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Abstract

Master studies in process automation started in 1989 at what soon became Telemark University College,
and the 20 year anniversary marks the start of our own PhD degree in Process, Energy and Automa-
tion Engineering. The paper gives an overview of research activities related to control engineering at
Department of Electrical Engineering, Information Technology and Cybernetics.
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1 Introduction

The Norwegian research journal MIC was initiated by
late Professor Jens Glad Balchen, with the first issue
published in 1980. MIC has played a central role in
Norwegian cybernetics research, as it coincided with a
dramatic growth in the number of PhD students and
gave these an arena to publish. Telemark University
College (HiT) salutes the journal, and those who made
the journal possible.

The master studies in engineering at HiT started in
1988, and the initial board was led by Finn Lied and
included Inge Johansen and Sven G. Terjesen, all cen-
tral people in the engineering community of Norway
in the last part of the 20th century. The leader of the
engineering studies was May-Britt Hägg, now professor
at The Norwegian University of Science and Technol-
ogy (NTNU). In 1989, a study in Process Automation
started; this study was planned by Terje Hertzberg,
Steinar Sælid, Gudolf Kjærheim, Sven G. Terjesen,
Ivar Loe, Jens I. Ytreeide, and Rolf Ergon. Later,
Ytreeide became professor in these studies, while Loe
was adjunct professor for many years. The Process Au-
tomation study was led by Rolf Ergon, now professor
emeritus. In 1994, these studies became part of HiT,
organized under Faculty of Technology (HiT-TF).

From the start, the MSc studies in Porsgrunn had
their accreditation from the Ministry of Education and
Research, while the PhD study was formally a degree
at NTNU, where HiT-TF operated almost as a faculty
under NTNU. In April 2009, the Ministry of Educa-
tion and Research gave HiT the right to give our own
PhD-degree, in Process, Energy, and Automation En-
gineering.

The current MSc studies are in Process Technol-
ogy, Systems and Control Engineering, and Energy
and Environmental Technology, and they are taught
in English. Initially, the strong position of the re-
gional process industry shaped the process automation
study, which had a strong emphasis on modeling of dy-
namic systems, numeric methods, process chemistry,
separation technology, thermodynamics, etc. Control
engineering was also important, with topics in multi-
variable control, optimal and predictive control, state
estimation, and control structures for industrial pro-
cesses. Instrumentation technology and process safety
were core topics, and laboratory exercises widely used.

With a compact group of teachers in close touch with
the students, this enabled necessary changes in pace
with the developments in the regional and national
industry, and today, the core topics are modeling of
dynamic systems, model based control, model based
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sensor technology, and industrial IT. The content of
the study is thus more general today, but the theory is
still tested through laboratory work as well as exam-
ples and projects/theses which to a significant degree
(70-80%) come from the regional industry.

Although the terms modeling, identification and con-
trol (MIC) do not explicitly mention instrumentation
and sensor technology (IST), we will still consider IST
a part of MIC: without IST, there is no information
to be used in identification and control. And without
models, there is no IST: as an example, consider the
mercury thermometer — clearly it is not the temper-
ature that is measured, but the expansion of mercury;
the temperature is inferred from a model of the rela-
tionship between temperature and expansion.

The paper is organized as follows. In Section 2,
glimpses into education and research activities are
given, while in Section 3, a survey of past and on-going
PhD studies is given. In section 4, an overview of ac-
tivities in societies is given.

2 Glimpses into Education and

Research Activities

2.1 Introduction

Throughout the years, Department of Engineering Cy-
bernetics at NTNU has had an important influence
on the faculty: Ytreeide laid a foundation in instru-
mentation technology and system safety, and empha-
sizing practical laboratory work. Professor Bernt Lie
has worked mainly with control relevant mechanistic
models in the process industry and application of such
models in MPC, Associate Professor David Di Rus-
cio has focused on advanced control and in particular
on the development of subspace methods within sys-
tem identification, and Associate Professor Finn Hau-
gen has worked with basic and practical control engi-
neering with implementation in process data systems.
Associate Professor Nils-Olav Skeie adds a dimension
with work in industrial IT and soft-sensors.

Professor Emeritus Rolf Ergon has brought inspira-
tion from Chalmers University of Technology and servo
technology, while the strong Nordic chemometrics so-
ciety has lent ideas through Adjunct Professor Kim
Esbensen, Associate Professor Maths Halstensen, and
Ergon. A further influence is from the Technische Uni-
versität Berlin, via Professor Saba Mylvaganam and
his work in sensor technology and the fusion of models
and sensor systems, and Assistant Professor Dietmar
Winkler and his work in modeling and simulation of
electric drives as well as simulation languages such as
Modelica.

Professor Bjørn Glemmestad did his BSc and MSc at
HiT, and his PhD study at NTNU in association with
HiT; he recently came from the process industry with
experience in application of nonlinear MPC.

