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Abstract

Previous studies for menu and Web search tasks have suggested differing advice on the optimal
number of selections per page. In this paper, we examine this discrepancy through the use of
a computational model of information navigation that simulates users navigating through a Web
site. By varying the quality of the link labels in our simulations, we find that the optimal structure
depends on the quality of the labels and are thus able to account for the results in the previous
studies. We present additional empirical results to further validate the model and corroborate our
findings. Finally we discuss our findings’ implications for the information architecture of Web sites.
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1 INTRODUCTION

The World Wide Web continues to revolutionize how people obtain information, buy products,
and conduct business transactions. Yet many companies and organizations struggle to design
Web sites that customers can easily navigate to find information or products. Consequently, the
identification of factors that affect the usability of the World Wide Web has become increasingly
important. While many of these factors concern the graphical layout of each page in a Web site,
the structure of linked pages, often called the site’s information architecture, plays a decisive role in
the site’s usability. The importance of information architecture is attested by the large number of
books and articles offering advice on how to best structure information in a Web site (e.g. Rosenfeld
& Morville, 1998; Shneiderman, 1998, Larson and Czerwinski, 1998).

Our effort focuses on understanding how a site’s information architecture impacts a user’s ability
to effectively find content in a linked information structure such as a Web site. There have already
been a number of empirical studies that evaluate a variety of hierarchical structures in terms of
the fastest search times. Most studies have involved menu selection tasks (see Norman, 1991, for a
review) but a few have involved Web navigation (e.g. Larson & Czerwinksi, 1998).

Assuming unordered lists of selections, empirical results of menu search experiments consistently
favor structures with approximately 8 selections per page (Norman, 1991). Structures with as many
as 8 selections per page produce faster search results than deeper structures with fewer selections
per page (Miller, 1981; Snowberry, Parkinson, & Sisson, 1999; Kiger, 1984); broader structures with
more than 8 selections per page produce slower search times (Miller, 1981; Snowberry et al., 1999)
unless the pages have naturally organized selections in numeric or alphabetical order (Landauer &
Nachbar, 1985) or were naturally grouped in categories (Snowberry et al., 1999). These empirical
results are corroborated by a theoretical analysis of hierarchical structures, which suggests that the
optimal number of selections per page ranges from 4 to 13, assuming a linear self-terminating search
in each page and a reasonable range of reading and key-press times (Lee & MacGregor, 1985).

Despite the apparent similarity of menu selection and Web navigation, results from a study
using Web pages appear to be at odds with the conclusions drawn from the menu selection studies.
Larson and Czerwinski (1998) examined user search times in Web pages of differing hierarchical
depth. In contrast to the results from the menu selection studies, they found that users took
significantly longer to find items in a three-tiered, eight-links-per-page (8x8x8) structure than in
comparable two-tiered structures with 16 and 32 links per page (16x32 and 32x16).

In this article, we examine the apparent discrepancy between the results from menu selection
studies and the result from the Web navigation study by Larson and Czerwinski. Some evidence
suggests that this discrepancy may be due to the quality of the labels. Miller (1981) reported that
selection errors occurred less than 1% of the time for the 8x8 structure used in his menu selection
study. In contrast, Larson and Czerwinski report a frequent backtracking in their Web navigation
study. Presumably, the quality of the labels was relatively clear and unambiguous in Miller’s menu
selection study as compared to those in the Web navigation study. If so, a possible interaction
between information structure and label quality might account for the discrepancy between the
studies.

In order to investigate effects of information structure and the quality of the selection labels,
we employ a working computational model of Web site navigation. This model simulates a user
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navigating through a site by executing basic operations such as evaluating links, selecting links
and returning to the previous page. To the extent that the model’s behavior is similar to those of
human users, we can learn how varying the structure and the quality of labels affect how long it
takes to find items in a Web site. By modeling different levels of label ambiguity, our simulations
can show the effect of label ambiguity and the extent to which it interacts with the structure of
the Web site.

Already computational models have been used to highlight patterns of interactions with a
browser (Peck & John, 1992) and report on the accessibility of the site’s content (Lynch, Palmiter, &
Tilt, 1999). More recent developments include models that predict user behavior or identify us-
ability problems based on the choice of links on each page (Blackmon, Polson, Kitajima, & Lewis,
2002; Chi, Rosien, Supattanasiri, Williams, Royer, Chow, Robles, Dalal, Chen, & Cousins, 2003;
Pirolli & Fu, 2003). Constructing and testing a working model complements empirical studies by
offering distinct advantages over empirical testing. Empirical studies are generally expensive and
time consuming when they attempt to address the wide range of content, configurations, and user
strategies that characterize the Web. In contrast, an implemented model can run thousands of
simulated sessions in minutes. Also, empirical studies do not inherently provide explanations for
their results and thus make it more difficult to determine how a given result generalizes to other
circumstances, whereas a cognitive model embodies and thus describes the underlying processes
that produce behavior.

One of our goals is to show the viability of a computational model of information navigation and
demonstrate its usefulness in developing a better understanding of how information architecture
affects Web navigation. Moreover, we want to use the insight coming from our model for producing
sound advice to Web site designers on how to successfully structure their sites. Also, by simulating
user actions, including those needed to recover from selecting misleading links, the model estimates
navigation costs under a variety of conditions. We ultimately want to use these costs for identifying
effective information architectures. With this goal in mind, we call our model MESA (Method for
Evaluating Site Architectures).

We start our presentation of MESA by describing how it models Web navigation. Next, we
show how MESA’s performance explains results from the empirical studies and makes sense of the
seemingly contradictory findings. We simulate different levels of link reliability. At one level of link
reliability, the MESA’s performance is consistent with the Larson and Czerwinski results. However,
for structures with highly reliable links, MESA’s performance is consistent with results from menu
selection studies.

We then present results from our own user study. We use some of these results to corroborate
one of MESA’s predictions from the previous section. Finally, we use all of these results to perform
a detailed comparison between MESA’s performance and the empirical results. We have previously
presented descriptions of our model and some initial comparisons to empirical studies (Miller &
Remington, 2000, 2001). For completeness, we fully review the model and describe the initial
comparisons before we present the detailed comparisons.
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2 MODELING INFORMATION NAVIGATION

Our goal is to simulate common patterns of user interaction with a Web site to provide useful
usability comparisons between different site architectures. A model that precisely replicates a user’s
navigation is not possible, nor do we believe it to be necessary. Rather, a model that employs
common usage patterns and simulates them with reasonable time costs can predict and explain
benefits of one design over another, such as when it is advantageous to use a two-tiered structure
instead of a three-tiered structure.

Since completeness is not possible, process abstraction plays an important role in representing
the environment and the human user. Abstraction is used principally to restrict our description of
user processing, representing only its functionality. We guide abstraction and model construction
with the following principles:

• The limited capacity principle: The model should only perform operations that are within
the physical and cognitive limitations of a human user (Broadbent, 1958). For example,
limitations of visual attention led us to constrain the model to only focus upon (and evaluate)
one link phrase at a time (Neisser, 1967). Also, limitations of short-term memory led us to
prefer search strategies for our model that require retaining less information over those that
require more. In this way we construct our model so that it minimizes memory requirements
unless compelling principles or observations indicate otherwise.

• The simplicity principle: The model should make simplifying assumptions whenever possible.
The simplicity principle led us to add complexity only if the added complexity was needed
to account for observed behavior that is otherwise being systematically misrepresented. For
example the model takes a fixed amount of time to evaluate a link even though the times
of human users are certainly variable. Since the model simulates the average user, this
simplification will still provide a good approximation given a reasonable estimate of fixed
time from human performance data.

• The rationality principle: The model should assume that human cognition is generally ratio-
nal within the bounds for limited human information processing (Anderson, 1990; Pirolli &
Card, 1999). This led us to model options that are the most effective strategy for a given
environment unless compelling evidence from human usage suggests otherwise. For exam-
ple, given the large set of navigation strategies that can operate within reasonable physical
and cognitive limitations, we consider the most effective strategies that obey the first two
principles above.

