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Abstract. The field of intelligent tutoring systems has been using the well 

known knowledge tracing model, popularized by Corbett and Anderson (1995), 

to track student knowledge for over a decade. Surprisingly, models currently in 

use do not allow for individual learning rates nor individualized estimates of 

student initial knowledge. Corbett and Anderson, in their original articles, were 

interested in trying to add individualization to their model which they 

accomplished but with mixed results. Since their original work, the field has not 

made significant progress towards individualization of knowledge tracing 

models in fitting data. In this work, we introduce an elegant way of formulating 

the individualization problem entirely within a Bayesian networks framework 

that fits individualized as well as skill specific parameters simultaneously, in a 

single step. With this new individualization technique we are able to show a 

reliable improvement in prediction of real world data by individualizing the 

initial knowledge parameter. We explore three difference strategies for setting 

the initial individualized knowledge parameters and report that the best strategy 

is one in which information from multiple skills is used to inform each 

student’s prior. Using this strategy we achieved lower prediction error in 33 of 

the 42 problem sets evaluated. The implication of this work is the ability to 

enhance existing intelligent tutoring systems to more accurately estimate when 

a student has reached mastery of a skill. Adaptation of instruction based on 

individualized knowledge and learning speed is discussed as well as open 

research questions facing those that wish to exploit student and skill 

information in their user models. 

Keywords: Knowledge Tracing, Individualization, Bayesian Networks, Data 

Mining, Prediction, Intelligent Tutoring Systems 

1 Introduction 

Our initial goal was simple; to show that with more data about students’ prior 

knowledge, we should be able to achieve a better fitting model and more accurate 

prediction of student data. The problem to solve was that there existed no Bayesian 

network model to exploit per user prior knowledge information. Knowledge tracing 
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(KT) is the predominant method used to model student knowledge and learning over 

time. This model, however, assumes that all students share the same initial prior 

knowledge and does not allow for per student prior information to be incorporated. 

The model we have engineered is a modification to knowledge tracing that increases 

its generality by allowing for multiple prior knowledge parameters to be specified and 

lets the Bayesian network determine which prior parameter value a student belongs to 

if that information is not known before hand. The improvements we see in predicting 

real world data sets are palpable, with the new model predicting student responses 

better than standard knowledge tracing in 33 out of the 42 problem sets with the use 

of information from other skills to inform a prior per student that applied to all 

problem sets. Equally encouraging was that the individualized model predicted better 

than knowledge tracing in 30 out of 42 problem sets without the use of any external 

data. Correlation between actual and predicted responses also improved significantly 

with the individualized model. 

1.1 Inception of knowledge tracing 

Knowledge tracing has become the dominant method of modeling student knowledge. 

It is a variation on a model of learning first introduced by Atkinson in 1972 [1]. 

Knowledge tracing assumes that each skill has 4 parameters; two knowledge 

parameters and two performance parameters. The two knowledge parameters are: 

initial (or prior) knowledge and learn rate. The initial knowledge parameter is the 

probability that a particular skill was known by the student before interacting with the 

tutor. The learn rate is the probability that a student will transition between the 

unlearned and the learned state after each learning opportunity (or question). The two 

performance parameters are: guess rate and slip rate. The guess rate is the probability 

that a student will answer correctly even if she does not know the skill associated with 

the question. The slip rate is the probability that a student will answer incorrectly even 

if she knows the required skill. Corbett and Anderson introduced this method to the 

intelligent tutoring field in 1995 [2]. It is currently employed by the cognitive tutor, 

used by hundreds of thousands of students, and many other intelligent tutoring 

systems to predict performance and determine when a student has mastered a 

particular skill. 

It might strike the uninitiated as a surprise that the dominant method of modeling 

student knowledge in intelligent tutoring systems, knowledge tracing, does not allow 

for students to have different learn rates even though it seems likely that students 

differ in this regard. Similarly, knowledge tracing assumes that all students have the 

same probability of knowing a particular skill at their first opportunity.   

