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ABSTRACT 

This research explored the role that associative learning may play in human sequence 

learning. Two-choice serial reaction time tasks were performed under incidental 

conditions using two different sequences. In both cases an experimental group was 

trained on four sub-sequences: i.e. LLL, LRL, RLR and RRR for Group ‘Same’ and 

LLR, LRR, RLL and RRL for Group ‘Different’, with left and right counterbalanced 

across participants. To control for sequential effects, sequence learning was assayed 

by comparing their performance to a control group, which had been trained on a 

pseudo-random ordering, during a test-phase in which both experimental and control 

groups experienced the same sub-sequences. Participants in both groups showed 

sequence learning, but the group trained on ‘Different’ learned more, and more 

rapidly. This result is the opposite to that predicted by the Augmented SRN used by 

Jones and McLaren (2009), but can be modelled using a re-parameterised version of 

this network that also includes a more realistic representation of the stimulus array, 

suggesting that the latter may be a better model of human sequence learning under 

incidental conditions.   
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Understanding human sequence learning under incidental conditions, whether it involves 1 

learning a sequence of events or a sequence of actions, is key to explaining much of human 2 

and infra-human behavior. In order to learn sequences, people and animals need to cope with 3 

information embedded in a temporal context, adding an extra dimension to the more static 4 

problems typically studied in research on associative learning, and bringing them closer to 5 

those that occur in real situations outside the lab.  This extra complexity also constrains the 6 

modeling of human sequence learning, where it is often addressed by the addition of 7 

recursion to otherwise static models, for example the SRN (Simple Recurrent Network, 8 

Elman, 1990) and the Augmented SRN (Cleeremans & McClelland, 1991).  The question that 9 

this paper addresses is whether or not these models provide adequate accounts of sequence 10 

learning under incidental conditions. 11 

 In the experiment reported here we focus on a very simple task in which sequence 12 

learning is known to occur, even though it is not explicitly required, and is hence often cited 13 

as a situation in which "implicit" learning occurs. This is the variant of the two-choice serial 14 

reaction time (SRT) task recently developed by Jones and McLaren (2009). In this task 15 

participants observe two circle outlines on a screen and are given two response keys, one for 16 

each circle. On each trial one of the circles “fills in” and the participants press the 17 

corresponding key as quickly and accurately as possible. Following this, the circle outlines 18 

reappear for 500 msec before the next trial starts. Trials come rapidly one after the other, and 19 

the experience is of a fast-paced task that emphasises speed and accuracy in reacting to the 20 

stimuli and requires little else. 21 

 In fact, for the experimental groups in this task there is a probabilistic rule governing 22 

the sequence of locations in which the circle appears, knowledge of which could enable 23 

participants to prepare for the stimulus and so increase the speed and accuracy of their 24 

responding. The roles of the two stimulus locations are counter-balanced across participants 25 
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and so henceforth will be referred to as X and Y, rather than right and left. In our previous 26 

work (Jones & McLaren, 2009), we were able to show that the Augmented SRN (Cleeremans 27 

& McClelland, 1991) could successfully model incidental learning of a sequence that 28 

comprised sub-sequences XXX, YYX, XYY, YXY, which follow the rule "if the first two 29 

locations are the same then the third is an X, if they are different then it's a Y".  30 

 In the current experiment we vary the sub-sequences to see if the Augmented SRN 31 

can still model the results.  Thus, one group in this experiment has XXX, YYY, XYX and 32 

YXY as their sub-sequences, which follow the rule that the “third element is the same as the 33 

first”. By concatenating these sub-sequences (e.g. XXXYYYXYX… etc) we can produce a 34 

sequential structure that has the property that two-thirds of the time a trial is the same as the 35 

trial before last. The other group is trained on the complementary set: XXY, YYX, XYY and 36 