2.2 Control Education and Laboratory
Experience

We believe that students get a much deeper under-
standing of theoretical methods by implementing the
methods in practical applications. To this end, we have
developed a number of laboratory assignments which
are part of different courses in our master study in Sys-
tems and Control Engineering. We have standardized
on using PCs (laptops or desktops) with National In-
struments LabVIEW and the inexpensive NI USB 6008
I/O device, but MATLAB and SIMULINK are also
used to some extent Haugen (2005, 2008); Haugen et al.
(2007, 2008). As lab stations we use air heaters (seven
items) Haugen (2009a) and water tanks (six items)
Haugen (2009i), which are “desktop” lab stations. Due
to the large number of lab stations, we can run labs in
parallel, and with small student groups. Although the
final aim in the assignments is to apply the solutions
developed by the students to the physical system, the
students are required to apply their solutions to simu-
lated processes first. The feedback from the students
on these assignments is very positive.

The following laboratory assignments have been de-
signed:

• Implementing an industrial PID controller and a
measurement filter from scratch as C code with
practical features such as bumpless transfer, anti
integral windup, and reverse/direct action. The
controller is applied to either the water tank or
the air heater. Haugen (2009b,h,d).

• Hardware-in-the-loop simulator based on an in-
dustrial PID controller (Fuji PGX) controlling a
simulated process. Haugen (2009h,c).

• Soft-sensor (state estimator) for estimating an un-
known outflow from a water tank using various
methods: “Direct estimator” (solving the model
for the unknown variable), a Luenberger observer,
and a Kalman filter. The flow estimate is used in
feed-forward control of the water level. Haugen
(2009h,f).

• System identification of air heater in the form
of a discrete-time transfer function using a sub-
space identification method (n4sid in MATLAB).
A temperature controller for the simulated process
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is tuned in SIMULINK, and a practical tempera-
ture control system is then implemented in Lab-
VIEW. Haugen (2009h,g).

• Model-based predictive control (MPC) of air
heater, using the MPC controller of LabVIEW
Haugen (2009h,e).

2.3 Sensor Data Fusion, Soft Sensors and
Sensor Networking

“Data fusion is a process of associating, correlating,
combining measured data and other relevant informa-
tion from single and/or multiple sensors to achieve bet-
ter estimates of observed parameters or even estimat-
ing parameters normally not amenable for direct mea-
surements. Data fusion gives an added leverage to the
measurement and control engineer in achieving more
complete and timelier assessments of process status in-
dicating simultaneously undesirable or dangerous sit-
uations, and their significance. The fusion process in-
volves continuous refinements of its estimates and as-
sessments, and by evaluation of the need for additional
sources of information (i.e., possibly new sensors), lead-
ing very often to the modification of the process itself,
leading thus to an overall improvement of the process
and its performance indicators”, Viumdal et al. (2010).

Data fusion is inherently associated with the con-
cept of soft sensors. Soft sensor or virtual sensor is a
common name for software based algorithms process-
ing/fusing a plethora of measurements. The fusion of
these measurements can be used in the estimation of
new quantities that need not or can not be measured.
Strategies based on soft sensors are essential in modern
data fusion and use among others the following:

• Statistical Methods

• Kalman filters

• Artificial Neural Networks (ANN)

• Fuzzy Logic

• Principal Component Analysis

• Markov Models

• System identification methods

• Support vector machines

• Fuzzy Neural Methods

In the R&D activities, usually carried out in col-
laboration with industries and research institutes, the
focus is on process measurements and sensorics, with
innovations based on new usage of existing sensors, in-
corporating new sensors and developing algorithms for
soft sensors. Some recent applications are in

• powder technology, Wærstad et al. (2002); Myl-
vaganam (2003); Datta et al. (2003); Mylvaganam
et al. (2003); Mylvaganam and Dyakowski (2005);
Datta et al. (2007a,b)

• light metal industries, Viumdal et al. (2010)

• production, storage and transport of oil and gas,
Vefring et al. (2002), Nygaard et al. (2004a,b); Ny-
gaard and Nævdal (2006); Nygaard et al. (2006,
2007), Lorentzen et al. (2008)

• patient care on 24/7 basis

• soft sensor approach to diagnosis of electrical ma-
chines, sensors and actuators, Yahoui et al. (2004);
Yahoui and Mylvaganam (2009)

Process tomography is essentially a form of sensor
networking and data fusion on a smaller scale and in-
volves multimodal, multifunctional sensors, data from
which have to be fused to give insight into the pro-
cess, preferably non-intrusively, Alme (2006.); Alme
and Mylvaganam (2006b,a), Alme and Mylvaganam
(2007). As such, process tomography involves all the
above and requires electromagnetic modeling, to which
some of our R&D efforts are dedicated to, Lorentzen
et al. (2008); Timmerberg et al. (2009).

Figure 1: Sensor Data Fusion/ Soft Sensors involved in
Process Tomography with multiple resistive
and capacitive sensors serves simultaneously
as an example of sensor networking when
different protocols are used, in selecting the
combinations of sensors and their automatic
switching. Graphic by PhD student Yan Ru.
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Figure 2: Sensor Networking in Light metal Industries,
involving innovative usage of existing and
new sensors. Graphic by PhD student Yan
Ru.

