCUSSION
The process of building the Karel state machine provided several

pedagogical insights into the introductory computer science class.

We found that by analyzing students' development paths, rather

than simply their final grade, on an assignment, we discovered a

higher correlation with students' understanding of the material, as

reflected by their midterm scores. We believe the underlying

reason for this phenomenon is that there is greater variability in

student development paths than their final program outcomes.

The development path provides important information regarding

students' understanding of concepts beyond simply their final

product. We seek to explore this issue in further work to better

understand the degree to which data from student development

paths reflects measurable understanding of programming

concepts. We believe this line of investigation is not only quite

promising with respect to providing a data-driven methodology

for improving programming instruction and pedagogy, but also

for gaining deeper insight into learning in general.

The success of the model also implies more subtle insights. The

construction of the Karel state machine relied on two substantial

assumptions: that a dynamic time-warped commit reflected a unit

of work and that in generating the state transitions the future is

independent of the past given the present. Building the

assignment state machine based on these assumptions does not

prove the assumptions are correct. It does demonstrate a tractable

scheme for model construction that is fine-grained enough to

capture important trends while not providing enough degrees of

freedom in the model to overfit the training data.

Our results also show the generality of patterns found in student

programming paths. For example, we analyzed programming

paths by students in CS1 in two different quarters, taught by

different instructors, yet observed similar patterns of student

development paths in both courses. Such observations lead us to

believe that there are further insights regarding program

development that can be gleaned from our models. Moreover, this

generality indicates that such models may be more broadly

applicable as a means for predicting the sorts of interventions that

would most benefit novice programmers and provide guidance as

to when such interventions would be useful to provide. As

reflected in our empirical results showing the correlation between

development paths from the first assignment in CS1 and students'

midterm scores, we believe that these models can be successful

for identifying students in need of early intervention.

This model could potentially provide further insight into whether

or not students need interventions, as many schools offer various

open and closed laboratory opportunities to students who may

need help. By understanding what students have tried and their

projected path, this model provides an indication whether

students need help at the time that they seek it, or if a student

should ponder the problem a bit more without external help.

7. REFERENCES
[1] Booth, S. 1992. Learning to program: A phenomenographic

perspective. Gothenburg, Sweden: Acta Universitatis

Gothoburgensis.

[2] Bowman, M., Debray, S. K., & Peterson, L. L. 1993. Reasoning

about naming systems. ACM Trans. Program. Lang. Syst. 15, 5

(Nov. 1993), 795-825.

[3] Bruce, C., Buckingham, L., Hynd, J., McMahon, C.,

Roggenkamp, M., & Stoodley, I. 2004. Ways of experiencing

the act of learning to program: A phenomenographic study of

introductory programming students at university. Journal of

Information Technology Education, 3, 143-160.

[4] Brusilovsky, Peter. 2000. Adaptive hypermedia: From

intelligent tutoring systems to web-based education. LNCS.

[5] Conati, C., Gertner, A. S., VanLehn, K., & Druzdzel, M. J.

1997. On-line student modeling for coached problem solving

using Bayesian networks. Proceedings of the 6
th

 Int’l

Conference on User Modeling (UM-96), 231-242.

[6] Cristianini, N. & Shawe-Taylor, J. 2000. An introduction to

support vector machines and other kernel-based learning

methods. Cambridge University Press.

[7] Cutting, D., Karger, D., Pedersen, J., & Tukey, J. 1992.

Scatter/gather: A cluster-based approach to browsing large

document collections. Proc. 15th SIGIR, 1992.

[8] Dempster, A.P., Laird, N.M., & Rubin, D.B. 1977. Maximum

likelihood from incomplete data via the em algorithm. J. of the

Royal Statistical Society B, 39 (1): 1–38.

[9] Gall, Harald et al. 2009. Change analysis with evolizer and

changedistiller, Software, IEEE.