In this paper we hope to reinvigorate the field to further explore and adopt models 

that explicitly represent the assumption that students differ in their individual initial 

knowledge, learning rate and possibly their propensity to guess or slip. 

1.2 Previous approaches to predicting student data using knowledge tracing  

Corbett and Anderson were interested in implementing the learning rate and prior 

knowledge individualization that was originally described as part of Atkinson’s model 
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of learning. They accomplished this but with limited success. They created a two step 

process for learning the parameters of their model where the four KT parameters were 

learned for each skill in the first step and the individual weights were applied to those 

parameters for each student in the second step. The second step used a form of 

regression to fit student specific weights to the parameters of each skill. Various 

factors were also identified for influencing the individual priors and learn rates [3]. 

The results [2] of their work showed that while the individualized model’s predictions 

correlated better with the actual test results than the non-individualized model, their 

individualized model did not show an improvement in the overall accuracy of the 

predictions. 

More recent work by Baker et al [4] has found utility in the contextualization of the 

guess and slip parameters using a multi-staged machine-learning processes that also 

uses regression to fine tune parameter values. Baker’s work has shown an 

improvement in the internal fit of their model versus other knowledge tracing 

approaches when correlating inferred knowledge at a learning opportunity with the 

actual student response at that opportunity but has yet to validate the model with an 

external validity test. 

One of the knowledge tracing approaches compared to the contextual guess and 

slip method was the Dirichlet approach introduced by Beck et al [5]. The goal of this 

method was not individualization or contextualization but rather to learn plausible 

knowledge tracing model parameters by biasing the values of the initial knowledge 

parameter. The investigators of this work engaged in predicting student data from a 

reading tutor but found only a 1% increase in performance over standard knowledge 

tracing (0.006 on the AUC scale). This improvement was achieved by setting model 

parameters manually based on the authors understanding of the domain and not by 

learning the parameters from data. 

1.3 The ASSISTment System 

Our dataset consisted of student responses from The ASSISTment System, a web 

based math tutoring system for 7th-12th grade students that provides preparation for 

the state standardized test by using released math problems from previous tests as 

questions on the system. Tutorial help is given if a student answers the question 

wrong or asks for help. The tutorial help assists the student learn the required 

knowledge by breaking the problem into sub questions called scaffolding or giving 

the student hints on how to solve the question. 

2 The Model 

Our model uses Bayesian networks to learn the parameters of the model and predict 

performance. Reye [6] showed that the formulas used by Corbett and Anderson in 

their knowledge tracing work could be derived from a Hidden Markov Model or 

Dynamic Bayesian Network (DBN). Corbett and colleagues later released a toolkit [7] 

using non-individualized Bayesian knowledge tracing to allow researchers to fit their 

own data and student models with DBNs.  
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2.1 The Prior Per Student model vs. standard Knowledge Tracing 

The model we present in this paper focuses only on individualizing the prior 

knowledge parameter. We call it the Prior Per Student (PPS) model. The difference 

between PPS and Knowledge Tracing (KT) is the ability to represent a different prior 

knowledge parameter for each student. Knowledge Tracing is a special case of this 

prior per student model and can be derived by fixing all the priors of the PPS model to 

the same values or by specifying that there is only one shared student ID. This 

equivalence was confirmed empirically. 

 

Fig. 1. The topology and parameter description of Knowledge Tracing and PPS 

The two model designs are shown in Figure 1. Initial knowledge and prior knowledge 

are synonymous. The individualization of the prior is achieved by adding a student 

node. The student node can take on values that range from one to the number of 

students being considered. The conditional probability table of the initial knowledge 

node is therefore conditioned upon the student node value. The student node itself 

also has a conditional probability table associated with it which determines the 

probability that a student will be of a particular ID. The parameters for this node are 

fixed to be 1/N where N is the number of students. The parameter values set for this 

node are not relevant since the student node is an observed node that corresponds to 

the student ID and need never be inferred. 