2.1 Representing a Web Site

MESA interacts with a simplified, abstract representation of a Web browser and a Web site.
Each site has one root node (i.e. the top page) consisting of a list of labeled links. Each of these
links leads to a separate child page. For a shallow, one-level site, these child pages are terminal
pages, one of which contains the target information that the user is seeking. For deeper, multi-level
sites, a child page consists of a list of links, each leading to child pages at the next level. The bottom
level of all our sites consists exclusively of terminal pages, one of which is the target page. Our
examples are balanced trees since we generally compare our results to studies that use balanced tree
structures (e.g. Miller, 1981; Larson & Czerwinski, 1998). However, our representation does not
prevent us from running simulations on unbalanced trees, or even on structures involving multiple
links to the same page and links back to parent pages.
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Figure 1: Site with clear link labels leading to target
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When navigating through a site, a user must perceive link labels and gauge their relevance to
the targeted information. While the evaluation of a link is a complex and interesting process in
itself, we do not model the details of this process. Instead, our interest centers on the consequences
of different levels of perceived relevance. As a proxy, we fix a number for each link label, which
represents the user’s immediately perceived likelihood that the target will be found by pursuing this
link. This number ranges in value between 0 and 1. A value of 1 indicates a link where the user is
certain that selecting it will lead to the target. A value of 0 indicates a link where the user is certain
that selecting it will not lead to the target. These relevance values do not necessarily correspond
to probabilities since the probability of selecting a link partially depends on which links the user
first evaluates on a page. The usage of subjective relevance has its precedence in previous work
on exploratory choice (Young, 1998). For work specific to Web navigation, our treatment of link
relevance is similar to the concept of residue (Furnas, 1997) or information scent (Pirolli & Card,
1999). It most closely matches the construct of “proximal scent” (Chi, Pirolli, Chen, & Pitkow,
2001).

In an ideal situation, the user knows with certainty which links to select and pursue. Figure 1
represents such a site. The rectangles represent Web pages that contain links (underlined numbers)
to child and parent pages. The numbers on links are the link label’s relevance to the targeted item,
which we define as the user’s perceived likelihood that the link is on the path to the target. The top
page for this site contains four links where the third link, labeled with a 1.0, eventually leads to the
targeted page. Of the eight terminal pages, the page represented by the filled rectangle contains
the target information. In our terminology, this example site has a 4x2 architecture, where 4 is the
number of links at the top-level and 2 is the number of links on each child page. For this site, the
user need only follow the links labeled with a 1.0 to find the targeted page with no backtracking.

Figure 2 shows an example of a simple two-level site with links whose relevance to the target is
less certain. The top page in this figure contains four links labeled with numerical relevance values
of .0, .4, .7 and .0 that represent the user’s belief that the path associated with a given link contains
the target information. As before, a user strategy that merely followed the most likely links would
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Figure 2: Site with some ambiguity added to link labels
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Figure 3: Site with misleading labels
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directly lead to the target. Note that the relevance values at any level do not necessarily add to 1.
At one extreme, every link at one level could be labeled with a 1, which would represent a user’s
belief that every link should lead to the desired target.

Figure 3 shows possibly the same site with a different user for whom the meaning of the labels
differs from the user in Figure 2. Here the link labels would probably mislead this user away from
the target. In this way it is possible to represent sites that differ widely in how well their labels
lead users to the targeted item.
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2.2 Modeling the Browser and User Actions

To identify common usage patterns important to Web navigation, we use results from a study
by Byrne, John, Wehrle and Crow (1999), who found that selecting a link and pressing the Back
button accounted for over 80% of the actions used for going to a new page. Consequently, we
have focused on these behaviors and identified component actions underlying them. These actions
include:

• Selecting a link

• Pressing the Back Button

• Attending to and identifying a new page

• Checking a link and evaluating its likelihood

For present purposes, our model can be further simplified by combining the action of attending
to and identifying a new page and folding them into the actions of Selecting a Link and Pressing the
Back Button since this action only occurs when either of these actions occur. Our revised model
has three primitive actions:

• Selecting a link (and attending to and identifying a new page)

• Pressing the Back Button (and attending to and identifying a new page)

• Checking a link and evaluating its relevance

Because of physical and cognitive limitations, only one of these actions can be performed at any
one time. Fixed times are assigned to each action to account for its duration during a simulation.
The model also simulates changing the color of a link when it is selected so that the modeled user
can “perceive” whether the page under this link was previously visited.

2.3 Modeling Navigation Strategies

MESA navigates a Web site by serially executing these three primitive actions. It checks and
evaluates links one at a time. Serial evaluation (Neisser, 1967) is motivated by evidence that the
human user has a single unique focus of attention (Sperling, 1960; Posner, 1980) that must be
directed at the link for this decision (McCann, Folk, & Johnston, 1992; Johnston, McCann, &
Remington, 1995).

A user may pursue any number of strategies for evaluating and selecting a link. However, by
following the rationality principle, we consider two plausible strategies that minimize the amount
of time for finding the target:

• The threshold strategy: The user immediately selects and pursues any link whose probability
of success exceeds a threshold.

• The comparison strategy: The user first evaluates a set of links and then selects the most
likely of the set.

7



2.3 Modeling Navigation Strategies Modeling Information Navigation 8

The threshold strategy is most effective if the first likely link actually leads to the targeted object.
The comparison strategy is more effective only if a likely link is followed by an even more likely
link that actually leads to the targeted item. Depending on the circumstances, either strategy may
be the most effective. However the comparison strategy requires the user to remember the location
and value of the best link in order to effectively return to it and select it. Consequently, we first
examine the threshold strategy on the principle that it requires the fewest computational (cognitive)
resources. Only if the threshold strategy provides an insufficient account of user behavior, we will
consider more complex strategies such as the comparison strategy.

MESA is neutral as to the actual order in which the links are evaluated. The design and layout
of a page principally determine which links a user would evaluate first. Any understanding of how
page layout and design affect the user’s focus could eventually be incorporated into our model.
With our current focus on the site structure, MESA’s representation establishes a fixed order in
which links are evaluated for each run. For our simulations, we can remove the effect of order by
randomly ordering links for each run and then taking performance averages across many runs.

With the appearance of a new page, MESA’s threshold strategy first attends to the page, which,
if it is a terminal page, includes checking if it contains the target information. If it does not, the
model sequentially scans the links on a page selecting any link whose likelihood is equal to or above
a fixed threshold (0.5 in the simulations reported below). When a page appears by selecting a link,
the process of checking and scanning the page is repeated.

Once MESA detects no unselected links above the threshold value, it returns to the parent page
by pressing the Back button and continues scanning links on the parent page starting at the last
selected link. It does not scan links it has already evaluated. Determining the last link selected
places no demands on memory since the last selected link is easily detected by its color, and many
browsers return the user to the location of the last selected link.

So far, for our description, MESA only selects links that will probably lead to the targeted item.
However, sometimes the targeted item lies behind ostensibly improbable links and, after some initial
failures, human users must start selecting links even if the link labels indicate that they will probably
not lead to the targeted item. Earlier versions of our model (Miller & Remington, 2000) started
selecting improbable links only after completing a full traversal of the site. We will call this the
traverse-first strategy. However, a more effective strategy would opportunistically select improbable
links at a lower tier immediately after trying the more probable links and before returning to a
higher tier in the site. We call this the opportunistic strategy (Miller & Remington, 2001). We
adopted this strategy in part based on observed human behavior (see Miller & Remington, 2001),
but also because of its effectiveness.

Figure 4 illustrates how the opportunistic strategy may be more effective. MESA scans across
the top page and selects the second link (0.7). On the second level it selects the first link it
encounters (0.5). After discovering that this is not the targeted item, it returns to the page on
the second level. However, before returning to the top level, it reduces its threshold to 0.1, selects
the second link (0.2) and finds the target on the new page. Had the targeted item been elsewhere
in the site, the strategy would have MESA back up twice in order to return to the top level. In
order for MESA to restore the threshold to the previous value (0.5), it would need to retain this
value across two additional levels of pages. In following our design principle of minimizing memory
requirements, we assume that users cannot store and then reset threshold values after traversing
multiple pages. Elsewhere we have presented results showing that adding this capability to the
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Figure 4: Site for demonstrating the opportunistic strategy
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model has some marginal impact on three-tiered structures (Miller & Remington, 2001).

