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ABSTRACT 

Despite the potential wealth of educational indicators expressed 

in a student’s approach to homework assignments, how students 

arrive at their final solution is largely overlooked in university 

courses. In this paper we present a methodology which uses 

machine learning techniques to autonomously create a graphical 

model of how students in an introductory programming course 

progress through a homework assignment. We subsequently show 

that this model is predictive of which students will struggle with 

material presented later in the class. 

Categories and Subject Descriptors 

K.3.2 [Computer and Information Science Education]: 

Computer Science Education. 

General Terms 

Algorithms, Measurement, Experimentation, Languages 

Keywords 

Probabilistic Graphical Models, Hidden Markov Model, Program 

Dissimilarity Metric, Intelligent Tutor, Student Progress Model 

1. INTRODUCTION 
In analyzing student learning in introductory programming 

courses, there is a wealth of information not only in the final 

products (i.e., programs) that students submit for evaluation, but 

also in the development path they took to produce their programs. 

In traditional settings, the data on how students developed their 

programs over time is either not available or not analyzed. In this 

work, we show that temporal traces of the development paths 

taken by students in an introductory programming class can be 

mined to build graphical models that compactly capture the 

common major milestones in such development paths. More 

significantly, we show that these models also carry predictive 

capability in that the paths students take in these models are 

correlated with their future performance in the class. 

We gathered and analyzed the development paths for students in 

Stanford’s CS1 course, which begins with an initial assignment in 

Karel the Robot that is subsequently followed by five or six Java 

programming assignments. While students’ final submitted 

solutions to course assignments can be used to identify which 

individuals need extra assistance or are struggling with the 

material, there are surprisingly a substantial number of novice 

programmers who do not grasp important core concepts, but are 

able to somehow still produce a fully functional final solution to 

the first programming assignment. As a result, the submitted 

work is devoid of any indication that the student actually needs 

help. Though the student’s solution might not contain obvious 

warning signs of missed concepts, there tends to be evidence of 

such misunderstandings hidden in the development path by which 

the student arrived at his/her final solution. 

It is easy to claim that understanding how students progress 

through an assignment allows educators to better identify students 

that need interventions. It is difficult to implement a process to 

record and analyze students' progress. Manual observation and 

analysis of students as they program raises privacy concerns, and 

it is tedious and difficult to personally interpret raw snapshots of 

student code over time, especially in large courses. Rather, we 

take an automated approach, developing machine learning 

techniques that can be applied to code snapshots captured 

periodically by an instrumented IDE. Our machine learning 

algorithm produces a finite state machine of development 

―milestones‖ that provide a high-level graphical view of student 

development paths through an assignment. Such graphical models 

help provide a better understanding of how novice programmers 

go about solving a problem. More significantly, these models 

allow us to then cluster students into groupings that are predictive 

of students’ future performance. We applied this technique to one 

of the problems given as part of the first programming assignment 

in our CS1 class. This problem, dubbed "Checkerboard Karel", 

requires that Karel the Robot produce a checkerboard pattern of 

beepers in his world. 

As we show later in this paper, the patterns that our machine 

learning algorithm found in how students solved the 

Checkerboard Karel problem were more informative at predicting 

how well students would perform on the class midterm than the 

grades students received on the assignment. We demonstrate that 

the algorithm captured a meaningful general trend in how 

students were solving this programming problem by using the 

model generated from student development traces in the spring 

offering of the course to predict student performance in the 

subsequent summer term. While our results initially focus on a 

programming problem in the limited domain of Karel the Robot, 

we show the more general applicability of our methodology by 

applying our algorithm to a Java assignment in which students 

write an open-ended version of the graphical arcade game 

Breakout (also known as Brick Breaker).  

There are many potential applications for high-level 

representations of student progress in programming assignments. 

These include using such models to track the progress of new 

students and suggest possible interventions if it has been 

determined that the development path the student is on is not 

likely to lead to a positive outcome. Similarly, such information 

can be logged, compiled, and relayed to the course instructor to 
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help provide a more accurate picture of the concepts in the course 

with which the students are truly struggling. 

As mentioned previously, our machine learning algorithm 

autonomously produces a probabilistic finite state machine 

representation of how students in the class traversed through 

various ―milestones‖ in the Karel assignment. The patterns that 

the machine learning algorithm finds provide insight into what 

programming motifs are common for students who would 

struggle later on in the course, and also provides a visualization of 

how the class as a whole approached the Karel assignment.  