2.4 Applied Chemometrics

Acoustic chemometrics is a relatively new method for
on-line process monitoring based on characterisation
of system vibrations as generated by an industrial pro-
cess such as a manufacturing process or transportation
flow. Acoustic chemometrics is applicable for quanti-
tative analysis of constituents for process monitoring
and for physical characterisation of the state of pro-
cess equipment. Principal component analysis (PCA)
or partial least squares regression (PLS) Martens and
Næs (1989); Esbensen (2001) based on empirical data
are used to extract relevant information from relevant
acoustic signals. The PLS model can then be used to
predict parameters of interest based on new indepen-
dent acoustic spectra. Proper validation of resulting
regression models is critical in order to develop realis-
tic prediction models for industrial process monitoring.
The main advantage of acoustic chemometrics com-

pared with many other on-line methods for process
monitoring is the use of nonintrusive so-called “clamp-
on” sensors which can be easily mounted onto the pro-
cess equipment (pipelines, reactors etc.). The sensor,
which often is a standard accelerometer or a so-called
acoustic emission (AE) sensor, has no moving parts,
and can withstand harsh environments. The mea-
sured acoustic signatures will often contain information
about several process-relevant properties which makes
it possible to predict several parameters/states from
the same acoustic spectrum.
Acoustic emission from industrial processes is of-

ten considered as audible noise only, but it has re-
cently been proven that within this “noise” there is
also a significant part of useful information Esbensen
et al. (1998); Halstensen et al. (1998); Esbensen et al.
(1999); Halstensen and Esbensen (2000); Halstensen
et al. (2006), which can be used for processes mon-

itoring. The fact that almost all processes produce
some kind of acoustic emission opens up the potential
for applications which depend totally on sound, signal
processing, sensor technology and multivariate calibra-
tion.
Several papers covering multiphase fluids, system

state of rotating machinery and powder characterisa-
tion have been published Esbensen et al. (1998); Hal-
stensen et al. (1998); Esbensen et al. (1999); Halstensen
and Esbensen (2000); Halstensen et al. (2006) reporting
that this method is a promising on-line process analyt-
ical technology (PAT) approach.
Acoustic chemometrics has its greatest benefits in

cases where traditional sensors and measurement tech-
niques, such as flow, temperature and pressure trans-
mitters can not be used. In many cases it is preferable
to use nonintrusive sensors because their counterpart
may cause disturbances, e.g., fouling and clogging in-
side the process equipment such as pipelines, reactors
cyclones etc. Figure 3 shows an overview of the data
path from acoustic emission to the final multivariate
calibration model.

Figure 3: Schematic overview of acoustic
chemometrics.

The main research activities of the Acoustic Chemo-
metrics Research Group are acoustic process monitor-
ing, multivariate image analysis, chemometric theory,
multivariate process monitoring, representative sam-
pling, and soft sensors.

2.5 Soft Sensors for Level Estimation in
Oil/Water Separators

Separation of oil, water and gas is an important pro-
cess stage in oil and gas production. Such mixed flu-
ids with different densities are often separated using
a gravity separator. An unwanted emulsion will de-
velop in the layer between oil and water. The level
and thickness of the emulsion layer together with the
oil and water content is therefore one of the important
properties when controlling the oil output flow rate of
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the separator. No perfect measurement system exists
for oil/water separators today. The research work at
HiT is based on combining a set of pressure sensor de-
vices, absolute or relative, and a guided radar sensor
device to estimate the oil, emulsion and water contents
in the separator. The method is based on a number of
standard and inexpensive sensor devices and data fu-
sion strategies like the Partial Least Squares Regression
(PLSR), Principal Component Regression (PCR), and
Artificial Neural Networks (ANN) in developing data
driven models for estimation of the level and thick-
ness of the oil, emulsion, and water content. The work
shows that it is possible to combine a set of pressure
sensor devices, a guided radar sensor device, and mod-
els calibrated using PCR, PLSR, or ANN to estimate
the liquid level, the water level, the thickness of the
emulsion layer, and the thickness of the oil layer in the
oil/water separator Skeie et al. (2006); Skeie and Lie
(2006); Skeie (2008). The advantage of this method
compared to existing methods are: inexpensive, simple
to install, independent of foam on top of the oil layer,
redundancy of sensor devices and does not expose peo-
ple to any harmful radiation. Further work will inves-
tigate how the number and type of sensor devices will
influence among others the accuracy and robustness of
such soft sensors, and how the models can be calibrated
depending on the locations of the sensor devices and
the density of the liquids.

2.6 Theoretical Aspects of Process
Monitoring

Theoretical issues in system identification and chemo-
metrics, with regards to process monitoring applica-
tions, has been and still is an active research area at
HiT. Product quality estimation based on known pro-
cess inputs and secondary process measurements was
investigated by Ergon and Di Ruscio (1997), and an ap-
proach based on identification of an output error (OE)
model using a prediction error method was developed
by Ergon (1999b). Not only is an OE model necessary,
it also makes it possible to use low rate and even ir-
regular sampling data of the primary quality variables,
Ergon and Halstensen (2001), which is quite impor-
tant from a practical point of view. This system iden-
tification approach can also be combined with multi-
variate calibration methods from chemometrics, Ergon
(1999a).

