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Appearance Reproduction

Figure 1: We take an high-dynamic-range image and predict perceptual lightness, colorfulness, and hue attributes. Based on these attributes,
we can reproduce the perceptual appearance of the original image on different media, such as a low-dynamic-range display.

Abstract

Display technology is advancing quickly with peak luminance
increasing significantly, enabling high-dynamic-range displays.
However, perceptual color appearance under extended luminance
levels has not been studied, mainly due to the unavailability of psy-
chophysical data. Therefore, we conduct a psychophysical study in
order to acquire appearance data for many different luminance lev-
els (up to 16,860 cd/m2) covering most of the dynamic range of the
human visual system. These experimental data allow us to quantify
human color perception under extended luminance levels, yielding
a generalized color appearance model. Our proposed appearance
model is efficient, accurate and invertible. It can be used to adapt
the tone and color of images to different dynamic ranges for cross-
media reproduction while maintaining appearance that is close to
human perception.

Keywords: color appearance, psychophysics, color reproduction.

1 Introduction

Color is caused by the spectral characteristics of reflected or emitted
radiance, which makes it seemingly easy to understand as a phys-
ical quantity. However, color is really a perceptual quantity that
occurs in one’s mind, and not in the world. Therefore, the physical
spectrum is commonly decomposed into perceptual quantities using
physiological and psychophysical measurements that try to quantify
the human visual system; e.g., the CIE 1931 standard colorimet-
ric observation [CIE 1986]. Such color spaces commonly try to
ensure that equal scale intervals between stimuli represent approx-
imately equally perceived differences in the attributes considered.
Color appearance models (CAMs) additionally try to model how
the human visual system perceives colors under different lighting
conditions, e.g., against different backgrounds.

Many of the psychophysical measurements necessary for CAMs
have been conducted in recent decades. Unfortunately, available
data are geared towards the perceptual appearance of reflective
photographic images and backlit advertisements, which generally
have low luminance levels. For instance, the LUTCHI appearance

experiments [Luo et al. 1993] were carried out with luminances
mainly under about 690 cd/m2 — except for only four color sam-
ples between 1000 and 1280 cd/m2. Perceptual color attributes of
recent color appearance models [CIE 1998; Moroney et al. 2002]
are mainly derived from this data set and, as a result, are geared
towards low luminance levels. However, with the recent advent of
high-dynamic-range (HDR) images and very bright displays [Seet-
zen et al. 2004], a generalized color appearance model is much
needed. But without the appropriate psychophysical data, no such
model can be derived.

Our goal is to derive such a generalized model of human color
vision, which predicts perceptual color appearance under extended
luminance levels (from low photopic levels to very high levels). We
have therefore conducted a new set of psychophysical experiments
in order to measure perceptual attributes of the color appearance
for much higher levels of luminance (up to about 16,860 cd/m2,
corresponding to white paper in noon sunlight) using a specially
designed high-luminance display. This allows us to derive a new
generalized color appearance model that models the photopic vi-
sual response range and which adapts to different dynamic levels.
In contrast to previous CAMs, our model is simple and yet achieves
a significantly higher prediction accuracy.

Our main contributions are:
• the psychophysical measurement of color perception under ex-

tended luminance levels, and
• a generalized color appearance model for extended luminance

levels.

2 Background on Color Appearance

Müller’s zone theory of trichromatic vision [Müller 1930] is com-
monly used as a basis for deriving computational models of hu-
man vision. It describes how the combined effect of retina, neu-
rons, nerve fibers, and the visual cortex constitutes color perception
(Fig. 2). We will briefly outline the theory here, before moving on
to color appearance models.

2.1 Zone Theory

The retina features cones and rods with different spectral sensitiv-
ity. Long (L), middle (M), and short (S) cones are stimulated by
approximately red, green, and blue wavelengths respectively, while
the rods have achromatic sensitivity. The ratio of the numbers of the
three cone types varies significantly among humans [Carroll et al.
2002], but on average it can be estimated as 40:20:1 (L:M:S).

2.1.1 Cone Adaptation

In the first stage of the visual system, the eye adapts to the ob-
served brightness level. Two adaptation mechanisms control the
effective cone response. The pupil changes size and controls the
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Figure 2: Schematic illustration of human color vision based on
the zone model [Müller 1930]. Light enters through the pupil and
stimulates cones and rods. The given stimulus is sensed by long-
and middle-wave cones in the fovea, and short-wave cones and
rods outside the fovea (a). The strengths of the four responses are
combined to yield achromatic brightness, and the ratio and strength
of the C1 (L − M) channel and the combined C2 (M − S) and C3
(S − L) channels yield the hue and colorfulness sensations. The
signals travel along the nerve fiber, are merged into one image, and
causes the final visual sensation at the visual cortex (c).

amount of light reaching the retina to a limited extent. In addi-
tion to physical adaptation, the retina itself adapts physiologically.
Based on measurements of cone responses of primates under vary-
ing (flashed) incident retinal light levels I of up to 106 td (Troland
units: luminance in cd/m2

× pupil area in mm2), Valenton and Nor-
ren [1983] found that the response satisfies the Michaelis-Menten
equation [Michaelis and Menten 1913] (Eq. 1), effectively com-
pressing the response. Normalizing the cone response V by the
maximum physiological cone response Vm, they derive a general
response function:

V

Vm

=
In

In + σn
, (1)

where n was found to be 0.74 and σ was found to depend directly
on the adaptation luminance (varying from 3.5 to 6.3 log td), which
shifts the response curve along the intensity axis, see Fig. 3.