YXX, where the rule is that the “third element is different to the first” so that after 37 

concatenation, two-thirds of the time the current trial is different from the trial before last. In 38 

our experiments learning is measured relative to pseudo-random control groups. The controls 39 

experience a mixture of all eight sub-sequences so that the first trial has no predictive value 40 

for the third. Our interest, then, is in comparison of the differences between experimental and 41 

control groups for those participants trained on sequences in which the first trial is different 42 

to the third (Group Different) to those trained on first same as third (Group Same). The factor 43 

of Group, denoting the type of sub-sequences used during training, will be a dummy variable 44 

for the controls; as all of these participants receive the pseudo-random mixture of all eight 45 

sub-sequences throughout. 46 

We are focussing on this comparison because a simple extrapolation from the 47 

empirical results of Jones and McLaren (2009) leads one to predict that Group Different 48 

should have an advantage. This is because the sub-sequences XXX and YYY can be expected 49 

to be very difficult to learn based on these earlier findings, and both these sub-sequences fall 50 
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in Group Same. Intriguingly, when we ran the Augmented SRN on this new experiment with 51 

the same parameters as those used to model Jones and McLaren (2009), the pattern we 52 

obtained was actually the reverse, with Group Same sub-sequences learnt better than Group 53 

Different sub-sequences. Thus evidence-based intuition and the model seem to be in conflict, 54 

and an empirical test was needed to resolve the issue. We will return to a discussion of the 55 

modeling once we have reported the results of our experimental work. 56 

Method 57 

Participants 58 

The study was conducted on 128 participants, randomly divided into four groups (two 59 

experimental and two control). There were 32 participants in each of the two experimental 60 

conditions, and the same number in the two control conditions (both control conditions were 61 

actually treated identically and participants were randomly assigned as the control for one of 62 

the two experimental conditions). The participants were all students at the University of 63 

Exeter, aged from 18 to 35 years old. Additionally, each of the participants was rewarded for 64 

their contribution with £10 at the end of their second session. 65 

Materials 66 

The two-choice SRT task was run on an Apple Mac computer, with the basic display 67 

being one of two white outline circles on a black background. The circles were 1.9cm in 68 

diameter and each was positioned 2.2cm right/left of the middle of the screen, which was 69 

approximately 0.5m from the participant. The stimulus was a white filled circle 1.9cm in 70 

diameter that replaced either the right or left outline circle during the trials. The participants 71 

were instructed to press the “x” key on a QWERTY keyboard if the target stimulus appeared 72 

on the left, and the “.” key if the stimulus appeared on the right. These keys were chosen to 73 

be spatially compatible with the two stimulus locations. 74 

Design 75 
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The experiment consisted of a two-choice SRT task that was conducted over two sessions, 76 

each lasting about an hour. The first session was usually undertaken in the morning, with the 77 

second session typically commencing after a 3 to 4 hour break on the same day. Both 78 

sessions consisted of 20 blocks of 120 trials, with the last five blocks of Session 2 acting as 79 

the test phase. All other blocks acted as training. The blocks for each of the experimental 80 

conditions were constructed by concatenating equal numbers of the relevant sub-sequences, 81 

as already described. Thus, during the training phase of the SRT task, experimental 82 

participants in Group Different were presented with sequences made up of sub-sequences 83 

where the location of the third trial was opposite to the location of the first trial (e.g. XXY). 84 

The rule was different for participants in the experimental condition of Group Same, as in 85 

training they were presented with sequences made up of sub-sequences where the third trial 86 

location was the same as the first trial location (e.g. XYX). During training, participants in 87 

the control conditions experienced pseudo-random blocks, which were created by 88 

concatenating equal numbers of the eight possible triplets in a random order (see Jones & 89 

McLaren, 2009, for further details). Note that, for all the conditions and groups, when the 90 

sub-sequences or triplets were concatenated they formed continuous strings of trials, and 91 

previous evidence suggests that participants do not learn about the special status of the third 92 

trials, but rather learn the contingencies on a trial-by-trial basis (Jones & McLaren, 2009).  93 

