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Abstract

CABINS is a framework of modeling an optimization task in ill-
structured domains. In such domains, neither systems nor human ex-
perts possess the exact model for guiding optimization. And the user’s
model of optimality is subjective and situation-dependent. CABINS
optimizes a solution through iterative revision using case-based rea-
soning. In CABINS, task structure analysis was adopted for creating
an initial model of the optimization task. Generic vocabularies found
in the analysis were specialized into case feature descriptions for ap-
plication problems. Extensive experimentation on job shop scheduling
problems has shown that CABINS can operationalize and improve the
model through the accumulation of cases.
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1 Introduction

A knowledge-based system (or an expert system) has explicit representation
of knowledge in addition to the inference mechanism that operates on the
knowledge to achieve the system’s goal. A knowledge base represents a model
of how domain experts approach a complicated problem in the domain. It is
an operational model which, hopefully, exhibits some desired behavior which
has been specified or observed in the real-world — in exactly the same way
as a mathematical model attempts to mirror real-world situations.

Builders of expert systems formulate the model, first by defining a model
of the behavior that they wish to understand and then corroborating and ex-
tending that model with the aid of specific examples. For example, PROTEGE
[26] has two interrelated phases of knowledge base construction: (1) model
building and (2) model extension. When building a model, developers must
first perform a requirements analysis and identify the task that the expert
system has to perform. Then, knowledge engineers and domain experts co-
operate to construct a model of the proposed system’s behavior. This model
generally corresponds to the developer’s theory of how the experts actually
solve the problem. For extending a model, the model of the intended be-
havior of the expert system is validated by ascertaining how well the model
applies to closely related application problems.

Much of the activity involved in the first stage of model formulation,
model building, entails knowledge-level [27] analysis, which determines (1)
the goals for a knowledge-based system, (2) the actions of which the system
is capable, and (3) the knowledge that the system can use to determine the
actions that attain the goal. In recent research on Al, there is a clear con-
sensus in favor of knowledge-level analysis and its advantages for knowledge
modeling and acquisition. Chandrasekaran and his colleagues advocated the
generic task framework [2] and identified a number of tasks of general utility
(such as classification), methods for performing the tasks and the kinds of
knowledge needed by the methods. Clancey proposed heuristic classification
[5] as an abstract inference pattern for a diagnosis task by examining some ex-
pert systems such as MYCIN. McDermott developed half-weak methods [18],
such as cover-and-differentiate and propose-and-revise methods, for solving
general tasks that do not require domain specific search control knowledge.
These methodologies of knowledge-level analyses have successfully been ap-
plied to the development of various expert systems.



However, the latter stage of model formulation, model extension, has no
generic methodology corresponding to the knowledge-level analysis for the
first stage of model formulation. It is generally believed that, though creat-
ing a knowledge model may be difficult, extending an existing model is less
arduous for human experts. In other words, whereas domain experts may not
be able to introspect and articulate the process knowledge that allows them
to solve problems, these experts can easily supply the content knowledge that
may or may not be consistent with a given model. To elicit consistent domain
knowledge from human experts, several model-based knowledge acquisition
tools have been developed such as MOLE [7], SALT [16], KNACK [11] and
OPAL [25].

Although these model extension (knowledge acquisition) tools are power-
ful in allowing domain experts to make large knowledge bases without help
from knowledge engineers, such tools must be strongly tied to a specific prob-
lem solving method presupposed by the tools. For example, while SALT has
been proved to be useful for acquiring knowledge of the expert system, called
VT, which supports design of elevator systems, SALT could not acquire ef-
fective knowledge for solving scheduling problems. The failure of SALT was
caused by the fact that the propose-and-revise problem solving method as-
sumed by SALT was inappropriate for the scheduling problem in spite of
its structural resemblance to the design problem [32]. Hence, if a problem
solving method is generic enough to be applicable to a wide variety of tasks
and, at the same time, is capable of matching the nuances of particular ap-
plications, a model extension framework based upon such a problem solving
method has a highly practical value.

1.1 Case-Based Reasoning

Case-based reasoning (CBR) is the problem solving paradigm where previous
experiences are used to guide problem solving [13]. Cases similar to the
current problem are retrieved from memory according to a similarity metric,
the best case is selected from those retrieved and compared to the current
problem. If needed, the precedent case is adapted to fit the current situation
based on identified differences between the precedent and the current cases.
CBR allows a reasoner (1) to propose solutions in domains that are not
completely understood by the reasoner, (2) to evaluate solutions when no
algorithmic method is available for evaluation, and (3) to interpret open-



ended and ill-defined concepts. CBR also helps a reasoner (1) take actions to
avoid repeating past mistakes, and (2) focus its reasoning on important parts
of a problem [14]. Owing to the above advantages, CBR has successfully been
applied to many kinds of problems such as design, planning, diagnosis and
instruction . Thus CBR can be regarded as an appropriate problem solving
method for a large class of applications.

In terms of knowledge acquisition, CBR has a number of practically de-
sirable features which encourage CBR applications in many domains [34].
In CBR, successful cases are stored in the case base so that they can be
retrieved and re-used in the future. Failed cases are also stored so that they
can warn the problem solver of potential difficulties and help recover from
failures. After a problem is solved, the case base is updated with the new
experience. Thus, learning is an integral part of case-based problem solving.
Moreover, in general, it is easier for experts to collect a sufficient number
of problem cases by actually solving sample problems rather than try to ab-
stract the particulars of one or more problem cases in order to formulate a
consistent rule-set. Hence, CBR has been considered as a more natural and
less time consuming method of knowledge acquisition [31, 15].

It should be noted, however, that CBR is not a panacea that obviates
any overhead associated with knowledge acquisition. It defines new types of
knowledge acquisition tasks, i.e., definition of appropriate case features and
indices. For solving these difficulties, there have been attempts of combin-
ing knowledge-level analysis and case-based reasoning by constructing a task
description of case-based reasoning or using a task structure as a guideline
for developing a indexing schema of the case [3, 1]. In this paper, we hy-
pothesize that analysis of the application problem at a task-level provides
a useful category of vocabularies for describing features of situations in the
problem and these vocabularies can be mapped to the domain specific vocab-
ularies for case descriptions without much effort since both vocabularies are
represented at the knowledge-level. To validate our hypothesis, we present
a case-based approach, implemented in the CABINS system, for formulat-
ing a model of the optimization task and using it to guide iterative solution
optimization in ill-structured domains. The model of an optimization task
should have the following knowledge: (1) user context-dependent preferences
and (2) situation-dependent search control. In CABINS, CBR method is
used for extending the optimization task model created by the domain ex-
perts and knowledge engineers based on the task structure analysis [4]. We



show that when coupled with the task-level analysis, the case-based reasoning
method can provide strong leverage for reducing the difficulty of knowledge
acquisition. To evaluate the effectiveness of our approach, extensive experi-
ments on CABINS’ performance have been done in the domain of job shop
scheduling, a widely known ill-structured optimization problem.