The main results presented in this paper are:  

 the development of machine learning methods that build 

models of high-level student development pathways in 

programming assignments, 

 the application of these methods to a large set of student trace 

data by which the algorithm is successfully able to 

autonomously extract novel features of a student’s progress 

over the course of an assignment, and 

 the use of these features to predict students’ future 

performance in the class as measured by their midterm grades.  

The novelty of this work stems from:  

 the collection of a unique dataset of student development trace 

data, 

 the presentation of an application of unsupervised machine 

learning concepts to a new domain, and 

 the potential pedagogical insights that can be gained from the 

model generated by the machine learning algorithm. This 

research is particularly pertinent to large lecture-based classes 

and online courses. 

2. RELATED WORK 
This research expands upon previous attempts to find a symbolic 

representation of student progress. Reiser [19] made the argument 

that development of an autonomous system that could understand 

a student’s current state as the student solves a programming 

problem would have profound educational implications.  

Spohrer and Soloway [27] tried to represent how students learned 

to program through an investigation of the bugs in the students' 

code. Students' programs were examined as soon as their code 

cleanly compiled (and was thus devoid of syntax errors), and their 

bugs identified and categorized. The decision to analyze student 

bugs as soon as their code compiled cleanly was reasonable, 

given that it would not have been possible to analyze all 

intermediate versions of students' code as the analysis was done 

by hand. Their strategy was limited in that it would not be useful 

for trying to analyze the students who solve a problem one part at 

a time (those initial clean compiles would not include much of the 

overall solution), and they did not observe the progression of 

student code development throughout the assignment.  

There has been work on studying students' progress at a more 

fine-grained level, by focusing on specific programming language 

constructs. These constructs include variables [23], conditionals 

[10], looping [25], and methods [12]. The assumption in many of 

these studies is that student progress can be understood through 

difficulties with specific programming constructs. 

Many researchers have attempted to determine students' mental 

models of computers and computing (see [13] as an interesting 

early example), using various qualitative techniques such as 

phenomenography [1, 3]. Because such studies tend to be in-

depth and time-consuming, the number of participants tends to be 

quite small.  

The task of constructing a dynamic student model has had a 

resurgence with the introduction of artificial intelligence 

algorithms. In a paper on coached problem solving using 

Bayesian networks, Conati [5] demonstrated the potential of 

using an expert crafted graphical model for tutoring students 

learning physics. However, in Conati’s work, as in many 

instances of supervised learning applied to constructing a 

dynamic student model, it is noted that supervised learning is 

limited by the laborious process of expert graphical model 

construction and the lack of transferability of these expert 

generated models from one program to another.  

Recent research has used automated log analysis analyze student 

programs, especially trying to distinguish novices and experts. 

Blikstein [30, 31, 32] used thousands of time-stamped snapshots 

of students’ code and found markedly diverse strategies between 

experienced and novice programmers. By mining snapshots from 

code repositories, Berland and Martin [29] found that novice 

students' developed successful program code by following one of 

two progressions: planner and tinkerer. Planners found success by 

carefully structuring programs over time, and tinkerers found 

success by accreting programs over time. Students were generally 

unsuccessful if they didn't follow one of those paths. 

This common limitation in the state of the art for dynamic student 

modeling highlights the need for an unsupervised (i.e., fully 

autonomous) approach. However, despite the apparent utility of a 

fully autonomous system, little work has been done to apply 

unsupervised learning algorithms.  

3. DATA COLLECTION 
Over the summer of 2010 we modified the Integrated 

Development Environment (IDE)—Eclipse—used by students in 

Stanford’s CS1 course so that it would log snapshots, a complete 

version of the student’s program at that point in time, every time 

a student compiles a project (which the students must do before 

they can run their program) and commits that snapshot to a local 

git repository. When the student submits the final version of their 

assignment, they can elect (opt-in) to also submit the full git 

repository of their progress (i.e., code snapshots) in developing 

their solution. For this investigation we analyzed data from two 

assignments, Checkerboard Karel and Breakout, described below.  

Checkerboard Karel: Karel the Robot is used in the first week of 

CS1 to teach students basic program flow and decomposition. 

