
428 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 49, NO. 4, NOVEMBER 2002

Modeling Impacts of Process Architecture on Cost
and Schedule Risk in Product Development

Tyson R. Browning and Steven D. Eppinger, Member, IEEE

Abstract—To gain competitive leverage, firms that design and
develop complex products seek to increase the efficiency and pre-
dictability of their development processes. Process improvement is
facilitated by the development and use of models that account for
and illuminate important characteristics of the process. Iteration is
a fundamental but often unaddressed feature of product develop-
ment (PD) processes. Its impact is mediated by the architecture of
a process, i.e., its constituent activities and their interactions. This
paper integrates several important characteristics of PD processes
into a single model, highlighting the effects of varying process ar-
chitecture. The PD process is modeled as a network of activities
that exchange deliverables. Each activity has an uncertain dura-
tion and cost, an improvement curve, and risks of rework based
on changes in its inputs. A work policy governs the timing of ac-
tivity execution and deliverable exchange (and thus the amount of
activity concurrency). The model is analyzed via simulation, which
outputs sample cost and schedule outcome distributions. Varying
the process architecture input varies the output distributions. Each
distribution is used with a target and an impact function to deter-
mine a risk factor. Alternative process architectures are compared,
revealing opportunities to trade cost and schedule risk. Example
results and applications are shown for an industrial process, the
preliminary design of an uninhabited combat aerial vehicle. The
model yields and reinforces several managerial insights, including:
how rework cascades through a PD process, trading off cost and
schedule risk, interface criticality, and occasions for iterative over-
lapping.

Index Terms—Activity network, budgeting, cycle time, design it-
eration, design structure matrix, engineering design management,
process architecture, process modeling, process structure, product
development, rework, risk management.

I. INTRODUCTION

T
O INCREASE their competitiveness, firms that develop

products have realized the importance of improving the

efficiency and predictability of their design processes. Since

process improvement requires process understanding [81], re-

searchers and practitioners put effort into observing product de-

sign and development processes—looking for their important

characteristics—and developing models that account for those

features. Most of the advances in this area assume that the de-

sign process has an underlying structure [5], [7], [72]. An im-

portant characteristic of product development (PD) processes is

Manuscript received April 24, 2000; revised October 1, 2001, March 1, 2002,
and May 1, 2002. This work was supported in part by the Lean Aerospace Initia-
tive at the Massachusetts Institute of Technology, Lockheed Martin Aeronautics
Company, The Boeing Company, and a National Science Foundation graduate
fellowship.

T. R. Browning is with Lockheed Martin Aeronautics Company, Fort Worth,
TX 76101 USA (e-mail: tyson@alum.mit.edu).

S. D. Eppinger is with the Sloan School of Management, Massachusetts Insti-
tute of Technology, Cambridge, MA 02139 USA (e-mail: eppinger@mit.edu).

Digital Object Identifier 10.1109/TEM.2002.806709

that, unlike most business and production processes, they are

described by terms like “creative,” “innovative,” and “iterative.”

At an interesting level of detail, PD processes do not proceed in

a purely sequential fashion [28], [47], [58]. The activities in a

PD process interact by exchanging information (e.g., [19] and

[25]). The data that activities need to do their work effectively

must be available in the right place, at the right time, and in the

right format. The structure of this information flow has a bearing

on process efficiency and predictability [35], [74]. In particular,

the structure of the PD process impacts project cost [58] and cost

and schedule risk [13]. Thus, PD can be described as a complex

web of interactions, some of which precipitate a cascade of re-

work among activities. Models that highlight the characteristics

of this network are helpful in improving our understanding of

PD processes and ultimately their efficiency and predictability.

According to Hammer, a process is an organized group of

related activities that work together to create a result of value.

Process architecture—the elements of a process (activities) and

their pattern of interaction—is an important process variable

[80] 1 Just as different product architectures can deliver varied

product capabilities and levels of effectiveness, alternative

process architectures have different cost, duration, and risk

characteristics. Much like a product can be improved through

architectural innovation [41], process improvement includes

architecting an efficient and predictable process. Processes are

systems and benefit from the application of systems thinking

and the tenets of systems engineering. Modeling and comparing

alternative process architectures can provide insights to help

navigate cost, schedule, and risk tradeoffs.

In trying to improve PD processes, planners and managers

become interested in how activities should be arranged within

the process, how rework cascades through the process, cost and

schedule tradeoffs, outcome predictability, and the interplay be-

tween these issues. For instance, regarding cost and schedule

tradeoffs, consider the range of possible cost and duration out-

comes depicted in Fig. 1 [3], [56]. Five outcomes lie along an

efficient frontier. Each of these outcomes indicates the shortest

possible duration that can be achieved for the cost and vice-versa

(given a firm’s process capabilities). Many other outcomes lie

in the shaded region: it is always possible to spend more time

and money than necessary. A scatter plot of many simulated

cost and schedule outcomes for a particular process will cover

a certain area and will have its own feasible region. What can

be done to improve the process by moving the frontier to the

lower left? What can be done to increase the predictability of

1Process architecture describes the process activities and their relationships
(ordering, interfaces, interdependencies, etc.), including relationships with ex-
ternal processes.

0018-9391/02$17.00 © 2002 IEEE

BROWNING AND EPPINGER: MODELING IMPACTS OF PROCESS ARCHITECTURE 429

Fig. 1. Cost and duration tradeoffs.

the process—i.e., to ensure a desired outcome at a prespecified

point along the frontier?

To address the above issues, we contribute a richer model of

the PD process architecture. The model accounts for important

attributes of each activity and deliverable. Activities may have

uncertain cost and duration, rework caused by changes in par-

ticular inputs, and reduced cost and duration in successive iter-

ations. Deliverables may vary in their volatility (propensity to

change). A work policy governs the timing of activity execution

and interaction—including whether activities can work concur-

rently—as a function of process architecture. The model incor-

porates aspects of several other models into a single integrated

framework, and it introduces the concept of rework risk in terms

of separate probability and impact components.

While the model enables a number of interesting analyses

with multiple applications, we use it primarily to explore the im-

pacts of alternative process architectures on cost and schedule

risk in PD. For most of the analysis, we use multiple runs of

a Monte Carlo simulation to produce cost and duration dis-

tributions. The distributions are evaluated against given bud-

gets and deadlines to determine the probability of an overrun

and the level of risk. This information is valuable for project

planning and process improvement. The model is demonstrated

with example data from an industrial process, an uninhabited

combat aerial vehicle (UCAV) preliminary design process at an

aerospace company. The paper also contributes and validates in-

sights for both researchers and practitioners.

II. MODEL CONSTRUCTS AND LITERATURE REVIEW

A. PD as a Complex Web of Interactions

A powerful way to increase understanding of a process is to

look at its parts and their relationships. Decomposition is the

standard approach to addressing system complexity—desirable

because it is generally possible to make more accurate estimates

about simpler elements. However, it is generally more difficult

to make accurate estimates of the effects on the overall system

of relationships between simpler elements. The relationships

among elements are an important characteristic that differen-

tiates a system from a mere grouping of elements. As a kind of

system, a process is defined not only by its decomposition into

activities but also by how they work together [15], [16].