When training blocks are considered trial-by-trial, trials consistent with the experimental 94 

groups’ sub-sequences occur two-thirds of the time, with the remaining third of trials being 95 

inconsistent (e.g. in the experimental condition of Group Same, XX is followed by X twice as 96 

often as it is followed by Y). 97 

 For all conditions, the last five blocks of Session 2 acted as the test-phase and 98 

consisted of pseudo-random blocks only. By comparing experimental and control 99 
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performance on what are effectively the same types of sequence, possible confounds due to 100 

sequential effects are controlled for (Jones & McLaren, 2009).  101 

Procedure 102 

 As in Jones and McLaren (2009), the participants were instructed to respond as 103 

quickly as possible whilst avoiding errors. No mention was made of any sequential structure 104 

embedded in the task. On each trial, the stimulus remained on the screen until the participant 105 

had responded or was timed-out for not having pressed a key within 4.25s of the stimulus’ 106 

appearance. RT was measured from the stimulus’ appearance on screen until the computer 107 

detected a key press, and a 500ms Response-Stimulus Interval (RSI) was used. If participants 108 

pressed an incorrect key or were timed-out then the trial terminated and the computer issued a 109 

short ‘beep’ sound. Similarly, if they anticipated a stimulus, that is responded less than 110 

100ms after its onset, then the trial was aborted and a beep sounded. Following each block, 111 

participants experienced a 30 second break during which they were shown their average 112 

reaction time (in milliseconds) and their accuracy (as an error percentage) for the last block. 113 

They were also informed whether these scores were better or worse than those from the 114 

previous block.  115 

Results 116 

For the test-phase data, difference scores were computed by subtracting the mean RTs and 117 

proportion of errors for trials that were consistent with each sub-sequence from the respective 118 

scores for trials that were inconsistent. To illustrate, consider the Group Same, Experimental 119 

Condition sub-sequence XXX.  Any X trial that is preceded by XX (which we will label as an 120 

XXX trial) is consistent with the sub-sequence XXX, while any Y trial that is preceded by 121 

XX  (i.e. XXY) is inconsistent with this sub-sequence. Therefore, the RT difference scores 122 

for sub-sequence XXX were calculated by subtracting the mean RT for XXX trials from the 123 

mean RT for XXY trials, and a similar subtraction gave us an equivalent difference for errors. 124 
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This was done for all experimental sub-sequences, for each group and condition. In the 125 

Control Conditions consistent/inconsistent was a dummy variable that was determined by the 126 

sub-sequences in the paired Experimental Condition.  127 

Because the Experimental Conditions experienced different trial orders to their 128 

respective Control Conditions in training, any difference between the conditions here could 129 

be due to sequential effects (i.e. performance differences on different trial orders) instead of 130 

sequence learning (cf. Soetens, Boer & Hueting, 1985). To minimise this confound, the 131 

method of calculating inconsistent minus consistent training difference scores described by 132 

Jones and McLaren (2009) was employed. Sequential effects of up to order n-3 were 133 

controlled for by equal-weight averaging of the two versions of each sub-sequence that exist 134 

when the n-3 trial is also considered (e.g. the score for XXX is the equal weighted average of 135 

the scores for YXXX and XXXX). Insufficient data meant sequential effects of n-4 and 136 

greater could not be controlled for in this way, but an inspection of our data suggests that n-4 137 

sequential effects are in the order of 1ms (for a more detailed discussion, see Jones & 138 