The particular variant of the Karel programming language we use 

is a Java-based language [20], which most notably does not 

include variables or parameters. In this assignment the students 

were asked to make Karel the Robot place beepers in a 

checkerboard fashion with an alternating pattern of beepers and 

no beepers, filling up the whole world. The full solution needs to 

work on any sized Karel world. It is hard to get an algorithm to 

work on worlds with an odd number of columns, particularly so if 

there is only one column. At this point in the course most students 

struggle with understanding nested while loops and how to 

identify pre and post conditions for their methods and loops.  

Breakout: This assignment asks students to implement a classic 

arcade game [16]. The students need to write an animation loop, 

incorporate mouse events and keep track of game state. It is the 



third assignment given in CS1 and the first large programming 

project written in Java using the ACM graphics library [28].  

We collected repositories from N = 370 Karel assignments (238 

from spring 2011 and 132 from summer 2011). For each student 

we had on average 159 snapshots of them programming 

checkerboard Karel with a standard deviation of 82 snapshots. 

Each snapshot was time-stamped and could be run through a 

simulator to record errors or to test functionality. We also 

analyzed Breakout repositories from N = 205 students all of 

which were from winter 2011 where the snapshot count per 

student had a mean of 269, and a variance of 153. To protect the 

privacy of our students we removed students’ names from all 

snapshots. We chose to capture snapshots when the student 

compiled/saved as we thought this would be the best 

interpretation of a ―unit‖ of work. 

4. DATA ANALYSIS 

4.1 Program Distance Metric 
For the machine learning algorithm to build a model of how 

students progress through an assignment, it needs to compare two 

programs against one other and determine the extent to which the 

two pieces of code should be considered similar. Specifically, the 

algorithm used requires that we calculate a real number that 

accurately reflects the degree to which two programs are 

dissimilar. We considered three algorithms for calculating 

dissimilarity: 

1. Bag of Words Difference: We built histograms of the different 

key words used in a program and used the Euclidean distance 

between two histograms as a naïve measure of the dissimilarity. 

This is similar to distance measures of text commonly used in 

information retrieval systems [22]. 

2. Application Program Interface (API) Call Dissimilarity: We 

ran each program with standard inputs and recorded the resulting 

sequence of API calls. We used Needleman-Wunsch global DNA 

alignment [14] to measure the difference between the lists of API 

calls generated by the two programs. Intuitively, we think of the 

sequence of API calls made in the program to be the "DNA" of 

that program, and we are comparing the DNA of two programs to 

determine their dissimilarity. We note that we modified the 

Needleman-Wunsch algorithm to allow for gap penalties which 

varied based on the API call that was matched with the gap.  

API calls are a particularly good representation of Karel programs 

because the Karel programs do not store variables—and as a 

result an assignment’s entire functionality is expressed in terms of 

simple API calls (e.g., turnLeft, move, etc,). This metric is more 

difficult to implement for full Java programs. For example, 

Breakout makes graphics API calls but with parameters that 

change the nature of the API call. This makes it more difficult to 

create a single token that fully captures the effect of any call.  

3. Abstract Syntax Tree (AST) Change Severity: We built AST 

representations of both programs and calculated the summation of 

Evolizer abstract change severities as described by Gall et al [9]. 

The Evolizer change severity score calculates the minimum 

number of rotations, insertions and deletions that need to be 

applied to the AST of one program to transform it into the AST of 

another program. It uses an analysis of each syntax tree to weight 

how significantly an edit changes the AST.  

All of our dissimilarity metrics were normalized by sum of the 

distances between the programs and the "starter" code (the small 

amount of code students may have been given initially as part of 

their assignment framework). To evaluate each metric we had a 

group of five advanced computer science students with teaching 

experience (whom we subsequently refer to as "experts") label a 

set of snapshot pairs as either similar or different and measured 

how well the distance metrics could replicate the expert labels.  

Table 1. Distance Metric Evaluation 

Metric Percent Accuracy 

1. Bag of Words 55% 

2. API Calls 86% 

3. AST Change 75% 

 

The experts were asked to assess similarity based on a rubric 

having them identify major and minor stylistic and functional 

differences between pairs of programs. We selected 90 pairs of 

programs, capturing a spectrum of similar, dissimilar and slightly 

similar code. For the checkerboard Karel assignment the API Call 

Dissimilarity performed best (see Table 1) with an accuracy of 

86% (       relative to chance). The set of pairs mislabeled 

by the Bag of Words and AST Change Severity largely 

overlapped with the set of pairs where the human experts 

disagreed.  