The rest of the paper is organized as follows: Section 2 presents the
characteristics and challenges of the job shop scheduling domain. Section 3
presents the model formulation approach in CABINS. Section 4 presents
the overview of the case-based optimization approach in CABINS. Section 5
explains the experiment method and presents the results. Section 6 presents
the concluding remarks.

2 Scheduling Problem

Scheduling assigns a set of orders over time to a set of resources with finite
capacity. One of the most difficult scheduling problem classes is job shop
scheduling. Job shop scheduling is a well-known NP-complete problem [§]. In
job shop scheduling, each order consists of a set of activities to be scheduled
according to a partial activity ordering. The dominant constraints in job
shop scheduling are: temporal precedence constraints that specify the relative
sequencing of activities within an order and resource capacity constraints that
restrict the number of activities that can be assigned to a resource during
overlapping time intervals.

The activity precedence constraints along with an order’s release date
and due date restrict the set of acceptable start times for each activity. The
capacity constraints restrict the number of activities that can use a resource
at any particular point in time and create conflicts among activities that
are competing for the use of the same resource at overlapping time inter-
vals. The goal of a scheduling system is to produce schedules that respect
temporal relations and resource capacity constraints, and optimize a set of
objectives, such as minimizing tardiness, minimizing WIP (work-in-process,
i.e. in-process inventory) etc.

Job shop schedule optimization has been very difficult to automate for a
variety of reasons.

o It is one of the most difficult NP-hard combinatorial optimization prob-
lems [8], and even domain experts are not believed to possess sufficient

4



heuristic knowledge for making good schedules efficiently [10].
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Figure 1: Example of tight constraint interactions

e Owing to the tight interactions among scheduling constraints and the
often conflicting nature of optimization criteria, it is impossible to as-
sess with any precision the extent of the required schedule revision to
improve the quality of a schedule, or the impact of a scheduling decision
on the global satisfaction of optimization criteria. For example, in Fig-
ure 1 moving forward the last activity of ORDER3 creates downstream
cascading constraint violations. Therefore, the only way for a user or
a system to evaluate the desirability of a scheduling action and assess
its effects on his/her optimization preferences is to apply the action to
the problem, see the resulting schedule and evaluate it in light of the
evaluation preferences.
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Figure 2: Example of conflicting objectives

o The evaluation itself of what is a “high quality” schedule is difficult be-
cause of the need to balance conflicting objectives and trade-offs among



them. Such trade-offs typically reflect user preferences, which are diffi-
cult to express as a cost function. For example, WIP and tardiness are
not always compatible with each other. As shown in Figure 2, there
are situations where a repair action can reduce tardiness, but WIP
increases. Which is a better schedule depends on user preferences.
A further complication is that user preferences could be implicit and
context-dependent (e.g., may depend on the state of the scheduling en-
vironment at a particular time). Also, interactions among preferences
and effective tradeoffs very often depend on the particular schedule pro-
duced. This means that generally a user of the scheduling system can’t
fully specify his/her preferences a priori before getting the scheduling
results from the system. By looking over the obtained schedule results,
the user often thinks of additional preferences.

In a nutshell, for real-world schedule optimization problems, we do not
usually have precise evaluation criteria on the quality of schedules or effective
control knowledge for finding optimal solutions efficiently.

3 Modeling the Optimization Task

The analysis of the ill-structuredness of the job shop scheduling problem
in Section 2 provides insights both about the type of the problem solving
methods suitable for the ill-structured optimization problem and the type of
knowledge required for solving the problem. These insights are used for the
definition and enhancement of a knowledge-level model for the problem.
Recently a number of uniform knowledge-level analysis frameworks for
describing systems have been developed by several research groups such as
MULTIS [24], KADS [35], SPARK [12] and PROTEGE-II [28]. We adopt
the task structure analysis [4] for building the model of the optimization
task. The task structure is the tree of tasks, methods and subtasks applied
recursively until it reaches the tasks that are in some sense performed directly
using available knowledge. “Task” is synonymous with types of problem-
solving goals: for example, optimization is a task since it characterizes a
family of problems, all of which require achieving the goal of generating a
solution that maximizes given evaluation criteria. “Method” is a process used
to achieve the goals in the task: for example, the task of optimization can be
accomplished either by constructive methods or by repair-based methods.
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Figure 3: Task structure of optimization

Figure 3 shows the task structure for an optimization task. Since design
can be considered as an of the optimization task, this task structure is con-
structed based on the task structure of design [3, 23]. In the task structure
diagram, circles represent tasks and rectangles represent methods. This dia-
gram is not intended to show a complete task structure for the optimization
task: it, however, captures some methods and subtasks that are relevant in
this paper.

The optimization task can be solved either by constructive methods or
by repair-based methods. But, in ill-structured domains such as schedul-
ing, since there is no complete domain knowledge available, the construc-
tive methods cannot produce high quality solutions in an efficient way. The
repair-based methods consist of four subtasks: propose, verify, critique and
modify. For proposing a solution, two principal methods are available: al-
gorithmic and search-based. The algorithmic methods are further catego-
rized into two classes: heuristic and mathematical. The heuristic meth-
ods solve the problem using approximated algorithms. This methodology
works only for problems with a restricted problem structure. The mathe-
matical methods, such as linear and integer programming, can solve well-
structured problems only after a precise mathematical model of the problem



has been constructed. Search-based methods, such as constraint satisfaction
and branch-and-bound, search for the optimal solution in the space of par-
tially constructed solutions with the help of domain specific search control
knowledge.

