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Abstract Node centrality and vertex similarity in net-

work graph topology are two of the most fundamental and

significant notions for network analysis. Defining mean-

ingful and quantitatively precise measures of them, how-

ever, is nontrivial but an important challenge. In this paper,

we base our centrality and similarity measures on the idea

of influence of a node and exploit the implicit knowledge of

influence-based connectivity encoded in the network graph

topology. We arrive at a novel influence diffusion model,

which builds egocentric influence rings and generates an

influence vector for each node. It captures not only the total

influence but also its distribution that each node spreads

through the network. A Shared-Influence-Neighbor (SIN)

similarity defined in this influence space gives rise to a

new, meaningful and refined connectivity measure for the

closeness of any pair of nodes. Using this influence diffu-

sion model, we propose a novel influence centrality for

influence analysis and an Influence-Guided Spherical

K-means (IGSK) algorithm for community detection. Our

approach not only differentiates the influence ranking in a

more detailed manner but also effectively finds communi-

ties in both undirected/directed and unweighted/weighted

networks. Furthermore, it can be easily adapted to the

identification of overlapping communities and individual

roles in each community. We demonstrate its superior

performance with extensive tests on a set of real-world

networks and synthetic benchmarks.

Keywords Social network analysis � Influence diffusion �
Community detection � Influence centrality

1 Introduction

This research originates from our attempt to find commu-

nities in social networks. Community detection is an im-

portant but difficult problem in network analysis and has

attracted a great deal of effort from many disciplines.

Although a strikingly large number of algorithms have

been presented, there are still many open issues. A general

but crucial problem is the lack of a quantitatively precise

definition of community. While most researchers describe a

community as a group of nodes with higher internal than

external connectivity, this notion of connectivity is am-

biguous and results in many different objective functions

and performance metrics. From hierarchical clustering,

graph partitioning, and spectral methods to modularity

maximization, statistical mechanics, and label propagation,

most existing algorithms are rooted in degree or between-

ness centrality, edge density, or random-walk-based

closeness, etc. While these notions capture the intuition of

network connectivity to some extent, the existing literature

(Fortunato 2010; Leskovec et al. 2010; Yang et al. 2011)

suggests there are still significant areas for improvement.

Our goal is to find a more precise measure to decode the

connectivity and proximity embedded in the network graph

topology and to use this measure to extract community

structure.

Our work is motivated by observations from real-world

communities. Community members have individual social

roles: leaders, core members, liaisons between communi-

ties, etc. Some may be even simultaneously associated with

multiple communities. Some are more influential than
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others, and some are more susceptible to influence. We

argue that individual roles, influence, and susceptibility are

implicitly embedded in the network topology. In fact, it is

influence that not only differentiates individual roles but

also acts as the force holding the individuals together to

form the community. On the other hand, we notice a simple

but meaningful Shared-Nearest-Neighbor (SNN) similarity

(Jarvis and Patrick 1973) used in traditional clustering,

which indicates that two nodes both being close to a set of

neighboring nodes suggest they are close to each other.

This is naturally extended to our influence-based scenario

and can be rephrased as follows: two nodes both influ-

encing a set of (direct and indirect) neighbors suggest they

are close to each other. We refer to it as Shared-Influence-

Neighbor (SIN) similarity, which captures our intuitive

notion of community that two nodes both influencing a set

of neighbors confirms their closeness and makes them more

likely to be in the same community.

All of this makes influence a natural context for the

community detection, but the question is how to define a

quantitatively precise measure of influence. This leads to

another hot topic, namely influence analysis. One funda-

mental step in influence analysis is to differentiate the

relative influence significance among the nodes, where the

influence is often characterized using various centralities.

The four most widely used measures of centrality in net-

work analysis are degree centrality, closeness centrality,

betweenness centrality, and eigenvector centrality. Each

indicates some specific strength of a node’s structural role

in the network. However, these measures are not fine

enough to quantify a node’s comprehensive strength in

terms of the total amount of influence one can spread

through the network as a seed node. Further, none of them

is able to measure the influence-based proximity between

pairs of nodes, which as indicated could be a desirable

metric for community detection.

We use concepts and techniques from the fields of network

modeling, artificial intelligence, and datamining todecode the

influence-based connectivity and similarity in network graph

topology and arrive at a simple but powerful influence diffu-

sion model. Based upon this model, we propose a novel al-

gorithm for influence ranking, community detection, and role

detection in social networks. Our approach naturally incor-

porates these three important tasks into one integrated

framework. Moreover, it can be applicable to not only undi-

rected binary networks, but also directed and weighted net-

works. Experiments on a set of real-life and synthetic

networks show the superior performance of our algorithm.

The rest of this paper is organized as follows. We start

with a brief discussion of the related research in Sect. 2,

and elaborate our methodology in Sect. 3. Experimental

results and performance comparison are shown in Sect. 4.

We conclude and point out future work in Sect. 5.

2 Related work

Community detection and influence analysis are essential

tasks in network analysis and of great importance in a wide

variety of applications. They have received extensive in-

terest and effort from many disciplines. Especially in the

field of community detection, a plethora of algorithms have

been presented over the years. An in-depth survey can be

found in Fortunato (2010), Malliaros and Vazirgiannis

(2013) and Xie et al. (2013). We focus here on papers that

are most relevant to our concerns and considerations.

2.1 Centralities

Centrality concepts were originally developed and well

studied in social network analysis. Centrality refers to the

identification of the most important or the most influential

nodes in a social work. A set of noteworthy centrality mea-

sures were presented and discussed in detail in Wasserman

and Faust (1994). There are four widely used centralities that

measure the influence significance of a node from different

perspectives. Degree centrality is a simple but very coarse

measure. It has many ties and fails to take into account the

influence significance of even the immediate neighbors.

Closeness centrality (Sabidussi 1966) is defined as the in-

verse of the sum of lengths of the shortest paths of a node to

all other nodes. It measures how fast a node can spread in-

formation in the network. Betweenness centrality (Freeman

1977) quantifies the number of times a node appears in the

shortest path of two other nodes. It can be regarded as a

measure of how often a node acts as a broker or gatekeeper of

information flow. The closeness and betweenness cen-

tralities are both based on the shortest path. However, the

spread of information does not always go along the shortest

path in reality. To address this issue, researchers have pro-

posed a number of variants, which include information

centrality (Stephenson and Zelen 1989), random-walk

closeness (Noh andRieger 2004), random-walk betweenness

(Newman 2005), maximum-flow betweenness (Freeman

et al. 1991), and current-flow closeness/betweenness cen-

tralities (Brandes and Fleischer 2005).

Eigenvector centrality (Bonacich 1972) is the compo-

nent of the principal eigenvector of the adjacency matrix,

which captures an intuitive but important concept: con-

necting to a more influential node contributes more influ-

ence significance to the node of interest than connecting to

a less influential node. Unfortunately, it fails to capture the

fact that influence is attenuated when passing through the

network. The well-known PageRank (Page et al. 1999) is a

variant of eigenvector centrality. For undirected graphs,

PageRank degenerates into degree centrality. Katz cen-

trality (Katz 1953) is a good generalization of degree

centrality and eigenvector centrality plus an attenuation
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factor associated with the path length. However, for all

undirected graphs or directed graphs with cycles, it allows

the influence to be transmitted around a loop infinitely.