While the distance metrics seemed to accurately measure the 

dissimilarity between code snapshots, they are biased towards 

assigning low dissimilarity score to snapshots from the same 

student. To account for this bias, we modified all of our 

algorithms to never use the dissimilarity value computed from 

two snapshots that originated from the same student. 

The distance metric used to build our model was a weighted sum 

of the AST Change metric and a set of API Dissimilarity scores 

(each generated by running the programs with a different input 

world). We built a Support Vector Machine [6] trained to classify 

the human labeled data using the different distance metrics as 

features. The values used to weight the distance measures in our 

composite dissimilarity score were the weights assigned to each 

distance measure by the Support Vector Machine.  

4.2 Modeling Progress 
The first step in our student modeling process was to learn a high 

level representation of how each student progressed through the 

checkerboard Karel assignment. To learn this representation we 

modeled a student’s progress as a Hidden Markov Model (HMM) 

[17]. The HMM we used (see Figure 1) proposes that at each 

snapshot, a student is in a "high-level milestone," referred to as a 

state. While we cannot directly observe the state (it is a latent 

variable), we can observe the source code of the snapshot, which 

is a noisy sensor of the latent variable. Example states could be 

―the student has just started‖ or ―the student has gotten Karel to 

checker all worlds except for worlds with a single column.‖ Note 

that these states need not be explicitly labeled in the model. They 

are autonomously induced by our learning algorithm given the 

student trace data provided. The HMM is parameterized by the 

probabilities of a student going from one state to another and the 

probability that a given snapshot came from a particular 

milestone. A HMM is a relevant model of student progress 

because programming is generally an incremental process. The 

milestone where a student is at a given time is not independent of 

the milestone that he/she was at in the previous time step. The 

HMM explicitly captures this dependency.  

Modeling student progress as a HMM makes the over-simplifying 

Markov assumption that the future state of a student is 



independent of past states that the student was in given that we 

know the individual’s current state. While this assumption is not 

entirely correct (a student’s current state alone does not capture 

what they learned from experience), this statistical simplification 

is still useful for finding patterns and making predictions while 

maintaining algorithmic tractability. Similarly this HMM assumes 

a relatively constant rate of change between observations. 

Realizing that a commit/save is a coarse representation of a unit 

of work, and that there are notably different patterns in commit 

rates among different students, we smooth out the difference in 

commit rates using dynamic time warping [18] to better match the 

underlying assumptions of the model. 

Learning a HMM is identical to learning a finite state machine 

(FSM) of how students transition through the high-level 

milestones. Each state from the HMM becomes a node in the 

FSM and the weight of a directed edge from one node to another 

provides the probability of transitioning from one state to the 

next.  

 

Figure 1. The program's Hidden Markov Model of state 

transitions for a given student. The node "codet" denotes the 

code snapshot of the student at time t, and the node "statet" 

denotes the high-level milestone that the student is in at time t. 

N is the number of snapshots for the student. 

 In order to learn the HMM we must identify three variables: 

1. The finite set of high-level                or milestones 

that a student could be in. A state is defined by a set of 

snapshots where all the snapshots in the set came from the 

same milestone. 

2. The transition probability,                       , of being 

in a state given the state you were in in the previous unit of 

time. 

3. The emission probability,                    , of seeing a 

specific snapshot given that you are in a particular state. To 

calculate the emission probability we interpreted each of the 

states as emitting snapshots with normally distributed 

dissimilarities. In other words, given the dissimilarity between 

a particular snapshot of student code and a state’s 

"representative" snapshot, we can calculate the probability 

that the student snapshot came from a given state using a 

Normal distribution based on the dissimilarity. 

While it would be possible to learn all three variables in the 

HMM in a single Expectation Maximization (EM) algorithm [8], 

for computational ease the process is divided into two phases: 

learning the assignment states and learning the transition and 

emission probabilities. 

To compute the set of high-level states (the different milestones 

of the assignment), we sampled two thousand snapshots chosen 

from the Karel training dataset (distributed evenly over students 

and evenly over time) and clustered the sample using K-Medioids 

[11]. K-Medioids is a variation of K-Means clustering where 

centroids are represented by the median code snapshot instead of 

being a numerical average of the set of examples in the cluster, as 

it is not possible to construct a synthetic "average" code snapshot. 