In critiquing a solution, quality of the solution is analyzed based on the
utility function of domain experts. If the solution is judged as acceptable,
repair process is terminated with the solution. Otherwise, the sources of
unacceptability in the solution are identified as repair goals. In modifying
a solution, the most effective way of achieving repair goals is selected and
applied to the current problem. For selection of repair goals and repair
actions, one possible method is to find the most similar past experiences to
the current problem situation, which suggest the plausible repair action in
the current context. In ill-structured problems, the random selection method
is often used for selecting a repair action, since it allows a solution to escape
from local minima [29]. Because the methods of goal-setting and repair-
application in Figure 3 are strongly domain-dependent, these methods have
to be defined and developed by domain experts with the help from knowledge
engineers.

In verifying solutions, a problem repair must be checked regarding fea-
sibility of the result. This can be done using simulation methods, such as
constraint propagation. If a feasible solution is achieved, it is then evaluated
to see whether the repair improves quality of a solution by calculating an
explicit cost function, or finding whether the most similar past repair results
were evaluated as acceptable or not.

In CABINS, case-based reasoning is used as a method for three subtasks:
evaluation, goal selection and repair selection. This is based on our hypothe-
sis that the knowledge required for these subtasks can be acquired with small
efforts by the approach shown in Section 3.1.

3.1 Case-Based Model Extension

The task structure used for model building is an analytical tool. A system
that performs the task can be viewed as using some of the methods and
subtasks in the task structure. Hence, it simply provides a generic vocabulary
for describing how systems work. In order to formulate a model for a specific
application problem, a developer of the application program needs to extend
the model using a task structure.
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Figure 4: Model formulation in CABINS

Figure 4 shows the schematic diagram of the model formulation process
in CABINS. In order to develop the CABINS system, the model of the op-
timization task in Figure 3 needs to be extended because several kinds of
domain-dependent knowledge are required for performing the task. Since
CABINS uses case-based reasoning as a principal problem solving method
for the optimization task, the model extension process in CABINS is com-
posed of the two phases: specialization and operationalization and progressive
enhancement.

The first phase, specialization, is carried out at the knowledge-level. In
specialization, the generic vocabulary found in the task structure analysis
is transformed and refined into the vocabulary of the specific problem do-
main. From the CBR point of view, task structure analysis can provide
the abstract case feature categories, and the specialization process maps out
the feature descriptions of cases in the application domain. For example,
task-level analysis suggests that a case feature category for solution quality
description is necessary for the goal selection subtask, and the specializa-
tion process in the scheduling domain transforms the feature descriptions
into more specific ones such as tardiness and WIP of a schedule. Because
both the generic vocabulary found in the task structure analysis and the



domain-specific vocabulary to be specified at specialization are described in
the knowledge-level language, specialization can be accomplished by domain
experts who can enumerate the appropriate feature descriptions in the ap-
plication domain with the help from a knowledge engineer who can explain
the meaning of the generic vocabularies.

The second phase, operationalization and progressive enhancement, is
the symbol-level process. In this phase, specific cases are accumulated by
domain experts in a case base according to the case descriptions defined at
the previous stage. These cases contain content knowledge of the domain
such as the judgments and explanations by domain experts in the particu-
lar problem context. In ill-structured problems such as job shop scheduling
where even human experts are not expected to have sufficient understanding
of the problem, acquiring content knowledge as cases is easier than acquir-
ing it in other forms such as rules because of the following reasons: (1) no
explicit understanding of domain causality is necessary since cases implic-
itly map problem features to solutions, (2) knowledge does not need to be
abstracted since an indexing mechanism makes abstraction of the content
of cases when a case is being matched against a new problem, (3) no con-
sistency check of knowledge needs to be done since among retrieved cases
influence of inconsistent or wrong cases is weaken in the mass of “right”
cases, and (4) no meta-control information over knowledge usage (such as
certainty factors) needs to be described since population and relevance of
the cases implicitly defines such control. Cases not only operationalize the
model to be executable but also improve the capability of the operationalized
model incrementally. Accumulation of cases that successfully achieved the
problem goals creates the implicit model of how domain experts solve the
problem and make high quality solutions. Accumulation of cases that failed
in solving the problem extends the model inductively with useful search con-
trol knowledge for avoiding similar failures, which may not be recognized
even by the experts. Thus, accumulation of cases can progressively enhance
the problem solving capability in terms of both solution quality and problem
solving efficiency.

The experimental results of CABINS in Section 5 validate the effective-
ness of the above approach in job shop scheduling problems.
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4 CABINS: Case-Based Optimization Ap-
proach

The considerations of the job shop scheduling problem and the model formu-
lation method for the optimization task, make it clear that (a) an iterative
revision optimization technique would be most suitable, (b) recording the
user’s judgments in a case base is an effective and flexible way of eliciting
user optimization preferences to improve solution quality, and (c) recording
successful and failed repair trials in a case base is an appropriate way of learn-
ing control knowledge to improve search efficiency. We hypothesize that these
observations hold true in most of the real world ill-structured optimization
problems (e.g. VLSI layout and circuit design, transportation planning).

Problems

Test Data Training Data

_________ Imcomplete
] Domain Knowledge

Initial Problem Solver

Sub-optimal Solution

Repair Heuristics
Case Reusage

CASE BASE ] Repair by
Contextual Features
Applied Repair Heuristics

Results / Evaluations

Case-Based
Repair

Optimized Solution

Figure 5: CABINS architecture

CABINS is a unified framework of knowledge acquisition and iterative
optimization for ill-structured problems. Figure 5 shows the schematic dia-
gram of the overall architecture of the CABINS implementation. CABINS is
composed of three modules: (1) an initial solution builder, (2) an interactive
repair (case acquisition) module and (3) an automated repair (case re-use)
module.
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To generate an initial solution, CABINS can use one of several problem
solving methods (e.g. use of dispatch rules) available in CABINS !. But, in
general any initial problem solver cannot always produce an optimal solution,
because the complete knowledge of the domain and user’s preferences are not
available to the problem solver in ill-structured optimization problems such
as job shop scheduling.

In order to compensate for the lack of these types of knowledge, CABINS
gathers the following information in the form of cases through interaction
with a domain expert in its training phase.

o A suggestion of which defect to be repaired: a user’s selection of the
most critical defect in a given solution.

o A suggestion of which repair action to apply : a user’s decision on what
repair action to be applied to a given solution for quality improvement.

e An evaluation of a repair result : a user’s overall evaluation of a mod-
ification result.