In practice, most process definitions and models account for a

minimal amount of information about the element relationships

or interfaces. A single input and output for each activity is often

considered sufficient. However, especially in the early stages

of PD, people and the activities they execute tend to provide

and require a great deal of information to and from each other

(e.g., [19] and [25]). 2 A large number of activity interfaces are

necessary to document the full range of deliverable flow. Most

process models do not attempt to elicit and represent the actual

information flow, even though it is a major driver of process

efficiency and predictability [16], [26], [35].

A process is often modeled as an activity network. Ac-

tivity-on-arc [project evaluation and review technique (PERT)],

activity-on-node, and other flowchart-type representations

are widely used to represent activities and their precedence

relationships. Despite the enormous amount of research on

activity networks (see [32] for an excellent review) using

these formats, they are not convenient for representing a large

number of interfaces or for comparing alternative process

architectures. The visual representation is too busy, making it

difficult to discern architectural differences. And since many

process flowcharts capture only a single input and output for

any given activity, the full range of information flow is seldom

represented. Using a flowchart for this purpose would simply

be too complicated and cumbersome.

A design structure matrix (DSM) can also be used to repre-

sent a process [14], [35], [73]. The DSM shows activities and in-

terfaces in a concise format. A DSM is a square matrix in which

a cell on the diagonal represents each activity. Activity names

are usually given to the left of the matrix. A mark in an off-di-

agonal cell indicates an activity interface. For each activity, its

row shows its inputs and its column shows its outputs.3 When

activities are listed in temporal order, subdiagonal marks denote

a feeding of deliverables forward in the process, from upstream

activities to downstream activities, while superdiagonal marks

indicate feedback. The DSM provides a simple way to visualize

the structure of an activity network and to compare alternative

process architectures.4

The DSM in Fig. 2 represents the network of PD activities

for the UCAV preliminary design process. This DSM was built

by asking an expert on each activity to list the inputs (mainly

information) it requires and the outputs it produces. To distin-

guish alternative process architectures, we define a sequencing

vector, , which is given by numbering the rows (and columns)

in the DSM. By resequencing the activities in the DSM, and in

conjunction with a work policy (discussed below), we alter the

pattern of interactions among the activities, thus creating varied

process architectures.

B. Activity Iteration

The iteration of design activities is a fundamental character-

istic of PD [5], [12], [35], [47]. In many ways, PD is a creative,

2Burns and Stalker characterize PD as having many work elements, where
“each is performed in response to information received; each involves altering,
rearranging, or recomposing information or things; each ends with the transmis-
sion of the altered information or thing to somebody else” [19, p. 78].

3Some DSMs use the opposite convention—rows for outputs and columns for
inputs. The two formats convey equivalent information.

4Another process modeling and representation approach we considered is the
structured analysis and design technique (SADT), particularly its well-known
subset, IDEF0. However, IDEF0 diagrams were more cumbersome to represent
and manipulate than the DSM.

430 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 49, NO. 4, NOVEMBER 2002

Fig. 2. DSM representation of UCAV preliminary design process. DR&O = Design Requirements and Objectives. FEM = Finite Element Model. S&C =
Stability & Control.

discovery process [60]. While product design quality improves

with successive iterations, in a general sense [66], [67], [71],

[81], iteration is a key driver of cost and schedule risk in PD

projects [1], [13], [59], [77]. Understanding iteration becomes

even more important when attempting concurrent engineering:

activities that were once distinct and sequential are now in-

termingled or overlapped, resulting in more interactions and a

greater need for coordination [79].

Most process modeling literature and software is oriented

toward production or business processes, where the goal is to

repeat a chain-like process without interwoven iterative loops.

Thus, the shortcomings of standard flowchart representations in

clearly representing many feedbacks are seldom exposed. How-

ever, much of the waste and inefficiency in iterative processes

stems from these interactions and feedbacks—i.e., having to re-

peat activities because of changes in the information and/or as-

sumptions upon which they were initially executed. Whereas

some amount of iteration may be planned in order for designers

to converge to a satisfactory design solution, much unplanned

iteration stems from a poor process architecture [12], [59].

In recognition of the importance of iteration in PD processes,

several models have been constructed to analyze it. An exten-

sion to PERT called generalized evaluation and review tech-

nique (GERT) [e.g., [57] and [63]] enables simulation-based

analyses of activity networks with feedbacks. Several models

have been built using signal flow graphs [6], [34], [45] and

system dynamics [e.g., [36]]. However, none of these models is

convenient for exploring alternative process architectures where

the activities have many distinct deliverables.

Other recent efforts to model iteration utilize the DSM. Smith

and Eppinger produced three DSM-based process models: one

that assumes all interdependent activities are worked concur-

rently [53], [68], another that assumes such activities are at-

tempted sequentially [69], and a hybrid of the first two [22],

[70]. These models identify critical activities and find analytic

solutions for process duration with a limited number of activi-

ties. Others have explored methods for improving processes by

reducing feedback information [2], [50], [65], [73], [74]. Recent

work by Yassine et al. [84] more explicitly defines dependen-

cies in the DSM based on sensitivity to and variability of infor-

mation. However, existing DSM-based models do not account

for stochastic activity durations and costs, do not treat rework

probabilities and impacts distinctively, and are quite limited in

accounting for concurrency in large activity sets.

The model developed in this paper characterizes the PD

process as a network of activities that exchange deliverables. If

an activity does work and produces an output based on inputs

or assumptions, then a change in either may imply rework for

the activity. The accomplishment of that rework then changes

the activity’s outputs, thereby potentially affecting other

activities in the same way (second-order rework [69]). Rework

is not always a certainty; the risk of rework is a function of its

probability and its consequences. Each input to each activity

has a probability of changing (volatility) and a probability of

a typical change causing rework for the activity (sensitivity).5

These probabilities are multiplied to get the probability of

rework

rework for an activity caused by

change in one of its inputs

change in the input

the change affecting the activity (1)

Rework probabilities for the UCAV example are shown in

(Fig. 3), where

rework for activity caused by a typical change

in its input form activity (2)

and the subscript 1 (number one) indicates the first DSM plane

(a second is added below). Rework in an upstream activity ,

caused by downstream activity , can also cause second-order

rework. That is, when an iteration occurs, and the process must

backtrack from activity to rework some activity , this

provides the potential for the change in output from activity to

affect interim activities and any com-

pleted, downstream activities dependent on ac-

tivity . Thus, in , superdiagonal numbers

5The concept of activity sensitivity to input changes as a cause for rework has
been explored by several authors [e.g., [1], [48], and [52]].

BROWNING AND EPPINGER: MODELING IMPACTS OF PROCESS ARCHITECTURE 431

Fig. 3. DSMDSMDSM showing rework probabilities for UCAV process.

Fig. 4. DSMDSMDSM showing rework impacts for UCAV process.

represent the probability of iteration (returning to previous ac-

tivities), while the subdiagonal numbers note the proba-

bility of second-order rework (following a first-order iteration).

In our basic model, these probabilities are held constant through

successive iterations.6

Rework can also have a variable impact on an activity. While

very likely, some changes in inputs can be absorbed by a ro-

bust activity with little impact [78], [79]. The consequences of

changing other inputs may be more severe. The model uses an

impact measure—the percentage of the activity that must be re-

worked—for each input to each activity.7 Rework impacts for

the UCAV example are given in a second DSM plane,

(Fig. 4), where

rework for activity caused by a typical

change in input from activity (3)

In both the probability and impact DSMs, in a few cases where

more than one distinct deliverable passes though a single off-di-

agonal cell, the DSMs record only the most influential deliver-

6An extension to the model [23] allows for variable higher order rework pa-
rameters.

