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Modeling Information Diffusion over Social
Networks

Dong Li, Shengping Zhang, Xin Sun, Huiyu Zhou, Sheng Li, and Xuelong Li, Fellow, IEEE

Abstract—Modeling the process of information diffusion is a challenging problem. Although numerous attempts have been
made in order to solve this problem, very few studies are actually able to simulate and predict temporal dynamics of the diffusion
process. In this paper, we propose a novel information diffusion model, namely GT model, which treats the nodes of a network as
intelligent and rational agents and then calculates their corresponding payoffs, given different choices to make strategic decisions.
By introducing time-related payoffs based on the diffusion data, the proposed GT model can be used to predict whether or not
the user’s behaviors will occur in a specific time interval. The user’s payoff can be divided into two parts: social payoff from the
user’s social contacts and preference payoff from the user’s idiosyncratic preference. We here exploit the global influence of the
user and the social influence between any two users to accurately calculate the social payoff. In addition, we develop a new
method of presenting social influence that can fully capture the temporal dynamics of social influence. Experimental results from
two different datasets, Sina Weibo and Flickr, demonstrate the rationality and effectiveness of the proposed prediction method
with different evaluation metrics.

Index Terms—Information diffusion, social network, modeling, prediction

✦

1 INTRODUCTION

In recent years, with the rapid development and de-
manding requirements of online social networks [1],
[2] (e.g., Twitter, Facebook, Flickr), tremendous in-
terests have arisen from the study of information
diffusion. An example of information diffusion is:
When someone adopts a piece of information, his or
her neighbors may be influenced and then consider
adopting the same information. Usually, information
diffusion is caused by user actions, for example, user-
s perform re-tweeting actions to diffuse tweets on
Twitter. Therefore, information diffusion also can be
regarded as user action diffusion.

Diffusion models have been used to explain and
simulate how information is diffused over social
networks. They have a wide range of applications,
including viral marketing and breaking news detec-
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tion [3], [4], [5], [6]. According to the use of data,
we can categorise the existing studies on information
diffusion modeling into two groups: theory-centric
models and data-centric models. Theory-centric mod-
els are mainly used in epidemiology, sociology and
economics. Widely studied diffusion models include
epidemic model, independent cascade model, linear
threshold model and the variants of these models.
Using these models, some researchers investigated the
challenging influence maximization problem [7], [8],
[9], [10], which is related to viral marketing, and some
explored the relationship between information diffu-
sion and social network structures [11], [12]. Although
theory-centric models provide partial solutions to
the information diffusion problem, they also have
inevitable shortcomings. For example, theory-centric
models usually make use of randomly distributed
parameters that are not learned from actual diffusion
data. In addition, these models cannot work in real-
time. These shortcomings prevent theory-centric mod-
els from being able to correctly predict the process of
information diffusion.

In contrast to theory-centric models, data-centric
models are usually learned from actual information
diffusion data and can be categorised into macro-
and micro-models. Macro-models, also called cascade
generation models [13], [14], [15], [16], can generate
diffusion cascades whose macro properties are sim-
ilar to those of actual diffusion cascades. From the
perspective of prediction, they also have the same
limitation as theory-centric models. This limitation
may be overcome by micro-models, which can predict
whether or not a certain user in a social network
can be activated by the information. The information
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diffusion process is triggered by user actions, and
therefore information diffusion prediction is actually
for user behavior prediction. Micro-models hold the
ability to predict diffusion processes, unfortunately,
most of these models ignore the important fact that
information diffusion fundamentally is a temporal dy-
namic process. Diffusion models can predict not only
whether or not the user will perform the behavior but
also when the user will perform the behavior.

In this paper, we propose a novel model (i.e. GT
model) for information diffusion prediction based on
actual diffusion data. Comparing to previous work,
the advantages of our model are mainly in two as-
pects: (1) The proposed GT model considers the nodes
of a network as autonomous, intelligent and rational
agents. By introducing the time-related payoffs, the
proposed GT model can simultaneously capture the
user’s own preference and his/her neighbors’ behav-
iors, and realize the prediction that whether or not a
users behaviors will occur in a specific time interval.
(2) The proposed model can be learned efficiently
using real diffusion data, therefore the proposed GT
model is a highly scalable diffusion prediction system.

In summary, we make the following contributions
in this research:

• We propose a new information diffusion model
named as the GT model. In this model, users
calculate the corresponding payoffs of different
choices to make an appropriate decision of choos-
ing which behavior to perform. This user payoff
is composed of time-related social payoff from the
user’s social contacts, and preference payoff from
his idiosyncratic preferences which are not time-
related. Our diffusion model considers both two
types of payoffs simultaneously in the process.

• We develop a method that jointly exploits the
global influence of users and the social influence
between users to calculate time-related social
payoffs in the GT model based on actual diffu-
sion data. This social payoffs consider both the
individual properties and strategic interactions of
the interacting users in a social network. More-
over, we use the similarity between information
contents and user profiles to determine the user’s
preference payoff.

• We propose to use a non-negative vector with
length K to represent social influence between
users. This method not only takes the time series
into account but also calculates a more accurate
influence strength based on the statistics of the
past diffusion.

• We evaluate the proposed predicting model a-
gainst two real-life data sets from Sina WeiBo
and Flickr. By testing the two different global in-
fluence computing methods as model parameter-
s, pagerank and diffusion cascade, we illustrate
how the model parameters affect the systematic
performance, which is used to rationalise the pro-

posed GT model. Finally, the comparison results
demonstrate the superiority of the proposed GT
model over other state of the art models.

The rest of this paper is organized as follows:
Section 2 shows related work. Section 3 presents
the formulation of the problem. Section 4 reveals
the proposed GT model and Section 5 presents the
algorithms for learning and how we evaluate this new
model. Section 6 presents the experimental results
that demonstrate the effectiveness of our proposed
methodology. Conclusions and future work are made
in Section 7. A preliminary version of this paper was
published in the Proceedings of 22nd ACM Inter-
national Conference on Information and Knowledge
Management [17].

2 RELATED WORK

In this section, we review the related work in two
different aspects: cascade generation model and in-
formation diffusion prediction

Cascade generation model. This type of models aim
to generate information cascades. These generated
cascades maintain several properties of real cascades.
Leskovec et al. [13] proposed a conceptual model that
was quite similar to the epidemic model [18], [19].
They compared the generated cascades against the
real cascades extracted from the post network and
observed that these generated and real cascades could
be matched in terms of cascade size and degree distri-
butions. Liben-Nowell et al. [14] studied information
spread on a global scale based on internet chain letter-
s, and discovered that the structures of the diffusion
trees were narrow and deep. Golub and Jackson [15]
attempted to explain the structures observed in [14]
using the Galton-Watson branching model [20]. Wang
et al. [16] developed a stochastic branching model to
demonstrate that the macroscopic structures of infor-
mation propagating processes are largely independent
of contextual information and can be well explained
by a simple mechanism. Although these models are
helpful for deeply understanding information diffu-
sion, they are not capable of predicting.