A second problem investigated by Ergon is multivari-
ate calibration model reduction. The projection based
principal component regression (PCR) and partial least
squares regression (PLSR) methods for static process
data often result in more than two principal compo-
nents, and process monitoring based on traditional

score and loading plots is then a non-attractive option.
This can be solved by further projections, such that
the relevant process information can be presented in
a single score-loading-contribution plot Ergon (2002b),
Ergon (2003, 2004, 2006, 2009a). As part of the model
reduction effort, the highly profiled, patented and pop-
ular orthogonal signal correction method OPLS Trygg
and Wold (2002) has also been studied. Although this
is claimed to be a pre-processing method, it has been
shown that it in fact is a disguised post-processing pro-
cedure Ergon (2005). It can also be shown that even
further model reduction is possible Ergon (2007).

A third problem that has been investigated is a resid-
ual inconsistency resulting from the conventional NI-
PALS algorithm used in PLSR. This problem was first
found by Ergon as a by-product of another work Ergon
(2002a), but at the time judged to be of little practical
interest. However, the related and essential problem
of score-loading correspondence for the modeled data
was investigated, Ergon (2002b). A later paper Pell
et al. (2007) brought attention to the problem with
the twenty year old and very central algorithm, and
recommended use of the Bidiag2 algorithm Golub and
Kahan (1965) instead of NIPALS, and this caused a
heated debate in the chemometrics community. Er-
gon (2009b) clarified that the problem could be solved
by a simple re-interpretation of the NIPALS results,
and Ergon, Halstensen and Esbensen are in an upcom-
ing paper looking further into the problem in relation
to squared prediction errors in the process monitor-
ing context. This problem is illustrated in Figure 4,
where SPEC = εTCεC based on the conventional PLSR
residual εC may both over- and underestimate the true
squared perpendicular distance SPEB = εTBεB from a
sample z to the projection space where the scores are
found.

The results are the projection ẑB and the non-ortho-
gonal mapping ẑC, while the orthogonal complement
of the column space of W defines the common residual
space. The prediction coefficient vector b̂ is contained
in the column space of the loading weight matrix W,
while an alternative (and never used) projection ẑP is
contained in the column space of the loading matrix P.
Points A and B refer to an example in the manuscript
of the upcoming paper.

2.7 Process Monitoring Based on Wireless
Sensor Network

There is an increasing focus on and interest in wire-
less communication and services utilizing this concept.
Process monitoring is part of the research work at HiT
and wireless communication with and within measure-
ment systems is part of this research area. Process
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Figure 4: Orthogonal splitting of sample z into ẑB and
εB based on the Bidiag2 algorithm, and non-
orthogonal splitting into ẑC and εC based on
the conventional NIPALS algorithm.

monitoring can be based on a network of sensors, and
this network can be a wireless network of sensor nodes.
Such a wireless sensor network (WSN) will have one or
a few gateways where external systems can connect to
get information from the WSN. One of the areas for the
research work at HiT is development of virtual sensors
(soft sensors) using the WSN as a sensor array where
the number of devices and the type of measurement de-
vices can change dynamically. The virtual sensor will
be the connection point between any software applica-
tions and the WSN and should optimize the usage of
the WSN as regards the number of sensor nodes, the
information in the network, redundancy and the power
usage in the nodes. Other areas of research is the usage
of soft sensors inside the WSN to reduce the network
traffic and the power usage and how WSN can be uti-
lized in Building Automation Systems (BAS) to adapt
such systems to the usage of the buildings.

HiT is one of the academic partners in the Center for
Wireless Innovation (CWI) (www.cwin.no), which is a
facilitator for industry and the academic participants
in forming a strategic partnership in wireless R&D.

2.8 Modelling and Simulation of Electrical
Systems

The simulation of systems is a very useful method to
investigate different behaviors of physical systems, e.g.,
stress-tests, faults. Thus we can test if a certain exper-
iment will damage the test equipment or even worse
might prove to have dangerous impacts on personnel.
Especially fault scenarios are the ideal application field
for simulation runs. We would like to know what hap-
pens if certain devices fail and perhaps derive security

measures which will protect our applications if a cer-
tain fault occurs.
In the past it was often good enough to simulate dif-

ferent aspects of a physical system individually within
their physical domains. For each of those domains
there was a specialized simulation tool. This becomes
problematic when different physical systems interact
which each other, as it is normally the case in the real
world. Now one has to find some means to couple dif-
ferent tools in a way that they can exchange simula-
tion results during run-time (aka co-simulation). This
is normally quite inflexible wrt. step-size and solver-
type.
Another solution is to find a simulation language

which allows for modelling of different physical do-
mains within the same language and tool. The non-
proprietary modeling language Modelica R© (Modelica-
Association (2009)) was especially developed to sim-
plify the simulation in different physical domains
within one simulation model and also have the means
of exchanging your models without being bound by a
particular tool. In addition, the non-profit organiza-
tion Modelica Association provides a standard library
(Modelica Standard Library) that already contains a
huge amount of components and connectors from dif-
ferent domains. This freely down-loadable library also
serves as a common base for different tools (free and
commercial types are available Modelica.org (2009)).
The multi-domain capability allows us to easily build

