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Abstract: In this paper, the dynamic controller design problem of a redundant planar 2-dof 
parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic 
model of the parallel manipulator in the joint space and propose an augmented PD controller with 
forward dynamic compensation for the parallel manipulator. By formulating the controller in the 
joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with 
end-effector coordinate. So with less computation, our controller is easier to implement, and a 
shorter sampling period can be achieved, which makes the controller more suitable for high-
speed motion control. Furthermore, with the combination of static friction model and viscous 
friction model, the active joint friction of the parallel manipulator is studied and compensated in 
the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct 
measurement and identification, motion control experiments are implemented. With the 
experiments, the validity of the dynamic model is proved and the performance of the controller is 
evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD 
controller can improve the tracking performance of the parallel manipulator over the simple PD 
controller. 
 
Keywords: Augmented PD control, identification, parallel manipulator, PD control. 
 

1. INTRODUCTION 
 
Parallel manipulators have the advantages of high 

speed and high precision in the theory of mechanisms. 
This has opened up great opportunities for parallel 
manipulators to be applied in many fields. But it is 
difficult to make use of parallel manipulators in real 
applications. One of the difficulties lies in the 

controller design of parallel manipulators. Due to 
inherent closed-loop constraints, the joints of parallel 
manipulators are tightly coupled and the dynamic 
characteristics are always highly nonlinear. With these 
difficulties, it is usually difficult to move the end-
effector of a parallel manipulator along a trajectory 
accurately and quickly, and the controller design for a 
parallel manipulator is a work full of challenge, which 
has aroused the interests of researchers in recent years. 

In literature, there are two basic controller design 
strategies for parallel manipulators: the kinematic 
control strategy and the dynamic control strategy. The 
kinematic control strategy is based on the assumption 
that the joints of parallel manipulators are all 
independent and the parallel manipulator can be 
decoupled into a group of single axis control systems. 
So the kinematic control method always results in a 
group of individual controllers, each for an active 
joint of the parallel manipulator. PID controller [1-4], 
NPID controller [5,6], fuzzy logic controller [7,8] and 
neural network controller [9] all belong to kinematic 
controllers. With the independent joint assumption, no 
priori-knowledge of parallel manipulator dynamics is 
needed in the kinematic controller design, so the 
complex computation of dynamics can be avoided and 
the controller design problem can be simplified 
greatly. This makes the great sense for the real-time 
control of parallel manipulators when powerful 
processors that can execute complex algorithms 
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rapidly are not available. But the performance of 
kinematic controllers is limited, for the neglect of 
joints coupling and the nonlinear dynamics of parallel 
manipulators. The synchronous control method [10] 
can be used to solve the problem of joints coupling 
and improve the accuracy of the trajectory tracking, 
but the nonlinear dynamics is still an unsolved 
problem for kinematic controllers, especially under 
high-speed motion control. 

Unlike the kinematic control strategy, the dynamics 
of parallel manipulators is taken into account in the 
dynamic control strategy. So the nonlinear dynamics 
of parallel manipulators can be compensated, and the 
higher tracking performance can be achieved with 
dynamic controllers. Based on approximated linear 
dynamic models, dynamic controllers were proposed 
for parallel manipulators with improved tracking 
performance [11-13]. Although the controller is easy 
to implement by adopting the approximated linear 
model of parallel manipulators, the effect of the 
controller is limited in a small region of the 
configuration space for the inaccurate compensation 
of nonlinear dynamics. To solve this problem, full 
nonlinear dynamic models were adopted in the 
controller design in [14-16] and adaptive methods 
were also used to improve the tracking performance of 
parallel manipulators [4,17,18]. Furthermore, to gain a 
deep insight of the parallel manipulator dynamics, Liu 
developed an unified geometric approach for the 
modeling and the control of parallel manipulators [19], 
and Aghili proposed a more generalized method to 
solve the dynamic problem of parallel manipulators 
[20]. All these works have placed solid foundation for 
the further research of dynamic control strategy. 