Information diffusion prediction. Rodriguez et
al. [21] attempted to infer diffusion process that has
happened in the past to explain the observed data.
Differently, in this paper, we aim to predict the future
diffusion process based on current diffusion cascades
and network structures. Yang et al. [22] explored how
the repost behavior was impacted by such factors
as users, messages and time. They also proposed a
factor graph model to predict the retweet behaviors
of the users based on the above important obser-
vations. R. Zaman et al. [23] made use of retweets
as positive feedback and lack of retweets by follow-
ers in the retweet network as negative feedback to
forecast retweet behaviors in Twitter. The relevant
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features for prediction were the tweeters and the
retweeters. Fei [24] presented a multi-task learning
algorithm with heterogeneous task relationships to
address the problem of forecasting users’ behaviors
to their friends’ postings in social networks. Liu [25]
proposed a generative graphical model to estimate
topic-level influence between nodes in the network,
which utilized both the textual content related to
each node and the heterogeneous link information.
Furthermore, they studied how to leverage the mined
topic-level influence to help the user behaviors pre-
diction. Du et al. [26] estimated the influence between
users in continuous-time diffusion networks via a ran-
domized algorithm. Yang et al. [27] presented a Role-
Aware information diffusion model which integrates
social role recognition and diffusion mechanism into
a unified framework. Chang et al. [28] attempted to
predict the popularity of online serials with autore-
gressive models. Cheng et al. [29] found that the
cascade growth becomes more predictable when we
observe more of its reshares, and the structural and
temporal features are key prediction factors. Hung et
al. [30] generalize the diffusion prediction on novel
topic problems to predict both cross-topic-observed
and unobserved diffusions.

Tan et al. [31] proposed a noise tolerant time-
varying factor graph model (NTT-FGM) to formalize
the problem of social action tracking. They defined
three factors to capture the intuitions discovered in
observations and presented an efficient algorithm to
learn the tracking model. Saito et al. [32] attempted
to learn the diffusion probabilities of the independent
cascade model [33] and linear threshold model [34]
based on the real diffusion data. They first defined the
above problem as a likelihood maximization problem,
and then used an Expectation-Maximization (EM)
algorithm to address the problem. Although these
methods take into account time factors, they need sub-
stantial calculation time and cannot handle massive
data. Goyal et al [35] proposed two time-dependent
models, the CT model and DT model, for social
influence calculation and applied them together with
general threshold model to predict time-dependent in-
formation diffusion process. However, the prediction
of information diffusion strongly relied on the users’
activation thresholds, which are difficult to set in
practice. Moreover, the approximate simulation mech-
anisms of the CT and DT models for social influence
presentation also caused systematic performance to
be degraded. In contrast to these systems, by fully
considering all the interacting users to measure the
time-related payoffs of different choices, our model
can make better prediction and thus improve the
performance dramatically.

3 PROBLEM FORMULATION

In this section, we first give the essential definitions
referred to in this work and then formalize the prob-

lem that we are going to address. A social network
can be represented as G = (V,E, T ), where V is a
set of |V | = N users; and E is the set of edges:
A directed/undirected edge (u, v) ∈ E represents a
social tie between user u and user v. Furthermore, T
is a function labeling each edge with the time at which
the social tie was created. Based on the network, we
give the following definitions.

Definition 1 (Activate action). An activate action can be
represented as a triple (u, a, tu), which can be interpreted
as that, user u is activated by a piece of information a at
time tu, or user u performs the action of adopting a piece
of information a at time tu.

Let Su be the set of information that user u adopts
at all time. We denote the activate actions of all the
users as the action log Ω = {(u, a, tu)}. Such an action
log (also called information diffusion log) is available
in many online systems. For example, on Twitter, the
activate action (u, a, tu) can be perceived as user u
retweeting tweet a at time tu.

Definition 2 (Information diffusion). We state that a
piece of information a diffuses from user u to user v iff:
(i) (u, v) ∈ E; (ii) ∃(u, a, tu), (v, a, tv) ∈ Ω with tu < tv;
and (iii) T (u, v) < tu. Once this is satisfied, we denote
diff(a, u, v,∆t), where ∆t = tv − tu.

Obviously, when we claim that a piece of informa-
tion diffuses from user u to v, there must be a social
tie between these users before they are activated by
this information. Information diffusion over the social
network leads to the natural notion of a diffusion
cascade, defined as follows.

Definition 3 (Diffusion cascade). For each piece of infor-
mation a, the diffusion cascade can be defined as DC(a) =
(V (a), E(a)), where V (a) = {v|∃tv : (v, a, tv) ∈ Ω} and
E(a) = {directed edge(v1, v2)|diff(a, v1, v2,∆t)}.

The diffusion cascade consists of users who are
activated by a certain piece of information and edges
connecting these users along the direction of propaga-
tion. When a user adopts a piece of information, s/he
is activated or influenced. Once the user is activated,
it becomes contagious and cannot be de-activated.
The diffusion cascades in Definition 3 are with tree-
like structures. For a node u, because it is possible
that more than one parent of u may be activated
and it is difficult to determine which parent really
influences u to perform the action, we create links
between all of the user’s activated parents and u.
Therefore, a node may have more than one parent.
In addition, we can also develop other strategies to
define a diffusion cascade. For example, we can create
links only between a user’s first or last parent and the
current node u. In these strategies, a diffusion cascade
is referred to as a real diffusion tree (i.e. each node has
one parent). Next, we define the influence strength of
a single user and that of two users.
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Definition 4 (Global influence). Given a social network,
globalv is defined as the global influence of user v, which
represents the influence strength of v over the whole net-
work.

Definition 5 (Social influence). Given two users u and v
in a social network, we denote socialuv(t) as the influence
strength of user u on user v at time t.

Note that socialuv is not equal to socialvu if the
edge of the social network is directed. As the influence
strength of user u on user v varies over time, introduc-
ing time variable t may lead to accurate descriptions
of the influence strength between the users.

Global influence and social influence are fundamen-
tally different. Global influence shows the authority,
profession and popularity of a user in a social net-
work, while social influence focuses on two interre-
lated users. If user a has two parents, users b and
c, and even though the global influence of user b is
stronger than that of user c, the social influence from
b to a may still be smaller than that from c to a.