This is not realistic. In addition, its attenuation factor is a

user-specified parameter, which makes its influence rank-

ing nondeterministic and less meaningful.

2.2 Connectivity metrics

Due to the lack of a quantitatively precise definition of

community, many different objective functions, perfor-

mance metrics, and corresponding algorithms are presented.

From the simplest node degree to the popular modularity

(Newman 2006; Newman and Girvan 2004), many connec-

tivity metrics are commonly used in the literature, such as

internal density, conductance, cut ratio, average out-degree

fraction and so on. Leskovec et al. (2010) present an em-

pirical comparison of a range of community-detection al-

gorithms that are based on the above and some other similar

metrics. They point out that these intuitive notions of cluster

quality tend to fail as one aggressively optimizes the com-

munity score and conclude that approximate optimization of

community score introduces a systematic bias into the ex-

tracted clusters. Another evaluation of various objective

functions is proposed by Yang et al. (2011). Their ex-

perimental results also cast doubt on the quality of those

commonly used connectivity metrics and their correspond-

ing objective functions.

Modularity-based methods have crucial limits as well in

spite of their popularity. Guimera et al. (2004) demonstrate

random graphs may have partitions with large modularity

values due to fluctuations in the edge distribution. Fortu-

nato and Barthelemy (2007) suggest a more fundamental

issue, showing that modularity optimization has a resolu-

tion limit that may prevent it from identifying well-defined

communities below a certain size.

2.3 Similarity measures

Another important class of community-detection algorithms

address the problem using various similarity (or closeness)

measures. Intuitively, members in the same community are

more similar to each other than to the rest of the network.

However, defining a meaningful and quantitatively precise

similarity measure in connectivity-based graph topology is

not straightforward. Superficially, the shortest path between

a pair of nodes seems like a direct measure of their distance.

Unfortunately, it is not able to differentiate the closeness of

nodes in terms of community structure in the network since a

single edge can easily link a node deeply located in one

community to a node densely connected in another com-

munity. An alternative is to consider all paths running

between two nodes. Since information can in fact spread

along non-shortest paths, Estrada and Hatano (2009) define

the communicability of a pair of nodes as the weighted-sum

of all the paths connecting them. Since the nodes/edges can

be revisited along the walks, the total number of paths is

infinite. Consequently, they use the inverse factorial of the

path length as the weight to show shorter paths make larger

contribution to the communicability than longer ones. They

develop a community-detection algorithm using the concept

of the communicability graph.

Many sophisticated random-walk-based measures of

distance have been proposed. The underlying intuition of

these methods is that random walks on a community-

structured graph have a much higher chance to get trapped

in a community than to travel between communities.

Nadler et al. (2005) define a diffusion distance as well as

the diffusion map based on the random walk on the graph,

which provides novel insight into spectral clustering al-

gorithms. Yen et al. (2009) propose a Euclidean-commute-

time distance using the average first-passage time of ran-

dom walkers on the graph and present an extension of it as

a sigmoid commute-time kernel. While the above similar-

ity measures extract the community structure to some ex-

tent, their high computational cost usually results in a time

complexity of Oðn3Þ for community detection. Pons and

Latapy (2006) propose a well-formulated measure of dis-

tance between vertices using their respective probability

distributions. Their algorithm (called Walktrap) achieves a

time-complexity of Oðn2 log nÞ in most cases and Oðmn2Þ

in the worst case. In addition, all the above similarity

measures are developed based on undirected and un-

weighted networks. The extension to directed and weighted

networks may not be straightforward.

Another interesting approach is to project the graph

topology into an n-dimensional Euclidean space so that we

can use well-defined and meaningful spatial measures (like

Euclidean distance and cosine similarity) and a variety of

well-studied clustering methods. The spectral-based simi-

larity proposed by Donetti and Muñoz (2004) is such an

example. Each node in the network graph is mapped to a

point in a D-dimensional space in which the coordinates

are given by its projections on the first D nontrivial

eigenvectors. Our SIN similarity (Wang and Street 2014)

falls into this category as well, which we elaborate in next

section with an extension to weighted networks.

3 Methodology

We draw inspiration from the PageRank algorithm in the

sense that we cannot solely rely on the node degree. We

have to find an intelligent way to embed influence into a
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node and pass it around in the network. This leads to a novel

influence diffusion model. The influence defined in our

diffusion model is different from the influence defined in

many other diffusion models such as the popular indepen-

dent cascademodel and the linear thresholdmodel (Kempe

et al. 2003), in which the influence of a node is quantified

by the number of inactive nodes it can activate. We assume

the influence decays along the path while it is transmitted

and measure a node’s influence significance by the total

amount of influence it spreads out in the network.

Our approach differs from prior work in many ways.

From the point of view of centralities, our model extends

degree centrality from immediate neighbors to multi-step

neighborhood, includes not only the shortest paths (that the

closeness and betweeness centralities rely on) and non-

shortest paths, and takes into account both neighbors’ in-

fluence significance (like eigenvector centrality) and in-

fluence attenuation (like Katz centrality) but without

cycling. Our influence centrality gives rise to a new, more

meaningful, and finer measure of a node’s comprehensive

strength on diffusing influence in the network as a seed

node. Further, we not only find out the total influence a

node spreads out, but also keep track of where and how

much its influence is distributed in its neighborhood so as

to construct its influence vector for community detection.

3.1 Influence diffusion model

The influence in our diffusion model can be interpreted in

terms of a piece of message, an idea, an advertisement, or a

rumor. Similar to the word-of-mouth communication or

storytelling, the message spreads in the network through

parallel replication (like a radio broadcast) rather than

transfer (one does not lose the message after he forwards it

to another person). In fact, those replicas might not be

exactly the same as the original message, and they may

slightly vary from each other. One important and distin-

guishing feature in our diffusion model is that anyone who

spreads the message needs to sign it such that in case the

message circulates back to him he knows he has previously

spread that message and will not spread it repeatedly. For

example, if person A spreads a rumor to person B, B passes

it to person C, and if C passes it back to B and A, both B

and A will ignore it after they find out they have already

signed it (this mechanism avoids cycles). On the other

hand, after the rumor is passed from A to B to C, later when

B receives the rumor from person D, he will forward it to

both A and C (if B does not see his signature on that

rumor), and both A and C will receive it and keep broad-

casting it (if they do not see their signatures on it either).

From a graph-theoretic point of view, the rumor traverses

the network via walks (both nodes and links can be re-

visited multiple times) but without cycling. Another

distinctive feature of our diffusion model is that we put into

consideration that the message may lose its effectiveness

and fidelity while it is transmitted in the network, and its

influence gradually fades away along the diffusion path.

We map these features into three important rules in our

influence diffusion model as discussed later.

It is noted that the influence in our model is realized and

transmitted through out-links step by step. Therefore, for a

specific real-life network, we need to understand what the

link direction represents for in its application. For example,

in a citation network, if paper i cites paper j, then the

network contains a directed link from node i to node

j. However, this directed link does not reflect the direction

of the influence propagation since it is actually the cited

paper j that influences the citing paper i. So, we need to

reverse the citation network to fit into our influence dif-

fusion model. Our model can be applied to both undirected/

directed and unweighted/weighted networks. For any

undirected link, influence can be transmitted through it in

either direction. In other words, if the link between nodes

i and j is undirected, we replace it with a directed link from

i to j and another directed link from j to i. For weighted

networks, we need a normalization scheme that fits in the

influence-based scenario.