The opportunistic strategy is a more effective strategy than the traverse-first strategy because it
implicitly takes into account the positive evaluation of the parent link, which had indicated that the
targeted item was probably under one of the links of the current page. Moreover, the opportunistic
strategy explores the less probable links when the cost of doing so is minimal, that is, when the
less probable links are immediately available. We further qualify when the opportunistic strategy is
used. In some cases, a user may scan a page of links and determine that not even one of these links
have the remote possibility of leading to the targeted item (defined as a relevance values of less than
0.1). In this case, our model assumes that the user has the memory to support the realization that
rescanning the page would be futile. Instead of employing the opportunistic strategy, the model
returns to the parent page. This memory of knowing that the page has nothing worthwhile only
lasts as long as the model remains on the current page. Thus, if MESA leaves the page and then
returns to this same page, the model must assume that the page may be worth rescanning and the
opportunistic strategy is employed. This qualification is also consistent with our design principles
in that it contributes to an effective strategy while minimizing memory resources.

Figure 5 provides a flowchart for the major actions and decisions of the opportunistic strategy.
The flowchart starts when MESA attends to a new page of links and leaves the flowchart by selecting
a link or returning to the previous page. Starting at the first link on a page, MESA iteratively
evaluates each link. If the link relevance exceeds the current threshold, it selects that link and the
process starts again at the new page. When MESA reaches the last link on the page, the flowchart
shows how MESA may rescan the page at a lower threshold unless its memory indicates that it
did not pass any marginally relevant links (note that this memory is lost if it leaves the page, in
which case it will always rescan if it can lower the threshold). When MESA returns from a page,
it continues the scan starting at the last selected link.
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Figure 5: Flowchart summarizing the opportunistic strategy
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2.4 Detailed Example

To illustrate how MESA navigates a structure, we review a detailed example. Figure 6 depicts
a structure that we have deliberately created in order to demonstrate a complete set of the model’s
properties. The bottom level of pages consists of only reliable link labels, which corresponds to
most structures we will study in this paper. To keep the example simple, we reduced the number
of links per page to be less than what is in a typical Web site. This example has some deceptively
relevant links and MESA needs to perform extensive backtracking before it finds its target. The
top level has two deceptively relevant links (valued at .5 and .6). The first of these requires minimal
backtracking, but the second link leads to a page with one marginally relevant link (valued at .2).
Here we will see that MESA undergoes a substantial amount of backtracking before it returns to
the top and selects the link that eventually leads it to the target.

Figure 7 presents the component actions of the model as it navigates this structure. For this
trace, we will assume that the original threshold is set to 0.5 and the secondary threshold is set
to 0.1. At the top level, it first selects the deceptive link valued at 0.5. When Page B appears,
it first scans the page at the original threshold. Because no links are above the threshold, none
are selected. Moreover, because no marginally relevant links were encountered, MESA backs up to
Page A without rescanning the links. Because MESA only descended one page and did not lower
the threshold, it returns to Page A with the original threshold, valued at .5.

MESA then evaluates the deceptively relevant link valued at .6. After Page C appears, it first
scans the page at the threshold of .5. On the first scan, no links are above the threshold, but it
does note the marginally relevant link valued at .2. Finding marginally relevant links on the first
scan, it lowers the threshold to .1 and scans Page C again. This time it selects the link valued at
.2, which leads to Page H. Page H requires only one scan to determine that it has no relevant links.
MESA returns to Page C. It evaluates the second link valued at .0 before returning to Page A.

By the time MESA returns to Page A, it has visited two pages across two levels. With its

10
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Figure 6: Structure for detailed example
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memory limit, it can no longer restore the threshold to its previous value. It thus continues the
scan of Page A at the lower threshold value of .1. It now selects the link valued at .2, which leads
to Page D and Page J before it backtracks to Page A. Finally, the next link, valued at .9, leads to
the target.

This navigation requires 19 link evaluations, 8 link selections and 5 Back actions. In the next
section, we will provide time constants to each of these actions in order to predict the total nav-
igation time. In addition to the user actions, both the link selection and the Back action should
include the system response time needed for having the next (or previous) page appear. The model
can thus account for a slow network response by using larger time values for the action of link
selection.

This example also illustrates how structure, link relevance and cognitive limitations can interact
to increase the number of actions needed to find a target. Compared to a two-tiered structure,
a three-tiered structure has fewer links per page. When the link labels are reliable, the three-
tiered structure may provide an efficient path to the target. However, this three-tiered example
has deceptively relevant links at the top level. In the first case (top link valued at .5) produces
minimal backtracking, but the second deceptively relevant link (valued at .6) leads to a page with
marginally relevant links that require a second scan, an additional page selection and backing up
two levels. Cognitive limitations contribute to additional navigation costs in three ways. First,
only one link can be evaluated at a time, which causes the model to evaluate and select deceptively
relevant links before it evaluates the highly relevant link that leads to the target. Second, Page C
needs to be scanned a second time to find the marginally relevant link. Third, because of a memory
limitation, the selection criterion at the top page is lost after traversing multiple levels. The lower
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Figure 7: Simulation trace

Action Page Comment

Eval .5 A Link is deceptively relevant
Select .5 A Link is at threshold of .5
Eval .0 B Link is not above threshold
Eval .0 B Link is not above threshold
Back to A B Threshold stays at .5

Eval .6 A Link is deceptively relevant
Select .6 A Link is above threshold of .5
Eval .2 C Link is marginally deceptive but below threshold
Eval .0 C Too low, lower threshold and rescan page
Eval .2 C Rescanning page with lower threshold of .1
Select .2 C Link is above lower threshold
Eval .0 H First link on H
Eval .0 H Second link on H
Back to C H No relevant links, no rescan
Eval .0 C Check if marginally relevant
Back to A C Can no longer recall previous threshold

Eval .2 A Link after last selected link
Select .2 A Link is above .1 threshold
Eval .3 D
Select .3 J
Eval .0 J First link on J
Eval .0 J Second link on J
Back to D J No relevant links, no rescan
Eval .0 D
Back to A D At low threshold, no rescan
Eval .9 A Link after last selected link
Select .9 A Link is above .1 threshold
Eval .0 E
Eval .7 E
Select .7 E
Eval 1.0 M
Select 1.0 M Arrive at target

Summary of actions:

19 link evaluations
8 link selections
5 Back actions

12
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criterion causes the model to select marginally relevant links before all highly relevant links are
evaluated.

2.5 Relation to Other Approaches

Our example shows how the relevance of link labels plays an integral role in how MESA predicts
user behavior. Some other approaches do not explicitly model the relevance of link labels (Lynch
et al., 1999; Bernard, 2002). In these cases, the quality or distribution of label relevance in a site is
not a factor in the model’s predictions. These idealized models could make valid relative predictions
for sites with less-than-ideal labels if any degradation in label quality equally affected all structures.
However, we suspect that there are important cases where structures are not equally affected. First
of all, changing the structure may force the designer to remove helpful links or add misleading
links. In this way, an otherwise ideal structure may perform poorly if its structure does not fit a
good choice of selection categories. Secondly, even if the compared structures supported the same
level of label quality, we believe that some structures would be more affected by having less reliable
labels for its selections. We will further explore this second point in the empirical sections of our
presentation.

Other predictive models of information navigation do incorporate label relevance in their pro-
cesses or calculations. For the Cognitive Walkthrough for the Web (CWW), link relevance is the
principal consideration for making predictions on the accessibility of targeted items (Blackmon
et al., 2002). CWW uses Latent Semantic Analysis (LSA) as an automated method for assessing
link relevance. In the next section, we further discuss LSA and other methods for assessing link rel-
evance. Using LSA, CWW identifies unfamiliar, confusable and competing links in order to identify
potential navigation problems. To the extent to which link relevance is the dominant contributor to
a structure’s accessibility, CWW provides a useful method for selecting and evaluating structures.
However, the structure of the site may be an important factor in determining the cost of selecting
the wrong link. CWW does not account for this cost. In contrast, MESA explicitly calculates the
cost of selecting a misleading link by simulating the actions needed to recover from the mistake.
We will also explore this cost in the empirical sections of our presentation.