”Payoff” is a concept from game theory, which is a
number that denotes the decision-making motive of a
player in a game. In different scenarios, payoff can be
in any quantifiable forms such as money or reputation
of a player. Game theory is designed to address situa-
tions in which a player’s decision depends not only on
his/her personal preference, but also on the choices
made by other players s/he is interacting with. In
the information diffusion process, the behavior of a
user is also related to both his/her preference and
his/her neighbors’ behaviors. Thus it can be seen
that, the information diffusion process is very similar
to the situations game theory simulates. Here, we
bring the concept of ”payoff” from game theory to
model user behaviors in the diffusion process in social
networks. In the diffusion process, ”payoff” can be
social relationships or followers, etc. In this paper,
we propose a novel model (GT model) to predict
information diffusion based on user payoff. One of
the critical tasks is to calculate the user’s time-related
payoff resulting from her/his multiple choices, with
which we can then predict the user’s behavior as well
as his acting time.

The payoff of a user can be divided into two parts:
social payoff from the user’s social contacts and indi-
vidual payoff from her/his idiosyncratic preferences.
In this paper, social payoff varies with time since a
user may be bound with different payoffs when s/he
adopts her/his friend’s actions at different time, while
preference payoff is not time-related. Based on the
concepts discussed above, we present the following
problems:

Problem 1 (Social payoff learning). Given a social
network G and an action log Ω, the goal of our work is
to learn the user’s time-related payoff as a result of her/his
various choices.

Problem 2 (Preference payoff learning). Given a social
network G and information set Su released by the user, we
intend to learn the user’s preference payoff.

4 THE PROPOSED MODEL

We propose a novel method for information diffusion
modeling through social networks. By introducing
time series into the payoff calculation, the proposed
model has the capability to predict the temporal dy-
namics of the information diffusion process. In our
model, the diffusion process unfolds in discrete time-
steps t, and begins from an initial active user set.
When a user v observes a piece of information at
time t, s/he calculates her/his payoffs depending on
the neighbors’ status to decide whether or not to
adopt the information. If s/he adopts the information,
her/his status becomes active at time t + 1. We now
describe the proposed model in more detail. For better
illustration, Table 1 lists some mathematical symbols
used in this paper.

When a user v spreads the same information as
her/his neighbors do, s/he will get social payoff from
the social contacts. The information itself also satisfies
the idiosyncratic preference of user v, which brings v
certain preference payoffs.

In a social network, we consider the simplest case
in which each node has two possible choices, A and
B, when the user observes a piece of information.
To be concrete, the piece of information is a tweet,
choice A is retweeting the tweet and choice B is not
retweeting the tweet. We define P soc

A (v, tv) as social
payoff that user v may obtain when s/he chooses A
at time tv , and P soc

B (v, tv) as social payoff that user v
may obtain when s/he chooses B at time tv. We also
define P pre

v,A as the preference payoff that user v may
hold when user v chooses A (adopting information
i). User payoff is the combination of social payoff
and preference payoff. PA(v, i, tv) is defined as the
user payoff of v when s/he chooses A at time tv,
and PB(v, i, tv) is defined as the user payoff of user
v when s/he chooses B at time tv. The calculation of
user payoffs of v in different scenarios is described as
follows:

{

PA(v, i, tv) = P soc
A (v, tv) + β ∗ P pre

v,A

PB(v, i, tv) = P soc
B (v, tv)

(1)

When user v adopts information i, we adopt a
linear method (the first item in Eq. 1) to combine
the computed social payoff and preference payoff in
order to estimate the user payoff. β is a parameter for
specifying the tradeoff between the two competitive
payoffs. When user v does not adopt information i,
s/he will not have any preference payoff. So user
payoff is equivalent to social payoff in choice B. After
sustaining payoffs in different choices, if PA(v, i, tv) ≥
PB(v, i, tv), user v will choose A at time tv, otherwise
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TABLE 1: Important mathematical symbols.

Symbols Description

G,V,E a social network G with node set V and edge set E

Su the set of information that user u adopts at all time

diff(a, u, v,∆t) a item means information a spreads form user u to user v in time delay ∆t

PA(v, i, tv) the user payoff of v when s/he chooses A at time tv

P soc
A (v, tv) the social payoff that user v obtains when s/he chooses A at time tv

P
pre
v,A

the preference payoff that user v obtains when user v chooses A

asocuv (∆t) the social influence user v gets from user u in time delay ∆t

globalu the global influence of user u

socialuv(∆t) the social influence from user u to v in time delay ∆t

User v

( )
uv

social
a t 

( )
uv

social
b t 

( )
uv

social
c t 

( )
uv

social
d t 

A

B

User u

A B

Fig. 1: Payoff matrix of user v.

choose B. In the next section, we will introduce
how to calculate social payoff and preference payoff
separately.

4.1 Social Payoff

For nodes u and v linked by an edge, we have several
possibilities for them to combine together. The payoffs
for user v are defined as follows:

If both u and v make choice A, v has payoff
asocuv (∆t);

If both u and v make choice B, v has payoff bsocuv (∆t);
If u makes choice A whilst v makes choice B, v gets

payoff csocuv (∆t);
If u makes choice B whilst v makes choice A, v gets

payoff dsocuv (∆t).
Based on these choices made by user u and v, a

payoff matrix of user v is generated and shown in
Figure 1. ∆t = tu− tv denotes the time delay between
the choices made by users u and v respectively. Here,
we introduce time series into the calculation of a
user’s payoff for the first time. Therefore, in our
proposed model, at different times, user v’s responses
to u’s behaviors may result in different social payoffs.

Figure 1 illustrates a case of a single edge in the
network. The total social payoffs are the sum of
individual social payoffs generated when the user
faces each player, as shown in Figure 2. Therefore, the
choice of user v corresponds to all the choices made
by all its neighbors.

A question arises: if some of the neighbors adopt
choice A while others adopt B, how do we calculate
social payoffs of user v in different choices? Obviously,
this depends on the relative numbers of the neighbors
with their choices as well as the social payoff matrix

A A

B B B

B

V

Fig. 2: User v makes choice between behaviors A and B,
depending on the neighbors’ actions.

between v and each of its neighbors. Here, we denote
NA(v) as the set of v’s neighbors who adopt choice
A and NB(v) as the set of neighbors who adopt B.
If node v adopts choice A at time tv , it will have the
social payoff defined below:

P soc
A (v, tv) =Σu∈NA(v)a

soc
uv (tv − tu)+

Σu∈NB(v)c
soc
uv (tv − tu)

(2)

Similarly, if node v adopts choice B at time tv , the
social payoff becomes:

P soc
B (v, tv) =Σu∈NA(v)d

soc
uv (tv − tu)+

Σu∈NB(v)b
soc
uv (tv − tu)

(3)

Users performing behaviors (spreading different
information) in different social networks will be of
different types of social payoffs from their social
relations. For example, if a user performs the behavior
of joining in a community, the social payoff may
include personal connections, and if a user performs
the behavior of retweeting a tweet on Twitter, the
social payoff will be additional followers. Therefore,
it is very difficult to directly measure social payoffs
of users from different behaviors due to the lack of
a common ground. To solve this problem, we here
present a novel method of calculating social payoffs,
which is applicable to different diffusion information
in different social networks. Specifically, we exploit
both the global influence of individual users and
the social influence between users to compute the
payoffs of users’ choices. Global influence shows the
profession and authority of a user in particular fields
while social influence reflects the degree of how one
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user has affected another one. Considering two users
u and v in a social network with a social link between
them, we anticipate that the more social payoffs that v
has received following the choices of u in the history,
the stronger intention that v will make the same choice
as u at the present state.