The control problem of parallel manipulators with 
redundant actuators is also of great interest for 
researchers. For redundant actuated parallel 
manipulators, infinite feasible solutions of control 
torques can be obtained to track a single desired 
trajectory. Among the feasible solutions, the best one 
may be picked out to minimize a predefined optimal 
function, so additional optimal control objective can 
be achieved during the trajectory tracking. In literature, 
redundant actuation is used to minimize the control 
torque [15,16], achieve optimal load distribution 
among actuators [21], improve the manipulability of 
parallel manipulators [22], obtain desired end-effector 
stiffness [23] and avoid the transmission backlash [24]. 

In this paper, the dynamic controller design 
problem of a redundant planar 2-dof parallel 
manipulator is studied. Using the Euler-Lagrange 
equation, we formulate the dynamic model of the 
parallel manipulator in the joint space and propose an 
augmented PD controller for the parallel manipulator. 
Compared with the controllers proposed by Kock [21] 
and Chen [16] which were formulated in the 
workspace, our controller is formulated in the joint 

space, and the complex computation of the Jacobian 
matrix of the joint angles with end-effector coordinate 
is eliminated. With less computation, the controller 
proposed here is easier to implement, and a shorter 
sampling period can be achieved. This makes the 
controller more suitable for high-speed motion control. 
Furthermore, with the combination of static friction 
model and viscous friction model, the active joint 
friction of the parallel manipulator is compensated in 
the controller, while only the viscous friction of joints 
was considered in the previous controllers designed 
by Chen [16] and Yiu [4]. With trajectory tracking 
experiments, the validity of the dynamic model is 
proved and the performance of the controller is 
evaluated. Experiment results show that, with forward 
dynamic compensation, the augmented PD controller 
can improve the tracking performance of the parallel 
manipulator over simple PD controller. 

 The paper is organized as follows. In Section 2, the 
structure of the manipulator is described and the 
kinematics is formulated. In Section 3, with the Euler-
Lagrange equation, we formulate the dynamics of the 
parallel manipulator in the joint space. In Section 4, 
we formulate the active joint friction of the parallel 
manipulator with the combination of static friction 
and viscous friction. By least square method, we 
identify the unknown friction parameters and other 
unknown dynamic parameters of the parallel 
manipulator. In Section 5, based on the dynamic 
model in Section 3 and the friction model in Section 4, 
we propose a simple PD controller and an augmented 
PD controller with forward friction compensation for 
the parallel manipulator. With the two controllers, 
linear and circular trajectory tracking experiments are 
performed and experiment results are reported too. 
Section 6 concludes the paper with several important 
remarks. 

 
2. MECHANISMS AND INVERSE 

KINEMATICS 
 
The parallel manipulator to be controlled is Googol 

Tech. Ltd’s GPM2002, which is a redundant planar 2-
dof parallel manipulator. As shown in Fig. 1, the 
GPM2002 consists of 6 links denoted as 

, , 1,2,3,ai biL L i =  3 active joints located at 1 2 3, ,A A A  
and 3 passive joints locate at 1 2 3, ,B B B  respectively. 
The end-effector of the parallel manipulator coincides 
with O  in Fig. 1.  

According to Fig. 1, a reference frame is estab-
lished in the workspace of the parallel manipulator 
and the unit of the frame is millimeter. With the 
reference frame, the zero positions of joint angles are 
all defined as the positive direction of the X axis of the 
frame, and the positive directions of angles are all the 
anticlockwise direction. The active joints of the 
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GPM2002 are actuated by AC servo motors. All of the 
motors are embedded with internal absolute encoders 
as joint sensors, and controlled by motion control 
board GT-400-PCI-SV from Googol Tech. Ltd.  

For parallel manipulators, the desired trajectories to 
be tracked are always described by end-effector 
coordinates, while the only available feedback signals 
are active joint angles. So the tracking error of the 
manipulator can’t be calculated directly. To solve this 
problem, inverse kinematics of the GPM2002 can be 
employed and the desired positions of joints 
corresponding to the desired position of the end-
effector are obtained through inverse kinematic 
transformation. Then the tracking error can be 
calculated by subtracting real joint angles from 
desired joint angles. 

