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Abstract—We address the problem of recognizing sequences
of human interaction patterns in meetings, with the goal of
structuring them in semantic terms. The investigated patterns
are inherently group-based (defined by the individual activities
of meeting participants, and their interplay), and multimodal (as
captured by cameras and microphones). By defining a proper
set of individual actions, group actions can be modeled as a
two-layer process, one that models basic individual activities from
low-level audio–visual (AV) features, and another one that models
the interactions. We propose a two-layer hidden Markov model
(HMM) framework that implements such concept in a principled
manner, and that has advantages over previous works. First, by
decomposing the problem hierarchically, learning is performed
on low-dimensional observation spaces, which results in simpler
models. Second, our framework is easier to interpret, as both
individual and group actions have a clear meaning, and thus easier
to improve. Third, different HMMs can be used in each layer,
to better reflect the nature of each subproblem. Our framework
is general and extensible, and we illustrate it with a set of eight
group actions, using a public 5-hour meeting corpus. Experiments
and comparison with a single-layer HMM baseline system show
its validity.

Index Terms—Human interaction recognition, multimodal pro-
cessing and multimedia applications, statistical models.

I. INTRODUCTION

DEVISING computational frameworks to automatically
infer human behavior from sensors constitutes an open

problem in many domains. Moving beyond the person-centered
paradigm [36], recent work has started to explore multiperson
scenarios, where not only individual but also group actions or
interactions become relevant [1], [11], [14], [31].

One of these domains is meetings. The automatic analysis
of meetings has recently attracted attention in a number of
fields, including audio and speech processing, computer vision,
human–computer interaction, and information retrieval [3],
[4], [18], [22], [27], [35], [38]. Analyzing meetings poses a
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diversity of technical challenges, and opens doors to a number
of relevant applications.

Group activity plays a key role in meetings [27], [38], and
this is documented by a significant amount of work in social
psychology [24]. Viewed as a whole, a group shares informa-
tion, engages in discussions, and makes decisions, proceeding
through diverse communication phases both in single meetings
and during the course of a long-term teamwork [24]. Recog-
nizing group actions is therefore useful for browsing and re-
trieval purposes [22], [38], e.g., to structure a meeting into a
sequence of high-level items.

Interaction in meetings is inherently group-based [24] and
multimodal [16]. In the first place, we can view a meeting as a
continuous sequence of mutually exclusive group actions taken
from an exhaustive set [7], [22]. Each of these group actions
involves multiple simultaneous participants, and is thus implic-
itly constrained by the actions of the individuals. In the second
place, as the principal modality in meetings, speech has recently
been studied in the context of interaction modeling [7], [13],
[39]. However, work analyzing the benefits of modeling indi-
vidual and group actions using multiple modalities has been lim-
ited [1], [22], [23], [32], despite the fact that actions in meetings,
both at the individual (e.g., note-taking or talking), and at the
group level (e.g. dictating) are often defined by the joint occur-
rence of specific audio and visual patterns.

In this paper, we present a two-layer hidden Markov model
(HMM) framework for group action recognition in meetings.
The fundamental idea is that, by defining an adequate set of in-
dividual actions, we can decompose the group action recogni-
tion problem into two levels, from individual to group actions.
Both layers use ergodic HMMs or extensions. The goal of the
lower layer is to recognize individual actions of participants
using low-level audio–visual (AV) features. The output of this
layer provides the input to the second layer, which models inter-
actions. Individual actions naturally constitute the link between
the low-level AV features and high-level group actions. Simi-
larly to continuous automatic speech recognition, we perform
group action recognition directly on the data sequence, deriving
the segmentation of group actions in the process. Our approach
is general, extensible, and brings improvement over previous
work, which reflects on the results obtained on a public meeting
corpus, for a set of eight group actions based on multimodal
turn-taking patterns.

The paper is organized as follows. Section II reviews related
work. Section III introduces our approach. Section IV and
Section V describe the meeting data and the feature extraction
process respectively. Experiments and discussion are presented
in Section VI. Conclusions are drawn in Section VII.

1520-9210/$20.00 © 2006 IEEE
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II. RELATED WORK

Current approaches to automatic activity recognition define
models for specific activities that suit the goal in a particular
domain, and use statistical methods for recognition. Predomi-
nately, the recognition of individual actions [36], or interaction
involving few people [14], [31] has been investigated using vi-
sual features [14], [15], [31], [36], [40], although some work
on the speech community can also be categorized as interac-
tion recognition [13], [39]. In [13], recognition of a specific
kind of interaction in meetings (agreement vs. disagreement)
has been addressed using both word-based features (such as the
total number of words, and the number of “positive” and “nega-
tive” keywords), as well as prosodic cues (such as pause, fre-
quency and duration). In [39], the relationship between “hot
spots” (defined in terms of participants highly involved in the
discussion) and dialogue acts has been examined using contex-
tual features (such as speaker identity or type of the meeting)
and lexical features (such as utterance length and perplexity).