The weight on the link often describes the strength of

the relationship between a pair of nodes of interest. It is

closely related to the influence. However, the influence of

node i with respect to its neighboring node j is not solely

measured by the absolute strength node i exerts on j. In-

stead, it is determined by the relative strength when

compared to the strength of influence node j receives from

all other neighbors. In other words, it depends on how

relatively susceptible node j is to the influence of node i,

which leads to a simple but meaningful normalization

scheme. Given a directed link pointing from node i to node

j and its raw weight wij, and letting L denote the set of

immediate neighbors that point to j (i.e. the in-link

neighbors of node j), the proposed normalized suscepti-

bility weight is defined as

ŵij ¼
wij

maxk2L wkj

:

As an example, we illustrate in Fig. 1a a simple directed

and weighted network. It is noted that the original undi-

rected link between nodes 4 and 5 is replaced with a pair of

directed links with the same raw weight in each direction.

The corresponding normalized susceptibility weights are

shown in Fig. 1b. We use the normalized susceptibility

weight on each link to estimate the fraction of influence

transmitted from one node to another following the link

direction. A desirable property is built in this normalization

scheme, that is, it naturally reduces to the unweighted

network when all weights are set to 1.
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Our influence diffusion model can be regarded as a

simple branching process, in which influence originates

from a root node and propagates step by step to its off-

springs following out-links. We refer to the resultant gen-

eration-branching tree as the egocentric influence rings of

the root node. There are three important rules implemented

in this model:

1. Cycling is prohibited. It makes sense since no one

should repeatedly exerts influence in cycles in the

same round of an influence diffusion process. This

distinguishes our model from Katz centrality and most

random-walk-based algorithms.

2. Revisits along different routes are allowed and inde-

pendent. This is a realistic imitation in the sense that

the influence originating from the root node may be

delivered to the same person via many different routes

independently. This distinguishes our centrality from

the closeness and betweenness centralities which only

focus on the shortest path.

3. The farther away from the root, the less influence on

arrival. This is a reasonable assumption that captures

the influence locality such as the well-known 3-degree-

of-influence phenomenon (Christakis and Fowler

2007).

Specifically, while the influence propagates along a path, it

is attenuated in two independent ways. One is the weight-

associated attenuation. As discussed above, the normalized

susceptibility weight on each link reflects fraction of in-

fluence transmitted through the link. Therefore, the weight-

associated attenuation of influence from a source node to a

destination node is the product of the normalized suscep-

tibility weights of the corresponding links that constitute

the path. The other is the depth-associated attenuation. We

draw inspiration from the small-world phenomenon and the

concentric scales of resolution around a particular node

depicted in Easley and Kleinberg (2010). It is claimed that

the probability of a center node linking to a node at a fixed

distance d of the ring is proportional to d�2, which fits well

in our influence scenario. We, therefore, define the depth-

associated attenuation as the inverse square of the depth

from the root node. The compound attenuation is the pro-

duct of the weight-associated attenuation and the depth-

associated attenuation.

We take the simple network shown in Fig. 1b as an

example and illustrate the egocentric influence rings of

node 1 in Fig. 2. The first two rules described above are

implemented in the construction of the egocentric influence

rings. For example, when the influence goes along nodes

1 ! 4 and gets back to node 1, this branch flow stops there

since no cycling is allowed. In fact, the loop is not even

closed, as indicated by the dashed lines in the figure.

Similarly, when the influence goes along nodes

1 ! 2 ! 4, the branch flow going back to node 1 stops

propagating before getting back to node 1. On the other

hand, node 5 is visited 4 times along nodes 1 ! 3 ! 5,

nodes 1 ! 2 ! 4 ! 5, and so on. In addition, following a

diffusion path from nodes 1 ! 2 ! 4 ! 5 , the actual

influence nodes 2, 4, and 5 acquire from node 1 is 1� 0:4,
1
22
� 0:4� 0:75, and 1

32
� 0:4� 0:75� 0:8, respectively.

3.2 Influence matrix

We employ a modified depth-limited search algorithm to

explore the egocentric influence rings of each node and

generate an influence vector for each node. Let NSW de-

note the normalized susceptibility weight and IV denote the

influence vector. The pseudocode in Fig. 3 shows how we

sweep over all the nodes to build the influence matrix that

consists of the influence vectors of all the nodes in the

network.

Fig. 1 Example of a directed and weighted network. a Raw weights

and b normalized susceptibility weights

Fig. 2 Egocentric influence rings of node 1
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Without loss of generality, our algorithm takes a di-

rected and weighted network and a depth limit as input. It

maintains an open list of to-be-explored nodes and a close

list of already-explored nodes, both implemented as a stack

(Last-In-First-Out). Each node in the open/close list con-

tains an integer variable nIndex that denotes its node index

in the network and another integer variable depth that

indicates its depth in the influence rings of the root node.

The node in the open list also contains a variable weight

that stores the product of the normalized susceptibility

weights along the influence diffusion path. Each node of

the network contains a Boolean variable that indicates

whether it has been explored so as to avoid cycling.

The algorithm starts with the calculation of the nor-

malized susceptibility weight of each link using the nor-

malization scheme described above and assigns an initial

influence significance of 1 to each node (Lines 1–2). For

each iteration, after emptying the open/close lists and set-

ting all nodes to be unexplored, a (root) node is pushed into

the open list (Lines 4–7), and then the depth-limited search

is explored until the open list is empty. Whenever a node

(cNode) is popped from the open list (Line 9), we calculate

the attenuated influence and accumulate it in the root

node’s influence vector accordingly (Line 10). Then we

pop from the close list all the nodes whose depths are

greater than or equal to the depth of node cNode and set all

of those nodes to be unexplored (Lines 11–12). This is the

mechanism that allows revisits from different routes. Then

we check whether the depth of node cNode is less than the

depth limit. If it is, we continue the exploration by pushing

to the open list all of the unexplored out-link neighbors of

Node(cNode.nIndex). For each of them, we create a new

open-list node nNode that records the node index, current

depth, and the chain product of the normalized suscepti-

bility weights (Lines 14–22). Finally, we mark

Node(cNode.nIndex) as explored and push it into the close

list (Lines 23–24). Each iteration of the For loop generates

an influence vector of a specific node, which contains all

the nodes it influences associated with the corresponding

influence value. After sweeping over all the nodes, the

algorithm creates an influence matrix for the network as a

whole.

We also develop a closed form for the influence matrix

(up to a depth limit of 3) when the network is unweighted.