For parallel manipulators GPM2002, the lengths of 
6 links are same and all equal to 244mm. Denote the 
lengths of links by symbol l , and the coordinates of 
active joint positions 1 2, ,A A  and 3A  by symbols 

( ), , 1,2,3ai aix y i =  which equal to (0,250), (433,0), 
and (433,500), respectively. Then from the end-
effector coordinate ( ), ,x y active joint angles ,ai iθ =  
1,2,3  can be calculated through following equations: 

( )2 , arccos ,
2

1,2,3.

i
ai ai ai

d
arctg x x y y

l
i

θ ⎛ ⎞= − − + ⎜ ⎟
⎝ ⎠

=

 (1) 

In (1), symbols , 1,2,3id i =  are defined as follows: 

( ) ( )2 2 ,i ai aid x x y y= − + − 1,2,3.i =  (2) 

Then the passive joint angles , 1,2,3bi iθ =  can be 
obtained through following equations: 

( ) ( ]2 , , ,
1,2,3.

bi bi biarctg x x y y
i

θ π π= − − ∈ −

=
 (3) 

In (3), symbols , , 1,2,3bi bix y i =  refer to the 
coordinates of passive joint locations in the reference 
frame, which can be calculated through following 
equations: 

cos
sin , 1,2,3.

bi ai ai

bi ai ai

x x l
y y l i

θ
θ

= +⎧
⎨ = + =⎩

  (4) 

With (1) and (3), the angles of active joints and the 
passive joints corresponding to the end-effector 
coordinate ( ),x y  can be calculated, so the tracking 
error of the parallel manipulator can be expressed by 
the tracking errors of joints. 

 
3. DYNAMIC MODEL BASED ON THE 

EULER-LAGRANGE EQUATION 
 
The parallel manipulator GPM2002 consists of 3 

serial kinematic chains, and each of kinematic chains 
is a planar 2-dof serial manipulator. The motion of the 
parallel manipulator equals to the motion of the 3 
serial kinematic chains under the closed-loop 
constraints, so the dynamics of the parallel 
manipulator can be formulated by combining the 
dynamics of 3 serial kinematic chains under the 
constraint forces.  

 
3.1. Dynamic model of serial kinematic chain 

Cutting the parallel manipulator at the end-effector 
,O  one can divide the GPM2002 into 3 serial 

kinematic chains, each of which is a planar 2-dof 
serial manipulator consisting of 2 links and 2 joints. 

The structure of serial kinematic chain is shown in 
Fig. 2. According to Fig. 2, the links are denoted by 
symbols aL  and ,bL  and the joint angles are 

 
(a) Mechanisms of the GPM2002. 
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(b) Structure of the GPM2002. 

 
Fig. 1. Redundant planar 2-dof parallel manipulator

GPM2002. 
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denoted by aθ  and .bθ  The base of serial kinematic 
chain coincides with A  and the end-effector 
coincides with .O  The lengths of 2 links are same, 
which is denoted by .l  

The links of the kinematic chain are supposed to 
beideal rigid bodies. Because the kinematic chain 
moves in the horizontal plane, the effect of the gravity 
can be ignored. So the mechanical energy aKE  and 

bKE  of links equal to their kinetic energy, and can be 
expressed as following equations: 

( )
( )

2 2 2

2 2 2

1 1
2 2
1 1 ,
2 2

a a a a ca ca

b b b b cb cb

KE J m x y

KE J m x y

θ

θ

⎧ = + +⎪⎪
⎨
⎪ = + +
⎪⎩

  (5) 

where symbols am  and bm  refer to link masses, 

aJ  and bJ  refer to the moments of inertia of links 
relative to mass center, ( ),ca cax y  and ( ),cb cbx y  
refer to the mass center coordinates of links.  

Denote the distances between the mass center and 
the joint of links by ar  and br  respectively, one can 
express the coordinates of mass centers as following 
equations:  

cos
sin

cos cos
sin sin .

ca a a

ca a a

cb a b b

cb a b b

x r
y r
x l r
y l r

θ
θ
θ θ
θ θ

=⎧
⎪ =⎪
⎨ = +⎪
⎪ = +⎩

   (6) 

Substitute (6) into (5), one can have: 

( )
( )

2 2 2

2 2 2 2 2

1 1 ,
2 2
1 1
2 2

cos .