In contrast, Boynton and Whitten [1970] assume σ to be con-
stant and that all sensitivity loss is caused by response compression
and pigment bleaching, which is the basis of many CAMs, such
as Hunt94, CIECAM97s, and CIECAM02 [Hunt 1994; CIE 1998;
Moroney et al. 2002]; however, we will demonstrate that for accu-
rate prediction of lightness, σ should be allowed to vary.

Humans perceive object colors as constant under different illu-
mination; this effect is called color constancy. It is believed that the
underlying mechanism is caused by a slightly different adaptation
of each cone type but the details are still debated. It may even be a
combination of cone adaptation and processing in the cortex.

2.1.2 Trichromatic Vision

According to the zone theory, the cones’ and rods’ responses are
transformed into three neural signals, which are passed along the
nerve fibers. A weighted combination of the three cone- and rod-
response yields one achromatic signal A that is perceived as bright-
ness. Color information is transformed in the form of two difference
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Figure 3: Cone response (V ) vs. intensity (log I) curves in the
presence of adapting background illumination from dark adapted
luminance (DA) to brighter adaptation luminances (2, 3, 4, 5, and
6 log td). Adapted from [Valeton and van Norren 1983].

signals: the red/green opponent color attribute is the difference of
the L and M cone sensations, C1 = L − M; the yellow/blue oppo-
nent color attribute is the difference of the two difference signals
C2 = M − S and C3 = S − L, that is, C2 − C3. The ratio of C1
and C2 − C3 causes a hue sensation in our visual cortex, and their
strength conveys colorfulness.

Brightness, hue, and colorfulness are the fundamental attributes
of color sensation. They can be used to derive relative quantities
that model human color perception. The ratio of a surface’s bright-
ness A and the brightness An of the reference white defines the
lightness sensation [Land and McCann 1971]. Setting a surface’s
colorfulness in proportion to the reference brightness An yields
chroma. Similarly, comparing a surface’s colorfulness to its own
brightness level provides the saturation sensation.

2.2 Color Appearance Models

A color appearance model (CAM) is a numerical model of the hu-
man color vision mechanism. Common CAMs largely follow the
zone theory by modeling human color vision as a four-stage proce-
dure, shown in Fig. 4, comprising chromatic adaptation, dynamic
cone adaptation, achromatic/opponent color decomposition, and
computation of perceptual attribute correlates. Generally, CAMs
take tristimulus XY Z values (of the color to be perceived) and
parameters of the viewing condition to yield perceptual attributes
predicting the perceived color (commonly lightness, chroma, and
hue). CAMs mostly differ in the specific functions that transform
color quantities across these four stages, the quality of their pre-
diction, and the different viewing conditions that can be modeled.
Popular models are the simple CIELAB model, RLAB [Fairchild
2005], Hunt94 [Hunt 1994], CIECAM97s [CIE 1998], up to the
recent and currently widely accepted CIECAM02 [Moroney et al.
2002].

3 Related Work

Color Appearance Models Many different color appearance mod-
els have been proposed over the years. We will briefly review com-
mon ones. CIECAM02 [Moroney et al. 2002] is considered one of
the most complete and accurate color appearance models. It follows
the zone theory closely. First, chromatic adaptation is performed
using CIECAT02, which supports varying degrees of adaptation.
The resulting white-adapted XY Z values are then normalized. The
cone response is modeled using Eq. 1, but with a fixed σ , which
causes the response to be similar to a power function. The oppo-
nent color decomposition follows Section 2.1.2 closely. The final
attributes include lightness, brightness, chroma, colorfulness, hue
and saturation. CIECAM02 can model different surroundings and
adaptation levels. Generally, its performance is good. However, as
we will see, it has difficulties with higher luminance levels, both
in terms of colorfulness as well as lightness. We partially attribute
this to the fact that input XY Z values are normalized, which seems
to lose important information.

CIECAM97s [CIE 1998] is similar in spirit to CIECAM02 but
is much more complex. Its practical applicability is limited since,
for instance, the color appearance transform is non-invertible and
the prediction of saturation is problematic. CIECAM02 is in many
respects its simpler but more powerful successor.

CIELAB is a very simple color appearance model that is purely
based on XY Z tristimulus values. Chromatic adaptation is per-
formed by dividing XY Z values by normalized white point values
XY Zw, and the cone response is modeled as a cube root in Y . Only
lightness, chroma, and hue are predicted. It does not model any
adaptation to different backgrounds or surround changes. Despite
these simplifications, it still performs well.