In a similar vein to the Buckshot algorithm [7], we initialized K-

Mediods using cluster labels from Hierarchical Agglomerative 

Clustering. 

Once we had established the set of states (i.e., milestones) of an 

assignment, we used an EM algorithm to simultaneously compute 

both the transition and emission probabilities in the state diagram. 

To initialize the algorithm, we calculate the probabilities under 

the assumption that all state variables are independent of one 

another. In the expectation step of EM, the best guess at the 

progress of a student through the HMM was made using the 

forward-backwards algorithm [17]. The EM algorithm resulted in 

a probabilistic assignment to the state variables for each student 

at each point in time, and also provided estimates for parameters 

to the HMM reflecting the state diagram induced from data over 

all students in the class.  

4.3 Finding Patterns in Paths 
The final step in our algorithm was to find patterns in how the 

students were transitioning through the HMM. To find these 

patterns we clustered the paths that students took through the 

HMM. To cluster the paths we ran the K-Means algorithm over 

the space of HMM, using a method developed by Smyth [24]. For 

each student we constructed a HMM to represent their state 

transitions—these per student models also incorporated prior 

probabilities based on the HMM developed using data from the 

whole class. We measured dissimilarity between two students as 

the symmetric (i.e., averaged) probability that student A’s 

trajectory could be produced by student B’s HMM and vice versa. 

Using this distance measure, we then clustered all the student 

paths to create groupings of students based on the characteristics 

of their entire development path for the assignment.  

5. RESULTS 
Clustering on a sample of 2000 random snapshots from the 

training set returned a group of well-defined snapshot clusters 

(see Figure 2). The value of K that maximized silhouette score (a 

measure of how natural the clustering was) was 26 clusters. A 

visual inspection of these clusters confirmed that snapshots which 

clustered together were functionally similar pieces of code.  

When we repeated this process with a different set of random 

snapshots, 25 of the 27 clusters were the same, indicating that the 

results were quite stable and that the patterns found were not due 

to chance. Moreover, a manual examination of the states of the 

induced HMM revealed that they made intuitive sense. The class-

wide state machine showed that there were several ―sink‖ 

states—milestones where the students clearly had serious 

functional problems. Interestingly, once a student transitioned to 

such a state, the student had a high probability of remaining there 

through several code updates. For each ―sink‖ state, the state 

machine showed how significant the sink state was and what 

transition most students took to get out of that state. Such 

revelations can be quite useful for determining how to 

appropriately aid students who may have encountered significant 

difficulties in programming an assignment, as revealed by the 

trajectory taken in the student's development path. 

In addition to finding patterns in students' development progress, 

which can be indicative of a student's need for help (and the 



means for providing such help), we also wanted to determine the 

predictive power of such data mining in the early identification of 

students who may have more difficulty with computing generally. 

To this end, we sought to measure the extent to which student 

development trajectories on their first assignment in the course 

could be used to determine the performance of those students on 

the midterm exam (generally 3 to 4 weeks later in the term). 

 
Figure 2. Dissimilarity matrix for clustering of 2000 

snapshots. Each row and column in the matrix represents a 

snapshot and the entry at row i, column j represents how 

similar snapshot i and j are (dark means more similar) 

 

Figure 3. Visualization of finite state machines for Alpha and 

Gamma clusters of students. 

Table 2. Delineation of Alpha, Beta and Gamma clusters 

Metric Alpha Beta Gamma 

Num Students 

(count) 
84 108 46 

Midterm score 

(percent) 

µ = 73.3,  

σ = 20.0 

µ = 71.4, 

σ = 26.2 

µ = 65.4, 

σ = 23.2 

Time 

(days) 
µ = 8.2, 

 σ = 2.0 

µ = 9.1, 

σ = 1.8 

µ = 9.3, 

σ = 1.9 

Karel score 

(percent) 
µ = 91.2,         

σ = 7.0 

µ = 88.6,  

σ = 6.9 

µ = 88.3,  

σ = 7.6 

We clustered students' development paths into three groups (see 

Table 2), hereafter referred to as alpha, beta and gamma. The 

group that a student was clustered into was indeed predictive of 

the student's midterm grade. The distinction between the alpha 

and gamma groups was particularly large, having a mean midterm 

score difference of 7.9%. The difference in midterm performance 

between the alpha and gamma groups is statistically significant, 

yielding a p value of 0.04 using a two-tailed t-test.  