simulation models of complex systems including, for
example, mechanical, electrical, and chemical compo-
nents and reactions. Furthermore it allows us to con-
centrate on the physics of a model rather than building
models which represent mathematical equations which
in turn then represent the actual physical behavior.
Using Modelica allows us to build models of sys-

tems like electric drives/generators where we have to
deal with mechanical, electrical, and thermal quanti-
ties. These can also be extended to even more com-
plex models including mechanical or electrical faults
Winkler and Gühmann (2008, 2009). Such systems can
then be analyzed and optimized wrt. physical meaning-
ful results. An example would be to optimize the con-
trol of the voltage level in a weak electricity network.

2.9 System Identification

2.9.1 The Relation to the Partial Least Squares
(PLS) Algorithm

The Partial Least-Squares (PLS) algorithm has re-
ceived widespread attention and is widely used in
Chemometrics, which has been defined as The use of
mathematics and statistics on chemical data, Martens
and Næs (1989). In our view the PLS method is com-
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plicated to understand due to the iterative nature of
computing the solution, BPLS, for the regression coef-
ficients, B, in a linear (or bi-linear) model Y = XB+E
from known data matrices X ∈ R

N×r and Y ∈ R
N×m.

In Di Ruscio (2000), insight and theoretical under-
standing into the Partial Least Squares algorithm is
given, and a new, non-iterative formulation of the PLS
algorithm is given in case of univariate data (PLS1),
i.e., m = 1 and Y a column vector. In that paper it is
shown that the PLS1 algorithm is equivalent to using
a truncated Cayley-Hamilton polynomial expression of
degree 1 ≤ a ≤ r for the matrix inverse (XTX)−1

∈ R
r×r which is used to compute the Least Squares

(LS) solution. Here the integer a is the number of PLS
components. Furthermore, the a coefficients, p ∈ R

a,
in this polynomial are computed as the optimal LS so-
lution (minimizing parameters) to the prediction error.
Hence, the PLS1 solution is optimal in the sense that
p∗ = argminp ‖ Y − XKap ‖2F , where then BPLS =
Kap

∗. The resulting solution is non-iterative. The so-
lution can be expressed in terms of a matrix inverse
and is given by BPLS = Ka(K

T
a X

TXKa)
−1KT

a X
TY

where Ka ∈ R
r×a is the controllability (Krylov) ma-

trix for the pair (XTX,XTY ). Relationship to the
score and loading vectors are also given in the pa-
per. It is furthermore pointed out that the PLS1 al-
gorithm is equivalent to a truncated Conjugate Gra-
dient (CG) method, Hestenes and Stiefel (1952), for
iteratively computing the ordinary least squares solu-
tion. Interestingly the PLS1 algorithm is equivalent to
a truncated version of Iteration 10.2.13 in Golub and
Van Loan (1986), p. 370. Note also the similarity with
PLS1 and truncated Lanczos iterations in Algorithm
9.3.1 in Golub and Van Loan (1986), p. 345. This
shows that the PLS1 algorithm has strong similarities
with iterative methods for solving the normal equation,
XTY = XTXB for the vector B of regression coeffi-
cients, in which XTX in this problem is a symmetric
matrix. Bi- and tri-diagonalization of symmetric ma-
trices are involved in the iterative LS algorithms. Both
the univariate and the multivariate cases are consid-
ered in Di Ruscio (2000). The usual PLS2 algorithm
for multivariate data presented in the literature is not
optimal. A new optimal PLS2 algorithm was also de-
veloped along the lines in which the non-iterative PLS1
solution was developed.

2.9.2 On Subspace System Identification

A landmark for the development of so called subspace
system identification algorithms is the algorithm for
obtaining a minimal state space model realization from
Hankel matrices constructed from a series of known
Markov parameters (or impulse responses), i.e., as pre-
sented by Ho and Kalman (1966). This method was

completely new to the control community at that time.
A numerically efficient implementation of the Ho al-
gorithm through Singular value Decomposition (SVD)
was presented in Zeiger and McEwen (1974) and fur-
thermore used to estimate stochastic models directly
from observed data in Aoki (1987), and the interest
of the topic increased. The DSR algorithm for identi-
fying the entire Kalman filter model matrices directly
from observed input and output data was developed in
the early 90’s and onwards. The method is presented in
Di Ruscio (1996, 1994, 2003) among other papers. The
particularly interesting feature of the DSR algorithm is
that the Kalman filter gain matrix, K, and the square
root of the innovation process covariance matrix, F , are
estimated directly from known input and output data,
also documented in Di Ruscio (1996). The innovation
process in this algorithm is consistently identified also
for closed loop data. A modified implementation of the
DSR algorithm which is consistent both for open as
well as for closed loop data was developed in the early
2000’s and implemented in the dsr e.m function in the
D-SR Toolbox for MATLAB. In this method a series
of “future” outputs, yJ|1, are decomposed into a “sig-

nal” part, yd
J|1 = DXJ|1, and an innovations (“noise”)

part, εJ|1 = FeJ|1 where ek has unit variance, i.e., as

yJ|1 = ydJ|1 + εJ|1. (1)