RLAB [Fairchild 2005] is an improved version of CIELAB in
that it models different viewing conditions. In particular, it supports
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Figure 4: Color appearance models roughly follow these four stages. First, the incoming spectrum, sampled as an XY Z triple, is transformed
for chromatic adaptation. This is usually done in a specialized color space (though not always). Then, the white-adapted XY Zc is transformed
into the cone color space, where a cone-response function is applied (commonly a power or hyperbolic function). After that, the signal is
decomposed in the achromatic channel A and the color opponent channels a and b. The perceptual correlates are based on these three
channels. This is where color appearance models differ most, as a large range of functions are applied to yield perceptual values.

different media and different surround conditions. Chromatic adap-
tation is performed in LMS cone color space, but color attributes
are still computed from white-adapted XY Z values.

Perceptual Experiments Most color appearance models are based
on the LUTCHI experimental data [Luo et al. 1991]. The goal was
to quantify color appearance on different media and under different
viewing conditions to form a rigorous basis for the development
of color appearance models. For each medium (eight different
ones, from CRT to transparencies) and viewing condition (different
background levels, peak luminance, etc.), observers were presented
with many color patches. For each patch, the observers estimated
the patch’s lightness (relative to reference white), its hue, and its
colorfulness. In addition, actual physical measurements of each
patch were collected. This experimental data enables the derivation
of a mapping from physical measurements to perceptual estimates,
which constitutes a color appearance model. While the LUTCHI
experiment comprises a large variety of media and viewing condi-
tions, it was geared towards low luminance levels with most exper-
iments carried out under 690 cd/m2.

Tone Mapping Tone mapping is related to color appearance mod-
eling as it tries to preserve the perception of an image after remap-
ping to a low-luminance display; however, generally only tone
(and not colorfulness) is considered. Early work applied a global
curve to a high-dynamic-range image [Ward 1994; Tumblin and
Rushmeier 1993], whereas later work allows for spatial variation
[Reinhard et al. 2002; Durand and Dorsey 2002]. Commonly, tone-
mapping algorithms only modify lightness while keeping the color
channels untouched (e.g., in CIEYxy only Y is modified), which
may lead to perceptually flawed color reproduction (washed out
colors), as has been recently shown [Mantiuk et al. 2009]. Man-
tiuk et al. [2009] demonstrate how to improve color reproduction
in tone mapping, based on psychophysical experiments. Akyüz and
Reinhard [2006] propose to combine parts of the CIECAM02 color
appearance model with tone mapping, in order to yield a better
color reproduction. However, tone compression was still performed
only on luminance (Y in the Y xy domain). In contrast, our CAM can
be used to keep the perceived colorfulness and hue of color samples
as close to the original as possible during tone-mapping.

Image Appearance Advanced models exist that try to combine
CAM with spatial vision. Ferwerda et al. [1996] proposed a com-
putational model of human vision that includes spatial adaptation.
It was mainly based on previous threshold experiments; accurate
color perception was not modeled. Pattanaik et al. [1998] improved
on these results using a multiscale model of adaptation and spatial
vision, combined with a simplified version of CIECAM97s. John-
son and Kuang et al. [2003; 2007] introduced an image appearance
model, which is essentially a combination of CIECAM02 with tone
mapping [Durand and Dorsey 2002]. It produces reasonable re-
sults, however CIECAM02 has difficulty at predicting high-level
luminances, as mentioned before. Our aim is not to derive a full

image appearance model; instead, we want to derive a pure CAM
that enables accurate prediction of color perception.

4 Psychophysical Experiments

In order to quantify actual perceptual color appearance, we have
conducted a magnitude estimation experiment. Observers are suc-
cessively presented with a large number of colored patches, for
which they have to estimate lightness, hue, and colorfulness values.
Across different phases of the experiment, parameters influencing
the estimates are changed: background level, luminance (and color
temperature) of the reference white, as well as ambient luminance.
We designed our psychophysical experiment in a similar way to
the LUTCHI experiment, which allows us to leverage their existing
data. However, our experiment differs from LUTCHI by including
high luminance levels of up to 16,860 cd/m2.

4.1 High-Luminance Display

In order to span an extended range of luminance levels, we built
a custom display device which is capable of delivering up to ap-
proximately 30,000 cd/m2, see Fig. 5. The setup consists of a light
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Figure 5: Left: The high-luminance display with LCD unit (ex-
changeable for transparencies on a diffuser) and empty filter slot.
Top Right: Schematic of the filter unit. Bottom Right: LCD and
transparency viewing pattern observed by a participant.

box, powered by two 400 W HMI bulbs, transmitting light through
a filter ensemble followed by either a 19′′ LCD panel (original back-
light removed), or a diffuser onto which transparencies are placed.
The light source spectrum conveniently resembles fluorescent back-
lights, with a color temperature of 6500 K. Moreover, HMI bulbs
stay cool enough to keep the LCD panel from overheating.
Light Source Color Temperature We can modify the color tem-
perature of our light source by placing Rosco temperature-changing
filters inside the light box. Our experiments use 2000 K, 6500 K,
and 8000 K with the LCD, and 6000 K with transparencies.
Luminance Level Peak luminance (and with it the luminance of
the reference white, as well as of all color samples) is controlled
by placing additional neutral density (ND) filters into the light box