A visualization of the finite state machine for the alpha group 

versus that for the gamma group (Figure 3) shows that there are 

clear differences in both the types of states that the two groups 

visit and the pattern of how students transition between states. 

Qualitatively, the gamma group can be described as getting stuck 

into several sink states and then making a direct transition from a 

semi-working program to a fully functional program. The alpha 

group seems to make smaller but steadily positively accretive 

steps towards the solution.  

Seeking to understand the generality of such models in their 

application to future (out of sample) students, we classified the 

students who took the class in the summer quarter into the alpha, 

beta and gamma groups, which were induced from students 

taking the class during the prior quarter. The alpha group (N = 

30) had midterm scores µ = 69.7, σ = 14.1 and the gamma group 

(N = 42) had midterm scores µ = 63.3, σ = 15.4. Again, we found 

a statistically significant difference between the mean midterm 

scores of these groups as a two-tailed t-test yielded a p value of 

0.08. This result shows that the induced models are quite robust, 

as they capture patterns in development paths that are not specific 

to a single class of students, but generalize across student 

development behavior between classes (that also had different 

instructors). We believe this generality of the induced models has 

the potential to not only provide predictive capability in helping 

address student difficulties in programming, but also yielding 

deeper insights regarding fundamental misunderstandings of 

programming that transcend the details of one particular class. 

We used the same algorithm, with the AST dissimilarity metric 

instead of the API dissimilarity metric, to build a model of how 

students progressed through Breakout. Interestingly there was a 

more articulated trajectory that most students followed—this 

could be as a result of clear objectives laid out in the assignment 

handout or it could reflect that the students at this point in the 

course are more mature programmers. Clustering of the paths that 

students took through the assignment resulted in two groups of 

students that had a 6.9 difference of means for their midterm 

scores, with a student TTest score of 0.06. Since the Breakout 

samples were collected in a different quarter than the Karel 

samples, we could not test the extent to which the groups of 

students discovered through analyzing in breakout correlated to 

the groups of students discovered through the Karel assignment. 

6. DISCUSSION 
The process of building the Karel state machine provided several 

pedagogical insights into the introductory computer science class. 

We found that by analyzing students' development paths, rather 

than simply their final grade, on an assignment, we discovered a 

higher correlation with students' understanding of the material, as 

reflected by their midterm scores. We believe the underlying 

reason for this phenomenon is that there is greater variability in 

student development paths than their final program outcomes. 

The development path provides important information regarding 

students' understanding of concepts beyond simply their final 

product. We seek to explore this issue in further work to better 

understand the degree to which data from student development 

paths reflects measurable understanding of programming 

concepts. We believe this line of investigation is not only quite 



promising with respect to providing a data-driven methodology 

for improving programming instruction and pedagogy, but also 

for gaining deeper insight into learning in general.  

The success of the model also implies more subtle insights. The 

construction of the Karel state machine relied on two substantial 

assumptions: that a dynamic time-warped commit reflected a unit 

of work and that in generating the state transitions the future is 

independent of the past given the present. Building the 

assignment state machine based on these assumptions does not 

prove the assumptions are correct. It does demonstrate a tractable 

scheme for model construction that is fine-grained enough to 

capture important trends while not providing enough degrees of 

freedom in the model to overfit the training data.  

Our results also show the generality of patterns found in student 

programming paths. For example, we analyzed programming 

paths by students in CS1 in two different quarters, taught by 

different instructors, yet observed similar patterns of student 

development paths in both courses. Such observations lead us to 

believe that there are further insights regarding program 

development that can be gleaned from our models. Moreover, this 

generality indicates that such models may be more broadly 

applicable as a means for predicting the sorts of interventions that 

would most benefit novice programmers and provide guidance as 

to when such interventions would be useful to provide. As 

reflected in our empirical results showing the correlation between 

development paths from the first assignment in CS1 and students' 

midterm scores, we believe that these models can be successful 

for identifying students in need of early intervention.  

This model could potentially provide further insight into whether 

or not students need interventions, as many schools offer various 

open and closed laboratory opportunities to students who may 

need help. By understanding what students have tried and their 

projected path, this model provides an indication whether 

students need help at the time that they seek it, or if a student 

should ponder the problem a bit more without external help. 
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