McLaren, 2009, p. 543). This type of analysis sometimes leads to decreased degrees of 139 

freedom because some participants do not have sufficient data to contribute to all the 140 

analyses. To minimise this, data from pairs of blocks were collapsed; i.e. in the analyses, data 141 

from Blocks 1 and 2 were treated as being from one block. 142 

Our expectation is that, for both training and test, sequence learning should increase 143 

the difference scores of the Experimental Conditions compared to their respective Controls, 144 

because it should increase RT and errors on inconsistent trials and decrease RT and errors on 145 

consistent trials. Figure 1 shows these scores during training and test. We examine the 146 

training data first.  147 

Considering the Control Conditions, the pattern here can be attributed to sequential 148 

effects. The Group Same Control Condition’s scores are positive for both errors and RTs, 149 



 9 

because the Group Same sub-sequences are trial-orders that participants find it relatively easy 150 

to respond to, but note that the Group Same experimental scores are higher still, suggesting 151 

that training on the Group Same sub-sequences has led to sequence learning. The Group 152 

Different Control Condition scores are approximately the mirror image of those for the Group 153 

Same Control Condition, with any (small) deviation from this being attributable to random 154 

variation. Thus, their Inconsistent-Consistent scores are negative, because their sub-155 

sequences are those that participants do not find easy to perform. Once again the 156 

Experimental Condition’s scores are higher than their controls (much higher in the case of 157 

errors) suggesting that training on the Group Different sub-sequences has resulted in 158 

sequence learning. 159 

We can assess the main effect of Condition (Experimental vs. Control) for Group 160 

Same in RTs, F(1, 48) = 68.96, p < .001; and errors, F(1, 57) = 7.97, p < .008; and similarly 161 

for Group Different in RTs, F(1, 48) = 72.93, p < .001; and errors, F(1, 54) = 44.59, p < .001. 162 

In all cases there is good evidence of superior performance in the Experimental conditions, 163 

and the difference between Experimental and Control Conditions increases over blocks in 164 

both groups, further supporting the conclusion that the participants have learned at least some 165 

of the statistical structure of these sequences during the course of training. The interaction 166 

between Condition and Block that supports this assertion is significant in both RTs, F(16, 167 

768) = 5.31, p < .001; and  errors, F(16, 864) = 3.82, p < .001 in Group Different. The same 168 

Condition by Block interaction is also significant in Group Same for RTs, F(16, 768) = 5.93, 169 

p < .001; and errors, F(16, 912) = 1.76,  p < .04. Hence, both groups exhibit reliable learning 170 

of the sequences during our experiment, but the difference between Experimental and Control 171 

Conditions over Blocks also differs for Group Different and Group Same, as the Group by 172 

Condition by Block interaction is significant in the RTs: F(16, 1536) = 1.98, p = .012, (but 173 

not in the errors: F(16, 1776) = .812, p = .67). Inspection of the graphs in Figure 1 suggests 174 



 10 

this reflects the somewhat faster learning in Group Different in Session 1, but not in Session 175 

2. 176 

 The test data are based on performance on the pseudo-random blocks comprising the 177 

last five blocks of the experiment, and are shown on the right of Figure 1. Once again there is 178 

evidence of learning, in that RT differences for both Group Different and Group Same 179 

Experimental participants are significantly higher than controls. Specifically, there is a main 180 

effect of Condition (Experimental vs. Control) in Group Different’s RTs: F(1, 62) = 61.46, p 181 

< .001, and errors: F(1, 62) = 41.08, p < .001; and a main effect of Condition in Group 182 

Same’s RTs: F(1, 62) = 36.39, p < .001; though the error data just fails to reach significance, 183 

F(1, 62) = 3.97, p = .051. Both RTs and errors show numerically better sequence learning 184 

expressed on test for Group Different than Group Same, with a significant interaction 185 

between Condition and Group in the errors: F(1, 124) = 4.76, p = .031; accompanied by a 186 

non-significant trend in the RTs: F(1, 124) = 1.99, p = .16. Using Brown's (1975) procedure 187 

for combining analyses that are not independent, we can generate an overall  for the RT 188 

and error measures of 7.65, with 2.3 df, which has an associated p < .05. Thus, we can 189 

conclude that the participants trained on the Group Different sub-sequences performed better 190 

on test than those trained on the sub-sequences given to Group Same, with no hint of any 191 

speed – accuracy trade-off. 192 

Discussion 193 

Our findings are quite clear and straightforward. Under incidental conditions, 194 

participants trained on the sub-sequences experienced by Group Different, namely XXY, 195 