(which preserves amplitude resolution). Combination of different
ND filters creates the peak luminances of approximately 50, 125,
500, 1000, 2200, 8500, and 16860 cd/m2 used in our experiment.
Display Options When used with the LCD, the maximum dis-
playable luminance is 2,250 cd/m2 (similar to the Dolby HDR dis-
play [Dolby 2008]), with a contrast ratio of about 1:1000. Owing
to the 8-bit LCD, the amplitude resolution is only 256 steps (less
than for a real HDR display [Seetzen et al. 2006]). However, this is
not critical, as the experiment only requires sparse sampling of the
color space. For transparencies, the maximum luminance reaches
30,000 cd/m2, with virtually arbitrary contrast and amplitude reso-
lution.
Calibration Using a Specbos Jeti 1200 spectroradiometer, we
color-calibrated the LCD version of our display. We further mea-
sured the spectra of all displayed color patches (LCD and trans-
parencies), as well as background and reference white. The refer-
ence white was re-measured at the beginning and at the end of each
day to ensure repeatability. Over the two-week period of our exper-
iments, we recorded only an insignificant variation of about 3% in
luminance and a 1% decrease in color temperature.

4.2 Stimuli

The basic setup for our perceptual measurements is adapted from
the LT phases (cut-sheet transparencies) of LUTCHI [1993]. A
participant is asked to look at a color patch, presented next to a
reference white patch and a reference colorfulness patch (with a
colorfulness of 40 and lightness of 40), as shown in the center of
Fig. 6a. The viewing pattern is observed at 60 cm distance, normal
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Figure 6: (a) Viewing pattern observed by participants. (b) Color
coordinates of the 40 LCD and transparency patches (CIE u′v′).

to the line of sight, such that each of the roughly 2×2 cm2 patches
covers about 2◦, and the whole display about 50◦ of the field of
view. The background is black or gray, with 32 random decorating
colors at the boundary, mimicking a real viewing environment. We
selected a total of 40 color patches as stimuli, carefully chosen to
provide a good sampling of the available color gamut and to pro-
vide a roughly uniform luminance sampling. Figure 6b shows the
distribution of these 40 patch colors for each device. The sets for
the LCD and transparency setup are different, as it is neither easy
to match their spectra nor necessary for the experiment.

Since the perception of lightness, colorfulness, and hue is
strongly correlated with parameters such as luminance range, ref-
erence white, background level, and surround condition [Stevens
and Stevens 1963; CIE 1981; Luo et al. 1991; Luo and Hunt
1998; Hunt et al. 2003], our study explores relevant slices of this
high-dimensional space. We partition the experiment into different
phases, with a specific set of parameters in each phase (see Table 1).
We primarily focus on the influence of luminance range and back-
ground level on color perception as these two dimensions are known
to have the strongest perceptual influence [Luo et al. 1991]. We per-
formed experiments up to a peak luminance of 16,860 cd/m2; higher
luminance levels were abandoned as too uncomfortable for the par-
ticipants. As previous color experiments have already covered low
luminance, we conducted only a few low-luminance experiments
(phases 1–5 in Table 1) to verify consistency.

Phase Light Type Peak Lumin. Backgrnd. Ambient
1 5935K LCD 44 cd/m2 24% dark
2 6265K LCD 123 cd/m2 21% dark
3 6265K LCD 494 cd/m2 0% dark
4 6265K LCD 521 cd/m2 24% dark
5 6197K LCD 563 cd/m2 87% dark
6 6197K LCD 1,067 cd/m2 0% dark
7 6197K LCD 1,051 cd/m2 22% dark
8 6390K LCD 2,176 cd/m2 0% dark
9 6392K LCD 2,189 cd/m2 12% dark

10 6391K LCD 2,196 cd/m2 23% dark
11 6387K LCD 2,205 cd/m2 55% dark
12 6388K LCD 2,241 cd/m2 95% dark
13 7941K LCD 1,274 cd/m2 21% dark
14 1803K LCD 1,233 cd/m2 19% dark
15 6391K LCD 2,201 cd/m2 23% average
16 5823K Trans. 8,519 cd/m2 6% dark
17 5823K Trans. 8,458 cd/m2 21% dark
18 5921K Trans. 16,860 cd/m2 5% dark
19 5937K Trans. 16,400 cd/m2 22% dark

Table 1: Summary of the 19 phases of our experiment. In each
phase, 40 color samples are shown. Each participant made a total
of 2,280 estimations, which took around 10 hours per participant.

4.3 Experimental Procedure

A crucial point of psychophysical measurements through magni-
tude estimation is that each observer clearly understands the per-
ceptual attributes being judged. Each observer completed a 3-hour
training session with the actual viewing pattern (using a different
set of color patches) to develop a consistent scale for each of the re-
quired perceptual attributes (lightness, colorfulness, and hue). For
data compatibility, the same scaling unit and instructions were used
as for the LUTCHI dataset [Luo et al. 1993]. We employed six fully
trained expert observers, all of whom were research staff from our
institution, who had passed the Ishihara and City University vision
tests for normal color vision. Each observer spent around 10 hours
on the experiment, usually distributed over two days.