The Bloodhound Project (Chi et al., 2003; Chi et al., 2001) explicitly models label relevance and
the abstract structure of a site. It uses a spreading activation model to simulate user navigation,
where the level of activation on a page depends on the proximal scent of the links leading to the
page. The cost of backtracking is considered by employing the “Information Scent Absorption
Rate” method (Chi et al., 2003), which returns simulated navigation back to the starting page
after exhausting a dead-end.

Unlike Bloodhound, MESA’s navigation strategies are additionally constrained by some cogni-
tive limitations. In our detailed example, we saw how cognitive limitations may incur additional
costs when backtracking occurs among multiple levels. We will see how these limitations play a
role in predicting navigation times across different structures.

13
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2.6 Simulation Parameters

Time constants Since we are interested in having our model estimate navigation times for
finding an item, we need plausible time constants for each of the component actions (i.e. link
evaluation, link selection and pressing the back button). In previous work, we established plausible
estimates for link evaluation and link selection (Miller & Remington, 2000). We derived these
constants by comparing MESA to results from hierarchical menu selection studies. D. Miller (1981)
reported that humans searching through an 8x8 menu system took slightly less than three seconds
on average. Because selection errors occurred less than 1% of the time, we conclude that the
system’s selection labels were accurate, clear and unambiguous. We simulated these results by
creating a model of an 8x8 site with clear, unambiguous labels. Nodes that led to the target were
given a relevance value of 1, others were given a relevance value of 0. Since no backtracking occurs,
there are only two timing costs that need to be established: evaluating a link label and selecting a
link (recall that selecting a link includes the time to display and to start examining the next page).

Using ranges of costs from 250ms to 750ms at increments of 250ms, we ran simulations to find
out which combinations produced a good match to Miller’s result of slightly less than 3 seconds.
The cost settings closest to the Miller result were 250ms for link evaluation and 500ms for link select,
which produced a total search time of 2.9 seconds. Settings of 250/250 and 250/750 produced total
search times of 2.4 seconds and 3.4 seconds, respectively, which are also close to the 8x8 total time
reported by Miller. Other cost settings were significantly further away from the Miller result.

We then took the three best-fitting cost settings on the 8x8 (82) comparison and evaluated their
performance on other structures tested by Miller. These alternate structures include 2x2x2x2x2x2
(26), 4x4x4 (43) and a flat structure of 64 selections. We also compared our results to those
presented by Snowberry, Parkinson and Sisson (1983), who also ran studies on menu systems with
these same structures.

The results of our comparisons are shown in Figure 8. The results for Miller, Snowberry et
al. and the three sets if simulations all show the same qualitative pattern, namely that the 8x8
structure produces the fastest search times compared to the other structures. As for absolute times,
the parameter values of 250/500 model matched the Miller data the closest and will serve as the
initial estimates for our simulations. Because pressing the back button is an operation comparable
to making a link selection, we will initially use the same time constant as for link selection.

The use of time constants for predicting human interaction times is well established (Card,
Moran, & Newell, 1983; Lee & MacGregor, 1985). Our initial estimates are probably lower bounds
on the range of plausible time constants. An average link evaluation time of 250 milliseconds
assumes that a user would have to process the whole link label with each saccade, which has been
estimated to last 230 milliseconds on average (Card et al., 1983). The estimate of 500 milliseconds
for selecting a link and attending to the next page assumes that the user already has the pointing
device in position and that the system response time is negligible.

Setting Relevance Values for Link Labels The comparison to menu selection results assumes
ideal links. That is, the model need only follow a ‘1’ to successfully find its target page without
any backtracking. While this assumption may be appropriate for simulating menu selection studies
where little backtracking occurred, it does not model situations, which include many Web sites,
where users frequently select the wrong links and need to backtrack.

14
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Figure 8: Comparison between menu selection results and simulations
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Our method for modeling less reliable link labels is to start with a structure consisting of clear
labels. We then perturb the values of the ideal links with the use of a random variable from a
standard normal (Gaussian) distribution (mean = 0, standard deviation = 1). In particular, we
change all link values of zero to the following:

|g| ∗ n

All link values of one are changed to the following:

1 − |g| ∗ n

In these formulas, g is produced from a standard normal distribution, which is commonly avail-
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Figure 9: Selection probabilities by threshold and noise level

Selection
Probabilities

Noise Target Foil
Threshold Factor Link Link

Primary .1 1.00 .00
(0.5) .2 .99 .01

.3 .90 .10

.4 .79 .21

.5 .70 .32

Secondary .1 1.00 .32
(0.1) .2 1.00 .62

.3 1.00 .74

.4 .98 .81

.5 .95 .86

able as a library routine in programming environments. To achieve the distance from the ideal
value, the absolute value of g is multiplied by n,the noise factor multiplier (equivalent to increasing
the variance of the normal distribution). Occasionally this formula produces a value outside the
range from zero to one. In these cases, the formula is iteratively applied until a value within the
range is produced.

The noise factor n models the level of label reliability in the site. By increasing the value of n,
we increase the probability that the model will skip a link that leads to the target and also increase
the probability that it will select a link that does not lead to the target. For example, when n

equals 0.3, a label leading to a target has a 90.4% chance of being assigned a relevance value greater
than 0.5. If we establish a selection threshold of 0.5, a link leading to the target will have a 90.4%
chance of being selected. A link that does not lead to the target (a foil link) has a 9.6% chance of
being selected at this threshold.

Figure 9 shows the probabilities that an evaluated link will be selected under a variety of selection
thresholds and noise factors. For example, at a noise level of 0.3, if the threshold has been reduced
to 0.1 and the model is evaluating a foil link (i.e. a link that does not lead to the target), there is
a 74% chance it will be selected. For our first set of simulations, we will use a primary threshold
of 0.5 and a secondary threshold of 0.1.

When considering a selection probability, it is important not to confuse it for a probability that
the model will move from the current page to the linked page. This page transition probability is
not easily calculated and depends on the order of the links, the relevance values of other links, and
the current threshold. Moreover, as we have seen in the example trace in Figure 7, the current
threshold may depend on what other pages have already been visited. For this reason, a simple
Markov model that has its states correspond to pages would not be able to fully account for the
model’s behavior.

Another way of setting relevance values for link labels involves the use of human raters. Given
the name of an item and a link label in an actual Web site, a person can provide a rating of how
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likely he or she would expect to find this item by selecting the link. In one case, the human raters
can be expert judges who try to anticipate how users will interpret the link labels. Alternatively,
the human raters may be recruited from the user population and asked about their probable actions
when viewing linked labels. Later in this article, when we perform detailed comparisons between
human results and those from the model, we will use our own assessments to estimate link relevance.

A final method for setting relevance values could make use of automated methods that estimate
the semantic distance between two phrases, that is, the name of the item and the link label. Latent
Semantic Analysis (LSA) is one method that provides such a distance (Landauer & Dumais, 1997).
This metric is derived from how frequently words (and words discovered to be related to these
words) co-occur in targeted texts. As a measure of relatedness, this metric can be interpreted as
the likelihood that the item will be found if the label’s link is selected.

There has been some exploration of how LSA can be used for automatically measuring the quality
of labels in a user interface (Soto, 1999). More recently, LSA has been applied to identify potential
usability problems in Web sites (Blackmon et al., 2002). One current limitation of LSA is that the
user target needs to be specified as 100-200 words of text in order to produce accurate predictions
(Blackmon, Kitajima, & Polson, 2003). Other approaches have also used distance measures based
on word co-occurrences in text documents (Pirolli & Card, 1999) or the World Wide Web itself
(Pirolli & Fu, 2003). To be effective, the content of the text documents needs to correspond the
conceptual knowledge of the users.

3 SIMULATIONS

In this section we first explore the effect of label ambiguity on the structures used in the Larson
and Czerwinski study. We will see that MESA produces behavior that is consistent with their
results once we apply a sufficient amount of noise to the link values. We then perform more
detailed comparisons between results we collected ourselves and MESA.