To our knowledge, however, little work has been conducted
on recognition of group-based, multimodal actions from mul-
tiple AV streams captured by cameras and microphones [1],
[22], [23]. [1] described automatic discovery of “influence” in a
lounge room where people played interactive debating games.
The so-called influence model, a dynamic Bayes network
(DBN), which models group interactions as a group of Markov
chains, each of which influences the others’ state transitions, has
been applied to determine how much influence each participant
has on the others. Furthermore, our previous work presented
different statistical sequence models to recognize turn-taking
patterns in a formal meeting room scenario, where people
discuss around a table and use a white-board and a projector
screen [22], [23]. The analysis of multimodal group interactions
has been explicitly addressed without distinguishing actions at
individual and group levels.

Regarding statistical models, most of the existing work has
used HMMs [34] and extensions, including coupled HMMs,
input–output HMMs, multistream HMMs, and asynchronous
HMMs (see [29] for a recent review of models). Although
the basic HMM, a discrete state-space model with an efficient
learning algorithm, works well for temporally correlated se-
quential data, it is challenged by a large number of parameters,
and the risk of overfitting when learned from limited data [30].
This situation might occur in the case of multimodal group
action recognition where, in the simplest case, possibly large
vectors of AV features from each participant are concatenated
to define the observation space [22], [23].

The above problem is general, and has been addressed using
hierarchical representations [7], [30], [41]. In [41], an approach
for unsupervised discovery of multilevel video structures using
hierarchical HMMs was proposed, in the context of sports
videos. In this model, the higher-level structure elements
usually correspond to semantic events, while the lower-level
states represents variations occurring within the same event.
In [7], two methods for meeting structuring from audio were
presented, using multilevel DBNs. The first DBN model
decomposed group actions in meetings as sequences of subac-
tions, which have no explicit meaning and were obtained from

training process. The second DBN model processed indepen-
dently features of different nature, and integrate them at higher
level. In both [7] and [41], the low-level actions have no obvious
interpretation, and the number of low-level actions is a model
parameter learned during training, or set by hand, which makes
the structure of the models difficult to interpret. The other work
closest to ours is [30], in which layered HMMs were proposed
to model multimodal office activities involving mainly one
person at various time granularities. The lowest layer captured
one video and two audio channels, plus keyboard and mouse
activity features; the middle layer classifies AV features into
basic events like “speech,” “music, ” “one person,” “nobody,”
etc. Finally, the highest layer uses the outputs of previous layers
to recognize office activities with longer temporal extent. In
this way, actions at different semantic levels and with different
time granularities have been modeled with a cascade pyramid
of HMMs. This hierarchical representation has been tested
in SEER, a real-time system for recognizing typical office
activities, and produced improvement over a simple baseline
HMM.

The solution we present to the problem of group action recog-
nition is novel. On one hand, unlike our previous work [22],
[23], the framework presented here explicitly models actions at
different semantic levels (from individual to group level) at the
same time scale. This layered structure coincides with the struc-
ture of meetings as modeled in social psychology, that is, that
meetings comprise individual actions and interactions [24]. On
the other hand, our ultimate goal—modeling group activity—is
different than that of [30]. Since the two HMM layers are trained
independently, our framework is easy to interpret and enhanced
at each of the levels. Unlike [30], we have studied a number of
models suitable for multimodal data. For example, for the in-
dividual action layer, we use multistream HMMs [9] and asyn-
chronous HMMs [2], which are more suitable to model multi-
modal asynchronous sequences. Furthermore, the type of sen-
sors is also different. For our problem, the proposed work has a
number of advantages, as described in the next section. A preli-
mary version of our work was first reported in [43].

III. GROUP ACTION RECOGNITION

In this section, we first introduce our computational frame-
work. We then apply it to a specific set of individual and group
actions. Finally, we describe some specific implementation
details.

A. Framework Overview

Our framework is based on the use of hidden Markov
models (HMMs) and some of their extensions. HMMs have
been used with success for numerous sequence recognition
tasks, including speech recognition [34]. HMMs introduce
a hidden state variable and factorize the joint distribution
of a sequence of observations and states using two simpler
distributions, namely emission and transition distributions.
Such factorization yields efficient training algorithms such
as the Expectation-Maximization algorithm (EM) [5], which
can be used to select the set of parameters to maximize the
likelihood of several observation sequences. In our work,
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Fig. 1. The two-layer HMM framework.

we use Gaussian mixture models (GMMs) to represent the
emission distribution.

The success of HMMs applied to sequences of actions is based
on a careful design of submodels (distributions) corresponding
to lexical units (phonemes, words, letters, actions). Given a
training set of observation sequences representing meetings
for which we know the corresponding labeling (but not
necessarily the precise alignment), we create a new HMM
for each sequence as the concatenation of submodel HMMs
corresponding to the sequence of actions. This new HMM can
then be trained using EM and will have the effect of adapting
each submodel HMM accordingly. When a new sequence
of observation features of a meeting becomes available, the
objective is to obtain the optimal sequence of submodel
HMMs (representing actions) that could have generated the
given observation sequence. An approximation of this can be
done efficiently using the well-known Viterbi algorithm [37].
This process therefore leads to the recognition of actions
directly on the data sequence, generating the action boundaries
in the process.