CABINS acquires from cases a category of concepts that reflect user prefer-
ences: what combination of effects produced by an application of a particular
local optimization action on a schedule constitutes an acceptable or unac-
ceptable outcome. In CABINS, the optimization criteria are not explicitly
represented as case features or in terms of a cost function, but they are im-
plicitly and extensionally represented in the case base. CABINS learns three
additional categories of concepts that reflect control knowledge for quality en-
hancement and efficiency improvement: (1) what aspect of a solution should
be repaired, (2) what heuristic repair action to choose in a particular repair
context, and (3) when to give up further repair. These concepts are recorded
in the case base and are used by CABINS to guide iterative optimization
and infer optimization tradeoffs in evaluating the current solution. In this
way, the acquired knowledge is exploited to enhance the incomplete domain
model in CABINS and improve efficiency of problem solving and quality of
resulting solutions.

We think CBR is an inappropriate method for generating initial schedules because
owing to ill-causality of scheduling problems inherently different solutions become optimal
for slightly different problems.

12



A basic assumption of our case-based approach is that, in spite of the ill-
structuredness of the problem, the following three types of domain knowledge
are available and constitute useful case features.

o Repair heuristics : a set of repair heuristics that can be applied to a
problem.

e Descriptive features : attributes of a problem that describe a partic-
ular problem situation and might be useful in estimating the effects
of applying repair heuristics to the problem. These features will be
explained in detail in Section 4.1 for the job shop scheduling problem.

e Evaluation criteria : quantification of different aspects of the effects of
applying repair heuristics to the problem. The degree of importance
on these criteria is in general user- and state-dependent.

CASE BASE

Repair Control Model User Preference Model

Selection Evalyation

Search Space

Q Selected Solution ‘ Rejected Solution O Candidate Solution

Figure 6: Search space and search control in CABINS

After enough cases have been gathered, CABINS searches for an “opti-
mal” solution over the space of complete solutions autonomously. Figure 6
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shows the schematic diagram of the search space and search control in the
CABINS system. CABINS revises the current solution iteratively to im-
prove the solution quality. For each step of the search, CABINS selects a
solution among the neighbors of the current solution. The neighborhood size
for the current solution (i.e. the number of potential solutions for each re-
vision) is equal to Number_of Repair_Actions X Number_of Repair_Objects.
In a scheduling problem, Repair_Actions are several heuristics that modify
the assignments of resources to activities in the schedule and Repair_Objects
are typically the activities in the schedule. The number of revision cycles
required to obtain a final solution cannot in general be predicted in advance
because of tight constraint interactions in the scheduling problem. Hence the
search space for a large scheduling problem can be intractably big. CABINS
has the following mechanisms to control search using CBR: A repair con-
trol model provides search control through case-based selection of the next
repair goal and action, and a user preference model provides search control
through case-based evaluation of the result of the application of a selected
repair action.

4.1 Case Representation

Corresponding to the task structure in Figure 3, CABINS has three subtasks
that use CBR as a problem solving method: goal selection, repair selection
and evaluation. In CABINS, repair selection is further divided into strategy
selection and tactic selection. A repair goal is derived from a particular high
level description of defects in the solution of a problem and their significance
to a user. A way to achieve a particular repair goal is designated by selection
of one of the associated repair strategies. Each repair strategy is executed
by a successive application of a variety of repair tactics associated with it.
A result of a tactic application is evaluated to check whether it is acceptable
or not. In CABINS’ repair process, all decisions (i.e. goal/strategy/tactic
selection and result evaluation) are made using case-based reasoning. Hence,
the content of a case must be able to represent all the decision criteria of
human experts in the repair process.

Case descriptions in CABINS are defined through specialization of the
task structure analysis results. Since a case in CABINS describes the appli-
cation of a particular repair action to the problem, CABINS has three general
types of cases corresponding to three hierarchical classes of repair actions:
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goal_case, strategy_case and tactic_case. Each case type is delineated with
descriptive features, which are heuristic approximations that reflect prob-
lem space characteristics, and a repair history, which records the sequence
of applications of successive repair actions, the repair effects and the repair
outcome. Each case type has different sets of the categories that are derived
from task-level analysis and characterize the features to be described in the
case. The hierarchy of repair actions and the categorization of case features
give strong semantics for helping a user of CABINS understand and organize
her/his expertise to be represented in a case. As a result, domain experts
can easily define their own specific features and repair actions, which can
be implemented by a programmer without knowledge of CABINS’ internal
structure and process.

Feature categories in CABINS are derived from the task structure of the
optimization task (see Section 3). The task structure analysis has identified
the following feature categories for each type of case:

e In a goal case, information necessary for selecting a repair goal is stored.
The repair goal is selected by identifying the most critical defect of a
current problem taking into consideration the problem context. Ac-
cordingly, the goal case has two categories of features: Quality and
Sttuation. In Quality category, a user can define the features which con-
stitute the evaluation of the current problem and whose unsatisfactory
values cause defects. In Situation category, a user describes external
factors which could influence the evaluation of the current problem. A
repair action recorded in the goal case is a repair goal. The repair goal
is to select one of the most critical objectives in the current problem
and sort repair targets according to the selected objective. A user’s
expertise captured in the goal case is that of detecting the defects of a
solution in a given problem context (i.e. quality and situation).

o A strategy_case records the information necessary to select a repair
strategy. Since the repair strategy is selected based upon global char-
acteristics of a repair target, the strategy _case has a single category for
features: Global-context. Features in Global-context represent poten-
tial repair flexibility of the repair target as a whole. A repair action
stored in the strategy case is a repair strategy. The repair strategy
is to determine the degree of allowable change by a repair and sort
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changeable components of the repair target appropriately in the or-
der of tactic applications so that ripple effects of tactic applications
are minimized. The strategy_case captures user’s knowledge about the
tradeoffs between possible effects and allowable global disruptions by
repairing the target.

o A tactic_case represents the information required for selecting a repair
tactic. The repair tactic is selected based on local characteristics of each
component of a current repair target. Features in the tactic_case belong
to the category of Local-context. Local-context features reflect flexibil-
ity for revision of a repair target component within limited bounds
allowed by a repair strategy. A repair action stored in the tactic_case is
a repair tactic that executes revision on components of a repair target.