a a a a a a

b b b b a b b

b b a b a b

KE J m r

KE J m l r

m lr

θ θ

θ θ θ

θ θ θ θ

= +

= + +

+ −

  (7) 

And the total mechanical energy of the kinematic 

chain can be formulated as follows: 

( )2 21 1 cos ,
2 2a b a b a bKE αθ βθ γ θ θ θ θ= + + −  (8) 

where symbols , ,α β γ  are defined as follows: 

2 2

2

.

a a a b

b b b

b b

J m r m l

J m r
m lr

α

β
γ

⎧ = + +
⎪⎪ = +⎨
⎪ =⎪⎩

   (9) 

Let [ ], T
a bθ θ θ=  be the vector of joint angles, 

[ ]Ta bτ τ τ=  be the vector of joint torques, 

[ ]Ta bf f f=  be the vector of joint frictions. Then 
the Euler-Lagrange equation of the kinematic chain 
can be expressed as the following equation: 

 .d L L f
dt

τ
θθ

∂ ∂⎛ ⎞ − = −⎜ ⎟ ∂∂⎝ ⎠
   (10) 

Expands (10), one can get the dynamics of the 
kinematic chain as following equation: 

 .M C fθ θ τ+ = −    (11) 

In (11), symbols ,M C  are defined as follows: 

 
( )

( )
cos

,
cos

a b

a b
M

α γ θ θ
γ θ θ β
⎡ ⎤−

= ⎢ ⎥−⎣ ⎦
 (12) 

 ( )
( )

0 sin
.

sin 0
a b b

a b a
C

γ θ θ θ
γ θ θ θ

⎡ ⎤−
= ⎢ ⎥− −⎢ ⎥⎣ ⎦

 (13) 

 
3.2. Dynamic model of the parallel manipulator 

Similar with (9), constant coefficients can be 
defined for each serial kinematic chains 

 

2 2

2

, 1,2,3,

i ai ai ai bi

i bi bi bi

i bi bi

J m r m l

J m r
m lr i

α

β
γ

⎧ = + +
⎪⎪ = +⎨
⎪ = =⎪⎩

  (14) 

where ,ai bim m  refer to the masses of links, ,ai biJ J  
refer to the moments of inertia of the links relative to 
the mass centers, ,ai bir r  refer to the distances 
between mass centers and joints of links, and l  
refers to the length of links. 

Then with (11), the dynamics of serial kinematic 
chains can be established. Combine the dynamics of 
the 3 serial chains and consider the constraint forces 
due to the closed-loop constraints, the dynamic model 
of the parallel manipulator can be formulated in the 
joint space as follows: 

x

O

B

y

θb

θa
A

La

Lb

 
Fig.2. Structure of serial kinematic chain. 
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 ,TM C f Aθ θ τ λ+ = − +    (15) 

where [ ]1 2 3 1 2 3, , , , , T
a a a b b bθ θ θ θ θ θ θ=  refers to the 

vector of joint positions, 1 2 3 1 2[ , , , , ,a a a b bτ τ τ τ τ τ=  

3]Tbτ  refers to the vector of input torques, f =  

1 2 3 1 2 3[ , , , , , ]Ta a a b b bf f f f f f  refers to the vector of 

joint frictions and TA λ  refers to the vector of 
constraint forces. 

The inertia matrix M  and coriolis matrix C in 
(15) are defined as follows: 

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

0 0 0 0
0 0 0 0
0 0 0 0

,
0 0 0 0

0 0 0 0
0 0 0 0

ab

ab

ab

ab

ab

ab

c
c

c
M

c
c

c

α γ
α γ

α γ
γ β

γ β
γ β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(16) 

1 1 1

2 2 2

3 3 3

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

ab a

ab a

ab a

C
s

s
s

γ θ
γ θ

γ θ

⎡
⎢
⎢
⎢

= ⎢
−⎢
⎢ −⎢

−⎢⎣

 

1 1 1

2 2 2

3 3 3

0 0
0 0
0 0

.
0 0 0
0 0 0
0 0 0

ab b

ab b

ab b

s
s

s

γ θ
γ θ

γ θ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

 

(17) 
In (16) and (17), symbols , 1,2,3abic i =  are defined 

as ( )cos , 1,2,3,abi ai bic iθ θ= − =  and symbols ,abis i  
1,2,3=  are defined as ( )sin , 1,2,3abi ai bis iθ θ= − = .  
As shown in (15), the dynamics of the GPM2002  

is formulated in the joint space and redundant 
variables are involved in the formulation, so the 
constraint force TA λ  is included explicitly to 
guarantee the closed-loop constraints of the parallel 
manipulator are satisfied at every instant. Here matrix 
A  is the differential of the closed-loop constrained 

equations, and multiplier λ  denotes the magnitude 
of constraint forces. 