This idea can be formulated as follows: the greater
global influence the user u has and the greater social
influence is shown between u and v, the more payoffs
the user v will obtain from u if the former makes the
same choice as the latter. For example, if Olivia is good
at shopping and Jessica have been greatly influenced
by Olivia in the past, Jessica is much more likely to
purchase high quality goods (i.e. social payoff) when
she makes the same choices as Olivia. A user may
have different preference payoffs if s/he adopts the
same information at different times. In other words,
social payoff is time-related. Based on the description
above, we define the social payoff matrix as

{

csocuv (∆t) = dsocuv (∆t) = 0

asocuv (∆t) = bsocuv (∆t) = globalu ∗ socialuv(∆t)
(4)

where globalu denotes the global influence of user u,
and socialuv(∆t) denotes the social influence between
users u and v. If user v adopts different behaviors
from u, s/he gets no social payoff; however, if user
v adopts the same behavior as u does, the global
influence and social influence are jointly exploited to
measure the user payoff.

We use two methods in this work to measure the
global influence of a single user in the social network.
The first is the calculation of a pagerank value, which
is based on the network topology structure analysis.
Pagerank was originally used to analyze hyperlink
networks to measure the importance of web docu-
ments [36]. Here, we apply it to the social network for
influence calculation. The second method is based on
the average size of diffusion cascades triggered by the
user’s adoption of information as the user’s global in-
fluence, whose measurement is more direct compared
to the pagerank method. A detailed discussion of how
these two methods affect the performance of the GT
model will be presented in Section 6.

Much effort has been invested in the study of
social influence. However, only the CT models and
DT models proposed by Goyal et al. [35] considered
the time factor. The CT models describes the social
influence by an exponential decay function. Despite
of its simplicity, it has a significant drawback in that
it assumes that all the social influence functions follow
the same parametric form. The DT models set the
influence of an active user u on her/his neighbor
v at a constant value of pu,v after u performs the
action within a time window of τu,v , which is the
average time delay of information diffusion from user
u to v. After the time window τu,v , the influence
value presumably drops to 0. Due to the approximate
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Fig. 3: An example of social influence between two users of
Sina Weibo dataset.

simulation mechanism, it is difficult for the CT and
DT models to capture the complex dynamics of social
influence between users. In our work, we propose a
novel method for accurate social influence calculation.
We deliberately represent the social influence function
as a non-negative vector with length K , where the kth
component socialuv(k) represents the social influence
of user u on its neighbor v at time k. socialuv(k) is
used in Eq. 4 for calculating the social payoff. More
precisely, we define:

socialuv(k) =
|{a|∃∆t : diff(a, u, v,∆t)

∧
k − 1 ≤ ∆t ≤ k}|

|Su|
(5)

Figure 3 shows an example of social influence be-
tween two users in the Sina Weibo dataset, calculated
by the proposed method. Compared to the CT and
DT models, which use a simple exponential decay
or a constant value for social influence, the proposed
method can describe the temporal dynamics of so-
cial influence between two users. Here, we should
highlight that, our GT model can use not only our
proposed social influence calculation method but also
other methods or improvements to our method.

4.2 Preference Payoff

Preference payoff results from the user’s adopting
information that satisfies her/his preferences. Thus,
preference payoff is derived from the information
itself and has nothing to do with the user’s social
relationships. Although the preferences of the user
change over time, such changes are usually slow.
In the current online social networks, information
spreads quickly. Comparing the cycle of information
diffusion with that of user preference’s change, we
can assume user preference to be static within the
period of information diffusion. Thus, a user will
hold the same preference payoff if s/he adopts the
same information at different times. That is to say,
preference payoff is not time-dependent.

In this paper, we consider the similarity between
information content and user preference as the user’s
preference payoff. A major problem is how we profile
information and the users. In this paper, we adopt a
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vector space model to construct individual profiles.
Vector space model is simple but effective, and has
been used widely in information retrieval and item
recommendation.

For each user, we collect all the information adopted
by each user as a document. Similarly, every piece of
information also can be viewed as a document. For
user u, it is profiled as a word vector, u =< t1 : wt1 , t2 :
wt2 , . . . , tn : wtn >. Each weight wti represents the de-
gree of interest of user u over the period ti. We use the
standard TF-IDF method [37] to calculate the weights
in the vector. For a piece of information i, it also can
be profiled as i =< t1 : w

′

t1
, t2 : w

′

t2
, . . . , tn : w

′

tn
>.

After having calculated the profiles of the user and
her/his information, we compute the cosine similarity
between these profiles, which is used as the preference
payoff.

Finally, we highlight that in this section we only
refer to two choices A and B for one single piece of
information to introduce the proposed GT model for
the purpose of simplicity. In fact, the GT model is
not only applicable to the situation of two choices,
but also can be used to deal with the situation of
many choices for multiple pieces of information. For
example, the information of HTC phone and iPhone are
propagated in a social network. For an usual user,
s/he may have three possible choices: One is HTC
phone, one is iPhone and neither of the two options.
The proposed GT model is also applicable to this more
complicated case.

5 ALGORITHMS

In this section, we present the algorithms for learn-
ing the parameters of the proposed GT model, and
predicting information diffusion based on the GT
model. Since we have presented our major concept in
Section 4, we here focus on learning global and social
influence, which are used to calculate social payoffs.
To start with the depiction, we suppose that the inputs
consist of a social network and an action log.

5.1 Learning Algorithms

5.1.1 Global Influence

In our work, we learn the global influence of indi-
vidual users from two perspectives: social network’s
topology structure and properties of diffusion cas-
cades. How to calculate the global influence of users
is not the problem we intend to solve in this paper.
Here, we adopt two popular methods to estimate user
global influence. Any other similar method (e.g. out-
degree, betweenness) can also be considered as the
measure of global influences.

Pagerank Algorithm. Google uses the established
pagerank algorithm [36] to calculate the importance
of Web pages purely based on the link structure of
the World Wide Web to improve its search results.

Here, we apply pagerank to the social networks for
influence calculation. In a social network, a node can
be described as a user, and each directed/undirected
edge can be associated with a relation map between
two users. The standard pagerank algorithm has been
exhaustively discussed in the literature, so we omit
their technical details in this paper.