At the beginning of each phase, observers spent about 5–30 min-
utes adapting to the viewing conditions. Then, each color sample
was shown in a random order and the participants had to estimate
three perceptual attributes: lightness, for which observers used a
fixed scale from 0 (imaginary black) to 100 (reference white); hue,
where observers were asked to produce a number indicating the
hue using neighboring combinations among four primaries — red-
yellow (0–100), 100–200 (yellow-green), 200–300 (green-blue),
300–400 (blue-red); and colorfulness, where observers used their
own open scale, with 0 being neutral and 40 equaling the anchor
colorfulness. The participants entered the data using a keyboard.
After each phase, participants were asked to judge the colorfulness
of the reference colorfulness patch of the next phase relative to the
previous one in order to allow inter-phase data analysis.

4.3.1 Discussion

The reference colorfulness patches were chosen to have a color-
fulness of 40 according to the CIELAB color space. It should
be noted that the reference colorfulness is only meant to anchor
the estimates, and as such any color or any value can be chosen.
As mentioned above, participants were asked to rate inter-phase
colorfulness changes with a memory experiment. The results are
implicitly shown in Fig. 7, where (a) and (b) plot the average col-
orfulness for different phases. The change in colorfulness between
phases stems from this experiment.

It should be mentioned that there are some distinct differences to
previous experiments. The LUTCHI data set was geared towards
reflective surfaces and low-luminance conditions — no data are
available for extended luminance levels. As a result, CAMs derived
only from LUTCHI cannot robustly model color appearance under
higher luminance levels. For instance, this can be seen in Fig. 14.



4.4 Data Analysis

For lightness and hue estimates, all observers had to use the same
numerical scale with fixed end points. This forced the observers
to use a partition technique rather than pure magnitude estimation
[Stevens 1971]. Consequently, we can compute the arithmetic mean
between all observers. Note that for hue, the scale is circular and
care needs to be taken when averaging. For colorfulness scaling, the
observers applied their own arbitrary scale (pure magnitude estima-
tion [Bartleson 1979; Pointer 1980]). According to Stevens [1971],
the appropriate central tendency measure for magnitude estimation
is the geometric mean, but only after relating the observers’ re-
sponses to each other (since observers use their individual scales).
We follow the same procedure as Luo et al. [1991] and map each
observer’s responses to the mean observer.

The coefficient of variation (CV), i.e., the RMS error with re-
spect to the mean, was mainly used as a statistical measure to in-
vestigate the agreement between any two sets of data.

4.5 Findings

Before describing our model, we will summarize important findings
and trends observed in our data. The average perceived lightness
increases with increased peak luminance (fixed background ratio),
see Fig. 7a. We note that the perceived lightness of the medium-
light colors (not dark, not bright) mainly increases, which can be
seen in Fig. 7c (plot of lightness with respect to CIELAB L* val-
ues). This means that the shape of the perceived lightness curve
changes. In contrast, when the background luminance level in-
creases (Fig. 7b), the average perceived lightness decreases (mainly
dark and medium-light colors), as shown by Bartleson and Brene-
man [1967].

Colorfulness shows a similar trend. At higher luminance levels
perceived colorfulness increases (Fig. 7a and d), which is known
as the Hunt effect [Hunt 2004]. Further, colorfulness decreases
when background luminance increases (Fig. 7b), which was also
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Figure 7: (a) Lightness and colorfulness perception for different
luminance levels (phases 1, 2, 4, 7, and 10). (b) Lightness and col-
orfulness perception for different background levels (phases 9–12).
(c) Qualitative comparison of lightness at two different luminance
levels. (d) Qualitative comparison of colorfulness at two different
luminance levels. We plot the perceived values of the 40 patches
in (c) and (d) against CIELAB L* and C* of the physical measure-
ments, as it shows their variation clearly; other choices (such as
plotting against physical luminance) lead to the same conclusions.

indicated by the observers in post-experiment interviews. This was
not found in the first LUTCHI experiment (low luminance levels)
[Luo et al. 1991], but a similar effect was reported later on [Luo
et al. 1993].

Hue is very constant with regard to variation in luminance, back-
ground, and surround, which is consistent with previous data.

Most of our findings are consistent with the LUTCHI dataset,
and similar trends can be observed in both datasets. Additionally,
the LUTCHI dataset indicates that lightness perception is media-
dependent: darker colors appear lighter on luminous displays (e.g.,
LCD) than on reflective media (e.g., paper) [Luo et al. 1993].

Three observers repeated two phases of the original experiment
in order to judge repeatability. The average CV between the two ex-
periments was 11.83% for lightness, 22.82% for colorfulness, and
11.42% for hue. This is consistent with previous experiments and
with participants’ comments that colorfulness is difficult to judge.

5 High-Luminance Color Appearance Model

We propose a new color appearance model that closely follows
the zone theory in order to perform well under high-luminance
conditions. The model consists of three main components: chro-
matic adaptation, cone responses, and cortex responses for each
perceptual color attributes. It aims to accurately predict lightness,
colorfulness and hue, including the Hunt effect (colorfulness in-
creases with luminance levels), the Stevens effect (lightness con-
trast changes with different luminance levels), and simultaneous
contrast (lightness and colorfulness changes with background lu-
minance levels). Additional correlates of brightness, chroma, and
saturation will be derived as well.