The decomposition, Equation (1), is consistently com-
puted by projecting the “future” outputs onto the row
space of the “past” inputs and outputs, i.e., as

ydJ|1 = DXJ|1 = YJ|1/

[

U0|J

Y0|J

]

, (2)

where U0|J and Y0|J are defined from “past” inputs and
outputs.
Hence, at this stage we have a deterministic iden-

tification problem for the entire Kalman filter model
matrices, i.e., using that the inputs and output to
the Kalman filter are known, i.e., using known “fu-
ture” inputs uJ|1 and the known “future” innovations

εJ|1 = yJ|1 − yd
J|1 as inputs, and using the signal part

yd
J|1 = DXJ|1 as known outputs. This may efficiently
be solved as a deterministic subspace system identifica-
tion problem in order to estimate the Kalman filter in-
cluding the system order. Details of this algorithm are
presented in Di Ruscio (2008) and used in the PhD the-
sis work Nilsen (2005). Recently this method, dsr e.m,
is analyzed and compared with the PARSIM-E method
by Qin and Ljung (2003); Qin et al. (2005) and it is
shown that in general the PARSIM-E method gives
larger variance on the parameter estimates compared
to dsr e, which is close to as optimal as the prediction
error method. In the PARSIM-E method iterations,

139



Modeling, Identification and Control

i = 0, 1, . . . , L, are used to iteratively compute the fu-
ture innovations, εJ|1, εJ+1|1, · · · , εJ+L|1, and at the
same time computes Markov parameters as well as a
matrix with the same column space as the extended
observability matrix. These iterations are believed to
give rise to the “high” parameter variance. Notice how-
ever that the first step in the PARSIM-E and dsr e
methods are similar. Interestingly Sotomayor et al.
(2003) have found the dsr.m algorithm to produce the
best model on validation data in comparison with four
other subspace methods, CCA, MOESP, N4SID and
Robust N4SID. The dsr e.m algorithm is a variant of
the dsr.m algorithm superior for closed loop identifi-
cation; both dsr.m and dsr e.m are available in the
D-SR Toolbox for MATLAB.

2.10 Mechanistic Models and Model
Based Control

Modeling and Simulation of Dynamic Systems has been
a key course in the education at Telemark Univer-
sity College since 1991; all master students follow this
course, and hence it forms a common ground. This
course on mechanistic models gives a perfect back-
ground for applications of model based control: knowl-
edge of modeling gives a good background for under-
standing the system under study, and the developed
model can be used in a model based controller — or
a model that can be used for further simplification.
One such control strategy, Model Predictive Control
(MPC), has been taught at HiT since 1990, see Lie
et al. (2005); Lie and Heath (2008).

Control of polymerization processes was a focus in
the 1980-1990s. In Lie (1990), polymerization of poly-
propylene in a continuous reactor was studied, and the
work included a population balance model in the form
of moments of the chain length distribution. Part of the
work dealt with limitations in attainable bandwidth in
optimal control, Lie (1995). Damslora et al. (1998);
Damslora (1998) looked into the modeling of a PVC
batch reactor, and an optimal control strategy was
developed with active use of initiators and inhibitors
which indicated the possibility of a significant reduc-
tion in the batch time.

Modeling and control of paper production was stud-
ied ca. 1999–2009. A simplified model was used to
develop an Extended Kalman Filter and the linearized
model was used in an MPC algorithm, see Hauge et al.
(2005) and Hauge (2003). The solution was imple-
mented at Norske Skog’s PM6 in Halden, Norway to-
gether with Prediktor in late April 2002. Roger Slora
from Norske Skog was instrumental in this project, and
also worked with enthusiasm to tailor-make the user in-
terface to something that the operators would accept.

The new control solution was used with success from
the beginning of May 2002. A couple of years later,
some new measurement equipment was acquired for
the paper machine, and this new equipment didn’t fit
right into the MPC solution. Instead of redesigning
the state estimator in the MPC solution, the choice
was made to turn off the MPC. This is an interest-
ing observation, and indicates a need to work on the
problem of advanced control solutions and how these
can be maintained through changes in process, control
equipment, and personnel. Later, through the COST
E-36 action, Dahlquist (2008), some work was done
on model uncertainties and control consequences, Lie
(2009).

The production of silicon from ferrosilicon was stud-
ied in the period 2000-2004. An advanced population
balance model was developed of Elkem’s leaching re-
actor in Bremanger, Norway, and the model was fit to
measurements both from laboratory experiments and
from operational data, Dueñas Dı́ez et al. (2006). A
passivity based nonlinear controller involving reaction
networks was developed and tested through simula-
tions. See Dueñas Dı́ez et al. (2008); Dueñas Dı́ez
(2004) for details.