In our framework, we distinguish group actions (which be-
long to the whole set of participants) from individual actions
(belonging to specific persons). Our ultimate goal is the recog-
nition of group activity, and so individual actions should act as
the bridge between group actions and low-level features, thus
decomposing the problem in stages. The definition of both ac-
tion sets is thus clearly intertwined.

Let I-HMM denotes the lower recognition layer (individual
action), and G-HMM denotes the upper layer (group action).
I-HMM receives as input AV features extracted from each par-
ticipant, and outputs recognition results, either as soft or hard
decisions (Section III-C). In turn, G-HMM receives as input the
output from I-HMM, and a set of group features, directly ex-
tracted from the raw streams, which are not associated to any
particular individual. In our framework, each layer is trained in-
dependently, and can be substituted by any of the HMM vari-
ants that might capture better the characteristics of the data,
more specifically asynchrony [2], or different noise conditions
[9] between the audio and visual streams. Our approach is sum-
marized in Fig. 1. The training procedure is described in Sec-
tion III-C.

Compared with a single-layer HMM, the layered approach
has the following advantages, some of which were previously
pointed out by [30].

1) A single-layer HMM is defined on a possibly large ob-
servation space, which might face the problem of overfit-
ting with limited training data. It is important to notice that
the amount of training data becomes an issue in meetings

where data labeling is not a cheap task. In contrast, the
layers in our approach are defined over small-dimensional
observation spaces, resulting in more stable performance
in cases of limited amount of training data.

2) The I-HMMs are person-independent, and in practice can
be trained with much more data from different persons,
as each meeting provides multiple individual streams of
training data. Better generalization performance can then
be expected.

3) The G-HMMs are less sensitive to slight changes in the
low-level features because their observations are the out-
puts of the individual action recognizers, which are ex-
pected to be well trained.

4) The two layers are trained independently. Thus, we can
explore different HMM combination systems. In partic-
ular, we can replace the baseline I-HMMs with models
that are more suitable for multimodal asynchronous data
sequences, with the goal of gaining understanding of the
nature of the data (Section III-C1). The framework thus
becomes simpler to understand, and amenable to improve-
ments at each separate level.

5) The framework is general and extensible to recognize new
group actions defined in the future.

B. Definition of Actions

As an implementation of the proposed framework, we de-
fine a set of group actions and individual actions in this sec-
tion. On one hand, a set of group actions is defined based on
multimodal turn-taking patterns [23]. A solid body of work in
social psychology has confirmed that, in the context of group
discussions, speaker turn patterns convey a rich amount of in-
formation about the dynamics of the group and the individual
behavior of its members, including trends of influence, domi-
nance, and interest [10], [24], [33]. While speaking turns are
described mainly by audio information, significant information
also exists in nonverbal cues. Work in the literature has studied
how participants coordinate speaking turns via an ensemble of
multimodal cues, such as gaze, speech back-channels, changes
in posture, etc. [21], [33]. From a different perspective, recog-
nizing multimodal group turn-taking is also useful for meeting
structuring, for access and retrieval purposes.

The list of group actions is defined in Table I. Note that
we consider a “monologue” or a “presentation” as a group
action, because we define it as the joint occurrence of several
individual patterns (e.g., one person speaks while the others
listen to her). For meeting browsing and indexing, it might
be also desirable to know which specific participant is doing
a monologue in the meeting. Therefore, we further divide
the “monologue” action into “monologue1,” “monologue2,”
etc., according to the number of participants. In a similar
way, we divide the “monologue+note-taking” action into
“monologue1+note-taking,” “monologue2+note-taking,”
and so on. Thus, for a four-participant meeting, a set
of group actions has been defined as
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TABLE I
DESCRIPTION OF INDIVIDUAL AND GROUP ACTIONS

.
These group actions are multimodal, and commonly found in
meetings. For modeling purposes, they are assumed to define a
partition (i.e., the action set is nonoverlapping and exhaustive).
This set is richer compared to the one that we defined in [23],
as it includes simultaneous occurrence of actions, like “mono-
logue+note-taking” which could occur during real situations,
like dictating or minute-taking. The group actions we defined
here can be easily described by combinations of a proper set of
individual actions defined in the following. Our framework is
general, and other type of group actions could be defined. Note
that high-level group actions in semantic terms (e.g., agree-
ment/disagreement) would certainly require language-based
features [13].

On the other hand, we define a small set of mul-
timodal individual actions which, as stated earlier, will help
bridge the gap between group actions and low-level AV features.
The list appears in Table I. While the list of potentially inter-
esting individual actions in meetings is large, our ultimate goal
is recognition of the group-level actions. It is interesting to note
that, although at first glance one would not think of “speaking“
or “writing” as multimodal, joint sound and visual patterns do
occur in these cases and are useful in recognition, as the results
in later sections confirm.

Finally, meeting rooms can be equipped with white-boards
or projector screens which are shared by the group. Extracting
features from these group devices also helps recognize group
actions. They constitute the group features described in the pre-
vious subsection. Their detailed description will be presented in
Section V.