3.1 Modeling structure and link ambiguity

Using our model MESA, we conducted simulations using the threshold strategy for link selection
with the opportunistic strategy for backtracking. Sites were constructed by randomly placing the
target item at one of the terminal pages and assigning a value of 1.0 to links leading to the targeted
item, 0 for all other links. Link values were then perturbed by Gaussian noise as described above.
The noise was not applied to the bottom level, which leads to the terminal pages. While not
necessarily plausible for all Web sites, this treatment corresponds to the sites used by Larson and
Czerwinski since their participants could clearly tell whether the link’s label matched the text of
the targeted item. Figure 10 shows a sample 4x2x2 architecture generated with a noise factor of .3.

For each site architecture (8x8x8, 16x32, and 32x16) 10,000 simulations were run using the
following time costs: 250ms for evaluating a link, 500ms for selecting a link, and 500ms for returning
to the previous page (pressing the back button). Following Larson and Czerwinski (1998), any run
lasting more than 300 seconds was coded as lasting 300 seconds.

Figure 11 shows the calculated mean times of the simulation runs. The simulated results are
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Figure 10: Site with no label noise on the bottom level

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0.0 .0 .0 .0

.02 .24 .35 .84

.36 .53 .27 .35 .02 .24 .15 .75

1. .0

displayed with connected lines. Not surprisingly, the time needed to find a target increased with
link ambiguity. What is more interesting is how link ambiguity interacts with site structure. The
8x8x8 architecture produced slightly faster times at low levels of noise but substantially slower times
at noise levels above 0.2. At these higher noise levels the results are consistent with the human
users (which are indicated with arrows in the figure). At noise levels of 0.4 and higher, simulated
times were faster with the 16x32 architecture than the 32x16 architecture. This difference was also
noted in the study with human users, albeit not reported as statistically significant.

At a noise level of 0.4, the simulation results closely match the human results in absolute terms:
62s (compare to 58s for humans) for 8x8x8, 43s (compare to 46s) for 32x16, and 35s (compare to
36s) for 16x32. It appears that the 0.4 serves a good parameter estimate describing the amount of
label ambiguity in the sites used by Larson and Czerwinski.

3.2 Impact of Time Costs

While changing the time costs (250ms for link evaluations and 500ms for link selection and
returning to the previous page) will affect absolute simulation times, it is less clear if different time
costs will change which architecture produces the fastest times. For example, one may wonder if
the 8x8x8 architectures would still produce the slowest times if the link selection cost were doubled,
which may be the case for a slower internet connection.
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Figure 11: Performance as a function of link ambiguity and architecture
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To explore the impact of time costs, we looked at the number of link evaluations, link selections
and page returns. If independent counts of these actions correlate with the aggregate simulation
time, we conclude that varying the time costs have minimal impact on the relative performance
of the different architectures. For example, if the 8x8x8 requires more evaluations, more selections
and more returns than the other architectures, we know that 8x8x8 will produce slower search
times regardless of the time costs.

Looking at the number of evaluations, selections and returns, the 8x8x8 architecture required
more of each action (173, 17, and 19 respectively) at the 0.4 noise level than the 16x32 (125, 3,
and 5) and the 32x16 (134, 6, and 8). Further analysis revealed that this relationship holds across
all but the lowest noise levels (0.2 and less). We conclude that changing the time costs, at least
for these structures, has no effect on the relative comparisons provided that the noise level is at
least 0.3. More generally, it suggests that increasing label ambiguity equally increases the number
of all three actions. This conclusion seems reasonable since there needs to be corresponding link
evaluations and returns for each incorrectly selected link.

3.3 Impact of Bottom-Level Noise

The above results were from simulations where the bottom level of links has unambiguous
labels. While this corresponds to the sites constructed for the Larson and Czerwinski study, this
assumption does not hold for many real Web sites. In particular, people often do not search for
a specific item, but need to visit the target page before realizing they have found what they are
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Figure 12: Simulated performance with noise at all levels
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looking for. To explore the consequences of having ambiguous links at the bottom level, we ran
simulations where the noise-producing process was applied to every label in the site.

Figure 12 shows the results. Not surprisingly, the addition of noise on the bottom level increased
the absolute times for all structures (note that a larger range for the y-axis is required to plot the
results). More importantly, the three-tiered 8x8x8 structure this time produced the fastest results
for all noise levels. With the addition of ambiguity at the bottom level, the model’s behavior is now
consistent with empirical and theoretical findings for menu selection studies, which indicate that
pages with 8 choices per page are better than those with 16 or more choices per page. The model’s
behavior further suggests that the Larson and Czerwinski result does not generalize to structures
where label ambiguity is equally distributed throughout the structure.

3.4 Discussion

Using structures with clear labels that reliably lead to the target, our simulations found the
target faster in the 3-tiered structure than in the 2-tiered structures. This simulated behavior is
consistent with the menu selection studies. It is also consistent with the theoretical analysis provided
by Lee and MacGregor (1985). Like MESA, their analysis assumes a linear self-terminating search.
Using reasonable values for the time needed for evaluating each label and for selecting and loading
each menu, they determined an optimal range of 4 to 13 selections per menu. The 8 links per page
of the 3-tiered fall within this range whereas the 16 and 32 links per page of the 2-tiered structures
do not.
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Of course, for a sufficiently large selection cost (which includes the time to load the page), the
optimal range of links per page would increase and then favor the 2-tiered structures. Using the
assumptions of Lee and MacGregor, we can determine at what point the 2-tiered structures would
become more efficient. For the average case, the 3-tiered structure would require 4.5 evaluations
per level for a total of 13.5 evaluations. For the two-tiered structures, 8.5 and 16.5 evaluations are
needed at their 2 levels for a total of 25 evaluations. The 3-tiered structure requires 3 selections
and the 2-tiered structures each require 2 selections. If m is the ratio of selection cost to evaluation
cost, the following equation reveals when the 3-tiered structure and the 2-tiered structures would
yield equivalent navigation times:

13.5 + 3m = 25 + 2m

m = 11.5

This calculation indicates that the cost of selecting and loading a page would need to be greater
than 11.5 times the cost of evaluating a label in order to give the advantage to the 2-tiered structures.
Assuming a very fast evaluation time of 250ms per label, the selection and loading cost would need
to be substantially greater than 2.9 seconds. This is plausible for slower network connections.
However, this analysis assumes that the amount of time needed to load a page is a constant. For
slower network connections, it is likely that load times may vary, increasing with the number of
links per page, and thus penalize the 2-tiered structures further. If so, it is not clear whether these
2-tiered structures would be optimal under any plausible timing assumptions, that is, for when the
structures’ labels reliably lead users to the target with the minimal number of link selections.

However, both the Larson and Czerwinski results and our simulation results suggest that the
theoretically optimal number of links does not apply to structures whose labels are sufficiently
ambiguous or unreliable at the top level(s) but clear at the bottom level. In these cases, the
2-tiered structures produced faster navigation times than the 3-tiered structure. The underlying
behavior of our model offers a possible explanation. As we noted when presenting the detailed
example in Figure 6 and Figure 7, an incorrect selection at the top level followed by an incorrect
selection at the middle level incurs an additional cost of double-checking the other middle-level links
after returning from the third level. This additional cost does not occur for the 2-tiered structures,
provided that the links at their secondary levels are sufficiently clear so as not to cause any selection
errors.

4 COLLECTING DETAILED HUMAN PERFORMANCE RESULTS

Our simulations suggest that there is an interaction between structure and label ambiguity, at
least when label ambiguity is varied at all levels but the bottom level. In particular, the simulations
predict faster search times for the three-tiered 8x8x8 structure when category labels are clear, but
faster search times for two-tiered structures (i.e. 16x32 and 32x16) when labels are ambiguous. To
our knowledge, there are no previous empirical studies that explore possible interactions between
structure and label ambiguity.

21



4.1 Method Modeling Information Navigation 22

In this section, we present results from our own empirical study, where we purposely selected
targets that lay behind categorical labels of varying reliability. Because we use the actual names
of the targets at the bottom level, we will further test our model’s predictions for when there
is no ambiguity at this level. With the results of this study, we are able to further explore the
interaction between structure and label ambiguity and perform detailed comparisons between the
model’s performance and that of human participants. A preliminary analysis of these results was
previously presented in Miller & Remington (2002).