In cooperation with the bio engineering group of Pro-
fessor Rune Bakke at HiT, a Modelica model was devel-
oped for the activated sludge purification of water, by
fitting a Modelica library for the intended use. A cen-
tral problem with bio processes is the lack of available
measurements, and a study of parameter identifiability
was carried out, Sarmiento Ferrero et al. (2006). The
possibility to control the system using on-off MPC was
studied, with a comparison with simpler control struc-
tures, Chai and Lie (2008); Chai (2008). The cooper-
ation with Bakke’s group continues through work on
biogas production.

Norway has a strong industry in the area of photo-
voltaic wafers and producing the raw material for these
wafers. In cooperation with Elkem, work has been car-
ried out on the solidification of silicon. The process is
complicated with two phases and distributed properties
within each phase. Two possible modeling strategies
are a two domain and a one domain strategy, in both
cases leading to relatively nonlinear models, Furenes
(2009). In this work, the main idea is to control the
solidification rate, as this determines the purity of the
final product. The solidification rate is equal to the
velocity of the solidification front, which must be in-
ferred from temperature estimates involving nonlinear
state estimators. The task is further complicated by
few available measurements.

Energy is important for modern society, both the ef-
ficient transformation and the efficient use. In a study
involving SINTEF Byggforsk and Action 42 in Inter-
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national Energy Agency, a Modelica library is being
developed for the climate of buildings, Videla and Lie
(2006). The work also involves cogeneration and the
use of biofuel in a spark ignition engine, Videla and
Lie (2008). Future work will involve activities related
to district heating in cooperation with Østfold Univer-
sity College.
As already mentioned elsewhere in this edition of

MIC, some past work with Xstrata on Cu leaching, Lie
and Hauge (2008); Alic et al. (2009.), will continue and
will be extended. Also, some activity in the production
of silicon for the PV industry is ongoing, Komperød
et al. (2009).

2.11 Nonlinear Model Predictive Control
of Polyolefin Plants

Linear Model Predictive Control (MPC) such as the
DMC algorithm has become popular in plants such as
oil refineries and crackers during the last few decades.
In polyolefin production, linear MPC has been tested
with only limited success and is not widely used. The
perhaps most important reason for this limited suc-
cess is that a typical polyolefin plant operates over a
wide operation window to produce products of differ-
ent qualities. Thus, the inherent non-linearities of such
processes become evident, and good control with a lin-
ear control scheme will be difficult.
During the last decade, nonlinear MPC has been suc-

cessfully implemented in many polyolefin plants. The
first known implementation of nonlinear MPC in an in-
dustrial plant was done by Borealis on a polypropylene
plant in Norway. This controller was put into closed-
loop in 1993 and (upgraded versions) has been used
continuously until the plant was shut down a couple
of years ago. Borealis’ technology for nonlinear MPC
has proven to be successful through the implementa-
tion in practically all Borealis polyolefin plants and is
also an integral part of Borealis’ Borstar technology,
Glemmestad and Hillestad (2001), Glemmestad et al.
(2004), for polyolefin production built in Europe, the
Middle East and Asia.
During the last years, commercial technology for

nonlinear MPC has also become available and imple-
mented in many polyolefin plants. While Borealis
uses mathematical models based on first principles,
some commercial vendors of nonlinear MPC use models
based on artificial neural networks or nonlinear state-
space models based on plant responses etc.
The process model used by the nonlinear MPC tech-

nology in Borealis is a nonlinear state space model that
roughly can be divided into the following parts:

• Dynamic mass balance equations (dm/dt = inflow
– outflow – reacted).

• Reaction kinetics (also aggregated to calculate
production rate and split factors).

• Polymer property calculations (e.g., Melt Flow
Rate).

• Some thermodynamic calculations.

• Calculation of various plant measurements (for on-
line model updating).

One advantage of first principles modeling is that
the models can be reused. That is, the modeling in
a new project does not start from scratch but instead
one can start with the best knowledge from previous
projects. Each mass balance equation is usually quite
simple to create, however, knowledge and experience
is needed in order to select states to model and what
can be omitted in the model. Reaction kinetics model-
ing is usually done based on lab experiments but will
normally also be tuned against plant data. The con-
trol problem is solved using an SQP algorithm and the
parametrization of the control signal is flexible.
Figure 5 shows results from a critical transition

in a real plant before and after the nonlinear MPC
(called OnSpot) is installed, Glemmestad et al. (2002).
Thick lines are with OnSpot and thin lines are without
OnSpot. Hydrogen concentration is shown in the upper
plot, production rate in the middle and solid concen-
tration is in the lower plot. The results demonstrate
that nonlinear MPC yields a faster transition, but first
of all it yields higher production rate (plot in middle)
and a safer operation due to less variation in the solids
concentration in the reactor (lower plot).
The success of nonlinear MPC in the polyolefin area,

Haugwitz et al. (2008), shows that linear MPC is not
always sufficient for satisfactory control and that non-
linear MPC now is becoming a mature technology
within some industry segments.

3 PhD Studies

An important part of research is work with PhD stu-
dents. Through the years, 17 candidates have defended
their thesis through the cooperation with NTNU.

1. Olav Aaker, Aaker (1996). Disputation at Tele-
mark University College, October 30 1996. Main
supervisor: Jens I. Ytreeide.