This model can be easily changed to individualize learning rates instead of prior 

knowledge by connecting the student node to the subsequent knowledge nodes thus 

training an individualized P(T) conditioned upon student as shown in Figure 2.  
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Fig. 2. Graphical depiction of our individualization modeling technique applied to the 

probability of learning parameter. This model is not evaluated in this paper but is presented to 

demonstrate the simplicity in adapting our model to other parameters. 

2.2 Parameter Learning and Inference 

There are two distinct steps in knowledge tracing models. The first step is learning the 

parameters of the model from all student data. The second step is tracing an individual 

student’s knowledge given their respective data. All knowledge tracing models allow 

for initial knowledge to be inferred per student in the second step. The original KT 

work [2] that individualized parameters added an additional step in between 1 and 2 

to fit individual weights to the general parameters learned in step one. The PPS model 

allows for the individualized parameters to be learned along with the non-

individualized parameters of the model in a single step. Assuming there is variance 

worth modeling in the individualization parameter, we believe that a single step 

procedure allows for more accurate parameters to be learned since a global best fit to 

the data can now be searched for instead of a best fit of the individual parameters after 

the skill specific parameters are already learned. 

In our model each student has a student ID represented in the student node. This 

number is presented during step one to associate a student with his or her prior 

parameter. In step two, the individual student knowledge tracing, this number is again 

presented along with the student’s respective data in order to again associate that 

student with the individualized parameters learned for that student in the first step.  

3 External Validity: Student Performance Prediction  

In order to test the real world utility of the prior per student model, we used the last 

question of each of our problem sets as the test question. For each problem set we 

trained two separate models: the prior per student model and the standard knowledge 

tracing model. Both models then made predictions of each student’s last question 

responses which could then be compared to the students’ actual responses. 
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3.1 Dataset description 

Our dataset consisted of student responses to problem sets that satisfied the following 

constraints: 

 Items in the problem set must have been given in a random order 

 A student must have answered all items in the problem set in one day 

 The problem set must have data from at least 100 students 

 There are at least four items in the problem set of the exact same skill 

 Data is from Fall of 2008 to Spring of 2010 

 

Forty-two problem sets matched these constraints. Only the items within the 

problem set with the exact same skill tagging were used. 70% of the items in the 42 

problem sets were multiple choice, 30% were fill in the blank (numeric). The size of 

our resulting problem sets ranged from 4 items to 13. There were 4,354 unique 

students in total with each problem set having an average of 312 students ( = 201) 

and each student completing an average of three problem sets ( = 3.1). 

Table 1. Sample of the data from a five item problem set 

Student ID 1
st
 response 2

nd
 response 3

rd
 response 4

th
 response 5

th
 response 

750 0 1 1 1 1 

751 0 1 1 1 0 

752 1 1 0 1 0 

 

In Table 1, each response represents either a correct or incorrect answer to the 

original question of the item. Scaffold responses are ignored in our analysis and 

requests for help are marked as incorrect responses by the system. 

3.2 Prediction procedure 

 Each problem set was evaluated individually by first constructing the appropriate 

sized Bayesian network for that problem set. In the case of the individualized model, 

the size of the constructed student node corresponded to the number of students with 

data for that problem set. All the data for that problem set, except for responses to the 

last question, was organized into an array to be used to train the parameters of the 

network using the Expectation Maximization (EM) algorithm. The initial values for 

the learn rate, guess and slip parameters were set to different values between 0.05 and 

0.90 chosen at random. After EM had learned parameters for the network, student 

performance was predicted. The prediction was done one student at a time by entering 

,as evidence to the network, the responses of the particular student except for the 

response to the last question. A static unrolled dynamic Bayesian network was used. 

This enabled individual inferences of knowledge and performance to be made about 

the student at each question including the last question. The probability of the student 

answering the last question correctly was computed and saved to later be compared to 

the actual response. 
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3.3 Approaches to setting the individualized initial knowledge values 

In the prediction procedure, due to the number of parameters in the model, care had to 

be given to how the individualized priors would be set before the parameters of the 

network were learned with EM. There were two decisions we focused on: a) what 

initial values should the individualized priors be set to and b) whether or not those 

values should be fixed or adjustable during the EM parameter learning process. Since 

it was impossible to know the ground truth prior knowledge for each student for each 

problem set, we generated three heuristic strategies for setting these values, each of 

which will be evaluated in the results section. 