5.1 Chromatic Adaptation

Humans perceive object colors as constant under different illumina-
tion (color constancy). This is commonly simulated using models
of chromatic adaptation [Li et al. 2002]. As the focus of our ex-
periments was not on chromatic adaptation, we simply adopt the
CIECAT02 chromatic adaptation transform [Moroney et al. 2002]
that has been shown to work well. It takes the incident (absolute)
XY ZD50 values and transforms them to new XY ZC values, account-
ing for chromatic adaptation based on the reference white. It is
important to note that, in contrast to previous models, we do not
normalize the signal but keep its absolute scale; i.e., the white-
adapted XY ZC has the same luminance as the original XY Z.

5.2 Cone Response

The physiological experiments by Valenton and Norren [1983]
demonstrate that the cone response of primates follows a sigmoidal
curve, which is influenced by the level of adaptation of the eye.
There are good reasons to believe that the cones of human eyes
respond in a very similar manner. Tristimulus values are first trans-
formed into LMS cone space using the Hunt-Pointer-Estévez (HPE)
transform [Estévez 1979]. We then model the cones’ absolute re-
sponses according to Eq. 1:

L′ =
Lnc

Lnc + L
nc
a

, M′ =
Mnc

Mnc + L
nc
a

, S′ =
Snc

Snc + L
nc
a

. (2)

We have only replaced the σ from the original equation (where it
was given in Troland units) with the absolute level of adaptation La

measured in cd/m2 (both units are related almost linearly for the
working range of the adaptation level). The adaptation level should
ideally be the average luminance of the 10◦ viewing field (it serves
as an input parameter to our model). The parameter nc is known
only for primates, hence we have derived it from our experimental
data as nc = 0.57.



5.3 Achromatic Attributes

The cone response then is converted into an achromatic signal A by
averaging the contribution of each type of cone. The actual weight-
ing between the three cone responses is not known exactly, but is
generally believed to be 40:20:1 [Vos and Walraven 1971]. The
signal A is then defined as:

A = (40L′ + 20M′ + S′)/61. (3)

Lightness is (very roughly) defined as the ratio between the achro-
matic signal and the achromatic signal of reference white Aw, since
the observer was asked to relate the two. Plotting the ratio A/Aw
against perceived lightness values, yields a consistent inverse sig-
moidal shape. The goal is to yield a 1:1 mapping between predicted
and perceived lightness, which we achieve by applying an inverse
hyperbolic function to yield lightness J′:

J′ = g
( A

Aw

)

, (4)

with

g(x) =

[

−(x − β j)σ
n j

j

x − β j − α j

]1/n j

. (5)

The values of the parameters are derived from our experimental
data, yielding α j = 0.89, β j = 0.24, σ j = 0.65, and n j = 3.65. It is
interesting to note that J′ may yield values below zero, in which
case it should be clamped. This corresponds to the case where
the observer cannot distinguish dark colors from even darker colors
anymore.

As already mentioned before, the perceived lightness values vary
significantly with different media, even though the physical stimuli
are otherwise identical. As with others [Fairchild 2005; Hunt 1994],
we have decided to incorporate these differences explicitly in our
model in order to improve lightness prediction, yielding a media-
dependent lightness value:

J = 100 · [E· (J′ − 1) + 1] , (6)

where the parameter E is different for each medium. A value of
E = 1.0 corresponds to a high-luminance LCD display, transparent
advertising media yield E = 1.2175, CRT displays are E = 1.4572,
and reflective paper is E = 1.7526. These parameters were derived
from the LUTCHI data set as well as ours.

Brightness was not measured in our experiments. However, the
LUTCHI data set contains a few phases with both lightness and
brightness measurements, which indicate that these two properties
have a linear relationship in the log-log domain. We therefore de-
fine brightness as:

Q = J · (Lw)nq . (7)

The parameter is driven from experimental data and yields nq =
0.1308.

5.4 Chromatic Attributes

The eye is believed to compute opponent signals a and b, which
are based on differences between the cone responses. We adopt
previous psychophysical results on how the responses are combined
together [Vos and Walraven 1971], yielding:

a =
1

11
(11 · L′

− 12 · M′ + S′) Redness − Greenness (8)

b =
1
9

(L′ + M′
− 2 · S′) Yellowness − Blueness (9)

Chroma C is the colorfulness judged in proportion to the bright-
ness of reference white, i.e., it should be independent of luminance
Lw. It is commonly based on the magnitude of a and b:

C = αk ·

(

√

a2 + b2
) nk

. (10)

Note that it is only possible to optimize the parameters αk and nk

after modeling colorfulness, for which we have actual perceptual

data. We further know that colorfulness should increase with lu-
minance level (Hunt effect). We found the relationship between
chroma (as defined above) and colorfulness to be linear in the log-
arithm of the reference white luminance Lw:

M = C · (αm log10 Lw + βm). (11)

From this we can derive parameters for colorfulness as well as
chroma based on our data and the constraint that chroma does not
change with luminance: αk = 456.5, nk = 0.62, αm = 0.11, and
βm = 0.61. The other remaining quantity is saturation, which by
definition is the colorfulness relative to its own brightness:

s = 100 ·

√

M

Q
(12)

The hue angle is computed by taking the arctan of a and b:

h =
180

π
tan−1 (b/a) (13)

This hue angle (0◦–360◦) could be used directly as a prediction
of perceived hue, however, perceptual hue quadrature [Moroney
et al. 2002] (H = huequad(h)) has been shown to improve accuracy,
which we adopt in our model as well. We kindly refer the reader to
[Moroney et al. 2002] for the exact formula.