XYY, YXX, YYX, learn more than those trained on the sub-sequences experienced by Group 196 

Same, i.e. XXX, XYX, YXY, YYY. This results in better performance in a final test phase 197 

that controls for any possible sequential effects by using the same pseudo-random sequences 198 
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for all groups and conditions. The effect is not large, but it is entirely reliable and not 199 

compromised by any issues of speed vs. accuracy.  200 

We are also able to offer some reassurance that our results were indeed obtained 201 

under incidental conditions. By the end of the study, no participants were able to tell us what 202 

the sub-sequences in the experiment were. This fits well with the claims made by Jones and 203 

McLaren (2009) for this paradigm under the same conditions, and reassures us that our 204 

instructions and procedures placed our participants in this experiment on a similar footing to 205 

those in the earlier study. Given this, we can now enquire whether the model that fit the data 206 

in Jones and McLaren (2009), the Augmented SRN (Cleeremans & McClelland, 1991), is 207 

also able to fit these results.  208 

 We attempted to model the experiment using the Augmented SRN with exactly the 209 

parameters given in Jones and McLaren (2009). In this model (shown in Figure 2, please 210 

disregard the two input units at the bottom labelled "Next trial" for this purpose), the two 211 

possible stimulus locations were each assigned an input unit (units labelled "Current trial") 212 

and were activated as appropriate on each trial, following the same sequential structure, 213 

number of trials, blocks and sessions as used for participants. These fed forward to a set of 214 

hidden units, which in turn activated two output units (labelled "Prediction of next trial"), 215 

with the activity of units in both layers determined by the logistic activation function 216 

(Rumelhart, Hinton & Williams, 1986). At the end of each trial, the activations of the hidden 217 

units were copied via one-to-one feedback connections to a set of “context units” on the input 218 

layer (labelled as "Copy of last trial's hidden units"). This recurrence is the essence of 219 

Elman's (1990) SRN architecture. The output units corresponded to the two possible stimulus 220 

locations, and their activation represented the model’s prediction of the identity of the next 221 

trial.  222 



 12 

 The Augmented SRN has a similar architecture to the SRN, but differs in its feed-223 

forward connections. Where the SRN has modifiable network connections driven by a single 224 

learning parameter, the Augmented SRN has two components to these connections, fast and 225 

slow (not shown separately in the figure), which have higher and lower learning rates, 226 

respectively. The fast components also decay by half their value at each time step, a feature 227 

adopted by Cleeremans and McClelland (1991) to help account for the robust short-term 228 

priming effect observed in their data. In addition, the Augmented SRN includes a set of 229 

response units, to capture the effect that responding to the previous trial has on the current 230 

trial, whereas the SRN lacks this component. Cleeremans and McClelland (1991), 231 

Cleeremans (1993) and Jimenez, Mendez, and Cleeremans (1996) have shown that this model 232 

can capture the detailed pattern of SRT data. 233 

Using the stimulus location on the following trial as a training target, the weights 234 

(both fast and slow in the Augmented SRN) determining the strength of each connection 235 

between units were modified according to the back propagation algorithm (Rumelhart, 236 

Hinton & Williams, 1986). As in the simulations conducted by Jones and McLaren (2009), 237 

the networks used had 20 hidden units and a slow learning rate parameter of 0.4, with the fast 238 

weights having a learning rate 1.33 times larger. Thirty-two networks were run in each of the 239 

four cells of the experimental design. The results are shown in the top panels of Figure 3. If 240 

we compare the simulations to the empirical results, then first impressions are that there is 241 

some correspondence, especially given that we have not fit the model to the data by varying 242 

parameters. The Augmented SRN does quite well in predicting the basic pattern during 243 

training, in that Experimental and Control groups are appropriately placed with respect to one 244 

another, and at least some of the trends observed in our data are also present in the 245 

simulations.  246 
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 But the crucial point is that there are areas of significant disagreement between our 247 

data and the model predictions. Most important are those in the test data (top-right panel of 248 