Diffusion Cascades. Diffusion cascades triggered by
the information adopted by a user clearly indicate
the user’s global influence. Therefore, it is reasonable
to link the properties of diffusion cascades with the
measurements of the user’s global influence. To do
this, we first mine the information diffusion cascades
based on the social network and the action log. In
our work, we assume that a user is activated only
once so each node in the diffusion cascades only
has one parent and the diffusion cascades are treated
as diffusion trees. Algorithm 1 illustrates how we
mine diffusion cascades from a social network and
the action log. The algorithm includes a triplet with
information a in a data structure of action table.

Algorithm 1 Illustration of how diffusion cascades
mine.

1: For each piece of information a do
2: action table = ∅;
3: For each user triplet (v, a, tv) in time order do
4: For each user u: (u, a, tu) ∈ action table
5: If (u, v) ∈ E && T (u, v) < tu do
6: Add diff(a, u, v,∆t) to diffusion cascade

of a;
7: Break;
8: End
9: End

10: Add (v, a, tv) to action table;
11: End
12: End
13: return Diffusion cascades;

For a particular piece of information a, we consider
the users activated by this information individually
in a chronological order. For the currently considered
user v, Lines 4-9 are to find user u who diffuses the
information to user v from the users who have been
considered already and included in the action table. It
is clear that these users in the action table have been
activated before user v. The conditions of the diffusion
action that occurs from users u to v are that there must
be an edge from u to v in the social network, which
should be created earlier than when user u is activated
by information a. This is because if there is no social
tie between u and v when u adopts the information, v
would not be able to retrieve the information from u,
and therefore the information is impossibly diffused
from u to v. Once the conditions are satisfied, we save
this information diffusion for user v and then ”break”
in order to consider the user next to v. The ”break”
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Fig. 4: Illustration of mining information diffusion cascades
based on social networks and action logs: (a) shows a
social network containing 5 users and 5 links labeled with
corresponding time, (b) presents the action log of these
five users, and (c) is the corresponding diffusion tree of
information a.

operation in Line 7 ensures that for each user, we only
search for one user who diffuses the information to
the concerned user, so that each node in the diffusion
cascade has at most one parent. If the action table is
defined as a stack, then when we search the table, the
parent we seek will be the last activated user, while
if the action table is defined as a list, the parent we
pursue will be the first activated user. Without this
break operation, we would obtain a diffusion cascade
for each action, unlike a diffusion tree, where one
node may have more than one parent.

Figure 4 illustrates an example of mining the infor-
mation diffusion cascades based on the social network
and the action log. Figure. 4(a) shows a social network
containing five users A, B, C, D and E with five
links between them. The links are labeled with the
times when two users established their relation. The
action log of these five users is presented in Figure.
4(b). By implementing Algorithm 1, we can obtain the
corresponding information diffusion tree as shown in
Figure. 4(c). The edges in this tree are labeled with the
time delay of the information diffused from the parent
node to the child node. Note that even although both
A and E adopted information a, there is no edge
created from A to E in the diffusion tree because the
link between A and E had not been created when A
adopts the information at time 2 and it is impossible
for E to observe A’s actions at that time. On the other
hand, although the edge between D and C is created
before both of them adopt the same information, there
is no edge from D to C in the diffusion tree. Thus,
we obtain B as the parent of C and therefore quit the
parent searching process for node C.

Here, we show a real diffusion cascade triggered
by a microblog in Sina Weibo in Figure 5. The red
spot in Figure 5 represents the user u who releases
the information. The information is reposted by the
followers of user u, and is reposted by the followers
of the followers of user u, so on and so forth. Even-
tually, the diffusion cascade (i.e. Figure 5) is formed.
Algorithm 1 enables us to obtain the diffusion trees
of all the information adopted by a particular user.
Then, Algorithm 2 applies these diffusion trees to the
calculation of the user’s global influence.

Fig. 5: Illustration of a diffusion cascade triggered by a
microblog in Sina Weibo dataset.

Algorithm 2 Global influence computed using diffu-
sion cascades.

1: For each user u do
2: globalu = active personu = 0;
3: For each information a adopted by user u do
4: Add a to Au;
5: For each user pair (p, q) : ∃diff(a, p, q,∆t) ∈

diffusion cascades of u
6: active personu ++;
7: End
8: End
9: If Au = ∅ Then globalu = 0;

10: Else globalu = active personu/|Au|;
11: End

In Algorithm 2, the average size of the diffusion cas-
cades caused by a user’s actions is used as a measure-
ment of the user’s global influence. active personu

denotes the number of the users whose activation is
derived from user u and is normalized by |Au| to
obtain the average size of the diffusion trees caused
by u.

5.1.2 Social Influence
In this work, we present a novel method to calculate
the social influence between two users. We consider
the influence function as a non-negative vector with
length K :

(socialuv(1), socialuv(2), · · · , socialuv(K))

where the kth component socialuv(k) presents the so-
cial influence of user u on its neighbor v at time k. K is
the maximum diffusion time delay, and after this time,
the influence value will drop to zero. For parameter
K , different values are adopted for different datasets
using statistical methods that will be described in
detail in Section 6.

Algorithm 3 describes how we calculate socialuv(k)
based on the diffusion cascades mined from the in-
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Fig. 6: Social influence calculation based on information
diffusion statistics. (a) A social network containing 3 users
and 2 links labeled with their time; (b) Information diffusion
recorded in diffusion cascades; (c) Social influence between
two users.

formation data using Algorithm 1. Lines 1-5 of the
algorithm illustrate the initialization process, where
countuv(k) denotes the amount of information dif-
fused from user u to v at time k and is calculated ac-
cording to the diffusion cascades in Lines 6-8. Finally,
we use |Au| to normalize countuv(k) in order to obtain
the social influence in Line 9-13. By considering the
time series and implementing the calculation based
on the past diffusion statistics, the proposed method
can accurately capture the temporal dynamics of the
social influence between users and thus produce more
reliable prediction.

Algorithm 3 Social influence’s calculation.

1: For each social link (u, v) do
2: For k = 1 to K do
3: socialuv(k) = countuv(k) = 0;
4: End
5: End
6: For each diff(a, u, v,∆t) ∈ diffusion cascades do
7: If k − 1 < ∆t < k Then countuv(k) + +;
8: End
9: For each social link (u, v) do

10: For k = 1 to K do
11: socialuv(k) = countuv(k)/|Au|;
12: End
13: End

Figure 6 shows an example of social influence
calculation using the proposed method. Figure. 6(a)
shows a social network containing 3 users and 2 links
labeled with their time of creation. The table shown in
Figure. 6(b) records the information diffused from the
source user to the target user with a time delay, for
example, the first row can be explained as information
a propagated from user P to Q with a time delay of 1.
In this case, it is obvious that in total user P diffused
three pieces of information (a1, a2, a3), resulting in
|AP | = 3. At the time delay of 1, there is one piece
of information, a1, diffused from P to Q, leading
to countPQ(1) = 1. Meanwhile, the social influence
between P and Q at time delay 1, socialPQ(1) = 1/3,
is shown in Figure. 6(c). At the time delay of 2, there
is one piece of information, a2, diffused from P to
Q, and therefore countPQ(2) = 1 while socialPQ(2) =
1/3. At the time delay of 3, there are two pieces of

information, a1 and a3, diffused from P to R. Thus
countPR(3) = 2, while socialPR(3) = 2/3.