3.3.1 Setting initial individualized knowledge to random values 

One strategy was to treat the individualized priors exactly like the learn, guess and 

slip parameters by setting them to random values to then be adjusted by EM during 

the parameter learning process. This strategy effectively learns a prior per student per 

skill. This is perhaps the most naïve strategy that assumes there is no means of 

estimating a prior from other sources of information and no better heuristic for setting 

prior values. To further clarify, if there are 600 students there will be 600 random 

values between 0 and 1 set for for each skill. EM will then have 600 parameters to 

learn in addition to the learn, guess and slip parameters of each skill. For the non-

individualized model, the singular prior was set to a random value and was allowed to 

be adjusted by EM. 

3.3.2 Setting initial individualized knowledge based on 1
st
 response heuristic 

This strategy was based on the idea that a student’s prior is largely a reflection of their 

performance on the first question with guess and slip probabilities taken into account. 

If a student answered the first question correctly, their prior was set to one minus an 

ad-hoc guess value. If they answered the first question incorrectly, their prior was set 

to an ad-hoc slip value. Ad-hoc guess and slip values are used because ground truth 

guess and slip values cannot be known and because these values must be used before 

parameters are learned. The accuracy of these values could largely impact the 

effectiveness of this strategy. An ad-hoc guess value of 0.15 and slip value of 0.10 

were used for this heuristic. Note that these guess and slip values are not learned by 

EM and are separate from the performance parameters. The non-individualized prior 

was set to the mean of the first responses and was allowed to be adjusted while the 

individualized priors were fixed. This strategy will be referred to as the “cold start 

heuristic” due to its bootstrapping approach. 

3.3.3 Setting initial individualized knowledge based on global percent correct 

This last strategy was based on the assumption that there is a correlation between 

student performance on one problem set to the next, or from one skill to the next. This 

is also the closest strategy to a model that assumes there is a single prior per student 

that is the same across all skills. For each student, a percent correct was computed, 
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averaged over each problem set they completed. This was calculated using data from 

all of the problem sets they completed except the problem set being predicted. If a 

student had only completed the problem set being predicted then her prior was set to 

the average of the other student priors. The single KT prior was also set to the average 

of the individualized priors for this strategy. The individualized priors were fixed 

while the non-individualized prior was adjustable. 

3.4 Performance prediction results 

The prediction performance of the models was calculated in terms of mean absolute 

error (MAE). The mean absolute error for a problem set was calculated by taking the 

mean of the absolute difference between the predicted probability of correct on the 

last question and the actual response for each student. This was calculated for each 

model’s prediction of correct on the last question. The model with the lowest mean 

absolute error for a problem set was deemed to be the more accurate predictor of that 

problem set. Correlation was also calculated between actual and predicted responses. 

Table 2. Prediction accuracy and correlation of each model and initial prior strategy 

  Most accurate predictor (of 42) Avg. Correlation 

P(L0) Strategy PPS KT PPS KT 

Percent correct heuristic 33 8 0.3515 0.1933 

Cold start heuristic 30 12 0.3014 0.1726 

Random parameter values 26 16 0.2518 0.1726 

 

Table 2 shows the number of problem sets that PPS predicted more accurately than 

KT and vice versa in terms of MAE for each prior strategy. This metric was used 

instead of average MAE to avoid taking an average of averages. With the percent 

correct heuristic, the PPS model was able to better predict student data in 33 of the 42 

problem sets. The binomial with p = 0.50 tells us that the probability of 33 success or 

more in 42 trials is << 0.05 (cutoff is 27 to achieve statistical significance), indicating 

a result that was not the product of random chance. In one problem set the MAE of 

PPS and KT were equal resulting in a total other than 42 (33 + 8 = 41). The cold start 

heuristic, which used the 1
st
 response from the problem set and two ad-hoc parameter 

values, also performed well; better predicting 30 of the 42 problem sets which was 

also statistically significantly reliable. We recalculated MAE for PPS and KT for the 

percent correct heuristic this time taking the mean absolute difference between the 

rounded probability of correct on the last question and actual response for each 

student. The result was that PPS predicted better than KT in 28 out of the 42 problem 

sets and tied KT in MAE in 10 of the problem sets leaving KT with 4 problem sets 

predicted more accurately than PPS with the recalculated MAE. This demonstrates a 

meaningful difference between PPS and KT in predicting actual student responses. 