Adopting the symbols defined in Section 2,  one 
can formulate the closed-loop constraints of the 
GPM2002  as following equation: 

( )

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 3 3 3

1 1 1 3 3 3

0.

a a b a a b

a a b a a b

a a b a a b

a a b a a b

x lc lc x lc lc
y ls ls y ls ls

H
x lc lc x lc lc
y ls ls y ls ls

θ

+ + − − −⎡ ⎤
⎢ ⎥+ + − − −⎢ ⎥= =
⎢ ⎥+ + − − −
⎢ ⎥

+ + − − −⎣ ⎦

 

(18) 
In (18), symbols , , 1,2,3ai ais c i =  are defined as 

( )sin( ), cos , 1,2,3,ai ai ai ais c iθ θ= = =  and symbols 
, , 1,2,3bi bis c i =  are defined as sin( ),bi bis θ= bic =  
( )cos , 1,2,3.bi iθ =  

Differentiating (18), one can have: 

 
( ) ( ) ( ) 0.

dH H
A

dt
θ θ

θ θ θ
θ

∂
= = =

∂
  (19) 

Then matrix A  can be formulated as follows: 
 

1 2 1 2

1 2 1 2

1 3 1 3

1 3 1 3

0 0
0 0

.
0 0
0 0

a a b b

a a b b

a a b b

a a b b

ls ls ls ls
lc lc lc lc

A
ls ls ls ls

lc lc lc lc

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦
(20) 

With (15), (16), (17), and (20), the dynamics of the 
GPM2002 is established in the joint space. 

 
4. IDENTIFICATION OF DYNAMIC 

PARAMETERS 
 
For the GPM2002, the dynamic parameters of links 

such as masses mai, mbi, moments of inertia relative to 
the mass centers Jai, Jbi, distances between mass 
centers and joints rai, rbi and length l, can be measured 
directly. But the constraint forces and the joint 
frictions in (15) are still unknown. In this section, the 
unknown constraint force TA λ  is eliminated by 
projection method, and the active joint friction is 
modeled with the combination of static friction model 
and viscous friction model. By formulating the 
dynamics of the GPM2002 as a group of linear 
equations about dynamic parameters, the unknown 
friction parameters and other unknown dynamic 
parameters of the GPM2002 are identified with least 
squared method. 

 
4.1. Elimination of constraint forces 

The constraint force magnitude λ  in (15) is 
unknown, and it is difficult to be measured directly. 
Fortunately this unknown term can be eliminated by 
projection method [19]. 

With (15), the magnitude of constraint force can be 
calculated through following equations: 

( ) ( )( )11 1 .TAM A AM M C fλ θ θ τ
−− −= + − − (21) 
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Substituting (21) into (15), one can obtain following 
equations: 

( ) ( )( )11 1 0.T TI A AM A AM M C fθ θ τ
−− −⎛ ⎞− + − − =⎜ ⎟

⎝ ⎠
(22) 

With (22), one can eliminate constraint forces by 
projecting the dynamic model onto the image space of 

matrix ( ) 11 1.T TP I A AM A AM
−− −= − The parame-

ters of P  consist of the dimension parameters of the 
parallel manipulator and the inertia parameters of 
links, all of which can be measured directly. So the 
matrix P  can be calculated directly and constraint 
forces can be eliminated with (22). 