Let A denote the adjacency matrix of the network (without

self-loops). The matrix An (i.e., the matrix product of n

copies of A) has an interesting interpretation: the entry in

row i and column j gives the number of paths of length n

from node i to node j. Let Dn denote the diagonal matrix of

An. The entry dii is the number of paths of length n for node

i to walk to itself. Then the influence matrix M with dif-

ferent depth limit is given as

M0 ¼I

M1 ¼M0 þ A

M2 ¼M1 þ
1

4
ðA2 � D2Þ

M3 ¼M2 þ
1

9
ðA2 � D2ÞA� D3 � AD2 þ A� AT
� �

:

M0 is the initial assignment of influence significance of 1 to

each node at depth 0, where I is the identity matrix. M1 is

simply the first-step influence propagation. InM2, we avoid

two-step cycling by subtracting D2 from A2 and then mul-

tiply it by 2�2, which is the two-step influence attenuation

coefficient. In M3, we first let all the nodes on the second

depth propagate to depth 3, which is represented by

ðA2 � D2ÞA, then subtract the three-step cycling D3 of the

root node and the two-step cycling of all the first-step nodes

AD2. For all those first-step nodes that link to the root node

with an undirected link, we remove them twice, one in D2A

and one in AD2. And so we get one back by adding A� AT ,

which is the component-wise multiplication of matrix A and

its transpose matrix AT . Finally, we multiply by 3�2 to re-

flect the three-step influence attenuation.

Fig. 3 Pseudocode of InfluenceMatrix-Builder
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In practice, we do not need to create an n� n influence

matrix. Instead, we store each influence vector in a com-

pact dynamic array that only stores the node index and the

corresponding influence value of those nodes influenced by

the respective root node. This implementation significantly

reduces the space complexity and speeds up the calculation

of total influence of each node and the computation of the

Shared-Influence-Neighbor similarity.

3.3 Influence centrality

As described above, the influence significance of a node is

quantified by the total influence it spreads throughout the

network. Once the influence matrix is built, it is straight-

forward to measure the influence significance of each node,

which is simply the summation of all the elements in the

influence vector (a row vector in the influence matrix)

corresponding to each individual node. Let RðiÞ denote the

influence significance of node i and N denote the total

number of nodes in the network. Then we can write it as

RðiÞ ¼
X

N

j¼1 ðj 6¼iÞ

Mij:

Since the root node never distributes its own influence to

itself, each diagonal element of the influence matrix has a

value of 1. It is not included in the calculation of the in-

fluence significance even though it does not change the

influence ranking. We refer to our influence ranking as

influence centrality. The pre-specified depth limit is a nice

gauge to measure the influence at different scales. When

the depth limit is set to 1, our influence centrality reduces

to degree centrality.

Further, an important characteristic is hidden in the in-

fluence matrix. Let RowðiÞ and ColumnðiÞ denote the in-

fluence matrix’s ith row vector and ith column vector,

respectively. Then RowðiÞ is the influence vector of node i

that describes where and how much influence node i dis-

tributes in the network. Interestingly, the column vector

ColumnðiÞ is exactly a representation of where and how

much influence node i acquires from the network. In other

words, RowðiÞ consists of the set of nodes that are influ-

enced by node i, and ColumnðiÞ represents the set of nodes

that influence node i. The summation of all the elements in

ColumnðiÞ is the total influence node i receives from other

nodes, which could be a good indicator of susceptibility

ranking among all the nodes in the network. All of these

deserve further analysis in depth as future work.

3.4 Influence-guided spherical K-means (IGSK)

From a geometric perspective, our algorithm projects the

graph into an n-dimensional influence space, in which each

node defines one dimension. The position of each node in

this space is determined by its influence vector. Once the

influence matrix is generated, we measure the closeness of

any pair of nodes with the cosine similarity of their re-

spective influence vectors. This is a soft definition of the

Shared-Influence-Neighbor (SIN) similarity. More pre-

cisely, for a pair of nodes i and j, let Vi and Vj denote their

normalized influence vectors, respectively. The strict

definition of SIN similarity is

Sij ¼ ViðjÞ � VjðiÞ þ
X

N

k¼1 ðk 6¼i; k 6¼jÞ

ViðkÞ � VjðkÞ:

The difference is that in the strict definition, the diagonal

elements of the influence matrix [i.e. ViðiÞ and VjðjÞ] are

not included in the calculation of the SIN similarity (or the

normalization of the respective influence vectors). Instead,

they are replaced with ViðjÞ � VjðiÞ, which is actually the

mutual influence between nodes i and j. The strict defini-

tion is more accurate than the soft one even though the

discrepancy might be negligible in most cases. Now that

we have the closeness measure for any pair of nodes in the

network, a variety of well-studied clustering algorithms can

be applied to find communities. In this paper, we use

spherical K-means clustering (Dhillon and Modha 2001).

Hence our algorithm is termed as influence-guided sphe-

rical K-means (IGSK). Since the centroid is basically a

virtual node in the cluster, the strict SIN similarity is not

applicable in this case. Hence, we use the soft SIN simi-

larity in IGSK.

We take advantage of the influence ranking in a

heuristic way for initializing the cluster centroids. Intu-

itively, the most influential member of a community has a

higher probability to be located in the center area of the

community. We first choose the node of the highest in-

fluence ranking as the centroid of cluster 1. For the next

(K � 1) centroids, we choose the remaining node of

highest influence ranking and assign it as a centroid of a

cluster if its SIN similarity with each of the already-

selected centroids is less than a closeness threshold. This

mechanism significantly improves both the accuracy and

the efficiency.

The remaining parameter is the depth limit. Remember

that the influence diminishes inversely proportional to the

square of the depth. We find that setting the depth limit to 3

is sufficient for community detection. Moreover, for small-

size networks or small communities, or when the com-

munity structure is fuzzy, setting the depth limit to 2 may

have advantages over setting it to 3. In practice, we run

IGSK twice by setting the depth limit to 2 and 3, respec-

tively. Between the two resultant partitions, we finalize the

cluster assignment with the one of higher modularity

(Newman 2004).
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3.5 Overlapping community and role detection

Most complex networks exhibit overlapping community

structures in which some nodes are characterized with

multiple community memberships. In fact, the overlap is a

significant feature of various social networks. However,

finding overlapping communities or identifying the over-

lapping nodes is another prominent challenge in the com-

munity-detection field. Interestingly, our approach can be

easily adapted to the identification of overlapping com-

munities. While IGSK produces a crisp assignment (in

which each node belongs to one and only one community),

it can be naturally turned into a fuzzy assignment (in which

each node is assigned to each community associated with a

belonging factor). The belonging factor is a measure of

strength of the association of a node to a community.

Let N denote the total number of nodes in the network,

K denote the total number of communities, Vi denote the

influence vector of node i (without normalization), and Cj

denote the set of nodes in community j (based on the crisp

assignment of IGSK). Then we define the belonging factor

of node i associated with community j as

aij ¼

P

n2Cj
ViðnÞ

PN
m¼1 ðm 6¼iÞ ViðmÞ

; 8i 2 N; 8j 2 K:

This definition has a clear and natural interpretation: the

belonging factor aij represents the ratio of the total influ-

ence node i transmits to community j to the total influence

it spreads out in the network. Further, with a tunable be-

longing threshold, we can exploit the overlapping com-

munity structure at different scales and easily find the

overlapping nodes.