For this study, we used a three-tiered structure that closely approximates the 8x8x8 structure
used by Larson and Czerwinski and our simulations in the last section. From this structure, we
derived two two-tiered structures, one of which closely approximates the 32x16 structure. To test
our predictions, we focus on the two structures that best correspond to the Larson and Czerwinski
study, but in the following section we will use all of the results for further evaluating the model.

4.1 Method

Participants 45 participants were recruited from class announcements and student email lists
at DePaul University. The classes and email lists only included students who were at least in their
second year of study. The call for participation required at least 10 hours of personal usage on
the Web and an age of at least 18 years. As students at DePaul University, these participants had
frequently used the Web to look up schedule information and register for courses.

Materials The Web sites were constructed using items and categories found in a discount
department store. Of the categories, there were 6 high-level categories and 37 low-level categories.
Examples of items are a tripod grill, a butane lighter and a hand mixer. Examples of the 6 high-
level categories are sporting goods and hardware. Examples of the 37 low-level categories are
camping accessories and kitchen gadgets. A Web server dynamically constructed a site hierarchy
from these categories and items. The three-tiered structure was created from categories at both
levels, where the top-level page had 6 links, the pages at the second level had an average of 6.17
links and the pages at the bottom level had an average of 13 links, each leading to the items.
Two-tiered structures were created by either omitting the top-level categories or the bottom-level
categories. Omitting the top-level categories produces a two-tiered 37x13 structure, which has 37
links at the top-level and an average of 13 links per page at the bottom level. Similarly, omitting
the bottom-level categories produces a two-tiered 6x80.8 structure. The entire structure and its
labels are presented in the appendix.

Procedure Using a between-groups design, each participant was randomly assigned to search
in one of the three structures. Regardless of structure, each participant was asked to look for the
same 8 items. We chose target items based on our subjective assessments and those of a third judge
who was knowledgeable of the study. We predetermined that 2 of these are clearly categorized at
both levels and that 2 of these items are ambiguously categorized at both levels. The remaining 4
items were judged to have ambiguous labels at one level but not the other level.

The Web server randomized the order of search targets for each participant and created a new
Web site for each search by randomizing the order of the links on all of its pages. Every time a
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Figure 13: Summary of human performance on navigation tasks

Label Target Approx. Time (seconds) Selections
Reliability Name Structure Mean Std dev Mean Std dev

Links Birdbath 6x6x13 10.3 3.9 3.1 0.4
judged Birdbath 37x13 45.1 57.4 3.3 3.1
reliable Birdbath 6x81 18.6 32.9 2.4 1.5
at both Handlebar bag 6x6x13 27.6 32.1 4.5 2.5
levels Handlebar bag 37x13 26.2 28.7 2.7 1.4

Handlebar bag 6x81 27.8 21.0 2.1 0.3

Links Garage remote 6x6x13 96.0 69.4 13.7 8.1
judged Garage remote 37x13 63.5 26.6 4.3 1.2
reliable Garage remote 6x81 102.6 75.5 5.1 3.4
at neither Tripod grill 6x6x13 147.8 77.0 19.2 12.6
level Tripod grill 37x13 92.4 52.3 7.5 3.3

Tripod grill 6x81 171.3 61.2 8.0 4.9

Links Chopsticks 6x6x13 49.9 61.7 5.7 4.8
judged Chopsticks 37x13 75.9 65.6 5.4 4.7
reliable Chopsticks 6x81 32.3 46.5 2.4 1.5
at top Hand mixer 6x6x13 68.3 64.7 8.1 5.6
level Hand mixer 37x13 40.5 30.2 3.7 1.8

Hand mixer 6x81 109.7 62.9 5.1 2.7

Links Shower organizer 6x6x13 75.4 53.6 8.0 4.4
judged Shower organizer 37x13 19.1 10.3 2.1 0.3
reliable Shower organizer 6x81 75.2 52.5 3.8 1.7
at second Tire scrubber 6x6x13 21.2 13.1 3.7 0.9
level Tire scrubber 37x13 32.4 40.6 3.4 2.6

Tire scrubber 6x81 33.0 42.9 3.6 3.6

participant requested a new page by selecting a link, the Web server automatically recorded the
name of the selected link and the time the link was selected. If the participant took longer than
four minutes, the server asked the participant to look for the next targeted item.

4.2 Results

Figure 13 shows the summary of human performance on all 8 tasks for each of the 3 structures.
Each mean in this table pools data from 15 participants. For cases when the target was not found,
the search time was recoded as 4 minutes. For link selections, 3 selections were the minimum for
the 3-tiered structure whereas the 2-tiered structures only require a minimum of 2 selections.

The complete set of results will be compared to simulated results in the next section. Here we
focus on tasks pertinent to the predictions in the previous section. They include the two targets
(i.e. Birdbath and Handlebar Bag) whose labels were previously judged unambiguous at both
categorical levels and the two targets (i.e. Garage Remote and Tripod Grill) whose labels were
judged ambiguous at both levels. Graphed comparisons of average times in seconds are shown
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in Figure 14. The times across all three structures were fastest for the unambiguous targets (the
Birdbath and the Handlebar Bag) and slowest for the ambiguous targets (the Tripod Grill and the
Garage Remote).

For comparisons, we focus on results that address the predictions from the simulations by con-
sidering the structures that approximate the structures from our simulations. These are the three-
tiered structure (its 6x6.17x13 structure approximates an 8x8x8 structure) and the two-tiered struc-
ture with bottom-level categories (its 37x13 structure approximates a 32x16 structure). Because
the variances between our groups were often significantly different, we employed a Satterthwaite,
separate variances, t test to analyze our comparisons.

The Birdbath was found significantly faster in the three-tiered structure (M = 10.3, SD = 3.9)
than in the two-tiered structure (M = 45.1, SD = 57.4), t(14.1) = -2.34, p = .035, two-tailed.
In contrast, the Tripod Grill was found significantly faster in the two-tiered structure (M = 92.4,
SD = 52.3) than in the three-tiered structure (M = 147.8, SD = 77.0), t(24.7) = 2.30, p = .030,
two-tailed.

The difference for the Garage Remote was less reliable, t(18) = 1.70, p = .107, two-tailed, and
there was no significant difference for the Handlebar Bag, t(27.7) = .12, p = .904, two-tailed.

Although the Birdbath and the Handlebar Bag were prejudged to be unambiguously categorized
targets, not all participants took the shortest route. For example, many participants first looked
for the Handlebar Bag under Hardware before choosing the correct category, Sporting Goods. For
these participants, the Handlebar Bag lies behind ambiguous labels and does not appear to match
our assessment as an unambiguously categorized target.

We consider an alternate method for selecting tasks that better corresponds to individual as-
sessments. Instead of relying on judged assessments, the quality of the labels could be measured
by counting the number of link selections a participant took to find the item. Tasks with clear
labels could be identified as those for which participants only performed a minimal number of link
selections. Likewise, tasks with ambiguous labels could be identified as those requiring the largest
number of link selections.

We performed a second analysis using this measure of label reliability. For each participant, we
ranked the tasks by the number of link selections needed to find the target. We identified “clear
label” tasks as those with the first and second fewest number of selections. For tasks with tied
ranks, we averaged their navigation times before creating the “clear label” task average for each
participant. With this method, at least 2 of the 8 tasks were included in the analysis for each
participant. Similarly, we created an “ambiguous label” task average for each participant using
tasks with the most link selections.

Figure 15 shows the results where link ambiguity is defined by the relative number of link
selections. We used a pooled variance t test for the analysis. For tasks requiring the fewest link
selections, targeted items were found faster in the 3-tiered structure (M = 12.42, SD = 3.75) than
in the 2-tiered structure (M = 16.56, SD = 4.67), t(28) = -2.67, p = .012, two-tailed. For tasks
that took the most link selections, targeted items were found faster in the 2-tiered structure (M =
98.9, SD = 45.0) than in the 3-tiered structured (M = 147.4, SD = 45.7), t(28) = 2.93, p = .007,
two-tailed.