 
4.2. Model of joint frictions 

In (22), joint friction vector f  is still an unknown 
term. Here, static friction model and viscous friction 
model are adopted to formulate the joint frictions. 
Furthermore, the zero drift of the control board that 
results a nonzero output torque for motors is 
considered too. For the GPM2002, the passive joints 
are well lubricated, so the frictions of passive joints 
can be ignored and only the frictions of active joints 
are considered. The frictions of active joints can be 
formulated as following equations: 

 ( ) , 1,2,3.i i ai si vi aif d sign f f iθ θ= + + =  (23) 

Here, symbols , 1,2,3id i =  refer to the zero drifts of 
control board, symbols , 1,2,3sif i =  refer to the 
static frictions, and symbols , 1,2,3vif i =  refer to 
viscous friction coefficients. 

 
4.3. Formulation of parameter identification 

In (22) and (23), the dynamic parameters of links 
can be measured directly and only the friction 
parameters have to be identified. Besides, the unit of 
output torque of the motors has to be transformed to 
the unit of numerical control value, so one more 
unknown unit transformation coefficient has to be 
identified. Based on (22), following equation can be 
got: 

( ) 0.P M C f P D k P f Pθ θ τ τ+ + − = ⋅ ⋅ + ⋅ − ⋅ =  

(24) 
In (24), symbol k  refers to the unknown unit 
transformation coefficient, while symbol D  refers to 
the sum of the inertia term and the coriolis term of the 
manipulator. Let 

6 6ijP P
×

⎡ ⎤= ⎣ ⎦  and 
6 1

,jD D
×

⎡ ⎤= ⎣ ⎦  

one can formulate (24) as a group of linear equations 
about the unknown dynamic parameters. 

 , 1, ,6.i iW p t i= =    (25) 

In (25), symbols , ,i iW t p  are defined as follows: 

[
]

1 2 3 1 1 1 1

2 2 2 2 3 3 3 3 ,

v v v s s
T

s s s s

p k f f f d f d f

d f d f d f d f

= + −

+ − + −
(26) 

]

6

1 1 2 2 3 3
1

1 1 2 2 3 3 , 1, ,6,

i ij j i a i a i a
j

i i i i i i

W P D P P P

u l u l u l i

θ θ θ
=

⎡
⎢=
⎢⎣

=

∑
 (27) 

3

1
, 1, ,6.i ij aj

j
t P iτ

=
= =∑    (28) 

For simplicity, parameter combinations i sid f+  
and i sid f−  are viewed as unknown parameters to 
be identified as shown in (26). In (27), the coefficients 

, , 1,2,3ik iku l k =  are determined by following rules: 
, 0ik ik iku P l= = when 0akθ > and 0,ik ik iku l P= =  

when 0.akθ <  In (28), only the input torque of 
active joints is considered, for the input torque of 
passive joints always equals zero. 

There are 10 parameters to be identified in (25) and 
2 independent equations can be got for each sampling 
point. So a group of linear equation about the 
unknown parameters can be got with the sampling 
data of a continuous trajectory. By solving the linear 
equations with least squared method, the unknown 
parameters can be identified. 

 
4.4. Parameter identification experiment 

The dynamic parameters of links can be measured 
directly, as shown in Table 1. 

To identify the friction parameters and the unknown 
dynamic parameters of the GPM2002, the end-
effector of the parallel manipulator is driven to track a 
circular trajectory. Based on (25), a group of linear 
equations about the unknown parameters can be 
obtained with the sampling data of trajectory, and the 
 
Table 1. Dynamic parameters of the links. 

 Mass
(Kg)

Length
(m) 

Distance 
between 
the mass 

center and 
the joint (m) 

Moment of 
inertia relative

to the mass 
center (Kg*mP

2P)

1aL 1.2525 0.2440 0.1156 0.0124 

2aL 1.3663 0.2440 0.0657 0.0122 

3aL 1.3663 0.2440 0.0657 0.0122 

1bL 1.0771 0.2440 0.1621 0.0098 

2bL 0.4132 0.2440 0.1096 0.0036 

3bL 0.4132 0.2440 0.1096 0.0036 
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unknown parameters can be identified with least 
squared method. In the identification experiment, the 
velocity of joints is got by the numerical 
differentiation of joint positions, and the acceleration 
of joints is got by numerical differentiation of joint 
velocity. Since the acceleration of joints is calculated 
by two-time numerical differentiations, the joint 
accelerations are quite noisy. A low-pass filter is 
adopted to filter the velocity signal before the 
calculation of acceleration. 