5.2 Information Prediction Algorithm

Based on the GT model proposed in the previous sec-
tion, we here present an algorithm for predicting the
information diffusion process. Our goal is to predict
which node in the social network will be activated at
time t. Then, we adopt three metrics to evaluate the
prediction performance.

The prediction algorithm based on the GT model
is presented in Algorithm 4. This algorithm focuses
on the question of whether a user will perform an
action at time t. For a user u, if s/he has performed
the action, we claim that u is active; if s/he has not
performed the action but at least one of his neighbors
does, we claim that u is inactive. Here, we should note
that if u does not perform the action and none of its
neighbors does, u is not inactive. The prediction part
of Algorithm 4 is to predict the user’s actions at time
t. We compare the payoff of node v assuming s/he
will perform the action influenced by all the active
neighbors (Lines 8-11) with certain payoff, assuming
that v will not perform the action influenced by all
the inactive neighbors (Lines 12-15). k in Lines 9 and
13 give the time delays. For an active user u, tuactive
denotes the time when u performs the action, and
for an inactive user u, we define his time tuinactive by
the latest time when one of his neighbors performed
the action. We construct the profile of information
calculating preference payoff (lines 17-18). Line 19 is
used to combine the social payoff and the preference
payoff. If user v does not adopt information a, s/he
will not get any preference payoff. Thus, we only
add preference payoff to payoffA(v, i, t) but not to
payoffB(v, i, t). If we omit lines 19-20 of Algorithm 4,
this algorithm will become a prediction algorithm
only based on social payoff. The following results
statistics part in Algorithm 4 reveals the evaluation of
this prediction method.

Finally, we claim that our prediction algorithm still
works when the prediction time t is larger than the
parameter K which is the size of social influence
vector. For user u and its neighbor v, the condi-
tion t > K can be divided into two situations: (1)
t − tuactive ≤ K or t − tuinactive ≤ K . In this situation,
based on Algorithm 4, the user u still will be counted
to predict the behavior of user v. (2) t − tuactive > K
or t − tuinactive > K . In this situation, the user u
can not be used to predict the behavior of user v.
However, the probability that this situation occurs
is small because that the parameter K is decided
based on real dataset analysis such that most of time
delays between two users’ behaviors are less than
K . Therefore, our method still can predict one user’s
behavior based on most of its neighbors’ behaviors
when t > K .
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Algorithm 4 Information diffusion prediction.

1: For each information i in testing dataset (adoping
information i as choice A, otherwise as choice B)
do

2: Initialization: TP = FN = FP = TN = 0;
3: For each inactive user v
4: //prediction part
5: P soc

A (v, t) = 0;
6: P soc

B (v, t) = 0;
7: For each link related with v, (u,v) do
8: If u is active do
9: k = [t− tuactive];

10: P soc
A (v, t) = P soc

A (v, t) + socialuv(k) ∗
personalu;

11: End
12: If u is inactive do
13: k = [t− tuinactive];
14: P soc

B (v, t) = P social
B (v, t) + socialuv(k) ∗

personalu;
15: End
16: End
17: Construct profiles of information i and user

v;
18: Get user v’s preference payoff P pre

v,A ;
19: PA(v, i, t) = P soc

A (v, t) + β ∗ P pre
v,A ;

20: PB(v, i, t) = P soc
B (v, t);

21: If PA(v, i, t) ≥ PB(v, i, t)
22: Then v is active;
23: Else v is inactive;
24: //results statistics part
25: If v’s real status is active && the prediction

result is active Then TP ++;
26: If v’s real status is active && the prediction

result is inactive Then FN ++;
27: If v’s real status is inactive && the prediction

result is active Then FP ++;
28: If v’s real status is inactive && the prediction

result is inactive Then TN ++;
29: End
30: End

Evaluation. We adopt three measurements to e-
valuate the proposed prediction method, which are
Precision, Recall and F1-Measure. Precision is the ratio
of the number of the predicted active users that are
also activated actually to the total number of predicted
active users. Recall is the ratio of the number of the
predicted active users that are also activated actually
to the total number of users who are activated actual-
ly. F1-Measure is the harmonic mean of precision and
recall. The specific calculation formulas of the three
measurements are as following:

Precision = TP/(TP + FP )
Recall = TP/(TP + FN)
F1 = 2 ∗ Precision ∗Recall/(Precision+Recall)

(6)

where TP stands for true positive, FN false negatives,

FP false positive and TN true negative. In our prob-
lem setting, we ignore the cases that none of the user’s
neighbors is active and we only consider the users
for whom at least one neighbor is activated by the
information before him. Under this presupposition,
we denote TP as the number of users who are actu-
ally activated by the information and our prediction
method gives the same predicting results, FP as the
number of users who are in fact not activated by the
information but are predicted to be activated, TN as
the number of users who are actually not activated by
the information and our model also predicts them to
be not activated, and FN as the number of users who
are activated by the information in reality but not in
the model’s prediction (see the results statistics part of
Algorithm 4).

6 EXPERIMENTS

The GT model proposed in this work for informa-
tion diffusion prediction can be generally applied to
different types of social networks. In this section, we
present various experiments to evaluate the rational-
ity and effectiveness of our model.

6.1 Experimental Setup

Datasets. Given the social network and action logs as
inputs, we evaluate the proposed GT model against t-
wo different genres of real-world datasets: Sina Weibo
and Flickr.

• Sina Weibo. This dataset is crawled from Sina
Weibo by an open API interface. First, we use
the snowball sampling technique to obtain a set
of quality users, who mutually form a reasonably
large connected component. Specifically, we se-
lect 5 seed users related to the Internet field and
collect the friends of these seed users and further
to the friends’ friends. We ultimately obtained
251,639 users and 4,359,915 edges in the social
network. Second, we collect approximately 30
million microblogs published by the 251,639 users
from 11/07/2011 to 11/28/2011.

• Flickr. This dataset was collected and used in
the work of [38]. The authors crawled the Flickr
social network once per day for the period of
104 consecutive days between November 2 and
December 3 in 2006 and February 3 and May
18 in 2007. They collected 2.5 million users and
33 million links in total. They also collected user
behaviors, consisting of approximately 34 million
favorite-markings over 11 million distinct photos.

Figure 7 presents the distributions of diffusion cas-
cade sizes in two datasets. The long-tail shapes of
two distributions mean that the size of most diffu-
sion cascades is small, and only a small number of
information get a large diffusion scale. We split each
dataset into a training dataset and a testing dataset
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(b) Flickr dataset

Fig. 7: The distributions of diffusion cascade sizes on Sina
Weibo and Flickr datasets.
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(b) Flickr dataset

Fig. 8: Information diffusion quantity distributions over
time delay for the Sina Weibo and Flickr datasets, respec-
tively.

according to the available information. The training
dataset is used to learn the proposed model, while
the testing dataset is used for evaluation.