In addition, for each community of IGSK crisp assign-

ments, we can rank all of its community members by their

internal influence, external influence, and comprehensive

influence. The internal influence is the total influence a

node spreads inside its community. In contrast, the external

influence is the total influence it sends out to other com-

munities. The comprehensive influence is the sum of the

internal and external influence. These three influence

rankings enable us to identify the roles of individual

members in each community, such as leaders, core mem-

bers, and inter-community liaisons.

4 Experiments

To get the preliminary insights and verify the validity of

our approach, we perform the centrality analysis using two

small real-life social networks and a large citation network.

For community detection, we focus on networks with

known communities. Since the reliable ground truth for

large-scale real-world networks is rarely available, we test

our algorithm on several small real-life networks and a

large set of synthetic LFR benchmarks (Lancichinetti et al.

2008) and evaluate the performance by comparing with the

ground truth and a set of state-of-the-art algorithms.

4.1 Network description

There are six real-life networks: karate club (Zachary

1977), sawmill communication (Michael and Massey

1997), Mexican political power (Gil-Mendieta and Schmidt

1996), dolphin social network (Lusseau et al. 2003),

American college football (Girvan and Newman 2002), and

an arXiv HEP-TH citation network (Gehrke et al. 2003).

All of them are widely used benchmarks for algorithm

evaluation.

In order to compare with the set of representative al-

gorithms examined in Lancichinetti and Fortunato (2009a),

we generate a set of LFR benchmark graphs using the same

parameter settings: average degree ¼ 20, maximum degree

¼ 50, degree distribution exponent ¼ �2, community-size

distribution exponent ¼ �1. There are two different net-

work sizes (1000 and 5000 nodes) and two different ranges

for community sizes (S and B). ‘‘S’’ stands for ‘‘small’’,

which means min/max community size ¼ 10=50. In con-

trast, ‘‘B’’ stands for ‘‘big’’, which means min/max com-

munity size ¼ 20=100. In each of the 8 unweighted

benchmark sets (4 undirected sets and 4 directed sets), we

vary the topological mixing parameter lt from 0.1 to 0.8.

Similarly, we generate 4 sets of LFR weighted networks

using the same parameters described above plus another 2

parameters: weight-strength distribution exponent b ¼ 1:5

and weight mixing parameter lw. While we vary the weight

mixing parameter from 0.1 to 0.8, the topological mixing

parameter is set to 0.5 and 0.8, respectively. We generate 5

realizations for each value of the topological/weight mix-

ing parameter, which results in a total of 480 LFR

benchmarks.

4.2 Centrality analysis

Figure 4 presents a graphical illustration of the well-known

Zachary’s karate club network. The 34 club members split

into two groups due to the disagreement between the club

instructor (node 1) and the club president (node 34). The

orange squares represent members associated with the in-

structor, and the white circles represent members in the

president’s group. Figure 5 shows its global influence

ranking in terms of our influence centrality scores

(depthLimit ¼ 2). We use a rating scale of 0 to 10, with 10

meaning ‘‘most influential’’.

As we can see, our influence centrality gives the two

leaders (nodes 1 and 34) the highest scores and finds a set
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of core members (nodes 2, 3, 4, 9, 14, 32, and 33) in the

club. One may argue it is expected that they get higher

scores simply because of their higher degrees. In fact, it is

not that straightforward. For example, although node 4 has

a higher degree than node 14, its score is actually lower

than that of node 14. One may also notice that nodes 10 and

17 both have a degree of 2, but node 10 has a much higher

score than node 17. It makes sense since node 10 connects

to nodes 3 and 34, which are much more influential than

nodes 6 and 7 to which node 17 connects. Moreover, even

though node 12 only has a degree of 1, it also gets a score

greater than node 17 because node 12 has a direct con-

nection to the group leader (node 1). It follows our intuition

that connecting to a more influential person contributes

more influence to the person of interest than connecting to

a less influential one. Our influence centrality unveils the

connectivity-based influence significance in a more de-

tailed manner.

We do more centrality analysis using sawmill commu-

nication network. Figure 6 illustrates its network connec-

tivity and ground-truth communities as indicated with

different node colors/shapes. We list in Table 1 our influ-

ence centrality (depthLimit ¼ 3, referred to as ‘‘Influence’’

in the table) and compare it against a set of conventional

centralities, where ‘‘CFC’’ and ‘‘CFB’’ stand for current-

flow-closeness and current-flow-betweenness centralities

(Brandes and Fleischer 2005), respectively. As we can see,

the PageRank simply degenerates into the degree centrality

as expected. The closeness and betweenness centralities are

not quantitatively fine or comprehensive enough to differ-

entiate the overall influence ranking. The closeness cen-

trality scores of 10 vs. 4.12 do not show the expected large

difference in influence significance of HM-1 vs. HP-1 as

compared to our influence centrality scores of 10 vs. 0.62.

The betweenness centrality fails to measure the influence

significance of 9 employees by giving them a score of zero.

These include nodes 15 and 22, who are actually the im-

mediate neighbors of the most influential employee node

12. The drawbacks of the closeness/betweenness cen-

tralities are inherent in their definitions since they only

focus on the shortest path and fail to incorporate the

neighboring nodes’ influence significance or the attenua-

tion of influence along the diffusion path. The current-flow

closeness/betweenness centralities do not show much im-

provement from the conventional ones. Only eignvector

centrality exhibits the similar ranking pattern as our influ-

ence centrality.

It is worth pointing out this comparison is not to prove

the failure of other centralities. As discussed in Sect. 2.1,

we understand each centrality has a different perspective to

measure some specific strength of a node’s structural role

in the network. What we want to show is that our influence

centrality provides a novel centrality measure that differ-

entiates the nodes’ comprehensive significance on influ-

ence diffusion in a more meaningful and more precise

manner.

We examine its validity in directed networks using the

arXiv HEP-TH citation network, which consists of 27,771

papers and 352,807 citations among them. Those papers

are in the field of high-energy physics and were added to

the e-print arXiv between 1992 and 2003. The first 4 digits

Fig. 4 Zachary’s karate club

Fig. 5 Influence ranking of Zachary’s karate club

Fig. 6 Sawmill communication network
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of each paper ID represent the year and the month when the

paper was published online. For instance, paper 9510017

indicates it was published in October of 1995. Table 2 lists

the top 10 papers identified by our influence centrality

(depthLimit ¼ 3), in-degree centrality, and PageRank, re-

spectively. The in-degree centrality is based on the number

of citations a paper receives, which is listed in parenthesis

in the In-degree column. The number listed in parenthesis

in the Influence column is the in-degree ranking of the

corresponding paper. The number listed in parenthesis in

the PageRank column is the number of citations of the

corresponding paper.