The logical relations between individual actions, group
actions, and group features are summarized in Table II. The
group actions can be seen as combinations of individual
actions plus states of group devices. For example, “presenta-
tion+note-taking” can be decomposed into “speaking” by one
individual, with more than one “writing” participant, while the
group device of projector screen is in use. Needless to say, our
approach is not rule-based, but Table II is useful to conceptually
relate the two layers.

TABLE II
RELATIONSHIPS BETWEEN GROUP ACTIONS, INDIVIDUAL ACTIONS AND

GROUP FEATURES. THE SYMBOL “?” INDICATES THAT THE WHITE-BOARD OR

PROJECTOR SCREEN ARE IN USE WHEN THE CORRESPONDING GROUP ACTION

TAKES PLACE. SYMBOL “/” INDICATES THAT THE NUMBER OF PARTICIPANTS

FOR THE CORRESPONDING ACTION IS NOT CERTAIN. THE NUMBERS

(0,1,. . .) INDICATE THE NUMBER OF MEETING PARTICIPANTS INVOLVED

IN THE GROUP ACTION

C. Implementing the Two-layer Framework

In this section, we present some details about the architecture
of our framework. To facilitate description, we first define the
following symbols.

• : a sequence of audio-only feature vectors.
• : a sequence of visual-only feature vectors.
• : a sequence of concatenated AV feature vectors.
• : a sequence (audio, visual, or

audio–visual stream) up to time .
• : the HMM state at time
1) Individual Action Models: We investigate three models

for the lower-layer I-HMM, each of which attempts to model
specific properties of the data. For space reasons, the HMM
models are described here briefly. Please refer to the original
references for details [2], [9], [34]. The investigated models are:

Early Integration HMM (Early Int.), where a basic HMM
[34] is trained on combined AV features. This method involves
aligning and synchronizing the AV features to form one con-
catenated set of features which is then treated as a single stream
of data. The concatenation simply defines the AV feature space
as the cartesian product of the audio and video feature spaces,
creating vectors which first contain the components of the audio
feature vector, followed by the components of the video feature
vector. Early integration selects the set of parameters of the
model corresponding to action that maximizes the likelihood
of AV observation sequences as follows:

(1)

Audio–Visual Multistream HMM (MS-HMM), which com-
bines the audio-only and visual-only streams. Each stream is
modeled independently. are the best model pa-
rameters for action to maximize the likelihood of audio-only
and visual-only sequences respectively:

(2)

(3)
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The final classification is based on the fusion of the outputs of
both modalities by estimating their joint occurrence [9], as fol-
lows:

(4)

where the weighting factor represents the rela-
tive reliability of the two modalities.

AV Asynchronous HMM (A-HMM), which also combines the
audio-only and visual-only streams, by learning the joint distri-
bution of pairs of sequences when these sequences are not syn-
chronized and are not of the same length or rate [2]. This situa-
tion could occur in the meeting scenario at the group level when,
for instance, an individual starts playing her role before the rest
of the group. A similar situation could happen at the individual
level between the audio and visual streams. For instance, it is
known that the movements of the face are not synchronized with
the actually uttered speech of a person [20]. Furthermore, in a
conversational setting, a person tends to move before taking a
turn, and often stops gesticulating before finishing speaking as
a turn-yielding signal [8]. Being able to stretch some streams
with respect to others at specific points could thus yield perfor-
mance improvement. The A-HMM for action models the joint
distribution of the two streams by maximizing the likelihood of

observation sequences as follows:

(5)

Furthermore, while normal HMM optimization techniques
integrate the likelihood of the data over all possible values of the
hidden variable (which is the value of the state at each time step),
asynchronous HMMs also integrate this likelihood over all pos-
sible alignments between observation sequences, adding a new
hidden variable meaning that observation is aligned
with observation . With the hidden variable and using sev-
eral reasonable independence assumptions, the model in [2] can
factor the joint likelihood of the data and the hidden variables
into several simple conditional distributions, which makes the
model tractable using the EM algorithm. The Viterbi algorithm
can be used to obtain the optimal state sequence as well as the
alignment between the two sequences.

2) Linking the Two Layers: Obviously, a mechanism to link
the two HMM layers has to be specified. There are two ap-
proaches to do so, based on different I-HMM outputs. Let

denote a vector in a continuous space
of dimension equal to the number of individual actions ,
which indicates the degree of confidence in the recognition of
each individual action at time for a sequence .

The first approach directly outputs the probability for each
individual action model , , as input feature
vector to G-HMM, for all . We refer to it as soft
decision.

In soft decision, the probability of model given a se-
quence is computed in two steps. In the first step, we com-
pute the probability of having generated the sequence and being
in the state at time . We denote this probability as .

For different I-HMMs, the probability is computed in dif-
ferent ways.

• Early integration normal HMM:

(6)

where is the forward variable
in the standard Baum-Welch algorithm [34]. could be
audio-only, visual-only or audio-visual stream.

• Multistream HMM:

(7)

(8)

where is the audio-only sequence and is the visual-
only sequence. is the weighting factor defined in (4).