In the Sina Weibo dataset, the diffusion information
refers to microblogs. If a user posts or forwards a
microblog, this user is activated by the microblog.
Considering the properties of the Sina Weibo dataset,
we set one hour as a time step. In the Flickr dataset,
the diffusion information refers to photos. If a user
posts or marks a photo as his/her favorite, then
this user is activated by the photo. We observe that
the speed of information diffusion in Flickr is much
slower than that in Sina Weibo, and therefore set three
days as the Flicker’s time step.

Parameter K is the size of non-negative vector
used to present social influence. From algorithm 4,
the larger the parameter K , the higher the prediction
accuracy, but the more running time; the smaller the
parameter K , the lower the prediction efficiency, but
the less running time. Thus it can be seen that, K
is an important parameter for the balance between
prediction accuracy and efficiency. How to determine
the size K of non-negative vector used to present
social influence is a key problem. In our experiments,
we set the value of parameter K based on the statistic
analysis on real diffusion data.

For each dataset, the maximum diffusion time delay
K will adopt different values in the social influence
function. Figure 8 shows the distributions of informa-
tion diffusion quantity over a time delay in the Sina
Weibo and Flickr datasets respectively, both of which
have a long-tail shape. In the Sina Weibo dataset,

81.5% of diffusion actions are performed with a time
delay of less than 24 hours, and hence we set the
parameter K to 24. In the Flickr dataset, 85.0% of
diffusion actions are performed with a time delay of
less than 90 days, and we set the parameter K to 30.

We make use of information released or reposted
by user u to calculate the preference payoff in Sina
Weibo dataset. Because the Flickr dataset does not
contain any text information about users, here we
adopt an alternative solution where users and photo
are both profiled by user ID vectors. For a photo
i, we adopt the IDs of users who have marked the
photo as favorite to profile photo i. Each user usually
makes several photos, and each photo corresponds to
a profile consisting of the user ID. For a user u, we
collect all IDs of users who marked the photos marked
by user u to profile user u. After obtaining the profiles
of users and profiles, the cosine similarity between
these profiles, is used as the preference payoff.

Comparison methods. Here, we compare the pro-
posed GT model against the most similar one in the
literature [35], where two time-dependent models, CT
model and DT model, are presented for capturing
social influence (or influence probability) and applied
together with the general threshold model to predict
time-dependent information diffusion. Since the CT
model provides better prediction performance than
the DT model in [35], to show the improvement, we
compare our proposed method against the method of
combining the CT model with the generalised thresh-
old model. In addition, in our model, we adopt two
methods with different parameter setups, pagerank
and diffusion cascades, to calculate the user’s global
influence. This experiment is designed to illustrate
how the accuracy of model parameter affects the mod-
el performance, thus proving the rationality of our
proposed model. In addition, we compare the method
using both social payoff and preference payoff with
the method using social payoff only. Specifically, The
methods evaluated and compared in our experiments
are as follows:

• Method 1: baseline method combining the CT
model [35] with the general threshold model for
prediction.

• Method 2: in the GT model, we use pagerank to
estimate global influence and only make use of
social payoff for prediction.

• Method 3: in the GT model, we use diffusion
cascades to estimate global influence and only
make use of social payoff for prediction.

• Method 4: in the GT model, we use pagerank to
estimate global influence and combine social pay-
off and preference payoff together for prediction.

• Method 5: in the GT model, we use diffusion cas-
cades to estimate global influence and combine
social payoff and preference payoff together for
prediction.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

 ! " # $ % &

'(''

'(' 

'('!

'('"

'('#

'('$

'('%

'('&

'(')

'('*

'( '

 
!
"
#
$
%
$
&
'

 !"#$%&#'$()$*+,-.

$"#&*+/$)

$"#&*+/$0

$"#&*+/$1

$"#&*+/$2

$"#&*+/$3

 ! " # $ % &

'(''

'('$

'( '

'( $

'(!'

'(!$

'("'

'("$

'(#'

'(#$

'($'

'($$

'(%'

 !"#$%& '

 !"#$%& (

 !"#$%& )

 !"#$%& *

 !"#$%& +

 
!
"
#
$
$

,-!" .#"/ 0' $%123

 ! " # $ % &

'(''

'(' 

'('!

'('"

'('#

'('$

'('%

'('&

'(')

'('*

'( '

'(  

'( !

'( "

'( #

'( $

'( %

'( &

 !"#$%& '

 !"#$%& (

 !"#$%& )

 !"#$%& *

 !"#$%& +

 
!
"
#
$
%
&
'
(
$

,-!" .#"/ 0' $%123

Fig. 9: Prediction performance using different approaches and metrics on the Sina Weibo dataset at the microscopic view.
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Fig. 10: Prediction performance using different approaches and metrics on the Flickr dataset at the microscopic view.

6.2 Experiments results

Prediction Performance. For each piece of infor-
mation a in the testing dataset, given its diffusion
progress before time t (from time 0 to t− 1), our goal
is to predict which node will be activated at time t.

Figures 9 and 10 show the prediction performance
of these different approaches with different metrics at
7 time steps (times 2-8) for the Sina Weibo and Flickr
datasets, respectively. In these two figures, red curves
(method 1) present the results of the baseline method,
green curves (method 2 and method 3) present the
results of the GT model using social payoff, and blue
curves (methods 4 and 5) present the results of the GT
model using both social payoff and preference payoff.
The curves with triangles (methods 2 and 4) present
the results of the GT model adopting pagerank val-
ues as global influence, and the curves with squares
(methods 3 and 5) present the results of the GT model
adopting the property of diffusion cascades as global
influence.

From figures 9 and 10, we find that the proposed
GT model (methods 2–5) consistently outperforms
method 1 [35] that combines the CT model and the
general threshold model. The prediction of informa-
tion diffusion in [35] highly depends on the activation
threshold of users, which is hard to set up. The
same activation threshold value is assigned for all
the users, but different users actually have different
activation thresholds. Therefore, the prediction per-
formance of [35] is relatively poor. In contrast, our
model, which strategically considers all the interactive
users and preference of users, improves the prediction
performance dramatically.

Figures 9 and 10 present that the GT model that

uses the diffusion cascades method for global in-
fluence calculation achieves better prediction perfor-
mance than the pagerank method. This is mainly
because that the pagerank method only analyzes the
topology structure of the network, while diffusion
cascades are mined from both the network struc-
ture and user behaviors. Thus, the diffusion cascades
method can provide more accurate influence values
than the pagerank method. These results demonstrate
that when our model has more accurate parameters,
it performs better in the prediction task.