5.3. Discussion

24



4.2 Results Modeling Information Navigation 25

Figure 14: Human performance by target and structure

The comparisons for which there was a significant difference (i.e. p < .05) were all consistent with
the theoretical prediction, namely that items whose link labels are unambiguous are generally found
faster in a three-tiered structure (approximately 8 links per page) than in a two-tiered structure
(approximately 32 links per page at the top level and 16 links per page at the bottom level) and that
items whose link labels are ambiguous are generally found more slowly in the three-tiered structure
than in the two-tiered structure. In regard to the results by Larson and Czerwinski, their finding
that 32x16 structures produce faster times than 8x8x8 structures seem to generalize to similarly
sized structures provided that the targeted items are not clearly classified from the perspective of
their users.

The information structures were derived from the actual organization of a department store.
As is the case with most structures, some pages contain more items than other pages. In this
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Figure 15: Human performance with label ambiguity defined by the number of link selections

sense, the structures are more realistic than the evenly balanced structures used by Larson and
Czerwinski. One consequence of starting with an unbalanced structure is that the derived two-
tiered structure may be unduly affected by the number of items per page. For example, in order to
find the Birdbath in the three-tiered structure, the human user first selects Garden among 6 items,
then Patio Accessories among 3 items and finally Birdbath among 11 items. For the comparable
two-tiered structure, the user selects Patio Accessories among 37 items before selecting Birdbath
among 11 items. In this case, the three-tiered structure has a potential time advantage since its
6x3 structure indexes potentially fewer items than the corresponding 37 items in the two-tiered
structure. On the other hand, the Handlebar Bag favors the two-tiered structure (37x10) over the
three-tiered structure (6x7x10) since 37 categories indexes fewer items than 6x7 categories.

The discrepancies caused by the unbalanced structures are arguably not large enough to change
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the direction of the significant differences. For the Birdbath, adding four more links to the page
of three links would not reverse the advantage of the three-tiered structure. If we assume that on
average two of these four links will be evaluated before the correct link is selected, we can calculate
the additional time by multiplying 2 by the link evaluation time, which we have set to 250ms for
our model. The resulting time of 500ms is an order of magnitude less than the observed difference
in times between these two structures.

The difficulty of fairly comparing the effect of different structures highlights the advantage of
a computational model. With a model, the experimenter can expressly set ambiguity factors and
site structure in order to rule out any confounding factors. Of course, this demands a model that
has been adequately validated against human data. In the next section, we use the detailed results
from our empirical study to further validate the model.

5 DETAILED SIMULATIONS AND COMPARISONS

Our empirical study involved 45 human participants with each of them navigating a site looking
for a total of 8 items in 1 of 3 structures. If we average the results across the 15 participants for each
target in each structure, we produce 24 mean times (as presented in Figure 13). In this section, we
will compare these times with those predicted by MESA. Unlike our previous simulations, MESA
runs on a site representation that has a direct correspondence to the site that each participant
navigated during their search tasks. Because we saved each site structure, search task and label
orderings for each of the 360 (15x8x3) tasks, we are able to present the model with the same site
representations.

For determining numerical values that represent label relevance, we use the judged ratings that
had been collected to choose the targets in the user study. Relying on ratings from only 3 judges
represents a cost-effective method for quickly estimating the relevance of each label with respect to
each target.

5.1 Simulation 1

For our simulations, we used parameters derived from information established before the ex-
periment. One of our goals is to see how our initial model would fare as a substitute for having
collected the results of human navigation times. We are ultimately interested in resolving design
decisions which depends on knowing which structures are best and under what conditions. With
this aim in mind, we are interested in how well the model qualitatively predicts the human results
and use the Spearman rank correlation as one metric for how well the model matches the human
results. We also present the more traditional Pearson correlation (r), which considers how well the
relative distances between the predictions match those of the empirical data.

Parameters We used the timing parameters from our previous experiments, namely 500ms for
link selecting and pressing the back button, and 250ms for evaluating each link. The relevance
ratings for each label in the site were derived from the assessments we had already obtained to
select the targets. For each pairing of the targeted items (e.g. Birdbath) and the link labels (e.g.
Houseware), we and a third judge had rated how likely we thought the given link would lead to the
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targeted item in a Web site. We chose among three ratings: “Probable”, “Possible but unlikely”
and “Highly unlikely”. By assigning respective values of 1.0, 0.5 and 0.0 and averaging them among
three judges, we obtained a range of values from 0 to 1.

For setting selection thresholds, we took the midpoints of the three rating values. Thus, the
initial selection threshold was set to 0.75 and the secondary threshold is set to 0.25. We use these
thresholds so that links assessed as “Probable” will be selected on the first pass and links assessed
as “Possible but unlikely” will be later selected when the threshold is reduced.

The model evaluated the links in the same order that they were displayed on the participant’s
browser for each task (recall that these orders were randomized for each task). Sometimes the links
required multiple columns. For these cases, the model first evaluated the links in the first column
(top to bottom), then the second column, and so on.

Results Pairing the 24 averaged times of the model’s predictions with those from the human
results produced a Spearman rank correlation of 0.739 and a Pearson correlation of 0.692. Pairing
the number of link evaluations performed by the model with the times from the human results
produced a rank correlation of 0.717. The rank correlation using the number of link selections was
0.523.

Discussion The Pearson correlation (r) indicates that the model accounts for 47.9% (r2) of the
human performance data. The number of link evaluations is nearly as good as a predictor for the
human results as the model’s simulated time. If the number of link evaluations generally compares
favorably with the simulated time (which relies on time constants), it might ultimately serve as a
parameter-free predictor of actual search times.

While using the mean of judged ratings accounts for nearly half of the variation in the empirical
data, we might improve the model’s predictions by capturing the variability in the judged ratings.
This would certainly be the case if the relation between ambiguity and navigation time were not
linear. For example, targets behind exceptionally ambiguous labels may take an amount of time
that is an order of magnitude larger than targets behind exceptionally clear labels. In theses cases,
ratings with the same mean but different variances would produce different mean navigation times.

In the next simulation, we consider the role of rating variance. To represent variances of how
users assess labels, we added noise to the judged ratings in proportion to how inconsistent the judges’
ratings were (as measured by standard deviation). When all three judges agreed, no noise is added.
From a statistical viewpoint, this method uses judges’ assessments to estimate the parameters of
a normal distribution that would describe the actual assessments. While we do not know whether
actual relevance ratings fit a normal distribution, this distribution is consistent with the assumption
that actual relevance ratings are concentrated around an estimated mean.

5.2 Simulation 2

Parameters The parameters were the same as those in Simulation 1 except for the inclusion of
a random variable for adding variation to the judges’ average rating. The random variable followed
a normal distribution whose mean and standard deviation were taken from the judges’ ratings.
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Since the model now has a stochastic element to it, we ran the model 100 times for each task and
took the average. This improves the consistency of the model’s predictions.

Results The rank correlation was 0.851 using the model’s simulated times and 0.790 for the
Pearson correlation. Using the model’s number of link evaluations and selections, the rank corre-
lations were .880 and .377, respectively.

Figure 16 shows a scatter plot of predicted times (x-axis) versus observed times (y-axis) for each
of the 24 conditions, averaged over subjects. All but 6 of the plots approximate a line. These 6
plots consist of three different targets (the tripod grill on the 3-tiered and the 37x13 structures; the
shower organizer on the 3-tiered and the 6x81 structures; and the garage remote on the 3-tiered
and the 6x81 structures). Parameter estimates for the regression line in Figure 16 are 29.4 seconds
(SE = 7.5) for the y intercept and 0.73 (SE = .12) for the slope.

Discussion Factoring in the variability of the judged ratings substantially improved the model’s
predictions. We arrived at a rank correlation of 0.851 using parameters established without the
benefit of the data collected from our experiment involving human participants. The time costs
were established from the menu selection studies. The label relevance values and the model’s
thresholds were derived from the ratings of three judges. This correlation represents the current
model’s capability for predicting performance trade-offs in the absence of human participants. The
high rank correlation indicates how the model is useful for revealing general performance patterns
across different structures and different levels of label reliability.