7Loch and Terwiesch [52] define the impact as a function of time, while this
model relates the impact to the amount of work to be done, thereby influencing
both time and cost.

able. Overall, the DSMs describe a kind of state transition ma-

trix for the activities in a process.

For purposes of modeling, we assume that the process of in-

terest has been chosen to be as modular as possible, thereby al-

lowing us to ignore external influences. However, this assump-

tion does not hold completely in practice, since every process is

enmeshed in the context of a larger process, and external inputs

impact the process’s activities and therefore its outcome [16].

C. Activity Overlapping

One of the most intuitive approaches to decreasing cycle

time in PD processes is to do more activities concurrently.

However, overlapping dependent activities is problematic,

since doing work based on assumptions or preliminary data

is riskier than working with final data. Several have proposed

models to explore aspects of this issue (e.g., [4], [31], [40],

[42]). Carrascosa et al. [21] use work by Krishnan et al. [48],

and Terwiesch and Loch [52], [76] to build a multistage task

model that accounts for iteration probability and impact for a

few overlapped activities. Roemer et al. [64] explore how over-

lapping affects time–cost tradeoffs. Most of these frameworks

focus on overlapping just two activities (although some of the

models use these couplets as building blocks for multi-staged

processes).

432 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 49, NO. 4, NOVEMBER 2002

Fig. 5. Example Gantt chart of simulated process execution.

Our basic model allows limited activity overlapping. For now,

we use a simple work policy that: 1) an activity may not begin

until it has received all of its inputs from foregoing or “up-

stream” activities (those listed prior in the sequencing vector,

) and 2) an activity can make assumptions about its inputs

from subsequent or “downstream” activities. Thus, activities

may work concurrently only if the downstream one does not

depend on the upstream one for input. The work policy further-

more specifies that 3) only adjacent activities in may work

concurrently.8 Thus, the sequence of activities in the DSM and

the work policy governing their interaction and overlap pre-

scribe a process architecture.

This work policy plays out as follows. The most upstream ac-

tivity requiring work is identified and made active. Then, suc-

cessive downstream activities are checked for dependence on

the active activity. If the subsequent activity: 1) has work to

do and 2) does not depend on the active activity, then this sub-

sequent activity is also activated. Each subsequent activity re-

quiring work is similarly checked for dependence on active ac-

tivities until a dependent activity is found, at which point the

current set of active activities has been determined. Hence, only

consecutive activities (of those requiring work) may be active,

making the set depend on the process architecture. Finished ac-

tivities and assumptions about subsequent activities (superdiag-

onal marks in the DSM) are both ignored when determining the

active set.

In the case of coupled activities, the basic work policy im-

plies that one of the activities will go first and the other will

wait. It also implies that downstream activities will stop and wait

when upstream activities on which they depend are reactivated

because of rework. The Gantt chart in Fig. 5 shows this effect.

When rework is generated by activity four for activity three, ac-

tivities four and five wait on the new results of activity three

before proceeding. (Their work could be invalidated if they did

not wait). McDaniel [53] found that strategic waiting conserves

resources. However, causing certain individuals or groups to

stop work temporarily requires clear management policies not

present in many engineering environments. Our model can also

be adjusted to accommodate alternative work policies.

D. Activity Cost and Duration

A variety of distributions or probability density functions

(PDFs), notably the beta distribution [46], have been used

8That is, adjacent when ignoring completed activities. See discussion that
follows.

to represent uncertainty in activity cost and duration [e.g.,

[62] and [82]]. These distributions usually exhibit positive

skewness due to the tendency of work to expand to fill available

time—and of human nature to relax when ahead—thus making

it less likely that activities will finish early, even if they could.

Positive skewness can be represented by a triangle distribution,

which is simple to comprehend and build, requiring only

three data points per activity: optimistic or best case value

(BCV), most likely value (MLV), and pessimistic or worst case

value (WCV). The BCV, MLV, and WCV are used to form

a triangular PDF, denoted as TriPDF(BCV,MLV,WCV). For

simplicity, we normalize the area under a TriPDF to equal one9

base height

(4)

Table I lists activity duration and cost data for the UCAV project.

(Where necessary, the displayed data are rounded, and they are

disguised to protect competitive information.) The model as-

sumes that time and effort for all information transfers between

activities are included in activity durations and costs and also

that activity durations are independent of each other—i.e., that

any such dependencies are accounted for by the specified inter-

actions between the activities. Each activity’s duration PDF also

accounts for any “internal rework” (thereby obviating the need

for any on-diagonal rework probabilities in the DSM).

Since activity cost depends somewhat on activity duration,

the cost PDF for an activity often has a shape similar to the dura-

tion PDF. In fact, we expect substantial correlation for any pair

of activity duration and cost samples. We use a sampling cor-

relation coefficient of 0.9 for each activity. Alternatively, each

activity could be given its own correlation value based on its

individual cost-schedule elasticity [cf., [33]]. Or, the cost and

duration of each activity could be represented by a joint cost

and schedule PDF similar to the simulation model’s output (dis-

cussed in Section IV-B).

E. Improvement Curves

Often it takes less effort to rework an activity than to do it

the first time. An activity may have a large setup time (e.g.,

building a simulation model) where, once the infrastructure is

9Alternatively, one could normalize the area of the TriPDF to 0.8 to assume
a 10% margin on each end of the stated BCV and WCV. Estimates of the 10th
and 90th percentiles of duration are typically more accurate than estimates of
the absolute BCV and WCV durations [46].

BROWNING AND EPPINGER: MODELING IMPACTS OF PROCESS ARCHITECTURE 433

TABLE I
ACTIVITY DATA FOR UCAV PRELIMINARY DESIGN PROCESS

in place, it is easy to rerun the activity with new inputs. Also,

activity participants may benefit from learning and adaptation.

Some existing process models account for improvement curve

effects [2], [3], [6], [45], [83]. Studying semiconductor projects

at Intel, Osborne [59] found that reworked activities typically

exhibited little further improvement curve effect after an initial

iteration. Thus, we model the improvement curve for each ac-

tivity as a step function, where an activity initially takes 100%

of its duration and cost to accomplish, while second and sub-

sequent executions of the activity take of the original dura-

tion and cost. Improvement curve data for the UCAV project are

given in the last column of Table I.

F. Process Cost and Duration

Expected duration is the primary process metric and objec-

tive function used by most process models, including the vast

majority of the models mentioned above. Quite a bit of work

has been done to calculate and bound the completion times of

activity networks [e.g., [29]].

Process cost is often treated deterministically or purely as a

function of process duration. While cost outcomes may correlate

to an extent with duration outcomes, cost is not a simple function

of duration [38]. Few models compare a number of individual

cost and schedule outcomes.

In industry, process cost estimates utilize either paramet-

rics or “roll-up” techniques. Parametric techniques or cost

estimating relationships (CERs) such as those in the Cocomo

software [9] predict process cost as a function of several

factors—e.g., duration, complexity, novelty, etc.—with co-

efficients determined from regression analysis of historical

data. Roll-up or “grass-roots” techniques use a cost breakdown

structure (CBS) related to the hierarchy of activities [e.g., [11]

and [55]]. A cost estimate is made for the smallest activities in

the breakdown, and these estimates are aggregated to arrive at

a single figure for the process. The low-level cost estimates are

typically based on historical costs and can be deterministic or

random variables [39].