The correlation between the predicted probability of last response and actual last 

response using the percent correct strategy was also evaluated for each problem set. 

The PPS model had a higher correlation coefficient than the KT model in 32 out of 39 

problem sets. A correlation coefficient was not able to be calculated for the KT model 

in three of the problem sets due to a lack of variation in prediction across students. 
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This occurred in one problem set for the PPS model. The average correlation 

coefficient across all problem sets was 0.1933 for KT and 0.3515 for PPS using the 

percent correct heuristic. The MAE and correlation of the random parameter strategy 

using PPS was better than KT. This was surprising since the PPS random parameter 

strategy represents a prior per student per skill which could be considered an over 

parameterization of the model. This is evidence to us that the PPS model may 

outperform KT in prediction under a wide variety of conditions. 

3.4.1 Response sequence analysis of results 

We wanted to further inspect our models to see under what circumstances they 

correctly and incorrectly predicted the data. To do this we looked at response 

sequences and counted how many times their prediction of the last question was right 

or wrong (rounding predicted probability of correct). For example: student response 

sequence [0 1 1 1] means that the student answered incorrectly on the first question 

but then answered correctly on the following three. The PPS (using percent correct 

heuristic) and KT models were given the first three responses in addition to the 

parameters of the model to predict the fourth. If PPS predicted 0.68 and KT predicted 

0.72 probability of correct for the last question, they would both be counted as 

predicting that instance correctly. We conducted this analysis on the 11 problem sets 

of length four. There were 4,448 total student response sequence instances among the 

11 problem sets. Tables 3 and 4 show the top sequences in terms of number of 

instances where both models predicted the last question correctly (Table 3) and 

incorrectly (Table 4). Tables 5-6 show the top instances of sequences where one 

model predicted the last question correctly but the other did not. 

Table 3. Predicted correctly by both 

# of Instances Response sequence 

1167 1 1 1 1 

340 0 1 1 1 

253 1 0 1 1  

252 1 1 0 1 
 

Table 4. Predicted incorrectly by both 

# of Instances Response sequence 

251 1 1 1 0 

154 0 1 1 0 

135 1 1 0 0  

106 1 0 1 0 
 

 

Table 5. Predicted correctly by PPS only 

# of Instances Response sequence 

175 0 0 0 0 

84 0 1 0 0 

72 0 0 1 0  

61 1 0 0 0 
 

Table 6. Predicted correctly by KT only 

# of Instances Response sequence 

75 0 0 0 1 

54 1 0 0 1 

51 0 0 1 1  

47 0 1 0 1 
 

 

Table 3 shows the sequences most frequently predicted correctly by both models. 

These happen to also be among the top 5 occurring sequences overall. The top 

occurring sequence [1 1 1 1] accounts for more than 1/3 of the instances. Table 4 

shows that the sequence where students answer all questions correctly except the last 

question is most often predicted incorrectly by both models. Table 5 shows that PPS 
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is able to predict the sequence where no problems are answered correctly. In no 

instances does KT predict sequences [0 1 1 0] or [1 1 1 0] correctly. This sequence 

analysis may not generalize to other datasets but it provides a means to identify areas 

the model can improve in and where it is most strong. Figure 3 shows a graphical 

representation of the distribution of sequences predicted by KT and PPS versus the 

actual distribution of sequences. This distribution combines the predicted sequences 

from all 11 of the four item problem sets. The response sequences are sorted by 

frequency of actual response sequences from left to right in descending order. 