5.5 Inverse Model

For practical applications, it is necessary to be able to invert a
color appearance model; i.e., one needs to derive physical quantities
(absolute XY Z), given perceptual lightness, colorfulness, hue and
viewing parameters as input. For instance, tone-mapping of HDR
images is achieved by first taking an absolute HDR radiance map
(containing physically meaningful XY Z values) and applying the
CAM, which yields perceptual attributes (JMh). These attributes
are then mapped to absolute XY Z for a specific target display and
target viewing condition by applying the inverse model. Finally,
XY Z coordinates are transformed into device-dependent coordi-
nates (e.g., sRGB) for display. Our model is analytically invertible,
see the appendix for details, and can thus be used for tone-mapping
and other practical applications such as cross-media reproduction.

6 Results

The following provides a quantitative analysis of our model.
We have applied our model, as well as CIELAB, RLAB, and
CIECAM02 to our perceptual data.

The main result can be found in Fig. 8. Our prediction in terms
of lightness is very consistent and the CV value is about as large
as the repeatability CV value for a human observer, which indi-
cates that it will be difficult to achieve better lightness prediction
than what our model achieves. Other models achieve a less accu-
rate prediction and, importantly, their prediction quality fluctuates
considerably between phases. Colorfulness is also predicted very
consistently by our model and is generally much better than the
other models. As before, the CV value is similar to the CV value
between two repeated runs of the same experiment. The other mod-
els’ performance varies significantly, not only between models, but
also between phases. Hue is predicted very similarly between all
models, even the simple CIELAB performs well.

It is interesting to look at a particular phase in more detail. Fig-
ure 9 shows plots that detail lightness, colorfulness and hue as
estimated by our model versus the actual perceived values from
our experiment. Our lightness, colorfulness, and hue prediction
are very much along the diagonal, indicating that our model covers
the dominant perceptual phenomena. However, CIECAM02 incor-
rectly estimates lightness yielding values that form a curve off the
diagonal. This effect can be noticed in other phases as well: the
predicted lightness forms a curve instead of a diagonal line as would
be expected.
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Figure 8: We compare all 19 phases of our experiment in terms
of lightness, colorfulness, and hue prediction error (CV error) with
CIELAB, RLAB, and CIECAM02. Our model performs consistently
better than the other models in terms of lightness. Colorfulness pre-
diction is better in almost all cases. Hue prediction is very similar
to the other models, even though CIECAM02 is minimally better at
lower luminances.

We further investigate how our model predicts the data from the
LUTCHI data set. Figure 10 summarizes the result. We ran all
four models on a large number of phases from that dataset (trans-
parency, reflective media (paper), and CRT). Our model outper-
forms the other CAMs in terms of lightness, colorfulness, and hue,
even though the LUTCHI dataset was not the main basis for the
derivation of our model. Once more, our lightness and colorfulness
prediction is very consistent (small standard deviation in CV). Pre-
diction quality of hue varies as much as CIECAM02’s prediction,
which is not surprising as we use the same hue computation.

In Figure 11, we demonstrate media-dependent reproduction.
The left image printed on paper is perceptually equivalent to the
right image displayed on an LCD display (assuming a calibrated
device in dim viewing conditions). If both are viewed on an LCD
display, the left image appears brighter. This is due to the fact that
luminance and colorfulness perception for paper decreases, and our
CAM compensates for it.
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Figure 9: Comparison of the prediction of all 40 samples (es-
timated lightness using our model) for one particular phase
(16,400 cd/m2) against perceived lightness from the user study. It
can be seen that our model achieves very good lightness, colorful-
ness and hue prediction. CIECAM02 is not able to predict lightness
with the same accuracy.
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Figure 10: This figure compares the average CV error (and stan-
dard deviation) of estimated lightness, colorfulness, and hue when
applied to several phases of the LUTCHI dataset. In particular,
we use the transparency phases, reflective media phases, and CRT
phases. Our model achieves the best overall prediction. Further,
the variation in error is rather small for our lightness and colorful-
ness prediction, indicating that our model performs consistently.

Figure 11: Our model can be used to match the color appearance
on different media. Starting from a radiometrically calibrated XY Z
float image [Kim and Kautz 2008], the left image printed on paper
will appear very similar to the right image when displayed on an
LCD (assuming calibrated devices in dim viewing conditions).

Figure 12: The two color charts will appear similar (assuming
calibrated display with a gamma of 2.2 in dim viewing conditions).
When comparing the two images without the backgrounds, it can be
seen that the right color chart is actually lighter and more colorful.