While providing a valuable perspective on process costs,

parametric techniques are not easily integrated with process

models. CERs cannot evaluate processes for which inadequate

historical data exist, and they do not specifically account for

the relationships among activities. The model in this paper uses

a type of roll-up technique, with the important extension of

accounting for activity interactions, since these are often the

primary cost drivers [12].

G. Process Cost and Schedule Uncertainty and Risk

Cost and schedule uncertainty and risk are also important

project management metrics. Point estimates of process cost and

duration do not convey information about these metrics. PDFs

provide additional information about the probabilities of various

outcomes, thereby expressing a notion of uncertainty. Given a

deadline, the area under the PDF to the right of the deadline rep-

resents the probability of unacceptable process durations. Sub-

stantial literature addresses the use of activity network models

and Monte Carlo simulation to evaluate schedule uncertainty

[e.g., [10], [27], [39], and [44]]. However, these methods typ-

ically equate risk with uncertainty and do not account for varied

consequences. Each outcome has a consequence or impact. Big

cost or schedule overruns can have big consequences!

The risk of an outcome is a function of both its probability

and its impact

(5)

[cf., (1)]. Thus, an impact function weights each adverse outcome

by its consequence, yielding a risk factor, . Utility curves can

be used as impact functions, thereby incorporating information

about characteristics such as risk averseness into the risk

quantification. In this paper, for example, we will use a simple

quadratic impact function for schedule overruns

(6)

where is a normalization constant, is the duration outcome,

and is the schedule target or deadline. A quadratic impact

function indicates that the consequence of a schedule overrun

increases as the square of the size of the overrun, which makes

434 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 49, NO. 4, NOVEMBER 2002

Fig. 6. Simulation event graph.

sense in situations where the “deadline” represents a rough ex-

pectation.10 Alternatively, a customer utility curve for lead time

or a step function at the deadline could be used as the impact

function for a schedule overrun.

Total schedule risk is the sum of the probability and impact

products over all adverse outcomes

(7)

where is the PDF of schedule outcomes. A similar

formula applies for cost risk [12]. Since PDFs can have

different means, variances, and skewnesses—and these mo-

ments can be traded off—the risk factor provides a measure

with which to compare PDFs against a common target.

III. THE SIMULATION ALGORITHM

The model uses a discrete event simulation [51], [62] to com-

pute the distributions of duration and cost for a given set of

inputs. Each simulation run begins at system state 0 (initial

values), with a randomly sampled11 duration and cost (with cor-

relation) for each activity. Initially, each activity has 100% of its

work to do, as tracked by the “work to be done” vector, [68].

When , the entire activity remains to be done; when

, activity is complete.

In each system state, the model first determines the set of ac-

tive activities, according to the work policy discussed in Sec-

tion II-C. The shortest activity in the active set will be the next

activity to finish and generate output, so its duration determines

the time until the next event, “any activity ends.” (Events are

summarized in Fig. 6.) Once an activity ends, the event time is

added to the cumulative duration, and the cost of the work done

on all active activities is added to the cumulative cost. Appro-

priate fractions of are decremented from the active activities,

and the model checks for any rework (increments to) caused

by the completed activity’s output.

To determine rework, a probabilistic check is made for

potential iterations (rework for upstream activities) and for

second-order rework resulting from any such iterations, using

the probabilities in . Again, if output from activity

causes rework for activity , then the amount—a percentage

of , given in , and modified by the improvement

curve—is added to . When all activities are complete, all

entries equal zero, and the simulation outputs cumulative

cost and duration as and , respectively. 12 Tables II–IV

summarize the model inputs, variables, and algorithm.

10Taguchi [75] highlighted the usefulness of quadratic quality loss functions.
11Monte Carlo simulation using the Latin Hypercube sampling technique [54]
12Simulation models of most realistic development situations converge

quickly. However, it is possible to use a set of inputs which does not converge
because tasks create large amounts of rework for one another. We have not
found such unstable situations in any of our practical applications of the model.

TABLE II
SUMMARY OF MODEL AND SIMULATION INPUTS

As the simulation is run many times, a number of and

sample pairs are generated. The outcomes form a cost distri-

bution and the outcomes form a duration distribution for the

given process architecture. Together, the , pairs form a joint

cost-duration (cost-schedule) distribution.

A number of runs are necessary to get stable distributions.

Batches of runs, , are done until both the means and variances

of the and distributions stabilize to within precision , as

checked by the following equations (shown only for):

(8)

(9)

where is the number of simulation runs. Similar equations

apply for . We use and .

IV. RESULTS

This section discusses analytical and simulation results from

applying the model to the baseline architecture of the UCAV

preliminary design process. The full data set and the data-gath-

ering methodology are discussed in [12].

A. Interface Criticality

Without simulation, the model can be used to analyze the rel-

ative criticality of interfaces among activities. While the impor-

tance of knowing the most critical activities in a process has

been documented [30], interface criticality is also important,

since iteration is a major driver of process cost and schedule out-

comes. Because rework in one activity can propagate rework in

others, the presence of higher order terms makes a closed-form

solution for interface criticality difficult to derive for a large

BROWNING AND EPPINGER: MODELING IMPACTS OF PROCESS ARCHITECTURE 435

TABLE III
SUMMARY OF MODEL AND SIMULATION VARIABLES

TABLE IV
ALGORITHM FOR EACH RUN OF SIMULATION

complex activity network [68], [69]. Using the factors in our

model, the criticality of various interfaces to the schedule out-

come could be calculated as follows:

second-order rework effects (10)

Disregarding the second- and higher order terms, and using

MLVs for (instead of treating it as a random variable),

relative criticalities of the UCAV process interfaces are calcu-

lated and shown in Fig. 7. Assuming that the extent of rework

propagation can be limited (especially for high visibility design

changes), the approximation obtained by disregarding the

higher order terms is nevertheless instructive.

436 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 49, NO. 4, NOVEMBER 2002

Fig. 7. Interface criticalities (to process duration).

Fig. 8. Results: cost and duration PMFs and CDFs.

In practice, interface criticalities highlight potentially dan-

gerous assumptions being made during process execution; these

drive cost and schedule unpredictability and risk. Interface crit-

icalities also draw focus to process failure modes and effects,

thereby illuminating opportunities to improve activity robust-

ness. Furthermore, interface criticalities can help determine the

impacts of changes and delays coming from outside the process.

Thus, they facilitate project replanning. Moreover, interface crit-

icalities can provide a gradient for architecture optimization, as

discussed in Section V-B.

B. Simulation Outputs

Fig. 8 shows probability mass functions (PMFs) and cu-

mulative distribution functions (CDFs) of simulated cost and

schedule outcomes . The mean cost outcome

is $637k with a standard deviation of $63k.

Fig. 9. Joint cost and duration PDF.

days with days. Not surprisingly, both distributions

are skewed right . Fig. 8 also shows

targets of $630k for cost and 130 days for schedule. Fig. 9

shows the joint cost and schedule PDF resulting from paired

cost and schedule outcomes.13 The upper portion of Fig. 10

shows the joint PDF as a contour plot.

Traditional methods of analyzing the given activity network,

ignoring iteration, yield $615k, $55k,

days, and days. That is, each metric is underesti-

mated versus when accounting for iteration.