• Asynchronous HMM:

(9)

where is the size of a sliding window centered at current
time . The variable can be seen as the alignment
between sequence and .

In the second step, we normalize the probability for
all states of all the models. The probabilities of all states for all
models sum up to one,

(10)

where is the number of all states for all models. Then the
probability of state given a sequence is

(11)

(12)

(13)

With this, the probability of model given a sequence
is then computed as

(14)

(15)

where is the state in model , which is a subset of the states of
all models, and is the total number of states. The probability

of model is the sum of the probabilities of all states in
model .
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Fig. 2. Multicamera meeting room and visual feature extraction.

In the second approach, the individual action model with the
highest probability outputs a value of 1, while all other models
output a zero value. The vector generated in this way is used
as input to G-HMM. We refer to it as hard decision.

We concatenate the individual recognition vectors from all
participants, together with the group-level features, into a

-dimensional vector (where is the number of
participants, and is the dimension of the group features)
as observations to G-HMM for group action recognition.

IV. MEETING DATA

We used the publicly available meeting corpus we first
described in [22], which was collected in a meeting room
equipped with synchronized multichannel audio and video
recorders (publicly available at http://mmm.idiap.ch/). The
sensors include three fixed cameras and twelve microphones
[26]. Two cameras have an upper-body, frontal view of two
participants including part of the table. A third wide-view
camera captures the projector screen and white-board. Audio
was recorded using lapel microphones for all participants, and
an eight-microphone array placed in the center of the table.
The complex nature of the audio-visual information present
in meetings will be better appreciated by looking directly at
the above website. A snapshot of the three camera views, and
the visual feature extraction is shown in Fig. 2. The corpus
consists of 59 short meetings at 5-min average duration, with
four participants per meeting. The group action structure was
scripted before recording, so part of the group actions labels we
define were already available as part of the corpus. However,
we needed to relabel the rest of the group actions (e.g. mono-
logues into either monologues or monologues+note-taking),
and to label the entire corpus in terms of individual actions. All
ground-truth was produced using Anvil, a publicly available
video annotation tool (http://www.dfki.de/~kipp/anvil/).

V. MULTIMODAL FEATURE EXTRACTION

In this section, we describe the process to extract the two
types of AV features: person-specific AV features and group-
level AV features. The former are extracted from individual par-
ticipants. The latter are extracted from the whiteboard and pro-
jector screen regions.

TABLE III
AUDIO–VISUAL FEATURE LIST

A. Person-Specific AV Features

Person-specific visual features were extracted from the cam-
eras that have a close view of the participants. Person-specific
audio features were extracted from the lapel microphones at-
tached to each person, and from the microphone array. The com-
plete set of features is listed in Table III.

Person-Specific Visual Features: For each video frame, the
raw image is converted to a skin-color likelihood image, using a
5-component skin-color Gaussian mixture model (GMM). We
use the chromatic color space, known to be less variant to the
skin color of different people [42]. The chromatic colors are
defined by a normalization process: ,

. Skin pixels were then classified based
on thresholding of the skin likelihood. A morphological post-
processing step was performed to remove noise. The skin-color
likelihood image is the input to a connected-component algo-
rithm (flood filling) that extracts blobs. All blobs whose areas
are smaller than a given threshold were removed. We use 2-D
blob features to represent each participant in the meeting, as-
suming that the extracted blobs correspond to human faces and
hands. First, we use a multiview face detector to verify blobs
corresponding to the face. The blob with the highest confidence
output by the face detector is recognized as the face. Among the
remaining blobs, the one that has the rightmost centroid hori-
zontal position is identified as the right hand (we only extracted
features from the right hands since the participants in the corpus
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are predominately right-handed). For each person, the detected
face blob is represented by its vertical centroid position and ec-
centricity [36]. The hand blob is represented by its horizontal
centroid position, eccentricity, and angle. Additionally, the mo-
tion magnitude for head and right hand are also extracted and
summed into one single feature.

Person-Specific Audio Features: Using the microphone array
and the lapels, we extracted two types of person-specific audio
features. On one hand, speech activity was estimated at four
seated locations, from the microphone array waveforms. The
seated locations are expressed as 3-D vectors in Cartesian co-
ordinates, measured with respect to the microphone array in our
meeting room. These vectors correspond to the location where
people are typically seated. One measure was computed per
seat location. The speech activity measure coming from each
seated location was the Steered Response Power-Phase Trans-
form (SRP-PHAT) measure, an increasingly popular technique
used for acoustic source localization due to its suitability for re-
verberant environments [6]. SRP-PHAT is a continuous value
that indicates the speech activity at a particular location. On the
other hand, three acoustic features were estimated from each
lapel waveform: energy, pitch, and speaking rate. We computed
these features on speech segments, setting a value of zero on
silence segments. Speech segments were detected using the mi-
crophone array, because it is well suited for multiparty speech.
We used the SIFT algorithm [19] to extract pitch, and a combi-
nation of estimators [28] to extract speaking rate.

B. Group AV Features

Group AV features were extracted from the white-board and
projector screen regions. Given the constrained topology of a
real meeting room, most people will naturally tend to occupy
the same regions when making a presentation or using the white-
board. The features are listed in Table III.