[10] Hoc, J-M. 1984. Do we really have conditional statements in our

brains? Proceedings of the 2
nd

 European Conference on

Readings on Cognitive Ergonomics - Mind and Computers, G.

van der Veer, M. Tauber, T. Green, and P. Gorny (Eds.),

Springer-Verlag, London, UK, 92-101.

[11] Kaufman, L. and Rousseeuw, P.J. 1990. Finding groups in data:

An introduction to cluster analysis, Wiley.

[12] Kessler, C. & Anderson, J. 1988. Learning flow of control:

Recursive and iterative procedures. In [26], 229-260.

[13] Kurland, D. & Pea, R. 1983. Children's mental models of

recursive logo programs. Proceedings of the 5
th

 Annual

Conference of the Cognitive Science Society, NY, 1-5.

[14] Needleman S. & Wunsch C. 1970. A general method applicable

to the search for similarities in the amino acid sequence of two

proteins. Journal of Molecular Biology.

[15] Paine, Carina. 2001. How students learn to program:

Observations of practical tasks completed. Proceedings of the

IEEE International Conference on Advanced Learning

Technologies (ICALT '01).

[16] Parlante, N.,Wolfman, S., McCann, L., Roberts, E., Nevison, C.,

Motil, J., Cain, J., & Reges, S. 2006. Nifty assignments.

SIGCSE Bull. 38, 1 (March 2006), 562-563.

[17] Rabiner, L.R., & Juang, B,H. 1986. Introduction to hidden

markov models. IEEE ASSP Magazine, 3(1):4–16, 1986.

[18] Rabiner, L.R., & Juang, B,H. 1993. Fundamentals of speech

recognition. Prentice-Hall, Inc.

[19] Reiser , B., Anderson , J., Farrell, R. 1985. Dynamic student

modelling in an intelligent tutor for LISP programming,

Proceedings of the 9th int'l joint conference on AI, 8-14.

[20] Roberts, Eric. Karel Learns Java. Available from:

http://www.stanford.edu/class/cs106a/cs106a_spring11/book/kar

el-the-robot-learns-java.pdf Accessed 9/1/2011.

[21] Sagar, Tobias et al. 2006. Detecting similar java classes using

tree algorithms. Proceedings of the 2006 international workshop

on mining software repositories (MSR '06).

[22] Salton, G., Wong, A., & Yang, C. S. 1975. A vector space

model for automatic indexing. CACM, 18: 613-620.

[23] Samurcay, R. 1988.The concept of variable in programming: Its

meaning and use in problem-solving by novice programmers. In

[26], 161-178.

[24] Smyth, P. 1997. Clustering sequences with hidden markov

models. Advances in Neural Information Processing Systems,

volume 9, 648-654. The MIT Press.

[25] Soloway,E., Bonar,J., Ehrlich,K. 1983. Cognitive strategies and

looping constructs: an empirical study. CACM, 26, 11, 853-860.

[26] Soloway E. & Spohrer, J. 1988. Studying the novice

programmer. L. Erlbaum Assoc. Inc., Hillsdale, NJ, USA.

[27] Spohrer, J. & Soloway, E. 1986. Analyzing the high frequency

bugs in novice programs. Papers presented at the first workshop

on empirical studies of programmers, E. Soloway and S.

Iyengar (Eds.). Ablex Publishing, Norwood, NJ, USA, 230-251.

[28] ACM Graphics library. Available from: http://www-cs-

faculty.stanford.edu/~eroberts/jtf/ Accessed 9/1/2011.

[29] Berland, M. & Martin, T. 2011. Clusters and patterns of novice

programmers. AERA, New Orleans, LA.

[30] Blikstein, P. & Worsley, M. (2011). Learning analytics:

Assessing constructionist learning using machine learning.

AERA, New Orleans, LA.

[31] Blikstein, P. (2011). Using learning analytics to assess students'

behavior in open-ended programming tasks. Proc. of the

Learning Analytics Knowledge Conference, Banff.

[32] Blikstein, P. 2008. An Atom is known by the company it keeps.

Unpublished PhD. dissertation, Northwestern University,

Evanston, IL.