Figure 3). Both groups demonstrate a significant main effect of Condition: for Group 249 

Different F(1, 62) = 290.65, p < .001, and for Group Same F(1, 62) = 1383.87, p < .001, but 250 

the significant interaction between Condition and Group, F(1, 124) = 11.61, p < .002, 251 

confirms reliably greater sequence learning in Group Same for the Augmented SRN, which is 252 

the contrary pattern of results to that found in our empirical study. Thus, we have to reject the 253 

Augmented SRN, or at least this version of it, as an adequate model for our data. 254 

Furthermore, with this architecture, we have, to date, been unable to find a set of parameters 255 

for the Augmented SRN that will allow it to correctly predict the ordering of Groups 256 

Different and Same on test despite an extensive search over the parameter space for the 257 

model, suggesting that, as it stands, it cannot model our data. In any case, we can conclude 258 

that the version of the model that was successful in modeling the data in Jones and McLaren 259 

(2009) is demonstrably falsified by our results. 260 

This outcome was surprising, as the Augmented SRN is our benchmark model of 261 

sequence learning, and coped very well with the pattern of results that we obtained in Jones 262 

and McLaren (2009). Our initial response was to revert to the version of the SRN adopted in 263 

Spiegel and McLaren (2006). This proved capable of simulating more learning in Group 264 

Different than Group Same, but only at the cost of losing the ability to adequately simulate 265 

the overall pattern for our dataset on test, and it does not provide as good a fit to the Jones 266 

and McLaren (2009) data.  After considering various other modifications of the network, we 267 

finally realised that our simulation of this task using the Augmented SRN was unrealistic in 268 

the following way. Recall that our architecture is feed-forward (and recurrent) with two input 269 

units set according to which of the left or right locations were designated as responses on the 270 

trial just past, and context units whose activation is set by the hidden unit activations on the 271 
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previous trial as well. What we had failed to include in our model was anything that 272 

represented the stimulus - the filled circle – that always occurs just before a response is made. 273 

This was because this stimulus completely specifies the response, and it would have seemed 274 

odd to include something so directly predictive when we were interested in the ability of the 275 

network to learn the sequential contingencies in play, not learn that when the left circle filled 276 

it was to produce a left response! But, our participants would have been exposed to just such 277 

a contingency, and so would have had the opportunity to learn about it. In some sense, this 278 

captures the idea of some automatization occurring in the course of experience that takes over 279 

from the instruction to press the corresponding key when one of the circles fills. Hence, we 280 

included these inputs in our new network (the input units labelled "Next trial" in Figure 2), 281 

but, because the circle only fills just before the response, we gave it a relatively low 282 

weighting in our model1. With this addition, we were able to successfully re-parameterise the 283 

Augmented SRN to produce our pattern of results in this experiment and still generate the 284 

pattern of results found by Jones and McLaren (2009). A typical set of simulation results for 285 

the current experiment is shown in the bottom panels of Figure 3. These simulations were run 286 

using the two additional input units, and activation of the unit corresponding to the response 287 

required on the to-be-predicted trial was set to 0.1. Input activations corresponding to the 288 

response units that had been activated on the previous trial were set to 0.75, and the context 289 

unit activations were set to 1.3 times the hidden unit activations from the previous trial. These 290 

parameters modulate the relative weightings of the contributions to learning from the 291 

different inputs and the context units, and were deliberately chosen to allow us to simulate 292 

our data. The learning rate parameters for the fast and slow weights were set to 0.5 and 0.2 293 

respectively, and other parameters were the same as those used in Jones and McLaren (2009).  294 