Like most centrality measures, our influence centrality is

correlated with degree centrality. All the top-10 influence-

centrality papers have very high in-degrees, which we can

tell by their respective in-degree ranking. It includes 7 of

the top-10 in-degree centrality papers but ranks them in

different order. It is hard to rigorously prove our influence

centrality gives the exact ranking of those papers. But we

believe it differentiates the influence ranking in a more

Table 1 Comparison of different centralities on sawmill communication network

Employee Node Influence Eigenvector Degree PageRank Closeness CFC Betweenness CFB

HP-1 1 0.62 0.09 0.77 0.79 4.12 3.25 0.00 0.00

HP-2 2 1.69 0.47 2.31 2.37 5.19 5.27 1.05 1.80

HP-3 3 0.87 0.34 0.77 0.79 4.93 3.74 0.00 0.00

HP-4 4 3.35 1.68 3.08 3.13 6.54 6.70 2.47 2.72

HP-5 5 5.36 3.63 3.85 3.90 8.19 8.01 3.37 3.73

HP-6 6 4.95 3.52 2.31 2.33 7.56 7.32 0.01 1.65

HP-7 7 5.76 3.90 3.85 3.89 8.29 8.28 2.77 3.57

HP-8 8 3.92 2.05 3.08 3.13 6.67 7.47 1.22 2.71

HP-9 9 1.90 0.56 2.31 2.36 5.35 5.83 0.45 2.07

HP-10 10 1.14 0.27 1.54 1.58 5.00 4.74 0.06 0.89

HP-11 11 1.73 0.78 1.54 1.57 5.96 5.12 0.68 1.01

HM-1 (Juan) 12 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

HM-2 13 5.41 4.32 3.08 3.06 7.31 7.53 0.37 1.48

HM-3 14 3.73 2.45 3.08 3.06 6.13 7.33 0.53 2.54

HM-4 15 3.38 2.60 1.54 1.53 6.80 5.93 0.00 0.49

HM-5 16 5.29 4.14 3.08 3.06 7.23 7.47 0.34 1.41

HM-6 17 4.78 3.82 2.31 2.30 7.01 7.00 0.02 0.96

HM-7 18 3.93 2.95 2.31 2.30 6.94 6.69 0.34 1.18

HM-8 19 3.01 2.07 2.31 2.29 5.91 6.71 0.18 1.45

HM-9 20 5.99 4.86 4.62 4.60 7.23 7.90 1.38 2.73

HM-10 21 1.36 0.98 0.77 0.76 5.31 4.09 0.00 0.00

HM-11 22 3.78 2.99 1.54 1.53 6.87 6.16 0.00 0.59

EM-1 23 5.77 4.02 3.85 3.84 8.10 7.96 3.59 4.11

EM-2 24 2.63 1.27 2.31 2.30 6.13 5.88 0.74 1.44

EM-3 25 1.76 0.62 2.31 2.30 4.93 4.99 0.96 1.30

EM-4 26 0.62 0.12 0.77 0.77 3.95 3.14 0.00 0.00

EM-5 27 3.19 1.68 3.08 3.07 6.36 6.68 1.29 2.71

Y-1 28 3.18 1.91 2.31 2.30 6.24 6.13 0.96 1.80

Y-2 29 0.79 0.39 0.77 0.77 4.76 3.56 0.00 0.00

Forester 30 2.74 1.80 1.54 1.54 5.86 5.80 0.00 0.38

Mill manager 31 6.68 5.11 5.38 5.39 8.19 8.60 2.84 4.79

Owner 32 5.16 3.85 3.08 3.08 7.39 7.47 0.51 1.81

Kiln operator 33 3.61 2.23 2.31 2.32 6.60 6.94 0.22 1.62

EP-1 34 1.70 0.75 1.54 1.55 5.48 5.37 0.00 0.57

EP-2 35 2.95 1.61 2.31 2.32 6.60 6.47 0.57 1.64

EP-3 36 3.91 2.12 3.85 3.88 6.80 7.68 1.15 3.51
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meaningful and more precise manner than in-degree cen-

trality. As discussed above, the degree centrality is actually

a special case of our influence centrality, i.e., setting

depthLimit ¼ 1. Then it simply counts the number of im-

mediate in-link neighbors of the citation network. When we

set depthLimit ¼ 3 as we do by default, we explore the

whole 3-step neighborhood, in which their neighbors’ in-

fluence significance is incorporated in the influence diffu-

sion process with the consideration of influence

attenuation. It is observed that PageRank fails to rank the

influence significance in this case. All the top-10 PageRank

papers have very low in-degrees (citations) compared to

the top-10 influence centrality and in-degree centrality

papers. They receive such high rankings simply because

they are old papers that do not have any out-links (since the

papers they cited are not included in the dataset).

4.3 Community detection

As discussed in Sect. 3.4, when initializing the centroids in

our IGSK algorithm, we use a closeness threshold u to

avoid selecting centroids that are too close to each other. In

practice, one may tune the threshold to find the best

community partition in terms of (highest) modularity.

However, to evaluate the effectiveness of our IGSK

algorithm and to make a fair comparison with other algo-

rithms, we cannot tune it for each network individually so

as to present the best results. Instead, we empirically set u

to 0.6 when depthLimit is 2, and 0.8 when depthLimit is 3

for all the networks used in the experiment. The only ex-

ception is that for those LFR benchmarks with really fuzzy

community structures (e.g. the topological mixing pa-

rameter lt ¼ 0:8), we do the random initialization of

centroids.

The results of applying IGSK to the 5 real-life networks

are listed in Table 3. We use RandIndex for comparison

with the results of 6 algorithms given in Yang et al. (2011).

These 6 algorithms are RankClus (Sun et al. 2009),

Walktrap (Pons and Latapy 2006), K-means (Dhillon et al.

2005), LinkCommunity (Ahn et al. 2010), SPICi (Jiang and

Singh 2010), and Betweenness (Girvan and Newman

2002). We also use Normalized Mutual Information (NMI)

for comparison with the results of another set of 6 algo-

rithms given in Hajibagheri et al. (2013), which include

GPSODM (Hajibagheri et al. 2013), GGADM (Hajibagheri

et al. 2012), HA (Leung et al. 2009), MMC (van Dongen

2000), LPA (Raghavan et al. 2007), and Infomap (Rosvall

and Bergstrom 2008). It is shown that IGSK is only inferior

to GPSODM and LPA a little bit on the American college

football network, but overall, IGSK achieves the best

performance.

We illustrate our results of the tests on the 4 sets of

undirected and unweighted LFR benchmarks (1000-S/B

and 5000-S/B) in Fig. 7a, in which each curve shows the

variation of the averaged NMI score with respect to the

topological mixing parameter lt. Our IGSK algorithm

demonstrates excellent performance. Even when lt is set to

0.5 (the threshold of defining strong communities), IGSK

achieves NMI scores of 0.999, 0.992, 0.968, and 0.99 for

1000-S, 1000-B, 5000-S, and 5000-B datasets, respective-

ly. Further, IGSK is generally not sensitive to the com-

munity size or the network size.

We illustrate in Fig. 7b, c the performance of the 8 state-

of-the-art algorithms examined in Lancichinetti and For-

tunato (2009a). They are referred to as Blondel et al.