The distributions and targets yield probabilities of overruns:

overrun and overrun . Using (7) and

letting k and days (so will be di-

mensionless), and . If is chosen to put

and in comparable units such as lost dollars of revenue

or lost customer utility, can be compared to to see which

is contributing greater risk. For example, letting

1k lost profit

1k of cost overrun
(11)

50k lost profit

day of schedule overrun
(12)

then k lost profit and k lost

profit. Given these values, schedule risk is a bigger concern than

cost risk with the given process architecture, targets, and conse-

quences of overruns.

C. Model Validity

The model has high face validity [51] because it is based on

existing theory, extensive observations of the modeled system,

and conversations with experts on the modeled system [12]. Fur-

thermore, the model is applied to data from an industrial setting.

While extending the validity of the model by applying it in ex-

perimental and real environments is a future goal, the current

13This PDF was created from the sample C , S pair data using bicubic inter-
polation across a 48� 48 mesh grid from 20� 20 histogram bins. We grate-
fully acknowledge the use of Matlab m-files written by Breivik and Keane in
preparing the three-dimensional histogram data.

BROWNING AND EPPINGER: MODELING IMPACTS OF PROCESS ARCHITECTURE 437

Fig. 10. Joint cost and duration PDF contour plots for (a) process architectures
one and (b) three.

level of validity is comparable with models in the established

literature [72].

D. Sensitivity Analyses

Some interesting analyses include the sensitivity of and

to changes in: iteration probabilities, rework impacts, ac-

tivity durations and costs [cf., [24]], process architecture, target,

and impact function. The next two sections discuss some ex-

ample applications along these lines.

V. THE IMPACT OF PROCESS ARCHITECTURE ON AND

We used the simulation model to compare the relative levels

of cost and schedule risk in five process architectures (with iden-

tical cost and schedule targets). Architecture one is the baseline

(shown in Fig. 2). Architecture two was suggested by process

engineers at the UCAV company. Architecture three takes ad-

vantage of beginning manufacturing analyses (activity 13) ear-

lier, thereby allowing more activity overlap but increasing the

first-order iteration in the process. (However, the activity’s ro-

bustness to certain input changes and its large improvement

TABLE V
COMPARISON OF FIVE PROCESS ARCHITECTURES

Fig. 11. Cost and schedule risk factors for five process architectures.

curve reduce the impacts of any rework it undergoes). Archi-

tectures four and five are variants of architecture three. Table V

shows comparative data for each of the five architectures.

Architectures three through five have more concurrency,

more iteration, and higher cost risk, but much less schedule risk.

Fig. 10 compares the joint , distributions for architectures

one and three, clearly showing that architecture three reduces

schedule risk at the expense of some cost risk. (In Fig. 10, the

goal is to get the distribution in the lower left region, inside the

budget and deadline “window.”)

Fig. 11 plots and for each of the five architectures, re-

vealing potential cost and schedule risk tradeoffs. As in Fig. 1,

results for most of the possible process architectures will fall

above and to the right of the five points. Perhaps some yet un-

found architecture will stretch the tradeoff frontier to the lower

left, as discussed in Section V-B. The impact function also in-

fluences the shape of the curve. For example, quadratic impact

438 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 49, NO. 4, NOVEMBER 2002

Fig. 12. Effect of iterative overlapping on cost and duration.

functions reward a improvement in a high-risk architecture

over the same improvement in a low-risk architecture.

A. Iterative Overlapping

More iteration can yield a faster schedule when it is possible

to take advantage of appropriate iterative overlapping [49] or

“preemptive iteration.” For example, in architecture three, ac-

tivity 13 is begun earlier and allowed to work concurrently with

other activities, saving a large amount of time. Otherwise, it

would be executed entirely on the critical path, as shown in

Fig. 5. Even though this architecture increases the number of

superdiagonal marks (and their distance from the diagonal) in

the DSM, in this case the increased iteration is worth the price,

which is discounted by small rework impacts and large improve-

ment curve effects. Essentially, by beginning certain activities

earlier, in parallel with other activities, designers are able to set

up, “get their feet wet,” and begin learning sooner. Then they

can do some amount of rework, rather than their entire activity,

on the critical path. Although the cost is slightly higher, the

schedule is compressed appreciably [64].

Fig. 12 illustrates the tradeoff. In case A, two activities are

done sequentially. Assuming that lengthening either activity

will lengthen the overall process by the same amount, both

activities are on the project’s critical path. The total time and

cost spent on both activities is simply the sum of each activity’s

individual time and cost. In case B, activity two starts earlier.

When the results arrive from activity one, activity two must do

rework, but the time required for this rework is less than the

time required to do the entire activity. Thus, the total time on

the critical path is reduced, although overall cost is increased by

the cost of the rework. The model facilitates making intelligent

choices about concurrency, providing an understanding of

the implications for rework.14 DSM optimization approaches

that focus solely on the number of superdiagonal interfaces

and their distance from the diagonal will miss these types of

opportunities to suggest iterative overlapping.

B. Insights for Architecture Optimization

Although we compared several process architectures, we did

not determine an optimal one. The model could be extended

with a control loop that would suggest new architectures to

test (changes to) using a genetic algorithm [cf., [65]]. If the

change provides an improvement in the objective(s), it would be

allowed to stand; otherwise, a new mutation would be tried.

14When knowledge of potential effects is high (i.e., the outputs are easily
anticipated), it is good to “learn before doing” [61]. But when knowledge of
effects is low (the outputs are hard to forecast), iterative overlapping is not rec-
ommended.

This process would continue until an optimum was found (or

until marginal improvement dropped and remained below a cer-

tain threshold for several comparisons, etc.).

We offer two insights for future efforts toward optimization.

The first regards an appropriate improvement gradient to guide

the optimization algorithm to quicker accurate convergence.

The only real way to optimize the process architecture is to

compare all possible sequences of . Yet this is computation-

ally intensive for interesting numbers of activities, an

operation. Thus, several authors [50], [69], [74] have offered

heuristics that focus on reducing iteration, expecting that the

optimal process architecture will have a minimal amount

of iteration. However, our model disqualifies that assertion.

Section IV-A discussed a new alternative for an improvement

gradient, interface criticality.

Second, a major optimization challenge is determining an ob-

jective function rich enough to account for all of the significant

influences on the process. The traditional objective is to mini-

mize the expected duration of the process [65], [68]–[70]. How-

ever, minimizing variance15 and risk are also worthwhile objec-

tives, and we want to do so for both cost and duration. Hence,

we suggest the risk factors as objective functions instead of ex-

pected durations and costs.

VI. OTHER APPLICATIONS

This section presents some additional applications of the

model, using architecture one of the UCAV process to demon-

strate.

A. Project Planning: Setting Budgets and Deadlines

Project planners may face the task of choosing appropriate

cost and schedule targets. As shown in (3), the risk factor is

partly a function of the chosen target. When choosing or ne-

gotiating targets, one wants to ensure an acceptable level of

risk. In Fig. 13, overrun and are plotted versus var-

ious possible targets (budgets). For example, choosing a cost

target of $600k implies about a 67% chance of an unaccept-

able outcome and a cost risk factor of about 4900. In com-

parison, letting k yields overrun and

. These evaluations come in handy when negotiating

cost and schedule targets, choosing an acceptable level of risk

when planning projects, or when analyzing what premium a cus-

tomer should pay for faster delivery, etc. The analysis can also

help anticipate the risks of uncertain or changing targets.