                                                
1 The low weighting was intended to reflect the fact that the timing was sub-optimal for an 
associative network learning to predict the next response required – but this is a completely 
separate issue to the cue's predictiveness which, of course, was 100%. 
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 The training data shown on the left of the bottom panel of Figure 3 again have the 295 

different conditions / groups in their appropriate relative positions. The control groups are 296 

once again approximate mirror images, and now produce a somewhat more stable pattern of 297 

performance over time. Learning proceeds at approximately the same rate in the two 298 

experimental groups (it’s slightly faster overall for Group Different). The real data of interest 299 

are those at test, however, and here the pattern corresponds closely to that in our empirical 300 

data. There is a main effect of Group, F(1, 124) = 1682, p < .001, a main effect of Condition, 301 

F(1, 124) = 717, p < .001, and importantly, an interaction between Group and Condition, F(1, 302 

124) = 4.08, p < .05, such that the difference between Experimental and Control Conditions 303 

for Group Different is significantly greater than that for Group Same. In other words, Group 304 

Different sequences are better learned than Group Same, though the effect is relatively small 305 

(roughly 10%) compared to the main effects. This is very much the pattern, and the power, 306 

that we observe in the empirical data we report here. We can also confirm that this model 307 

captures the pattern of sub-sequence learning observed in Jones and McLaren (2009), and 308 

also predicts that it is the difference in performance between XXX and the other sequences 309 

used in 2009, XYY, YXY and YYX that will be the easiest to detect. It would appear, then, 310 

that this revised model is a candidate to be our new benchmark for modeling sequence 311 

learning with this task under incidental conditions. 312 

Why does this revised model succeed where the standard Augmented SRN failed? 313 

The new version of the model differs from the old version in both including a more accurate 314 

representation of the stimulus conditions in the experiment (an unambiguously good thing), 315 

and in possessing more free parameters as a consequence of this modification. Is its success 316 

simply a consequence of greater flexibility in fitting the data contingent on this increase in 317 

free parameters? We believe this is not the right explanation, because when we simulated the 318 

Jones and McLaren (2009) data with the new model we did not vary the parameters at all, 319 
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implying our success (the fit was actually better than in the Jones and McLaren paper) is 320 

unlikely to represent "overfitting" of the data. Instead, we believe that the inclusion of the 321 

units corresponding to the circle stimulus on the current trial is the critical feature making the 322 

difference, and if we take this out of the simulation leaving everything else unchanged then 323 

the model reverts to predicting that Group Same should perform better on test than Group 324 

Different. The change made is in some sense minor, but is also important. It does not 325 

represent a change in the algorithms used in the Augmented SRN, or even in its basic 326 

architecture, but it is a departure from conventional simulation practice as far as the SRT task 327 

is concerned. As far as we are aware, no one else modeling sequence learning involving this 328 

type of task includes the current stimulus as an input in the model – but clearly it matters. 329 

Why has it typically been left out when simulating sequence learning in the SRT task? We 330 

think the reason is fairly straightforward – researchers were (are) interested in sequence 331 

learning, and putting in this input contributes nothing to learning about the contingencies 332 

between sequences of events in this task, it's just allows S-R learning. This type of 333 

information cannot actually assist in learning sequential structure, and would be expected to 334 

be the same in both experimental and control groups, and hence controlled for when assaying 335 

sequence learning. But, whilst this S-R learning cannot produce a difference between 336 

experimental and control groups in its own right, we now realize it can modulate our ability 337 

to learn about sequential structure, and so influence the size of that difference. It does this, we 338 

believe, via cue competition, which itself varies as a function of the local temporal sequence 339 

of events experienced. To see this, consider as an example the sequence LLL (three left 340 

responses required in a row). On the first two trials of this sequence the Augmented SRN will 341 

learn (transiently) that a left on trial n-1 predicts a left on trial n, and also the association 342 

between the left stimulus and the required left response will have been incremented. The first 343 

effect makes learning of the "LL is followed by L" structure difficult, because it partially 344 
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blocks it (this is the explanation of why LLL is learned poorly under implicit conditions 345 

given in Jones and McLaren, 2009). But the second effect, incrementing the S-R learning, 346 

also contributes to blocking learning of the "LL is followed by L" contingency. Learning 347 