Group Visual Features: These were extracted from the
camera that looks toward the white-board and projector screen
area. We first get difference images between a reference back-
ground image and the image at each time, in the white-board
and projector screen regions (Fig. 2). On these difference
images, we use the average intensity over a grid of 16 16
blocks as features.

Group Audio Features: These are SRP-PHAT features ex-
tracted using the microphone array from two locations corre-
sponding to the white-board and projector screen.

VI. EXPERIMENTS

In this section, we first describe the measures used to evaluate
our results, and then present results for both individual action
recognition and group action recognition.

A. Performance Measures

We use the action error rate (AER) and the frame error rate
(FER) as measures to evaluate the results of group action recog-
nition and individual action recognition, respectively.

AER is equivalent to the word error rate widely used in speech
recognition, and is defined as the sum of insertions (Ins: sym-
bols that were not present in a ground truth sequence, but were
decoded in the recognized sequence), deletions (Del: symbols

Fig. 3. AER is not a meaningful assessment for small number of actions.

that were present in a ground truth sequence, but were not de-
coded in the recognized sequence), and substitutions (Sub: sym-
bols that were present in a ground truth sequence, but were de-
coded as a different symbol in the recognized sequence), di-
vided by the total number of actions in the ground-truth,

. For group action
recognition, we have possible actions which in many
cases have no clear-cut temporal boundaries. Furthermore, at
least five actions occur in each meeting in the corpus. We be-
lieve that AER is a thus good measure to evaluate group action
recognition, as we are more interested in the recognition of the
correct action sequence rather than the precise time alignment
of the recognized action segments.

However, AER overlooks the time alignment between recog-
nized and target action segments. For individual action recog-
nition, there are only possible actions. Furthermore,
some streams (participants) in the corpus consist of only two
individual actions (e.g., a person who talks only once during the
course of a meeting). AER might not provide a meaningful as-
sessment in such cases. As shown in Fig. 3, AER equals zero be-
cause the recognized actions and the ground-truth actions have
the same sequential order. But obviously, the result in Fig. 3
is not perfect. Therefore, it is necessary to verify the temporal
alignment of the recognized actions with another measure, espe-
cially for the case in which the total number of actions is small.

In this view, we adopt FER as the performance mea-
sure for individual action recognition. FER is defined
as one minus the ratio between the number of cor-
rectly recognized frames and the number of total frames,

. This
measure reflects well the accuracy of the boundaries (begin
and end time) of the recognized actions, compared to manually
labeled action boundaries.

With limited number of training and testing actions, results
are likely to vary due to the random initialization of the training
procedure based on the EM algorithm [34]. For this reason, and
to assess consistency in the results, we report the mean and stan-
dard deviation (STD) for AER and FER, computed over ten runs
with random initialization of the EM procedure.

Finally, we also use confusion matrices, whose rows and
columns index the recognized and ground-truth actions, respec-
tively. The element of the confusion matrix corresponds to
either the percentage (for individual actions) or the instances
(for group actions) of action recognized as action . The
confusion matrix for group actions is based on AER, so there
are substitution, insertion, and deletion errors. For individual
actions, there are neither insertions nor deletions because the
peformance measure is FER.

B. Experimental Protocol

For both individual and group action recognition, we use
six-fold cross-validation on the training set to select the values
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TABLE IV
NUMBER OF FRAMES (N ) AND NUMBER OF ACTIONS (N )

IN DIFFERENT DATA SETS

of the model parameters that are not estimated as part of the
EM algorithm. In a HMM/GMM architecture, these include
the number of states per action, and the number of components
(Gaussians) per state. In six-fold cross-validation, we divided
the data into six subsets of approximately equal size. We then
train the models six times with different parameter configura-
tions, each time leaving out one of the subsets from training,
and using only the omitted subset to compute the corresponding
performance measure (FER for individual actions, AER for
group actions). The parameters resulting in the best overall
performance were selected, and used to re-train the models on
the whole training set.

For group actions, as described in [22], two disjoint sets of
eight people each, whose identities were known, were used to
construct the training and test sets. Each meeting was recorded
using a randomly chosen four-person combination within each
of the sets. With this choice, no person appears in both the
training and the test set. For individual actions, the original
eight-people set in the training set was further split into two dis-
joint subsets at each time during the cross-validation procedure.
One of these subsets was used to extract the streams belonging
to the training set. The other subset was used to create the val-
idation set. With this choice, we ensure that the data extracted
from the same person is not used to both train and validate the
individual action models.

From the 59 meetings, 30 are used as training data, and the
remaining 29 are used for testing. The number of frames
and number of actions for individual action and group ac-
tion in the different data sets are summarized in Table IV. The
number of individual actions is much larger than that of group
actions. There are two reasons. First, for individual action recog-
nition, there are four participants for each meeting. Therefore,
there are streams for training and
streams for testing. Second, the duration of individual actions is
typically shorter than that of group actions.

C. Individual Action Recognition

The three methods described in Section III-C1 were tested for
individual action recognition.

Early integration (Early Int.), trained on three feature sets:
audio-only, visual-only. and AV.