Another important piece of information stored in the tactic_case is eval-
uation of a repair result. Features used for evaluating a repair result
belong to Repair-effect category. Since a repair tactic is the only repair
action that can make actual changes on the repair targets, the effects
of the changes are evaluated by a domain expert and stored in the tac-
tic_case with a judgment on acceptability of repair results. Thus, the
tactic_case captures a user’s knowledge about (a) prediction of local
effects by a possible tactic application, and (b) user’s preferences on
the tradeoffs between favorable and unfavorable repair effects (both in
local and global perspectives).

Figure 7 presents a schematic diagram showing the abstracted content
of CABINS case base. The content is derived from the specialization of the
task structure analysis results on the optimization task to the scheduling
problem, where an order in a schedule is selected as a repair target for a
strategy application. For a tactic application, each activity in the selected
order is designated as a repair target. Hence, features of an order are stored as
global-context in strategy cases, and activity features are recorded as local-
context in tactic_cases. Also in a tactic case, schedule quality changes are
recorded as repair-effect with evaluation results by domain experts.

As will be shown in the following examples, each feature in CABINS’
case is described by a set of attributes, such as Feature, Value, Filtering,
Importance and Similarity. Feature attribute specifies a name of the
feature to be considered. Value attribute records a value of the feature. Val-
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Figure 7: Case base for schedule optimization problem

ues of Filtering, Importance and Similarity attributes can be assigned
by a user during case acquisition only when s/he likes to override the de-
fault retrieval procedure for the case. If a value of Filtering attribute in
a feature is “ON”, exact match of the feature is required for the case to
be retrieved. If the value is “OFF”, partial match can contribute to the
case retrieval. A value of Importance attribute designates importance of the
feature in a particular case. Thus, Filtering and Importance attributes
allow the user to express the uniqueness of the feature in a particular case
in different ways. These attributes can be used to represent an exceptional
case in which a value of the feature in the case has a special meaning to the
user. Similarity attribute denotes the function used to calculate feature
similarity.

Figure 8 shows an example of a goal case used in the experiments of this
paper. In the example, features belonging to Schedule Quality are refined
into “weighted tardiness” and “inprocess_inventory”, since they are major
concerns in the experiments. For features in Scheduling Situation, the
case has “year”, “month” and “economy” (i.e. boom or depression), which
are considered to affect the judgment on the appropriateness of the cur-
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G_Case {
Name = "exp-data/exp_0_0_5:G1";
Schedule_Quality = (
Slot {
Feature = weighted_tardiness;
Value = 2370;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL;
}

Scheduling_Situation = (
Slot {
Feature = year;
Value = 1993;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL;

}

Slot {
Feature = economy;
Value = VERY_BAD;
Filtering = ON;
Importance = 1.0;
Similarity = NORMAL;

}
)
Goals = (
G_Solution {

Goal = reduce_weighted_tardiness;

Result = FAILED;
}
G_Solution {

Goal = reduce_inprocess_inventory;

Result = SUCCEEDED;

Slot {

Feature = inprocess_inventory;
Value = 7270;

Filtering = OFF;

Importance = 1.0;

Similarity = NORMAL;

}
Slot {
Feature = month;
Value = 10;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL;
}

Figure 8: An example of CABINS’ goal case for a schedule

problem

18

optimization



rent schedule. For example, “month” may imply several seasonal factors
which influence the production planning such as more strict due-date re-
quirements that are widely observed at the end of a year. The case shows
that “reduce_inprocess_inventory” is selected as a critical goal and success-
fully achieved after a failure of attaining “reduce weighted tardiness” goal.

S_Case{
Name ="exp_0_1_1:G34:GS2:08";
Goal = reduce_inprocess_inventory;
Order_Features = (

Slot { Slot {
Feature = slack_ratio; Feature = tardiness_ratio;
Value = 0.73529; Value = 0.0;
Filtering = OFF; Filtering = OFF;
Importance = 1.0; Importance = 1.0;
Similarity = NORMAL,; Similarity = NORMAL,;

} }

Slot { Slot {
Feature = inventory_ratio; Feature = resource_idle_ratio;
Value = 0.125; Value = 0.247059;
Filtering = OFF; Filtering = OFF;
Importance = 1.0; Importance = 1.0;
Similarity = NORMAL; Similarity = NORMAL;

} }

Slot {

Feature = resource_busy_deviation;
Value = 2.387823;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL;
}
) :
Strategies = (
S_Solution {
Strategy = shift_right_all;
Result = SUCCEEDED;

Figure 9: An example of CABINS’ strategy case for a schedule optimization
problem

Figure 9 is an example of a strategy case in CABINS. In the example,
Order Features are refined into five features describing Global-context of
an order. “Slack ratio” is, for example, the total waiting time divided by the
length of an allowable time window for completion of the order (i.e. from its
release date to due_date). High “slack ratio” often shows a loose schedule
with much repair flexibility. “Resource _busy_deviation” is the standard de-
viation of utilization of all the resources that activities of the order can be
assigned to. High “resource busy_deviation” indicates the presence of highly
contended-for resources (bottleneck resources) which in turn makes repair less
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flexible. And the example case records that “shift right_all” strategy, which
means to move all the activities of the order to the right on the timeline, is
selected as a repair strategy and succeeded in achieving a goal.

Figure 10 is an example of a tactic_case in CABINS. Activity Features
include the features of an activity within limited bounds. In particular, the
bound that CABINS uses is a time interval called repair time horizon. The
repair time horizon of the activity is the time interval between the end of the
activity preceding the activity in the same order and the start of the activity
succeeding the activity in the same order (see Figure 11).

Associated with the repair time horizon are the features which poten-
tially are predictive of the effectiveness of applying a particular repair tactic.
“Left slack ratio” and “right slack ratio” roughly estimate the flexibility of
the activity in its time horizon without considering resource contention. And
“alternative resources” shows the number of alternative resources to which
the activity can be assigned. The other features in Activity Features pre-
dict how much overall gain will be achieved by applying a corresponding re-
pair tactic to the activity in its time horizon. For example, “imm left_idle_ratio”
predicts the possible effects of applying “slide_left” tactic to the activity.