2. Bjørn Glemmestad, Glemmestad (1997). Dispu-
tation at Telemark University College, December
12 1997. Main supervisor: Truls Gundersen.

3. André Johan Damslora, Damslora (1998). Dis-
putation at Telemark University College, May 11
1998. Main supervisor: Bernt Lie.

141



Modeling, Identification and Control

Figure 5: Results from a critical transition in a real
plant before (thin lines) and after (thick
lines) installation of OnSpot. Scaled vari-
ables are shown, with hydrogen concentra-
tion (top), production rate (middle), and
solids concentration (bottom).

4. Rolf Ergon, Ergon (1999a). Disputation at Tele-
mark University College, October 1 1999. Main
supervisor: Jens I. Ytreeide.

5. Thorbjørn Tønnesen Lied, Lied (2000). Disputa-
tion at Telemark University College, February 9
2001. Main supervisor: Kim Esbensen.

6. Juan Huang, Huang (2001). Disputation at Tele-
mark University College, May 22 2001. Main su-
pervisor: Kim Esbensen.

7. Maths Halstensen, Halstensen (2001). Disputa-
tion at Telemark University College, January 14
2002. Main supervisor: Kim Esbensen.

8. Maria Lundhaug, Lundhaug (2002). Disputation
at Telemark University College, April 29 2002.
Main supervisor: Kim Esbensen.

9. Tor Anders Hauge, Hauge (2003). Disputation at
Telemark University College, May 8 2003. Main

supervisor: Bernt Lie.

10. Marta Dueñas Dı́ez, Dueñas Dı́ez (2004). Disputa-
tion at Telemark University College, May 28 2004.
Main supervisor: Bernt Lie. Dueñas Dı́ez was the
recipient of the first European EFCE Excellence
Award in Recognition of Outstanding PhD Thesis
in the area of CAPE, awarded in 2006.

11. Geir Werner Nilsen, Nilsen (2005). Disputation at
Telemark University College, June 27 2006. Main
supervisor: David Di Ruscio.

12. Olav Gerhard Haukenes Nygaard, Nygaard
(2006). Disputation at Telemark University Col-
lege, October 5 2006. Main supervisor: Saba Myl-
vaganam.

13. Kjell Joar Alme, Alme (2007). Disputation at
Telemark University College, December 12 2007.
Main supervisor: Saba Mylvaganam.

14. Urmila Datta, Datta (2007). Disputation at Tele-
mark University College, January 17 2008. Main
supervisor: Saba Mylvaganam.

15. Qian Chai, Chai (2008). Disputation at Telemark
University College, May 20 2008. Main supervisor:
Bernt Lie.

16. Nils-Olav Skeie, Skeie (2008). Disputation at Tele-
mark University College, October 16 2008. Main
supervisor: Bernt Lie.

17. Beathe Furenes, Furenes (2009). Disputation at
Telemark University College, December 9 2009.
Main supervisor: Bernt Lie.

More candidates are in the pipeline, and while the
contact with NTNU will remain important, future can-
didates will mainly be associated with HiT’s own pro-
gram in Process, Energy, and Automation Engineer-
ing. Multidisciplinary problems with industrial rele-
vance will be studied in cooperation with the Depart-
ment of Process, Energy, and Environment Technology
at HiT, and with the industry.

4 Activities in Societies

NFA — the Norwegian Federation of Automatic Con-
trol: Finn Haugen has been a frequent contributor with
industrially oriented courses. The Norwegian chapter
of SIMS — the Scandinavian Simulation Society — is
organized in NFA. Bernt Lie has served in the board
of SIMS for a decade, and is an active participant in
SIMS conferences.
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Modelica R©— The free modeling language
Modelica R© is developed by the Modelica Associ-
ation, a non-profit organisation with members from
industry and academia. Dietmar Winkler has been an
active member of the Modelica Association for several
years now. To participate actively in the development
of open source Modelica R© tools the group has be-
come an organizational member of The Open Source
Modelica Consortium (OSMC) in October 2009.

IET — the Institution of Engineering and Technol-
ogy: Saba Mylvaganam has close collaboration with
IET, and has jointly organized many seminars and
workshops during the last decade. Through the IET,
lecture tours have been organized in Norway with
prominent industrialists and academics from the UK.
tel-tek — Telemark Teknisk Industrielle

Utviklingssenter: Saba Mylvaganam and Maths
Halstensen have close collaboration with the R&D
organisation tel-tek in Porsgrunn. There have been
and are many activities running in collaboration with
tel-tek, funded by the Research Council of Norway
and the industry.
EU — the group has been involved in sev-

eral EU-thematic projects such as THEIERE, EIE-
Surveyor,and is currently involved in ELLEIEC, and
have developed different modules for teaching pur-
poses. Under the period of the THEIERE and EIE-
Surveyor, the group was involved as coordinator for
the Measurement and Control module, particularly the
block on “Sensor to Web”, where our flowrings were
used for demonstrations.
Nordic Process Control Group — Bjørn Glemmes-

tad and Bernt Lie have served in the board. Lie has
organized their workshop in 2009.
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