TABLE V
RESULTS OF INDIVIDUAL ACTION RECOGNITION

AV multistream HMM (MS-HMM), combining individual
audio and visual streams. Audio and visual streams are modeled
independently. The final classification is based on the fusion
of the outputs of both modalities by estimating their joint
occurrence (Section III-C1).

AV asynchronous HMM (A-HMM), combining individual
audio and visual streams by learning the joint distribution of
pairs of sequences when these sequences are not synchronized
(Section III-C1).

Multistream HMMs allow us to give different weights to dif-
ferent modalities 4. Following the discussion presented in [23],
we use (0.8,0.2) to weight the audio and visual modalities, re-
spectively. For asynchronous HMM, the allowed asynchrony
ranges from 2.2 s.

The summary of the results for all the individual action recog-
nition models is presented in Table V, in terms of FER mean and
standard deviation, obtained over ten runs (as described earlier,
each run starts with a random initialization of the EM training
procedure).

From Table V, we observe that all methods using AV fea-
tures produced less than 10% FER, which is about 15% absolute
improvement over using audio-only features, and about 25%
absolute improvement over using visual-only features. Asyn-
chronous HMM produced the best result. Given that the total
number of frames is over 43 000, the improvement using asyn-
chronous HMM over the other HMM methods is statistically
significant with a confidence level above 99%, using a standard
proportion test [12]. The improvement suggests that there exist
asynchronous effects between the audio and visual modalities.
Additionally, we tested the MS-HMM system with an equal-
weight scheme (0.5, 0.5). The performance decreased compared
to the MS-HMM with larger weight on audio (0.8 and 0.2, see
earlier discussion). This is not surprising given the predominant
role of audio in the defined actions.

The confusion matrices for visual-only, audio-only, and AV
streams, corresponding to a randomly chosen single run, are
shown in Tables VI, VII, and VIII, respectively. We can see that
“speaking” is well detected using audio-only features, and that
“writing” is well detected using visual-only features. Using AV
features, both “speaking” and “writing” are generally well de-
tected. Using AV features, “writing” tends to get confused with
“idle,” which in turn is the action with the highest FER. This is
likely due to the catch-all role that this action plays. In practice,
“idle” includes all other possible AV patterns, (e.g. pointing,
laughing, etc.), which makes its modeling more difficult, com-
pared with the other two well-defined actions.

In order to empirically investigate asynchronous effects in the
individual actions, we performed forced alignment decoding
on the audio-only and visual-only streams independently. A
similar approach was taken to establish empirical evidence
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TABLE VI
CONFUSION MATRIX OF RECOGNIZED INDIVIDUAL ACTIONS

(USING VISUAL-ONLY FEATURES) ROWS: RECOGNIZED ACTIONS.
COLUMNS: GROUND-TRUTH

TABLE VII
CONFUSION MATRIX OF RECOGNIZED INDIVIDUAL ACTIONS

(USING AUDIO-ONLY FEATURES) ROWS: RECOGNIZED ACTIONS.
COLUMNS: GROUND-TRUTH

TABLE VIII
CONFUSION MATRIX OF RECOGNIZED INDIVIDUAL ACTIONS (USING AV
FEATURES) ROWS: RECOGNIZED ACTIONS. COLUMNS: GROUND-TRUTH

Fig. 4. Histogram of asynchronous effects of individual actions.

for asynchrony in multiband automatic speech recognition
in [25]. The decoder in each stream was constrained by the
ground-truth individual action sequence, and so the output
action sequences differ only in their temporal boundaries.
We calculated the time misalignment (start-time difference of
corresponding actions) between the two sequences. Actions
having absolute misalignments larger than 5 s were discarded,
as the misalignments were more likely caused by recognition
errors, rather than asynchronous effects. Fig. 4 shows the
resulting histogram of misalignments, assumed due to asyn-
chronous effects, for these individual actions. The histogram
can be approximated by a Gaussian distribution, with a mean
of 0.13 s (as misalignments happened in both directions) and
a standard deviation of 2.05. More than 80% of the individual
actions are distributed in the range of 2.2 s (defined at the
beginning of this section), while there are 17% individual
actions without any asynchronous effects .
This suggests that, for most individual actions having evidence

TABLE IX
RESULTS OF GROUP ACTION RECOGNITION

in both streams, allowing asynchrony between streams should
model the data more accurately.

D. Group Action Recognition

Using the outputs from I-HMM and the group-level features,
concatenated as described in Section III-C2, we investigated a
number of cases for recognition of group actions, as listed as
follows.

1) Early integration, visual-only, soft decision. A normal
HMM is trained using the combination of the results of
the I-HMM trained on visual-only features, and the visual
group features. The soft decision criteria is used.

2) Early integration, audio-only, soft decision. Same as
above, but replacing visual-only by audio-only informa-
tion.Early integration, AV, hard decision. Same as above,
but replacing visual-only by AV information. The hard
decision criteria is used.

3) Early integration, AV, soft decision. Same as above, but
changing the criteria to link two HMM layers.