Moreover, the blues curves with triangles or squares
are in higher positions than the green curves with
the same symbols in Figures. 9 and 10. This indicates
that preference payoff is supportive to information
diffusion prediction. We also notice that preference
payoff helps recall more than precision. This is be-
cause that preference payoff is only added to active
payoffs but is not added to inactive payoffs. The GT
model predicts that more users will adopt informa-
tion. This causes the values of TP and FP to increase
but the value of FN does not change. Methods 4 and
5 adopt different global influence, leading to different
social payoffs. Thus, in the process of combining social
payoff and preference payoff, we set different β values
in order to optimize the prediction results. Figures 9
and 10 show the best results that we have obtained.

As shown in Figures 9 and 10, the measurements
of [35] decrease over time, demonstrating the deteri-
oration of the prediction ability over time. In [35], a
critical task for predicting the node v’s behavior is to
find a node u among the v’s neighbors such that when
u is activated, the joint influence of all the v’s active
neighbors on v is for the first time greater than the
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Fig. 11: Prediction performance using different approaches
at the macroscopic view on Sina Weibo and Flickr datasets.

activation threshold of v. Then, the prediction method
in [35] indicates that v will be activated before time
tu+τu,v . However, the node u may not be the user who
actually triggers the v’s activation. In the early stage,
the range of information diffusion is small, and there
are fewer active nodes around v. Thus, the user u has
a larger probability of being the user that triggered v’s
activation. As time increases and the diffusion range
becomes larger, more nodes around v are getting acti-
vated and therefore the probability of user u being the
real user that triggered the v’s activation decreases.
The prediction for the node v’s activation time, which
highly relies on node u, will cause a large deviation.
In contrast, our model, as shown in the upper two
curves in Figures 9 and 10, can achieve better and
time-independent performance. This is because, in our
model, the prediction of a node’s behavior does not
rely on the activation time of any particular neighbor.
Instead, this prediction is made by combining both
the active and inactive nodes to accurately measure
the payoffs for different choices and thereby increases
the reliability of prediction.

Figures 9 and 10 present the prediction performance
of different methods at the microscopic view. More-
over, we also compare these methods at a macro-
scopic view. Specifically, we do statistical analysis of
all individual prediction behaviors to get the overall
diffusion scale, then calculate the ScaleError based
on Eq. 7 which is a macroscopic metric.

ScaleError =

√
∑

i∈test(PreScale(i)−RealScale(i))2
√
∑

i∈test(RealScale(i))2

(7)
In Eq. 7, PreScale(i) is the diffusion scale of

information i that different methods predict, and
RealScale(i) is the scale of the real diffusion process
of information i. Figure 11 presents the prediction
performance of the baseline method and our two
best approaches in terms of the ScaleError metric
on the Sina Weibo and Flickr datasets. The smaller
ScaleError value, the better prediction performance.
The prediction results at the macroscopic view are
similar to those at the microscopic view. Our method
achieves better prediction performance than the base-
line method.

(a) (b) (c)

Fig. 12: An real case of the diffusion prediction using the
GT model in Sina Weibo. (a) the diffusion process at time t,
(b) the real diffusion process at time t+1; (c) the prediction
diffusion process at time t + 1. The blue color means the
node was activated before time t; the red color means the
node is truly activated at time t+1; the yellow color means
that the node is not truly activated at time t + 1 but it is
predicted to be activated.

A real case study. We analyze our GT model using
a real case study which is presented by Figure 12.
In Figure 12, subfigure (a) is the diffusion cascade of
one tweet in Sina Weibo at time t, subfigure (b) is the
real diffusion cascade of the tweet at time t + 1, and
subfigure (c) is the diffusion cascade of the tweet at
time t + 1 predicted by our model. Comparing the
subfigure (b) with subfigure (c), we can see that our
model can successfully predict most real activated
users, while, to a slight extent, also predicts some
users to be active who are not activated in fact. How
to reduce these false predicted activated users is our
further work.
Running time. In our experiments, we also test the
running time of the proposed method. The running
time mainly contains two parts: running time of pa-
rameters (e.g. global influence and social influence)
learning and running time of diffusion prediction.
When we predict the behavior of a user, we only use
the information of the user’s neighbors. Therefore, the
running time of the prediction is not related much to
the size of social network, and the prediction process
is usually very fast. Parameters learning takes most
running time of the experiments. Therefore, here, we
test the running time of parameters learning on two
datasets which are presented in table 2.

From table 2, we can see that learning the global
influence parameters only needs several hundreds
seconds or less on the networks with tens of millions
of edges, and learning social influence parameters
takes similar time on the diffusion logs containing
tens of millions of user behaviors, which validates the
efficiency of our method. We also notice that learning
the social influence parameter on Sina Weibo is faster
than that on Flickr, which is caused by the characteris-
tic of the dataset. The Sina Weibo dataset directly pro-
vide the reposting behaviors between users, however,
the Flickr dataset does not own similar information.
Therefore, we need to use Algorithm 4 to extract the
behaviors of information diffusion, which needs more
time. As seen from the running time, our method
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TABLE 2: Running time of parameters learning.(Sec)

pagerank cascade size social influence

Sina Weibo 80.788 305.154 164.790

Flickr 633.484 647.887 1345.675

is fast and scalable. Some methods [31], [32] need
too much running time, so we do not compare our
method with them. The method in the literature [35] is
most related to our work and also efficient, therefore,
we consider it as the baseline in the experiments.

7 CONCLUSIONS

We have presented a novel information diffusion
model (i.e. GT model) in this paper. It treats the
nodes of a social network as autonomous, intelligent
and rational agents, and jointly considers all of the
interacting users and their preferences in the social
network to make strategical decisions. By introducing
the time-related user payoffs based on actual diffu-
sion data, the proposed GT model has the capability
of predicting the temporal dynamic of information
diffusion process. User payoffs contain social payoff
and preference payoff. Both the global influence of
users and social influence between users are exploited
for the calculation of user payoffs, where the social
influence is presented in a novel manner by a non-
negative vector of a fixed length that can fully capture
complex dynamics of the user interaction. The simi-
larity between the information and user preference is
considered as preference payoff in this paper. Finally,
we present the proposed algorithm for information
diffusion prediction based on the proposed GT model.
Experimental results on different genres of datasets
with different evaluation metrics have justified the
proposed prediction method.

Several challenges remain. In this work, we adopt
a simple vector space model to profile users and
information. In the future, we may adopt Linear
discriminant analysis (LDA) to construct user profile
and information profile to obtain better performance.
Besides that, an effective method can be further de-
signed to calculate preference payoff for the newly
arriving users who do not have any post, and explore
how to update the preference payoff of users. Final-
ly, our current work considers the social networks
where information propagates are static. However,
both nodes and links in social networks are changing
over time. Modeling information diffusion in dynamic
social networks is a more challenging problem which
will be further studied in our future work.
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