In the example case, “jump_left” tactic, which moves the activity on the
same resource as much to the left on the timeline as possible within the repair
time horizon, is applied and the effects of the repair are recorded in the fea-
tures of Schedule_Quality_Changes. Featuresin Schedule_Quality_Changes
describe the impacts of a repair action application on schedule optimization
objectives (e.g. tardiness, inventory). Typically these effects reflect a diverse
set of objectives to be considered and heavily related to Schedule Quality
features in a goal case. To be noted is that there are two perspectives in
recording these effects. One is the local perspective that describes the effects
that occurred to the repaired activity. The other is the global perspective,
which represents the effects of a tactic application in the overall schedule.
Since the effects caused by a tactic application are not determined until all
the activities selected by the strategy are repaired, a human expert has to
predict the acceptability of a tactic application result by considering the
trade-off of current global and local repair effects. As a result, the repair
effects in both perspectives need to be recorded.

Result is the evaluation assigned to the set of effects of a repair action
and takes a value in the set [“SUCCEEDED”, “FAILED”]. This judgment of
a repair outcome must be made by a domain expert in the training phase and
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T_Case {

Name = "exp_2_1_9:G16:GS1:01:0S1:A2";

Goal = reduce_weighted_tardiness;
Strategy = shift_left_all;
Final = NO;
Activity_Features = (
Slot {
Feature = left_slack_ratio;
Value = 13.571429;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }
Slot {
Feature = imm_left_idle_ratio;
Value = 25.714286;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }
Slot {
Feature = aggr_left_idle_ratio;
Value = 6242.857143;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }
Slot {
Feature = left_swappability;
Value = 150.769231;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }
Slot {
Feature = left_alt_idle_ratio;
Value = 271.428571;
Filtering = OFF;
Importance = 1.0;
Simialrity = NORMAL; }

Slot {
Feature = left_alt_swappability;
Value = 0.0;

Filtering = OFF;
Importance = 1.0;
Simialrity = NORMAL; }

Slot {
Feature = alternative_resource;
Value = 3;
Filtering = ON;

Importance = 1.0;
Simialrity = NORMAL; }

)
Tactics = (
T_Solution = {
Tactic = jump_left;
Schedule_Quality_Changes = (
Slot {

Feature = local_weighted_tardiness;

Value = 280.0;

Filtering = OFF;

Importance = 1.0;

Similarity = NORMAL; }
Slot {

Feature = global_weighted_tardiness;

Value = 0.0;

Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }

)
Effect = 280.0;
Result = SUCCEEDED; }

Figure 10: An example of CABINS’ tactic_case for a schedule optimization

problem

Slot {
Feature = right_slack_ratio;
Value = 0.0;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }
Slot {
Feature = imm_right_idle_ratio;
Value = 1885.714286;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }

Slot {
Feature = aggr_right_idle_ratio;
Value = 0.0;

Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }

Slot {
Feature = right_swappability;
Value = 0.0;

Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }
Slot {
Feature = right_alt_idle_ratio;
Value = 0.0;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }

Slot {
Feature = right_alt_swappability;
Value = 0.0;

Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }

Slot {
Feature = local_inprocess_inventory;
Value = -950.0;
Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }

Slot {
Feature = global_inprocess_inventory;
Value = 0.0;

Filtering = OFF;
Importance = 1.0;
Similarity = NORMAL; }
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Repair Time Horizon

Time Horizon

Figure 11: Repair time horizon of the activity (A!)

gets recorded in the case base. A result is “SUCCEEDED?” if the tradeoff
involved in the set of effects for the current application of a repair action is
judged acceptable. Effect is approximation of the aggregated effects by a
repair and is determined subjectively by the user.

4.2 Case Acquisition

In CABINS, the session starts with an empty case base. A set of training
problems are presented to a user who interacts with CABINS to repair the
problems by hand. The interactions and the results are stored in cases with
the information of the problem contexts. Through the case acquisition, the
user can operationalize the model of solving schedule optimization problems.

Figure 12 shows interactions between CABINS and the user for case ac-
quisition. In iteratively repairing a solution of a training problem, the user
has to select the repair action that is deemed to be appropriate in a given
particular problem situation, apply it to the problem, and evaluate the result
repeatedly. User’s decisions in the course of a repair along with the problem
context are recorded in a case. In the selection of the above repair actions (i.e.
goal, strategy and tactic), the user can assign values to the attributes of case
features, such as Filtering, Importance and Similarity as supplemental
explanations to his/her decisions.

In a schedule optimization problem, the user first selects the most urgent
repair goal for a given schedule from the list of user defined goals to be
achieved in the schedule. User’s selection of a repair goal, overall quality
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Figure 12: Interactions between CABINS and a user for case acquisition

of the current schedule and situations influencing user’s scheduling decisions
are recorded in a goal case. An application of the repair goal to the current
schedule produces the sorted list of orders according to significance of the
defect in the given repair goal. Then, the user selects a repair strategy from
a set of user defined repair strategies for repairing an order according to the
sorting. User’s selection of the repair strategy and global characteristics of
the order constitute the content of a strategy case. When the repair strategy
is applied to the order, some activities of the order are picked up and sorted so
as to avoid unnecessary computations and unbounded ripple effects. Finally,
the user selects a repair tactic from a set of user defined repair tactics for
repairing the first activity in the sorted queue.

A repair tactic application causes changes in the schedule by executing a
repair and applying constraint propagation to resolve constraint violations.
The repair tactic application may result in an infeasible schedule. An infea-
sible schedule will occur when constraints are propagated beyond the fixed
time window boundary of any order (i.e. the time window between release
date and latest due date of an order).

If the outcome of the repair tactic application is feasible, the effects of the
repair are calculated and shown to the user. An effect describes the result
of the repair with respect to one of the repair objectives defined as features
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in Schedule Quality_Changes of a tactic_case. Because of tight constraint
interactions, these effects are ubiquitous in job shop scheduling and make
schedule optimization extremely hard. When the application of a repair tac-
tic produces a feasible result, the user must determine whether the resultant
schedule is acceptable or not based on the calculated effects. The outcome
is judged as unacceptable, if the schedule resulting from the application of
the revision heuristic is feasible but the revision result does not make any
improvement with respect to the user’s criteria. This could happen because
harmful effects might outweigh, in the user’s judgment, the effected improve-
ment. For example, if reduction of an order tardiness enforces increased
utilization of low-quality machines, total cost incurred by this repair might
eventually be increased, but not decreased for the user who would dislike the
possible low quality of products. Therefore such a repair might be judged as
unacceptable by the user. The user’s judgment as to balancing favorable and
unfavorable effects related to a particular optimization objective constitutes
the explanations of the repair outcome. The user can supply a supplemental
explanation of the judgment by assigning a value to Effect attribute of a
repair tactic description in a tactic_case. This gives a case the additional
information about to what extent the case is acceptable or unacceptable. At
the end of each repair tactic application, the applied repair tactic, the effects
of the repair and user judgment/explanation as to the repair outcome are
recorded in a case along with the activity features.