Based on the parameter values in Table 1, the 
unknown parameters of the GPM2002 are identified 
with MATLAB program and results are shown in 
Table 2.  

 
5. CONTROLLER DESIGN AND MOTION 

CONTROL EXPERIMENTS 
 
With the dynamic formulation (22) and (23), a 

simple PD controller and an augmented PD controller 
are proposed in this section. With the controllers, 
motion control experiments are performed and 
experiment results are reported in this section too. 

 
5.1. Simple PD controller 

Denote the desired trajectory in the joint space by 

symbol 1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ,

T
d a a a b b bθ θ θ θ θ θ θ⎡ ⎤= ⎣ ⎦ where 

ˆ , 1,2,3ai iθ =  and ˆ , 1,2,3bi iθ =  refer to desired 
active joint positions and desired passive joint 
positions respectively, and denote the actual trajectory 

by symbol 1 2 3 1 2 3
T

a a a b b bθ θ θ θ θ θ θ⎡ ⎤= ⎣ ⎦ where 

, 1,2,3ai iθ =  and ˆ , 1,2,3bi iθ =  refer to actual active 
joint positions and actual passive joint positions 
respectively. 

The structure of the simple PD controller is shown 
in Fig. 3. 

Command torque of three motors can be calculated 
by following equations: 

 , 1,2,3.i p i d iK e K e iτ = + =   (29) 

In (29), Kp refers to the proportion gain of the PD 
controller, Kd refers to the derivative gain of the PD 

controller, and ie  refers to the tracking error of 
active joints which can be formulates as follows: 

 ˆ , 1,2,3.i ai aie iθ θ= − =    (30) 
 

5.2. Augmented PD controller 
The structure of augmented PD controller is shown 

in Fig. 4. 
For the GPM2002, the dynamics including the 

friction at active joints dominates the dynamics of the 
parallel manipulator, so we ignore the dynamics 
including the friction at passive joints. Then 
computation of the command torque of motors can be 
simplified further, which can be calculated by 
following equations: 

 , 1,2,3,i p i d i i iK e K e kD f iτ = + + + =  (31) 

where Kp refers to the proportion gain of the PD 
controller, Kd refers to derivative gain and k refers to 
unit transformation coefficients.  

In (31), symbol ie  refers to the tracking error of 
active joint, Di refers to the compensation of dynamics 
and fi refers to the compensation of frictions.  

 
( )
( )

3

1
3

3 3
1

ˆ ˆ

ˆ ˆ , 1,2,3,

i ij aj ij aj
j

ij bj ij bj
j

D M C

M C i

θ θ

θ θ

=

+ +
=

= +

+ + =

∑

∑
 (32) 

 ( )ˆ ˆ , 1,2,3.i i ai si vi aif d sign f f iθ θ= + + =  (33) 

Table 2. Results of the identification experiment. 

 Active 
joint 1 

Active 
joint 2 

Active 
joint 3 

vf  1425.5 2363.1 1947.0 

sd f+  625.4 392.6 417.8 

sd f−  -923.6 -567.8 -651.6 
k  1481.6 

 

Kp

Kd

e

GPM2002 .
θ

θθd

θd
.

e
.

 

Fig. 3. Structure of simple PD controller. 
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Fig. 4. Structure of augmented PD controller. 
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Here symbols di, i = 1,2,3 refer to the zero drifts of the 
motion control board, fsi, i = 1,2,3 refer to the static 
frictions of active joints, fvi, i =1,2,3 refer to the 
viscous friction coefficient of active joints. 

 
5.3. Trajectory tracking experiment results 

With the controllers proposed above, motion 
control experiments are implemented. In the 
experiments, the end-effector of the GPM2002 is 
driven to track a linear trajectory and a circular 
trajectory both for 2 times, once with lower velocity 
and once with higher velocity. The control system 
runs on a Pentium III CPU at 333MHz with the 
sampling period 2ms. In the controller, the unit of 
feedback signal is rad for joint position and rad/2ms 
for joint velocity. The value of the proportion gain Kp 
of simple PD controller is 800000, and derivative gain 
Kd is 5000000. For the augmented PD controller, the 
same proportion gain and derivative gain with simple 
PD controller are adopted. 