15While the expected value of and variance in duration correlate in some
model outputs (e.g., [69]), minimizing one does not necessarily minimize the
other; activities could be sequenced so as to minimize one at the expense of the
other.

BROWNING AND EPPINGER: MODELING IMPACTS OF PROCESS ARCHITECTURE 439

Fig. 13. P (unacceptable) and for various cost targets (T) or budgets.

B. Project Management: Replanning

The simulation model can be reapplied once a process is un-

derway. Activity cost and schedule estimates can be updated or

replaced with actual values as they become available. Then, the

model can be used to explore “what if” questions as they mate-

rialize. For example, if a low-probability high-impact iteration

becomes more likely or occurs, affected activities can be identi-

fied quickly, and the impact on cost and schedule risk can be as-

certained. The cost and schedule risks of adding new activities to

the process—or of external changes affecting the process—can

also be explored. The remaining portion of a process can then

be replanned.

C. Process Improvement and Risk Reduction

By studying the sensitivities of the risk factors to individual

activity costs and durations, iteration probabilities and impacts,

and other factors, one can investigate the effects on the overall

process of improving one or more of its activities or interfaces.

For example, suppose new software tools are available that

could decrease the time and cost of creating the initial UCAV

structural geometry (Activity 5) by half—a face value savings

of $68k and 7.5 days for the individual activity. Rerunning the

simulation results in a reduction of $89k in expected project

cost and 10 days in expected project duration, where the higher

savings result from the compounding of the savings during

rework. If the new tools cost $80k, the individual activity may

have difficulty justifying the investment, yet investment makes

sense for the project as a whole (even more so for multiple

projects). Significantly, this change in activity five reduces

to 77 and to 79. The value of the risk reduction provided can

also figure into the business case for the investment decision.16

Of course, the size of the improvement in overall process

time, cost, and risk depends on the process architecture, which

influences how many times the activity iterates, and therefore

how many times its savings will be compounded.

VII. NEXT STEPS AND POSSIBLE EXTENSIONS

Extendibility is a significant strength of the model. For in-

stance, the model provides a framework for an options-based

approach [cf., [43]] with contingent activities. Interfaces (off-di-

agonal DSM entries), which in the basic model have attributes of

16Section IV-B showed how to “dollarize” the risk factor units.

probability and impact of rework, can have additional attributes

such as a counter for the number of times particular iterations

occur. Iteration probability could be modeled as a function of

current , , , , level of design performance, or the it-

eration counter. Thus, the model could represent dynamic inter-

faces among activities.17 As a real-time project replanning aid,

the model could be extended to support decision making about

the efficacy of additional design iterations.

The model can also be extended to account for resource con-

straints in the determination of active activities [85], using avail-

able algorithms (e.g., [8], [18], and [32]). This extension would

further emphasize the advantages of iterative overlapping. Fur-

thermore, the model can be used to explore alternative work

policies, such as selective exchange of preliminary information

[48], [52], [76], or using generalized precedence relations [33].

The model also provides an excellent tool for generating hy-

potheses for empirical research [20]. Finally, Goldratt discusses

how schedule risk can be addressed by inserting a project buffer

and feeder buffers [37]. Our model can be used to compute nec-

essary buffer sizes in a more sophisticated manner than Gol-

dratt’s 50% heuristic. Some of these extensions are explored by

Cho and Eppinger [23].

VIII. CONCLUSION

PD firms are keenly interested in improving the value they

provide to customers, since that translates to increased prof-

itability. In addition to product technical performance, two other

aspects of customer value, product affordability and lead time,

are directly affected by PD cost and duration [15]. Since adding

activities to mitigate uncertainty in PD causes increased time

and cost [12], [13], merely making the PD process more pre-

dictable can increase value. Moreover, customer value depends

on balancing product technical performance, affordability, and

timeliness in a way that the market or customer prefers. Bal-

ancing requires trading off not only product attributes but also

process attributes such as cost and duration [15]. This paper has

provided insights on how to navigate tradeoffs in process effi-

ciency and predictability.

We have presented a rich model that provides practical in-

sight into process architecture, cost, duration, uncertainty, and

risk. The model accounts for a number of PD process charac-

teristics, including interdependency, iteration, uncertain activity

cost and duration, rework probability and impact, improvement

curves, and work policy. The model is used to explore the effects

of varying the process architecture. It provides valuable aid in

project planning and replanning. The model is applicable at any

level in a process hierarchy, and its results can be used as inputs

to higher level models in a nested fashion. Analyzing the level

of cost and schedule risk characteristic of a process architec-

ture provides the capability to compare alternative work flows.

With appropriate weighting factors, the model illuminates cost

and schedule risk tradeoffs. Furthermore, the model shows the

schedule advantage of iterative overlapping and accounts for the

17Yet, all such contingencies and dynamic effects must still be outlined a

priori, because the model can handle contingencies only on a case-by-case basis.
This is reasonable since contingencies are usually studied through evaluation of
a finite number of predetermined scenarios.

440 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 49, NO. 4, NOVEMBER 2002

TABLE VI
MANAGERIAL INSIGHTS

variables that influence its applicability. Overall, the model pro-

vides a framework in which to examine the impacts of a va-

riety of effects on process cost, duration, and risk—yielding sev-

eral important managerial capabilities and reinforcing signifi-

cant managerial insights, such as those summarized in Table VI.

Plus, the basic model is extensible toward providing additional

realism, analyses, and insights.

In the future, as process capabilities are more widely recog-

nized as significant sources of competitive advantage, process

systems engineering (vice product systems engineering) will be-

come more important. Organizations developing large, novel,

complex systems will benefit especially from being able to con-

vince their customers that their PD process has an acceptable

level of risk. All PD organizations can benefit from low-risk

process architectures by reducing the costs (of mitigating un-

certainty) that they pass on to their customers.

ACKNOWLEDGMENT

The authors would like to thank D. E. Whitney and J. J. Deyst,

Jr., who provided helpful comments on the model and applica-

tions. They also appreciate the comments of several anonymous

reviewers. This paper updates work presented in [12, Ch. 6] and

[17].

REFERENCES

[1] P. S. Adler, A. Mandelbaum, V. Nguyen, and E. Schwerer, “From project
to process management: An empirically-based framework for analyzing
product development time,” Mgt. Sci., vol. 41, no. 3, pp. 458–484, 1995.

[2] R. H. Ahmadi, T. A. Roemer, and R. H. Wang, “Structuring product
development processes,” Eur. J. Oper. Res., vol. 130, pp. 539–558, 2001.

[3] R. H. Ahmadi and H. Wang, “Rationalizing product design develop-
ment processes,” in UCLA Anderson Graduate School of Management
working paper, Los Angeles, 1994.

[4] F. AitSahlia, E. Johnson, and P. Will, “Is concurrent engineering always
a sensible proposition?,” IEEE Trans. Eng. Mgt., vol. 42, pp. 166–170,
June 1995.

[5] C. Alexander, Notes on the Synthesis of Form. Cambridge, MA: Har-
vard Univ. Press, 1964.

[6] J. Andersson, J. Pohl, and S. D. Eppinger, “A design process modeling
approach incorporating nonlinear elements,” in Proc. ASME Tenth Int.

Conf. Design Theory and Methodology, Atlanta, GA, 1998.
[7] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modu-

larity. Cambridge, MA: MIT Press, 2000.
[8] U. Belhe and A. Kusiak, “Resource constrained scheduling of hierarchi-

cally structured design activity networks,” IEEE Trans. Eng. Mgt., vol.
42, pp. 150–158, June 1995.