The repair process continues until an acceptable outcome is reached, or
failure is declared. Failure is declared when there is no more repair action
available. The sequence of applications of successive repair actions, the effects
and user’s evaluation of the results are recorded in the case. In this way, a
number of cases are accumulated in the case base and the model of solving the
schedule optimization problem is operationalized and progressively enhanced.

4.3 Case Retrieval and Re-use

Once enough cases have been gathered, CABINS repairs sub-optimal sched-
ules without user interaction. CABINS repairs the schedules by (1) invoking
CBR with schedule quality and scheduling situation as indices to recognize
schedule sub-optimalities and set a repair goal, (2) focusing on an order to be
repaired based on the repair goal, (3) invoking CBR with order features as
indices to decide a repair strategy, (4) focusing on an activity to be repaired
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in the order, (5) invoking CBR with activity features as indices to decide the
most appropriate repair tactic to be used for each activity in the order, (6)
invoking CBR using the schedule quality changes as indices to evaluate the
repair result, and (7) when the repair result seems unacceptable, invoking
CBR with the failed tactic as an additional index to decide whether to give
up or which repair tactic to use next.

In CABINS cases are retrieved using k-Nearest Neighbor method [6], and
the standard formula of calculating the similarity between i-th case and the
current problem is as follows %:

N . CF! — PF;
exp(— | Y _(IM} x ]STJ

j=1 j

)?)

where IM; is the importance of j-th feature of i-th case in the case base,
and its value has been heuristically defined by the user. CF; is the value of j-
th feature of i-th case, PF; is the value of j-th feature in the current problem,
SD; is the standard deviation of j-th feature value of all cases in the case
base. Feature values are normalized by division by a standard deviation of
the feature value so that features of equal salience have equal weight in the
similarity function.

5 Experiments

We hypothesize that, with accumulation of cases, CABINS can (a) acquire
user optimization preferences and re-use them to produce better solutions,
and (b) learn control knowledge to solve problems more efficiently. In other
words, through cases CABINS can incrementally improve the model for
schedule optimization in terms of both solution quality and efficiency. In this
section we report experimental results in the job shop schedule optimization
problems to validate our hypotheses.

Our hypotheses are difficult to test since, due to the subjective and ill-
defined nature of user preferences, it is not obvious how to correlate schedul-

2There are some varieties in the methods of similarity calculation depending on the
value of Filtering and Similarity attributes in the features, but it is not relevant to
the discussion in this paper. See [22]| for more details.
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ing results with the captured preferences or how to define quality of a schedule
whose evaluation is subjective.

To address these issues, we had to devise a method to test the hypotheses
in a consistent manner. To do that, it is necessary to know the optimization
criterion that would be implicit in the case base, so that the experimental re-
sults can be evaluated. In the experiments reported here, we used the explicit
criterion WIP+weighted tardiness to reflect the user’s optimization criterion
and built a rule-based reasoner (RBR) that goes through a trial-and-error re-
pair process to optimize a schedule based on the given criteria.Since the RBR
was constructed not to select the same repair action after a repair result was
calculated as unacceptable, it could go through all the repair actions before
giving up repairing a schedule. For each repair, the repair effects were calcu-
lated and, on this basis, since RBR had a predefined evaluation objective, it
could evaluate the repair outcome in a consistent manner. Thus, RBR was
used to generate a case base with about 8500 cases for the explicit optimiza-
tion objective. Since RBR knows the exact objective function for evaluation,
it can work as an emulator of a human scheduler, who cannot repair a sched-
ule in the most efficient way, but can make consistent evaluations of repair
results. Therefore, we used RBR not only for generating the case base for
CABINS but also for making a comparison baseline for the CABINS experi-
ments. Naturally, the objective, though known to us and RBR, is not known
to CABINS and is only implicitly and indirectly reflected in an extensional
way in each case base. By designing an objective into the RBR so it could be
reflected in the case base we got an experimental baseline against which to
evaluate the schedules generated by CABINS. We used RBR for the purpose
of the controlled experiments that can clarify the usefulness and performance
of CABINS. This is analogous to the controlled experiments in the psychol-
ogy where the experimental situations are much simpler than what humans
do but the virtue of the controlled experiments is that the experimenter can
isolate and control the some variables so that meaningful conclusions can be
made rather than having a confounding variables where no one can find out
what is responsible for the experimental results.

We evaluated the approach on a benchmark suite of 60 job shop schedul-
ing problems where parameters, such as number of bottlenecks, range of
due dates and activity durations were varied to cover a range of job shop
scheduling problem instances with the following structure. Each problem
class has 10 orders of 5 operations each and 5 machines. Two parameters
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were used to cover different scheduling conditions: a range parameter con-
trolled the distribution of order due dates and release dates, and a bottleneck
parameter controlled the number of bottleneck resources. Six groups of 10
problems each were randomly generated by considering three different values
of the range parameter, and two values of the bottleneck configuration (1
and 2 bottleneck problems). These problems are variations of the problems
originally reported in [30]. Our problem sets are, however, different in two
respects: (a) we allow substitutable resources for non-bottleneck resources
whereas the original problems did not, and (b) the due dates of orders in our
problems are tighter by 20 percents than in the original problems.

A cross-validation method was used for the experiments. Each problem
set in each class was divided in half. The training problem set was repaired
by RBR to gather cases. These cases were then used for case-based repair of
the validation problem set. We repeated the above process by interchanging
the training and test sets. Reported results are for the validation problem
sets.

In the following subsections, we present our empirical results that increas-
ing case base size improves the performance of CABINS in terms of solution
quality and problem solving efficiency. These results indicate that the accu-
mulation of cases can progressively enhance the competence of the model of
solving scheduling problems.