Furthermore, root-square mean error (RSME) is 

adopted to evaluate the performance of the simple PD 
controller and the augmented PD controller [16]. 

 ( ) ( )( )2 2

1

1 ˆ ˆ
N

i i i i
i

RSME x x y y
N =

= − + −∑  (34) 

In (34), symbols ˆ ˆ,i ix y  refer to the coordinates of the 
ith interpolation point of desired trajectory and ,i ix y  
refer to the coordinates of corresponding point of real 
trajectory. 

The starting point of linear trajectory is (150,300) 
and the ending point is (300,150). The velocity profile 
of desired linear trajectory is a T-curve. First the end-
effector of the GPM2002 is driven to track the line 
with maximum velocity 0.2m/s and acceleration 4m/sP2 P, 
then with maximum velocity 0.5m/s and acceleration 
10m/sP2 P. Tracking errors of the end-effector are shown 
in Figs. 5 and 6, while the RSMEs of the linear 
trajectory tracking experiments are shown in Table 3. 
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(a) Tracking error in X direction. 
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(b) Tracking error in Y direction. 

 
Fig. 5. Linear trajectory tracking error of the end-

effector with maximum velocity 0.2m/s. 
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(a) Tracking error in X direction. 
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(b) Tracking error in Y direction. 

 
Fig. 6. Linear trajectory tracking error of the end-

effector with maximum velocity 0.5m/s. 
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The starting point of circular trajectory is 

(216.5,180) and center is (216.5,250). The end-
effector of the GPM2002 is driven to track the circle 
for two times, first with constant velocity 0.2m/s and 
then with constant velocity 0.5m/s. Tracking errors of 
the end-effector are shown in Figs. 7 and 8, while the 
RSMEs of the circular trajectory tracking experiments 
are shown in Table 4. 

 

From the experiment results, one can see that the 
tracking error grows with the velocity of the end-
effector. But, with the compensation of parallel 
manipulator dynamics and the active joint frictions, 
the augmented PD controller can achieve more 
accurate trajectory tracking results than the simple PD 
controller under the same trajectory. 
 
Table 4. RSME of circular trajectory tracking experi-

ments. 

RSME(mm) 
 

PD controller 
Augmented PD 

controller 
End-effector 

velocity 0.2m/s
0.7210 0.1029 

End-effector 
velocity 0.5m/s

1.2189 0.4525 

Table 3. RSME of linear trajectory tracking experi-
ments. 

RSME(mm) 
 PD 

controller 
Augmented PD

controller 
End-effector 

velocity 0.2m/s 0.7140 0.1111 

End-effector 
velocity 0.5m/s 1.1011 0.2560 
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(a) Tracking error in X direction. 
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(b) Tracking error in Y direction. 

 
Fig. 7. Circular trajectory tracking error of the end-

effector with velocity 0.2m/s. 
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(a) Tracking error in X direction. 
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(b) Tracking error in Y direction. 

 
Fig. 8. Circular trajectory tracking error of the end-

effector with velocity 0.5m/s. 
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6. CONCLUSIONS 
 
In this paper, we proposed an augmented PD 

controller for a redundant planar 2-dof parallel 
manipulator. By formulating the controller in the joint 
space, we eliminated the complex computation of the 
Jacobian matrix of joint angles with end-effector 
coordinate. So with less computation, our controller is 
easier to implement, and a shorter sampling period 
can be achieved, which makes the controller more 
suitable for high-speed motion control. Furthermore, 
with the combination of static friction model and 
viscous friction model, the active joint friction of the 
parallel manipulator was studied. With the 
compensation of active joint friction, more accurate 
forward dynamic compensation was achieved. To 
evaluate the dynamic parameters of the parallel 
manipulator, we formulated the dynamic model as a 
group of linear equations and identified the unknown 
parameters with least squared method. With linear 
trajectory tracking experiments and circular trajectory 
tracking experiments, the validity of dynamic model 
was proved and the performance of the controller was 
evaluated. Experiment results showed that, based on 
the forward dynamic compensation, better tracking 
performance could be achieved with the augmented 
PD controller proposed over simple PD controller. 
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