[9] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[10] B. W. Boehm, Software Risk Management. Washington, D.C.: IEEE
Computer Society Press, 1989.

[11] J. A. Brimson, Activity Accounting: An Activity-Based Costing Ap-

proach. New York: Wiley, 1991.
[12] T. R. Browning, “Modeling and analyzing cost, schedule, and perfor-

mance in complex system product development,” Ph. D. dissertation,
Massachusetts Inst. Technology, Cambridge, MA, 1998.

[13] , “Sources of schedule risk in complex system development,” Syst.

Eng., vol. 2, no. 3, pp. 129–142, 1999.
[14] , “Applying the design structure matrix to system decomposition

and integration problems: A review and new directions,” IEEE Trans.

Eng. Mgt., vol. 48, pp. 292–306, Sept. 2001.
[15] , “On customer value and improvement in product development

processes,” Syst. Eng., vol. 6, no. 1, 2003.
[16] , “Process integration using the design structure matrix,” Syst. Eng.,

vol. 5, no. 3, pp. 180–193, 2002.
[17] T. R. Browning and S. D. Eppinger, “A model for development project

cost and schedule planning,” in MIT Sloan School of Management
working paper 4050, Cambridge, MA, Nov. 1998.

[18] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, “Re-
source-constrained project scheduling: Notation, classification, models,
and methods,” Eur. J. Oper. Res., vol. 112, pp. 3–41, 1999.

[19] T. Burns and G. M. Stalker, The Management of Innovation. London,
U.K.: Tavistock, 1961.

[20] K. M. Carley, “On generating hypotheses using computer simulations,”
Syst. Eng., vol. 2, no. 2, pp. 69–77, 1999.

BROWNING AND EPPINGER: MODELING IMPACTS OF PROCESS ARCHITECTURE 441

[21] M. Carrascosa, S. D. Eppinger, and D. E. Whitney, “Using the design
structure matrix to estimate product development time,” in ASME

Design Eng. Technical Conf. (Design Automation Conf.), Atlanta, GA,
1998.

[22] L. C. Cheung, R. P. Smith, and Z. B. Zabinsky, “Optimal scheduling in
the engineering design process,” in Univ. Washington working paper,
Seattle, WA, Aug. 1998.

[23] S.-H. Cho and S. D. Eppinger, “Product development process modeling
using advanced simulation,” in ASME 2001 Design Engineering Tech-

nical Conf. (DETC), Pittsburgh, PA, 2001.
[24] A. D. Christian, “Simulation of information flow in design,” Ph.D. dis-

sertation, Massachusetts Inst. Technology, Cambridge, MA, 1995.
[25] K. B. Clark and T. Fujimoto, Product Development Performance:

Strategy, Organization, and Management in the World Auto In-

dustry. Boston, MA: Harvard Business School Press, 1991.
[26] K. B. Clark and S. C. Wheelwright, Managing New Product and Process

Development. New York: Free Press, 1993.
[27] E. H. Conrow and P. S. Shishido, “Implementing risk management on

software intensive projects,” IEEE Software, pp. 83–89, May/June 1997.
[28] K. G. Cooper, “The rework cycle: Why projects are mismanaged,” PM-

NETwork, Feb. 1993.
[29] B. Dodin, “Bounding the project completion time distribution in PERT

networks,” Oper. Res., vol. 33, no. 4, pp. 862–881, 1985.
[30] B. M. Dodin and S. E. Elmaghraby, “Approximating the criticality in-

dices of the activities in PERT networks,” Mgt. Sci., vol. 31, no. 2, pp.
207–223, 1985.

[31] R. M. Eastman, “Engineering information release prior to final design
freeze,” IEEE Trans. Eng. Mgt., vol. 27, pp. 37–41, June 1980.

[32] S. E. Elmaghraby, “Activity nets: A guided tour through some recent
developments,” Eur. J. Oper. Res., vol. 82, pp. 383–408, 1995.

[33] S. E. Elmaghraby and J. Kamburowski, “The analysis of activity net-
works under generalized precedence relations (GPRs),” Mgt. Sci., vol.
38, no. 9, pp. 1245–1263, 1992.

[34] S. D. Eppinger, M. V. Nukala, and D. E. Whitney, “Generalized models
of design iteration using signal flow graphs,” Res. Eng. Design, vol. 9,
pp. 112–123, 1997.

[35] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala, “A model-
based method for organizing tasks in product development,” Res. Eng.

Design, vol. 6, pp. 1–13, 1994.
[36] D. N. Ford and J. D. Sterman, “Dynamic modeling of product develop-

ment processes,” Syst. Dynamics Rev., vol. 14, no. 1, pp. 31–68, 1998.
[37] E. M. Goldratt, Critical Chain. Great Barrington, MA: North River,

1997.
[38] S. B. Graves, “The time-cost tradeoff in research and development: A

review,” Eng. Costs Production Econ., vol. 16, pp. 1–9, 1989.
[39] S. Grey, Practical Risk Assessment for Project Management. New

York: Wiley, 1995.
[40] A. Y. Ha and E. L. Porteus, “Optimal timing of reviews in concurrent

design for manufacturability,” Mgt. Sci., vol. 41, no. 9, pp. 1431–1447,
1995.

[41] R. M. Henderson and K. B. Clark, “Architectural innovation: The recon-
figuration of existing product technologies and the failure of established
firms,” Administrative Sci. Quart., vol. 35, pp. 9–30, 1990.

[42] G. M. Hoedemaker, J. D. Blackburn, and L. N. V. Wassenhove, “Limits
to concurrency,” in INSEAD working paper, Fontainebleau, France, Jan.
1995.

[43] A. Huchzermeier and C. H. Loch, “Project management under risk:
Using the real options approach to evaluate flexibility in R&D,” Mgt.

Sci., vol. 47, no. 1, pp. 85–101, 2001.
[44] D. T. Hulett, “Schedule risk analysis simplified,” PM Network, pp.

23–30, July 1996.
[45] O. Isaksson, S. Keski-Seppälä, and S. D. Eppinger, “Evaluation of design

process alternatives using signal flow graphs,” J. Eng. Design, vol. 11,
no. 3, pp. 211–224, 2000.

[46] D. L. Keefer and W. A. Verdini, “Better estimation of PERT activity time
parameters,” Mgt. Sci., vol. 39, no. 9, pp. 1086–1091, 1993.

[47] S. J. Kline, “Innovation is not a linear process,” Res. Mgt., pp. 36–45,
July–Aug 1985.

[48] V. Krishnan, S. D. Eppinger, and D. E. Whitney, “A model-based frame-
work to overlap product development activities,” Mgt. Sci., vol. 43, no.
4, pp. 437–451, 1997.

[49] , “Simplifying iterations in cross-functional design decision
making,” J. Mechanical Design, vol. 119, no. 4, pp. 485–493, 1997.

[50] A. Kusiak and J. Wang, “Efficient organizing of design activities,” Int.

J. Production Res., vol. 31, no. 4, pp. 753–769, 1993.
[51] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, Second

ed. New York: McGraw-Hill, 1991.

[52] C. H. Loch and C. Terwiesch, “Communication and uncertainty in con-
current engineering,” Mgt. Sci., vol. 44, no. 8, pp. 1032–1048, 1998.