(Blondel et al. 2008), MCL (van Dongen 2000), Infomod

Table 2 Comparison of different centralities on the arXiv HEP-TH

citation network

Rank Influence Indegree PageRank

1 9510017 (6) 9711200 (2414) 9402044 (257)

2 9503124 (8) 9802150 (1775) 9205068 (167)

3 9711200 (1) 9802109 (1641) 9205027 (191)

4 9410167 (15) 9407087 (1299) 9207053 (102)

5 9510135 (14) 9610043 (1199) 208020 (205)

6 9802150 (2) 9510017 (1155) 9204102 (71)

7 9802109 (3) 9908142 (1144) 9301042 (344)

8 9610043 (5) 9503124 (1114) 9201019 (16)

9 9407087 (4) 9906064 (1032) 9205081 (77)

10 9601029 (17) 9408099 (1006) 9209016 (76)

Table 3 Comparison on real-

life networks using RandIndex

and NMI

Algorithm RandIndex Algorithm NMI

Karate Mexican Sawmill Football Dolphin Karate

RankClus 1.000 0.489 0.530 GPSODM 1.000 0.723 1.000

Walktrap 0.745 0.536 0.560 GGADM 0.910 0.736 1.000

K-means 0.941 0.536 0.527 HA 0.907 0.707 0.754

LinkCommunity 0.743 0.536 0.560 MMC 0.885 0.579 1.000

SPICi 0.586 0.553 0.629 LPA 0.927 0.710 0.751

Betweenness 0.913 0.605 0.570 Infomap 0.899 0.695 0.643

IGSK 1.000 0.716 0.870 IGSK 0.924 0.814 1.000
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(Rosvall and Bergstrom 2007), Infomap, Cfinder (Palla

et al. 2005), Clauset et al. (Clauset et al. 2004), Radicchi

et al. (Radicchi et al. 2004), and Sim. ann. (Guimera and

Amaral 2005). Apparently, IGSK outperforms 7 of them.

Only Infomap looks a little better than IGSK. But as shown

in Table 3, IGSK obviously outperforms Infomap on all the

3 real-life networks.

Finding communities in directed networks is even more

challenging. Most existing algorithms are not able to deal

with directed networks. We generate 4 sets of directed and

unweighted networks using the same parameters as

Lancichinetti and Fortunato (2009a), in which both the

degree-distribution exponent and the topological mixing

parameter refer to the in-degree of the nodes while the out-

degree is kept constant for all nodes. This setting makes the

resulting networks similar to the citation networks in terms

of in-degree/out-degree distributions. Therefore, as we did

with the arXiv HEP citation network, we reverse these LFR

directed graphs to reflect the influence flow in our influence

diffusion model and then run IGSK to find the communi-

ties. We illustrate our results in Fig. 8a and compare the

performance of IGSK against the 2 algorithms investigated

in Lancichinetti and Fortunato (2009a) as seen in Fig. 8b.

Once again, IGSK shows remarkable performance in di-

rected networks as well (even better than its performance in

undirected networks). It is better than Infomap on 1000-B/S

datasets, and clearly outperforms Sim. ann on 1000-S and

5000-S/B datasets.

To verify our weight-normalization scheme, we apply

IGSK to the 4 sets of undirected and weighted networks.

As done in Lancichinetti and Fortunato (2009a), we fix the

topological mixing parameter lt to 0.5 and 0.8, respec-

tively, and examine its performance when the weight

mixing parameter lw varies from 0.1 to 0.8. Let us first take

a look at the distribution of the weights as described in

Lancichinetti and Fortunato (2009b). For a node of degree

ki, its expected internal weight and external weight can be

expressed as

Fig. 7 Performance comparison on undirected and unweighted LFR

benchmark graphs. a IGSK; b Blondel et al., MCL, Infomod, and

Infomap; c Cfinder, Clauset et al., Radicchi et al., and Sim. ann.

[Lancichinetti and Fortunato (2009a), Copyright by The American

Physics Society]

Fig. 8 Performance comparison on directed and unweighted LFR

benchmark graphs. a IGSK; b Infomap and Sim. ann. [Lancichinetti

and Fortunato (2009a), Copyright by The American Physics Society]
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i :

Then the ratio of internal weight to external weight (re-

ferred to as int/ext ratio) is related to the mixing parameters

in a simple way:

int=ext ratio ¼
w
ðintÞ
i

w
ðextÞ
i

¼
ltð1� lwÞ

lwð1� ltÞ
:

To better understand how the weight plays its role in

shaping the community structure with respect to the net-

work topology, we run IGSK on each weighted network

twice: one ignores the weights (denoted as IGSK-ignore),

and the other considers the weights (denotes as IGSK-

consider). The results are illustrated in the first 2 plots in

Fig. 9. As we can see, for 5000-S-0.8 and 5000-B-0.8

datasets, their topological mixing parameter lt is 0.8,

which indicates their community structure is fuzzy. While

the weight mixing parameter lw varies from 0.1 to 0.7, the

int/ext ratio decreases from 36 to 1.7 but is always [ 1,

which means the weight distribution always reinforces the

community structure in these cases. IGSK-ignore gives low

NMI scores as expected since it completely ignores the

useful weight information. In contrast, IGSK-consider

takes advantage of the weight information and greatly

improve the performance. Further, it reflects a sensible

pattern: the higher int/ext ratio of the weight, the stronger

reinforcement of the community structure, the greater

performance improvement IGSK-consider achieves.

For 5000-S-0.5 and 5000-B-0.5 datasets, lt is 0.5, which

indicates the community structure is relatively clear topo-

logically. In this case, when lw falls in the range from 0.1

to 0.4, the weight distribution confirms the community

structure since the corresponding int/ext ratio is greater

than 1. However, when lw[ 0:5, the int/ext ratio becomes

smaller than 1, which implies the weight distribution turns

into undermining the community structure. Our ex-

perimental results provide strong evidence of the above

argument. On the one hand, IGSK-ignore shows excellent

performance consistently from lw ¼ 0:1 to 0.8, which is

expected as IGSK does on unweighted networks when lt ¼
0:5 (Fig. 7a). On the other hand, IGSK-consider gives

perfect NMI scores when lw\0:5, which outperforms

IGSK-ignore by taking into account the weight information

that reinforces the community structure. However, its

performance worsens dramatically due to the misleading

weight information when lw[ 0:5.
The tests on the 4 sets of weighted networks demon-

strates that our IGSK algorithm effectively captures both

the network connectivity and the weight information, even

though it is not able to judge whether the weight infor-

mation strengthens or undermines the community structure.

Practically, it can be easily fixed by running both IGSK-

consider and IGSK-ignore and taking the output of the one

with higher modularity. In addition, the experiment brings

forth an important point that the community structure is

primarily determined by the network topology; the weight

information is a secondary factor that may reinforce the

community structure or make it fuzzy. Finally, as shown in

Fig. 9, IGSK achieves better performance than Infomap on

the 5000-B-0.8 dataset and clearly outperforms MCL and

Sim. ann. on all the 4 datasets.

4.4 Overlapping community and role detection

IGSK can be easily adapted to the detection of overlapping

community and individual roles in each community. The

influence-based belonging factor defined in Sect. 3.5 is a

good fit for quantifying the strength of association between

all pairs of nodes and communities, and the three com-

munity-level influence rankings provide us a new sensible

perspective and tool to deal with the role detection. We

take Zarchary’s karate-club network as an example and list

in Table 4 its comprehensive-influence ranking, internal-

influence ranking, external-influence ranking, belonging

factors, and IGSK community assignment of each node. It

is noted that the partition by IGSK matches the ground

Fig. 9 Performance comparison on undirected and weighted LFR

benchmarks. Plots for Infomap, MCL, and Sim. ann given in

Lancichinetti and Fortunato (2009a), Copyright by The American

Physics Society
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truth perfectly. We group the nodes by their community

assignment and sort the nodes in each community by their

comprehensive-influence ranking.