5.1 Case Accumulation Effects on Quality

Increase of the case base size might have beneficial or harmful effects on the
CABINS performance in terms of solution quality. The possible explanations
of these effects are as follows:

o Better quality solutions: After having new cases that successfully re-
paired the novel problems, CABINS increases possibility of improving
solution quality by later re-using these cases for similar problem situa-
tions.

e Poorer quality solutions: There are two explanations that additional
cases can have a deleterious effect on the quality of solutions found by

CABINS. One is that incorrect cases may lead CABINS to produce
poorer solutions. The other is that increase of the number of failure
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cases in the case base can force CABINS to give up further exploration
for better solutions even when there is a good chance to find some.
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Figure 13: Effect of case base size on solution quality by CABINS

The graph in Figure 13 compares the performance of CABINS with differ-
ent sized case bases in terms of solution quality. The comparison baseline is
the performance of RBR that created the cases in CABINS. A value greater
than 1.0 indicates that the solution produced by CABINS at the indicated
case base size exceeded the solution quality produced by RBR. In the graph,
the results of every 100 cases increment are plotted until the size of case base
exceeds 2000 and then the results of every 1000 cases increment are plotted
until 8000 are shown. To get the case bases of different sizes, an appropriate
number of cases for each problem class were randomly selected and deleted
from the created case base of 8000 cases.

From the graph, the schedule quality is found to improve with increased
case base size. However, the marginal payoff from the increase in the case
base size decreases. This can be explained partially by the fact that some
number of cases (say, 2000 cases) capture well characteristics of the user
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preference model that is created by the records of solution evaluations by
the user in various problem contexts, and additional 1000 new cases may
give much redundant information. When the size of a case base is relatively
small, a new case usually adds information about a different part of the
model and improves the capability of CABINS producing solutions of better
quality, but it sometimes directs search to local minima which cannot be
escaped until other new cases are acquired. Nevertheless the figure indicates
that after collecting enough number of cases (2000 cases), CABINS does not
degrade the solution quality with increase of case base size. This shows that
in 2000 cases CABINS stored enough knowledge for avoiding or escaping
from local minima in the search space. Therefore it is concluded that the
size of a case base in CABINS can improve the solution quality only at the
early stage of case accumulation. Neither deleterious nor favorable effect on
solution quality can be found by further accumulation of cases. In other
words, accumulation of cases can quickly improve the operational capability
of the user preference model in CABINS.

5.2 Case Accumulation Effects on Efficiency

Increase of the case base size might also have beneficial or harmful effects
on the CABINS performance in terms of problem solving efficiency. The
possible explanations of these effects are as follows:

e More efficient problem solving: By increasing the number of failure
cases, the number of different failure types that become known to CAB-
INS increases. Hence CABINS can avoid repeating a large variety of
failures, thus reducing the search time.

o Less efficient problem solving: Irrelevant cases may suggest CABINS
to expand the search tree in fruitless directions.

In the experiment, we take a number of repair tactic applications as an
indicator of the problem solving efficiency by CABINS because applications of
repair tactics are the most time-consuming factor in CABINS’ repair process.

The graph in Figure 14 compares the performance of CABINS with dif-
ferent sized case bases in terms of number of tactic applications. The com-
parison baseline is the performance of RBR. The value less than 1.0 in the
graph indicates that problem solving by CABINS at the case size was more

29



2 T T T T T T T
1.8 ! _
1.6 ‘“l . _
% 1.4 —5 \\4. i
@ | |
£ 12 k! VAA _
E ‘1 ‘I‘ l'(/ \L,/F/ \\\\
g l 'v: —= R i ~<
2 i
S 08 -
: | o]
o 0.6 _
Rule-Based Repair —
04 Repair by CABINS ----- -
0.2 _
0 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Case-Base Size

Figure 14: Effect of case base size on problem solving efficiency by CABINS

efficient than RBR. In the graph, the results of every 100 cases increment
are plotted until the size of case base exceeds 2000 and then the results of
every 1000 cases increment are plotted until 8000 are shown.

The graph in Figure 14 shows that CABINS improves its problem solv-
ing efficiency with the increase of case base size even after improvement of
solution quality is saturated (i.e. after 2000 cases are accumulated). This
result indicates that CABINS acquires effective search control knowledge
for speeding-up through the accumulation of cases. The search efficiency
reaches a stationary value after a large number of cases (about 6000 cases)
are acquired. This can be explained by the more complicated nature of the
repair control model which is created by the history of the repair goal/action
selections and the repair results in the different problem situations. More di-
versity of cases are required to create the repair control model than the cases
used for creating the user preference model. Therefore, it can be concluded
that accumulation of cases can slowly but steadily improve the operational
capability of the repair control model in CABINS.
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6 Conclusions

We have proposed a model formulation (i.e. building and extension) method
for the optimization task in ill-structured problem domains. We adopted
task structure analysis as a method of initial model building and proposed
a model] extension technique based on case-based reasoning. We have devel-
oped a system called CABINS that implements the proposed methodology
and shown that CABINS can create the user preference model and the repair
control model with cases and use them to guide iterative solution optimiza-
tion efficiently in ill-structured domains.

We experimentally demonstrated that, with an increase in case base size,
CABINS improved the solution quality and problem solving efficiency for a
benchmark suite of job shop schedule optimization problems. These results
show that accumulation of cases can enhance the competence of the created
models. Other job shop scheduling experiments in [33] show that CABINS
outperformed the simulated annealing method [9], a well acknowledged op-
timization method, both in solution quality and problem solving efficiency.
And the experiments in [20, 21] manifest effectiveness of the ways of exploit-
ing failure cases in CABINS for speed-up learning in intractable optimization
problems. More importantly from the modeling perspective, a user of CAB-
INS can define domain-specific case descriptions easily by specializing the
generic vocabularies found by the task-level analysis. CABINS can acquire
the cases from user’s interaction during the process of solution improvement,
thus imposing low additional effort on the user but enhancing its problem
solving capability. We think the proposed model formulation method of com-
bining task-level analysis and case-based reasoning can provide a practical
approach for solving ill-structured optimization problems.

As alimitation in the current status of our research, CABINS suffers from
the wtility problem [19] since CABINS requires more time for case matching
and retrieval with increase in case base size. Although we can define the
optimal case base size by monitoring the performance of CABINS for the
problems in the domain [22], some knowledge filtering techniques [17] might
be useful for improving efficiency of CABINS by dynamically eliminating
redundant or incorrect cases in the case base.
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