4) Multistream, AV, hard decision, using the multistream
HMM approach as I-HMM. The hard decision criteria is
used.

5) Multistream, AV, soft decision. Same as above, but
changing the criteria to link two HMM layers.

6) Asynchronous HMM, AV, hard decision. We use the asyn-
chronous HMM for individual action layer and AV fea-
tures. The hard decision criteria is used.

7) Asynchronous HMM, AV, soft decision. Same as above, but
changing the criteria to link two HMM layers.

As baseline methods for comparison, we tested single-layer
HMMs, using low-level audio-only, visual-only, and AV fea-
tures as observations [22], and trained by cross-validation
following the same experimental protocol. The results appear
in Table IX, in terms of AER mean and standard deviation over
ten runs. We observe from Table IX that the use of AV features
outperformed the use of single modalities for both single-layer
HMM and two-layer HMM methods. This result supports the
hypothesis that the group actions we defined are inherently
multimodal. Furthermore, the best two-layer HMM method
(A-HMM) using AV features improved the performance by over
8% compared to the AV single-layer HMM. Given the small
number of group actions in the corpus, a standard proportion
test indicates that the difference in performance between AV
single-layer and the best two-layer HMM is significant at the
96% confidence level. Additionally, the standard deviation for
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TABLE X
CONFUSION MATRIX OF RECOGNIZED GROUP ACTIONS FOR SINGLE-LAYER HMM USING

AV FEATURES. ROWS: RECOGNIZED ACTIONS. COLUMNS: GROUND-TRUTH

TABLE XI
CONFUSION MATRIX OF RECOGNIZED GROUP ACTIONS FOR TWO-LAYER HMM (USING ASYNCHRONOUS

HMM WITH SOFT DECISION). ROWS: RECOGNIZED ACTIONS. COLUMNS: GROUND-TRUTH

the two-layer approach is half the baseline’s, which suggests
that our approach might be more robust to variations in initial-
ization, given the fact that each HMM stage in our approach is
trained using an observation space of relatively low dimension.
Regarding hard versus soft decision, soft decision produced a
slightly better result, although not statistically significant given
the number of group actions. However, the standard deviation
using soft-decision is again around half the corresponding
to hard-decision. Overall, the soft decision two-layer HMM
appears to be favored by the results.

To further analyze results, we provide the confusion matrices
for single-layer HMM using AV features, and two-layer HMM
using AV, soft-decision and asynchronous HMM in Tables X
and XI, respectively. We showed discussion (D), monologue

, monologue+note-taking ,
note-taking (N), presentation (P), presentation+note-taking

, white-board (W), and white-board+note-taking
. Empty cells represent zero values. It is evident that

the two-layer method greatly reduced the number of errors,

compared with the single-layer method. For both matrices, we
see that most substitution errors come from confusions between
actions with and without note-taking. This might be mainly
because several instances of “writing” could not be reliably
detected as individual actions, as mentioned in the previous
subsection. There are several “presentation” actions confused
with “white-board”, which might be because some speakers
moved around the white-board and projector-screen regions
during a presentation. On the other hand, “discussion” and
“note-taking” actions can be recognized reasonably well.

E. Recognizing Actions in Unconstrained Meetings

To facilitate training and evaluation, the previous experiments
were conducted on scripted meetings recorded in constrained
conditions. To assess the proposed framework on natural mul-
tiparty conversations, we use a one-hour publicly available nat-
ural meeting recorded in the same setup, with which the AV
single-layer HMM was compared to the best two-layer method,
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TABLE XII
RESULTS ON UNCONSTRAINED MEETINGS

i.e., AV asynchronous HMM with soft-decision. All parameters
used for both methods are the same as in previous experiments.

The two methods were evaluated independently by two
observers. The subjects watched and listened to the meeting
recording, and judged the correctness of the actions auto-
matically recognized using the single-layer and the two-layer
methods. A final decision was made by the third person, for
those actions in disagreement among each pair of observers.
The results are shown in Table XII ( denotes the number of
recognized actions for each system).

We can see that the results obtained with the two-layer HMM
approach are better than those of the single-layer HMM, which
again suggests the benefits of the proposed framework. For the
1-h natural meeting, over 70% group actions were correctly rec-
ognized using the layered method, which could be quite useful
to meeting browsing and indexing. In practice, we noticed that it
is difficult to determine clear-cut differences between the mono-
logue and discussion actions, which constituted the main source
of disagreement between the subjects that evaluated the results.
Therefore, in future work, we need to address the ill-defined na-
ture of some actions in real data.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, meetings were defined as sequences of multi-
modal group actions. We addressed the problem of modeling
and recognizing such group actions, proposing a two-layer
HMM framework to decompose the group action recognition
problem into two layers. The first layer maps low-level AV fea-
tures into individual actions. The second layer uses results from
the first layer as input to recognize group actions. Experiments
on a public 59-meeting corpus demonstrate the effectiveness
of the proposed framework to recognize a set of multimodal
turn-taking actions, compared to a baseline, single-layer HMM
system. We believe our methodology to be promising. In the
short term, we will explore its applicability to other sets of
group actions, in multiparty conversations.
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