BF-1 and BF-2 list the belonging factors of each node

associated with communities 1 and 2, respectively, which

converts the original crisp assignment into a fuzzy one for

overlapping community analysis. It is interesting to ob-

serve that each node has a higher belonging factor to its

own community than to the other one, which follows our

intuition. Moreover, we refer to a node with multiple

membership as an overlapping node. The belonging factors

enable us to identify overlapping nodes with respect to a

belonging threshold. If a node’s belonging factor to a

community is greater than the belonging threshold, the

node is considered as a member of that community. In this

case, if we set the threshold to 0.3, we find the set of

overlapping nodes are nodes 3, 14, 20, 9, 32, 31, and 10. If

it is set to 0.4, then only nodes 3, 20, and 9 are regarded as

overlapping nodes. The belonging threshold is a user-de-

fined application-dependent parameter in practice.

Further, it is straightforward to use the 3 influence

rankings to uncover the roles of individual members in

each community. As shown in Table 4, nodes 1 (the in-

structor) and 34 (the president) are of the top ranking on

both comprehensive influence and internal influence in

communities 1 and 2, respectively. It is reasonable to

identify them as leaders of their respective communities,

which matches the ground truth. Moreover, if we refer to a

node as a core member if its ranking on both comprehen-

sive influence and internal influence is among top 5 (this

number can be adjusted according to the size of the com-

munity in practice), nodes 3, 2, 14, and 4 can be regarded

as the core members in community 1, and nodes 33, 32,

and 24 are core members in community 2. Similarly, if we

refer to a node as an inter-community liaison if its external-

influence ranking is among top 3 (not including the lead-

ers), we find that node 3, 14, and 20 are liaisons of com-

munity 1, and nodes 9, 32, and 31 are liaisons of

community 2. As we can see, our approach digs out rich

connectivity information that allows us to probe the

structural importance of a node in the network in a much

meaningful and detailed manner.

4.5 Space and time complexity analysis

Let n denote the total number of nodes in the network,

b denote the average node out-degree, d denote the depth

limit, K denote the number of communities, I denote the

number of iterations to converge, and L denote the average

length of the influence vectors.

The space complexity depends on the influence vectors.

Using an array of length n for each influence vector

definitely wastes a lot of space since no nodes can spread

influence to all other nodes in the whole network in gen-

eral. To improve the space complexity, we store the in-

fluence vector of each node in a compact array that keeps

only the nodes it influences. Then the space complexity is

OðnLÞ. L is directly affected by the depth limit d, as well as

the average node degree b and the network size n. It is also

related to the community structure. For example, for the

LFR 5000-S networks, when the topological mixing pa-

rameter is 0.1 (clear community structure), L is about 100

Table 4 Influence rankings and belonging factors of Zachary’s karate

club. Com-Rank denotes comprehensive-influence ranking, Int-Rank

denotes internal-influence ranking, Ext-Rank denotes external-influ-

ence ranking, BF-1 denotes belonging factor to community 1, BF-2

denotes belonging factor to community 2, and CA denotes community

assignment of IGSK (depthLimit ¼ 2)

Node Com-Rank Int-Rank Ext-Rank BF-1 BF-2 CA

1 1 1 3 0.795 0.205 1

3 2 4 1 0.542 0.458 1

2 3 2 5 0.797 0.203 1

14 4 5 2 0.630 0.370 1

4 5 3 6 0.859 0.141 1

8 6 6 7 0.849 0.151 1

20 7 11 4 0.569 0.431 1

6 8 7 10 0.946 0.054 1

7 8 7 10 0.946 0.054 1

5 10 9 10 0.938 0.063 1

11 10 9 10 0.938 0.063 1

18 12 12 8 0.903 0.097 1

22 12 12 8 0.903 0.097 1

13 14 14 10 0.929 0.071 1

12 15 15 10 0.895 0.105 1

17 16 16 16 1.000 0.000 1

34 1 1 2 0.190 0.810 2

33 2 2 5 0.155 0.845 2

9 3 6 1 0.419 0.581 2

32 4 4 2 0.306 0.694 2

24 5 3 9 0.073 0.927 2

31 5 7 4 0.309 0.691 2

30 7 5 10 0.063 0.938 2

28 8 8 7 0.234 0.766 2

29 9 14 6 0.286 0.714 2

15 10 9 10 0.086 0.914 2

16 10 9 10 0.086 0.914 2

19 10 9 10 0.086 0.914 2

21 10 9 10 0.086 0.914 2

23 10 9 10 0.086 0.914 2

10 15 16 7 0.333 0.667 2

27 16 15 16 0.074 0.926 2

26 17 16 18 0.043 0.957 2

25 18 18 16 0.091 0.909 2
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(d ¼ 2) and 550 (d ¼ 3), respectively. But when the mix-

ing parameter is 0.8 (fuzzy community structure), L jumps

to 370 and 3,600, respectively.

It is hard to rigorously estimate the time complexity

since it is closely related to the community structure.

Generating the influence matrix is really fast with a time

complexity of OðnLÞ roughly. Once the influence-centrality

value of each node is obtained, influence ranking is

Oðn log nÞ using Heapsort. IGSK algorithm has a time

complexity of O(nKLI). It is demonstrated in our ex-

periments that IGSK converges fast when the community

structure is clear. For example, for almost all our ex-

perimented LFR benchmarks, it converges in 2 iterations

when the topological mixing parameter is 0.3 or less. When

the community structure is fuzzy, however, it may take 10

iterations or more. We force it to stop if it does not con-

verge after 8 iterations.

5 Conclusions

In this paper, we provide a new perspective on the influ-

ence-based connectivity of network graph topology and

propose a novel influence diffusion model that is applicable

to both undirected/directed and unweighted/wegithed

networks.

Using this model, we define a new influence centrality

and Shared-Influence-Neighbor (SIN) similarity. The in-

fluence centrality differentiates the node’s comprehensive

influence significance in a more detailed and precise

manner, and the SIN similarity is well-suited as a refined

vertex-pair proximity metric. We present an influence-

guided spherical K-means (IGSK) algorithm for commu-

nity detection and extensively test it on both real-life and

synthetic networks. Experimental results demonstrate its

superior performance in both undirected/directed and un-

weighted/weighted networks. Further, it enables us to un-

cover the overlapping community structure and identify the

overlapping nodes and the roles of individual members in

each community. All of these essential tasks are naturally

integrated in one framework.

In our influence diffusion model, it is implicitly assumed

that the nodes are homogeneous. In the future work, it

would be interesting to extend the model to the network

with nodes of heterogeneous roles. The main drawback of

our IGSK is that it requires the pre-specified number of

communities. In addition, although IGSK is fairly efficient,

it does not scale well enough on large-scale networks. It is

desirable to investigate the combination of this influence-

based approach with other clustering techniques to avoid

pre-specifying the number of communities and further

improve the efficiency. It would be a promising direction to

combine this approach with content analysis, namely

considering both the network graph topology and the

nodes’ profile information. Finally, we point out that the

influence centrality and the SIN similarity introduced in

this paper provide important implications for viral mar-

keting and link prediction in social networks. A lot of work

can follow.
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