[53] C. D. McDaniel, “A linear systems framework for analyzing the auto-
motive appearance design process,” Master’s dissertation, MIT, Cam-
bridge, MA, 1996.

[54] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of
three methods for selecting values of input variables in the analysis
of output from a computer code,” Technometrics, vol. 21, no. 2, pp.
239–245, 1979.

[55] J. J. Moder, C. R. Phillips, and E. W. Davis, Project Management With

CPM, PERT and Precedence Diagramming, Third ed. New York: Van
Nostrand Reinhold, 1983.

[56] NASA Syst. Eng. Handbook, NASA Headquarters, Code FT, SP-6105,
NASA, Washington, DC, 1995.

[57] K. Neumann, Stochastic Project Networks: Temporal Analysis, Sched-

uling and Cost Minimization. Berlin, Germany: Springer-Verlag,
1990, vol. 344.

[58] P. Nightingale, “The product-process-organization relationship in com-
plex development projects,” Res. Policy, vol. 29, pp. 913–930, 2000.

[59] S. M. Osborne, “Product development cycle time characterization
through modeling of process iteration,” Master’s dissertation, Massa-
chusetts Inst. Technology, Cambridge, MA, 1993.

[60] H. Petroski, To Engineer is Human: The Role of Failure in Successful

Design. New York: St. Martin’s, 1985.
[61] G. P. Pisano, The Development Factory: Unlocking the Potential of

Process Innovation. Boston, MA: Harvard Business School, 1997.
[62] A. A. B. Pritsker, J. J. O’Reilly, and D. K. LaVal, Simulation With Visual

SLAM and AweSim. New York: Wiley, 1997.
[63] A. A. B. Pritsker and C. E. Sigal, Management Decision Making: A

Network Simulation Approach. Englewood Cliffs, NJ: Prentice-Hall,
1983.

[64] T. A. Roemer, R. Ahmadi, and R. H. Wang, “Time-cost trade-offs
in overlapped product development,” Oper. Res., vol. 48, no. 6, pp.
858–865, 2000.

[65] J. L. Rogers, Integrating a Genetic Algorithm Into a Knowledge-Based

System for Ordering Complex Design Processes—Technical Manual

TM-110 247. Hampton, VA: NASA, 1996.
[66] M. J. Safoutin and R. P. Smith, “The iterative component of design,” in

IEEE Int. Eng. Management Conf., Vancouver, 1996, pp. 564–569.
[67] K. J. Singh, J. W. Erkes, J. Czechowski, J. W. Lewis, and M. G. Issac,

“DICE approach for reducing product development cycle,” in Worldwide

Passenger Car Conf. Exposition, Dearborn, MI, 1992, pp. 141–150.
[68] R. P. Smith and S. D. Eppinger, “Identifying controlling features of en-

gineering design iteration,” Mgt. Sci., vol. 43, no. 3, pp. 276–293, 1997.
[69] , “A predictive model of sequential iteration in engineering design,”

Mgt. Sci., vol. 43, no. 8, pp. 1104–1120, 1997.
[70] , “Deciding between sequential and parallel tasks in engineering

design,” Concurrent Eng.: Res. Applicat., vol. 6, no. 1, pp. 15–25, 1998.
[71] R. P. Smith and A. Leong, “An observational study of design team

process: A comparison of student and professional engineers,” J.

Mechanical Design, vol. 120, pp. 636–642, 1998.
[72] R. P. Smith and J. A. Morrow, “Product development process modeling,”

Design Studies, vol. 20, no. 3, pp. 237–261, 1999.
[73] D. V. Steward, “The design structure system: A method for managing the

design of complex systems,” IEEE Trans. Eng. Mgt., vol. 28, pp. 71–74,
Sept. 1981.

[74] , Systems Analysis and Management: Structure, Strategy, and De-

sign New York, PBI, 1981.
[75] G. Taguchi and Y. Wu, Introduction to Off-Line Quality Con-

trol. Nagoya, Japan: Central Japan Quality Assoc., 1980.
[76] C. Terwiesch and C. H. Loch, “Management of overlapping develop-

ment activities: A framework for exchanging preliminary information,”
in INSEAD working paper #97/117/TM, Fontainebleau, France, Nov.
1997.

[77] , “Managing the process of engineering change orders: The case
of the climate control system in automobile development,” J. Product

Innovation Mgt., vol. 16, no. 2, pp. 160–172, 1999.
[78] S. H. Thomke, “The role of flexibility in the development of new prod-

ucts: An empirical study,” Res. Policy, vol. 26, pp. 105–119, 1997.
[79] R. Verganti, “Leveraging on systematic learning to manage the early

phases of product innovation projects,” R&D Mgt., vol. 27, no. 4, pp.
377–392, 1997.

[80] E. von Hippel, “Task partitioning: An innovation process variable,” Res.

Policy, vol. 19, pp. 407–418, 1990.
[81] D. E. Whitney, “Designing the design process,” Res. Eng. Design, vol.

2, pp. 3–13, 1990.

442 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 49, NO. 4, NOVEMBER 2002

[82] T. M. Williams, “Practical use of distributions in network analysis,” J.

Oper. Res. Soc., vol. 43, no. 3, pp. 265–270, 1992.
[83] P. M. Wolfe, E. B. Cochran, and W. J. Thompson, “A GERTS-based in-

teractive computer system for analyzing project networks incorporating
improvement curve concepts,” AIIE Trans., vol. 12, no. 1, pp. 70–79,
1980.

[84] A. Yassine, D. Falkenburg, and K. Chelst, “Engineering design manage-
ment: An information structure approach,” Int. J. Production Res., vol.
37, no. 13, 1999.

[85] A. A. Yassine and T. R. Browning, “Analyzing multiple product de-
velopment projects based on information and resource constraints,” in
working paper, Cambridge, MA, 2001.

Tyson R. Browning received the B.S. degree in en-
gineering physics from Abilene Christian University,
Abilene, TX, and two S.M. degrees and the Ph.D. de-
gree in technology, management and policy (systems
engineering and operations management) from Mass-
achusetts Institute of Technology, Cambridge.

He holds the position of Senior Project Manager in
Integrated Company Operations at Lockheed Martin
Aeronautics Company in Fort Worth, TX. He is the
technical lead and chief integrator for a number of
teams in developing the enterprise process architec-

ture for the Aeronautics Company. He is also the lead author of company poli-
cies and processes driving the transition to a process-based company. He previ-
ously worked with the Product Development Focus Team of the Lean Aerospace
Initiative at MIT, conducting research at Lockheed Martin, General Electric,
Boeing, Raytheon, Sundstrand, and Daimler Chrysler. He has published papers
on organizational integration, risk management, the design structure matrix, and
process modeling.

Dr. Browning is a member of INCOSE, INFORMS, and AIAA.

Steven D. Eppinger (S’86–M’88) received the S.B.,
S.M., and Sc.D. degrees from Massachusetts Institute
of Technology (MIT), Cambridge, MA.

He is currently the General Motors Professor of
Management Science and Engineering Systems at
the MIT Sloan School of Management. He serves
as Co-Director of the Leaders for Manufacturing
Program and the System Design and Management
Program, both at MIT. His research deals with the
management of complex engineering processes. He
has published numerous articles and is co-author

of the textbook entitled Product Design and Development (New York:
McGraw-Hill, 1995 and 2000).

Dr. Eppinger is a member of INFORMS.