LLR is, relatively speaking, easier, because the R is surprising in terms of the "L predicts L" 348 

transient learning, and, in this case, the R stimulus to R response association will not have 349 

just received two increments. Thus, the increments to the S-R associations are more of a 350 

problem for some subsequences (which turn out to be those in Group Same) than others, and 351 

so contribute to Group Same learning the sequential structure more slowly. For this reason, 352 

we cannot simply disregard this S-R information any more on the basis that it will be the 353 

same for both Experimental and Control groups. Clearly we should not disregard this aspect 354 

of the task in any case, if we are to hold to the view that these models are automatic in their 355 

operation and learn about all elements of the perceived stimulus array. If we are to believe 356 

that this is a real psychological model of associative learning, then, because the circles in the 357 

experiment flash signalling which response to make, there must be something in the model 358 

that represents this, and the model will inevitably learn about this 100% reliable contingency. 359 

But now we can see that if we do neglect this aspect of the stimulus conditions, then our 360 

simulations do not match the empirical data, which is, in some sense, a rather encouraging 361 

outcome for this modelling approach. 362 

Are there any discrepancies between our model's simulation and the data? One 363 

obvious discrepancy arises when comparing the training data from the model and our 364 

empirical results. The change from session one to session two is not captured by the model – 365 

but this is hardly surprising as we have no way of representing it in the model at present. 366 

Perhaps the worst aspect of the model as it stands is that it has Group Same learning faster 367 

than Group Different in the middle section of the graph, whereas the empirical data show the 368 

reverse, but even here it is difficult to know if this is a reliable difference, and the analysis is 369 



 18 

compromised both by the effect of a change of session and by a lack of power.  We 370 

acknowledge that it is also possible to criticise the current model for being rather slow to 371 

learn. We speculate that a modification of back propagation, APECS (McLaren, 1993, 1994; 372 

Le Pelley & McLaren, 2001; McLaren, 2011) instantiated in a recurrent architecture (Jones, 373 

Le Pelley & McLaren, 2002) might be the way forward here in terms of improving learning, 374 

and incorporating aspects of memory that might permit the session effect to be captured. But, 375 

for now, on the basis of the data available in the literature on sequence learning in humans 376 

and contained in this paper, the revised Augmented SRN is our benchmark model of 377 

sequence learning. 378 

379 
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 437 

Figure legends 438 

 439 

Figure 1: This shows reaction time difference scores (top half) and proportion of errors 440 

differences scores (bottom half), during training (left panels) and on test (right panels). 441 

Blocks are given in block pairs (i.e. 2 means the average of blocks 1 and 2), and there was a 442 

break between blocks 20 and 21 (two different sessions at least 2 hrs apart). Only 14 blocks 443 

(7 block pairs) are shown in the second session as the last five blocks were used as the test 444 

phase. 445 

 446 

Figure 2. This shows the model architecture for the Augmented SRN used in Jones and 447 

McLaren (2009, Figure 7), with the addition of two extra input units (corresponding to the 448 

two response locations) labelled "Next trial". See text for a description of the model and its 449 

operation. 450 

 451 

Figure 3: This shows mean-square error difference scores during training and test for the 452 

Augmented SRN (top) and the revised Augmented SRN (bottom). We did not attempt to 453 

simulate the delay between blocks 20 and 21. Otherwise it is laid out exactly as Figure 1. 454 

455 
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FIGURE 1 458 
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FIGURE 2 463 
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FIGURE 3 480 
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