Figure 12 demonstrates that our CAM can be used to match ap-
pearance of images with different backgrounds. The two images
appear identical even though the one on the right is actually lighter
and more colorful. This is achieved by modifying the target adapta-
tion level (white background ≈ higher adaptation luminance) when
applying our CAM.

Figure 13 compares the use of our color appearance model for
tone-mapping with Reinhard et al.’s method [2002] and iCAM06
[Kuang et al. 2007]. Our model’s results are consistent through-
out with good luminance compression. Colors are slightly more
saturated than with the other two models, which is due to our
model preserving the original colorfulness impression but at lower
target luminance levels. Figure 14 compares tone-mapping with
CIECAM02, iCAM06 and our model. As can be seen, CIECAM02
is not designed to handle HDR images.

We have conducted a pilot study, as shown in [Kuang et al. 2007],
letting participants compare the real-world scene from Fig. 14
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1 2 3 4 5 6

Figure 13: Absolute HDR radiance maps are tone-mapped using Reinhard et al.’s tone-mapping algorithm [2002], the iCAM06 image
appearance model [Kuang et al. 2007], and our color appearance model. The target display is assumed to be sRGB with a peak luminance
level of 250 cd/m2 and a gamma of 2.2 (dim viewing conditions, adapting luminance is assumed to be 10% of peak luminance). For Reinhard
et al.’s and our method, we simulate chromatic adaptation as outlined in Section 5.1; iCAM06 uses its own spatially-varying model.

Figure 14: Comparison of perceptual predictions of CIECAM02
(left), iCAM06 (center), and our model (right).

and its reproduction on a low-luminance display (250 cd/m2) us-
ing iCAM06, Reinhard et al., and our model. All 10 participants
consistently ranked our reproduction as closest to reality, Reinhard
et al.’s second, and iCAM06 third.

7 Discussion

Our psychophysical experiment and appearance model focused on
the high-luminance photopic vision rather than dim (mesotopic) or
dark (scotopic) vision, because our research was motivated by the
advent of high-dynamic-range imaging, which deals with higher
levels of luminance.

Our experiment focused on the variation of luminance levels as
well as background luminance. It is interesting to note here that
our model does not take a separate background parameter. Our
model is only driven by the adaptation luminance level (implicitly
containing the background level) and the peak luminance level. In
contrast, CIECAM02 uses the luminance adaptation level and the
background luminance level. Our experiment did not fully inves-
tigate how the surround influences perception at high luminances.
We varied the surround from dark to average for phase 15, but the
influence on the perceived attributes was minimal, as observed in
[Breneman 1977]. Even though our model does not have an ex-
plicit parameter for surround, its effect can be taken into account
by changing the adaptation level accordingly. Furthermore, we did
not fully explore chromatic adaptation, as extensive data is avail-
able from the LUTCHI experiment. We also determine the media-
dependent parameter for paper, CRT, etc. from the LUTCHI data.
Most of the open parameters of our model were fitted using brute-
force numerical optimization (exhaustive search for minimum).

Our model does not perfectly fit the zone theory, but is inspired
by it. This is not an issue, as CAMs are only computational models

of color appearance and as such do not try to describe how human
vision actually works.

8 Conclusion

We have presented a new color appearance model that has been
designed from the ground up to work for an extended luminance
range. As no color perception data was available for high luminance
ranges, we have first conducted a large psychophysical magnitude
experiment to fill this gap. Based on our data, as well as previous
data, we have developed a model that predicts lightness, colorful-
ness and hue at a high accuracy for different luminance ranges,
levels of adaptation, and media. In contrast to other CAMs, our
method works with absolute luminance scales, which we believe
is an important difference and key to achieving good results. We
have demonstrated its usefulness for perceptually-based luminance
compression of images and for cross-media color reproduction.
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Appendix

Inverse model computation:

1. Compute achromatic white point Aw of the target device using Eqs. 2 & 3.

2. Compute brightness Q from lightness J (see Eq. 7): J = Q/(Lw)nq .

3. Compute achromatic signal A from lightness J (see Eqs. 4, 5, & 6)

J′ = (J/100 − 1) /E + 1, A = Aw ·

(

α j ·J
′n j

J′
n j +σ j

n j
+ β j

)

.

4. Compute chroma C from colorfulness M (see Eq. 11)

C = M/(αm · log10Lw + βm).

5. Compute color opponents a & b from chroma C and hue h (see Eqs. 10 & 13)

a = cos(πh/180) · (C/αk)
1/nk , b = sin(πh/180) · (C/αk)

1/nk .

6. Compute cone signals LMS from the achromatic signal A and opponents a & b




L′

M′

S′



 =





1.0000 0.3215 0.2053
1.0000 −0.6351 −0.1860
1.0000 −0.1568 −4.4904









A

a

b



 .

7. Compute cone signals LMS from non-linear cone signals L′M′S′ (see Eq. 2)

L =
(

−Lnc
a · L′

L′
− 1

)1/nc
, M =

(

−Lnc
a · M′

M′
− 1

)1/nc
, S =

(

−Lnc
a · S′

S′ − 1

)1/nc
.

8. Compute tristimulus XY ZD50 from cone signals LMS using the HPE transform.

9. Apply inverse CIECAT02 transform [Moroney et al. 2002] (using target white).