 

 

Fig. 3. Actual and predicted sequence distributions of PPS (percent correct heuristic) and KT 

The average residual of PPS is smaller than KT but as the chart shows, it is not by 

much. This suggests that while PPS has been shown to provide reliably better 

predictions, the increase in performance prediction accuracy may not be substantial. 

4 Contribution 

In this work we have shown how any Bayesian knowledge tracing model can easily 

be extended to support individualization of any or all of the four KT parameters using 

the simple technique of creating a student node and connecting it to the parameter 

node or nodes to be individualized. The model we have presented allows for 

individualized and skill specific parameters of the model to be learned simultaneously 

in a single step thus enabling global best fit parameters to potentially be learned, a 

potential that is prohibitive with multi step parameter learning methods [2,4]. 

We have also shown the utility of using this technique to individualize the prior 

parameter by demonstrating reliable improvement over standard knowledge tracing in 
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predicting real world student responses. The superior performance of the model that 

uses PPS based on the student’s percent correct across all skills makes a significant 

scientific suggestion that it may be more important to model a single prior per student 

across skills rather than a single prior per skill across students, as is the norm. 

5  Discussion and Future Work 

We hope this paper is the beginning of a resurgence in attempting to better 

individualize and thereby personalize students’ learning experiences in intelligent 

tutoring systems.  

We would like to know when using a prior per student is not beneficial. Certainly 

if in reality all students had the same prior per skill then there would be no utility in 

modeling an individualized prior. On the other hand, if student priors for a skill are 

highly varied, which appears to be the case, then individualized priors will lead to a 

better fitting model by allowing the variation in that parameter to be captured.   

Is an individual parameter per student necessary or can the same or better 

performance be achieved by grouping individual parameters into clusters? The 

relatively high performance of our cold start heuristic model suggests that much can 

be gained by grouping students into one of two priors based on their first response to 

a given skill. While this heuristic worked, we suspect there are superior 

representations and ones that allow for the value of the cluster prior to be learned 

rather than set ad-hoc as we did. Ritter et al [8] recently showed that clustering of 

similar skills can drastically reduce the number of parameters that need to be learned 

when fitting hundreds of skills while still maintaining a high degree of fit to the data. 

Perhaps a similar approach can be employed to find clusters of students and learning 

their parameters instead of learning individualized parameters for every student. 

Our work here has focused on just one of the four parameters in knowledge 

tracing. We are particularly excited to see if by explicitly modeling the fact that 

students have different rates of learning we can achieve higher levels of prediction 

accuracy. The questions and tutorial feedback a student receives could be adapted to 

his or learning rate. Student learning rates could also be reported to teachers allowing 

them to more precisely or more quickly understand their classes of students. Guess 

and slip individualization is also possible and a direct comparison to Baker’s 

contextual guess and slip method would be an informative piece of future work. 

We have shown that choosing a prior per student representation over the prior per 

skill representation of knowledge tracing is beneficial in fitting our dataset; however, 

a superior model is likely one that combines the attributes of the student with the 

attributes of a skill. How to design this model that properly treats the interaction of 

these two pieces of information is an open research question for the field. We believe 

that in order to extend the benefit of individualization to new users of a system, 

multiple problem sets must be linked in a single Bayesian network that uses evidence 

from the multiple problem sets to help trace individual student knowledge and more 

fully reap the benefits suggested by the percent correct heuristic. 

This work has concentrated on knowledge tracing, however, we recognize there are 

alternatives. Draney, Wilson and Pirolli [9] have introduced a model they argue is 

more parsimonious than knowledge tracing due to having fewer parameters. 
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Additionally, Pavlik et al [10] have reported using different algorithms, as well as 

brute force, for fitting the parameters of their models. We also point out that more 

standard models that do not track knowledge such as item response theory that have 

had large uses in and outside of the ITS field for estimating individual student and 

question parameters. We know there is value in these other approaches and strive as a 

field to learn how best to exploit information about students, questions and skills 

towards the goal of a truly effective, adaptive and intelligent tutoring system. 
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