For absolute predictions, the simulated times underpredict the human times if we exclude the
6 highest prediction times made by the model. One possible direction for improving absolute
predictions could involve increasing the time constants while also obtaining better estimates for label
relevances. Increasing the time constants would improve the absolute fits of all but the 6 highest
prediction times. In explaining the discrepancy of the 6 highest predictions, it may be the case that
MESA’s opportunistic strategy incurs a cost greater than that exhibited by human users when they
have difficulty finding a target. Alternatively, it is possible that the judged ratings overestimated
the difficulty of a few critical labels for some of the targets. Even a slight overestimation of
difficulty can cause MESA to incur substantial time costs as it rescans pages. Referring to Figure
16, judgment differences among the high-level categories (e.g. Housewares and Hardware) leading
to the garage remote and to the shower organizer would explain why the model’s predictions of these
items deviated from the human results for the 3-tiered and the 6x81 structures but not the 37x13
structure. Similarly judgment differences among the low-level categories (e.g. Camping Accessories
and Cooking Gadgets) would explain the discrepancy for the Tripod Grill in the 3-tiered and 37x13
structures but not the 6x81 structure. Later in this paper, we further discuss possible directions for
improving estimates of label relevance with the goal of achieving better absolute time predictions.

Another possible source of error is the variance among the judged ratings. It may not accurately
represent the variance among the participants. Given the greater diversity of the participants, it
is likely that their assessments of the link labels varied substantially more than those of the three
judges. We explore this possibility in the next set of simulations where we incrementally increased
the variance.
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Figure 16: Plot comparing simulated predictions with times for human participants

5.3 Simulations with increased variance

Simulation 2 used the same variances for the label relevances as those from the judges. To better
represent a greater diversity of participants, we ran simulations where we incrementally increased
the variance.

Parameters The parameters were the same as those in Simulation 2 except multiple simulations
were conducted where the standard deviation of the random variable was incrementally increased
by a factor of 0.5, ranging from 1.5 through 3.0.
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Figure 17: Simulation results at increased levels of variance

Variance Pearson Rank
Factor Correlation Correlation

1.0 .790 .851
1.5 .816 .863
2.0 .841 .863
2.5 .839 .854
3.0 .832 .869

Results Figure 17 shows the resulting correlations at increasing levels of variance. For the sake
of comparison, the table includes the correlations from simulation 2 (i.e. the variance factor equals
1). For all increased levels of variance, the model’s predictions more closely corresponded to the
participants’ times in terms of Pearson correlations and rank correlations. In particular, a factor
of 2 produced the best Pearson correlation and nearly the best rank correlation.

Discussion The results show that increasing the amount of variance in the link label ratings
improves the model’s predictions and suggest that these increased amounts better account for the
diversity of label assessments among the participants. Because the increased variance occurs among
the more ambiguous link labels, the added variance improves the model’s predictions for the slower
navigation times.

As we have already noted, the quality of the link labels is the principal determiner for how quickly
people find items in a Web site. To further illustrate this point, we derived a simple measure of link
quality to see how it would correlate with navigation times. The link quality measure is a simple
average of the judges’ ratings for the labels leading to the targeted item. Since the last label is
the target itself, its rating is 1. The measure for a two-tiered structure is an average of two values
(including the 1 for the target itself) and the measure for a three-tiered structure is an average of
three values (including the 1 for the target itself). Comparing the link quality measures to actual
navigation times yielded a Pearson correlation of -.763 and a rank correlation of -.840.

This simple measure accounts for over 58% of the variance suggesting that a simple link quality
measure can provide us with a predictor of navigation times that is nearly as good as the model in
the second simulation. This reinforces our claim that the quality of link labels is the dominating
factor for how quickly people find items in a Web site.

Despite its predictive power, this simple statistical measure has its limitations. For example, it
does not consider variances in label assessments, whose value is revealed by increasing the variance
factor in our process model. Nor does the statistical measure consider the number or relevance of
competing labels. This limitation is best revealed by considering navigation times for targets with
ideal link labels. When we only consider the four target-structure searches where participants and
the model usually took the optimal path, the correlation for the process model is .967 (.800 for the
rank correlation). In contrast, because the link quality measure is a perfect 1 for all four cases, the
statistical measure cannot account for any of the variation in their navigation times.
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6 GENERAL DISCUSSION

One of our goals was to explore how information structures effect Web site navigation. Previous
results from menu selection studies suggested an optimal number of 8 selections per display whereas
results from Larson and Czerwinski’s Web navigation study showed participants finding items faster
in structures with 16 and 32 links per page. We account for the discrepancy by showing how the
quality of the link labels interacts with the structure of the site. Through the aid of a process
model, we showed that two-tiered structures (i.e. 16x32 and 32x16) produce faster results than a
comparable three-tiered structure (i.e. 8x8x8) under the following conditions:

• The categorical link labels are sufficiently ambiguous so that the user must perform some
backtracking to find the item.

• The bottom level consists of labels that clearly indicate which link leads to the targeted item.

• The link labels are not ordered or grouped in a way that would allow a user to confidently
skip sets of labels without fully evaluating them.

However, our simulations and empirical study showed that a three-tiered structure produces
faster navigation times when the compared structures have clear labels. Our simulations also predict
that the three-tiered structure may be optimal when the compared structures have ambiguous labels
at all levels. For these cases, when level of label quality is the same across all levels, our findings
are consistent with the theoretical and empirical results from menu selection studies.

These results were achieved by incorporating the following properties into our model MESA:

• Sequential evaluation of labels with a time cost for each evaluation.

• Representing labels at various levels of relevance.

• Modeling the cost of selecting misleading links.

This last property considers cognitive limitations when simulating the expense of returning to
the previous page. For example, MESA often needs to rescan a previously visited page since it may
not recall the presence of relevant links. This additional cost is substantial for structures with a
secondary level containing misleading link labels. However, without misleading links, an additional
level, with its fewer links per page, provides a more efficient access to content pages.

The interactive effect that label quality has on choosing optimal structures has implications for
research in Web navigation. Our analysis suggests that evaluation methods and empirical studies
must consider the quality of the link labels for them to be useful. Evaluation methods that do
not consider label quality run the risk of seriously misjudging the quality of a Web site. Similarly,
studies that do not account for the quality of link labels may produce misleading results. Future
studies may need to separately analyze tasks at varying levels of label quality in order to produce
useful results. Alternatively, it may be possible to manipulate label quality by creating different
sets of labels for the same tasks.

We have not considered the effect that grouping or ordering links has on navigation times. While
many Web sites use categories that are not easily grouped or ordered, some Web sites have pages
where links are grouped in categories or ordered in a systematic way (such as alphabetically). For
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these link arrangements, users may be able to effectively skip sets of links in order to quickly find
the link that leads to the targeted item. As a consequence, effectively grouping or ordering links
increases the optimal number of links per page (Landauer & Nachbar, 1985; Snowberry et al., 1999).

A common approach for grouping links on a page involves lifting a secondary level of links
and placing them under each corresponding label at the upper level. In this way, two levels of
the structure appear on one page. There is some evidence that people navigate this within-page
structure in the same way that our model navigates a two-level structure across multiple pages. That
is, the user scans each header label and, upon finding a relevant label, chooses to scan the secondary
labels below it (Hornof & Halverson, 2003). The principal difference is that a structure realized
across multiple pages requires a physical user action and system response to select a category label.
To the extent that user navigation of structures across pages is similar to that within a page, we
could model the navigation of within-page structures by identifying faster time costs for selecting
category labels. Alternatively, the model could be used to identify good structures that are initially
realized across pages. Later, as the detailed design of the Web site is further developed, the design
could be optimized by consolidating levels on one page. This second approach assumes that the
best structures realized across multiple pages will be the best structures realized within a page.

Perhaps the most useful lesson for Web designers is the importance of choosing clear and reliable
link labels. Our results demonstrate that the quality of link labels is a greater factor for navigation
times than the structure of the pages. In our study with human participants, the targets with
the best link labels were found faster than those with poor link labels, regardless of the structure.
Our simulation results corroborate those findings. Reinforcing this point, the averages of judged
label ratings were able to account for 58.2% of the variance in navigation times. We thus advise
designers to structure Web sites using the most reliable link labels, rather than trying to achieve
pages with the “optimal” number of links if it forces the use of ambiguous labels. For example, a
top level with just a half dozen links could be part of an effective structure if the top level links
reliably led the user to the next level.

Of course, even the best link labels may not compensate for the additional navigation costs
imposed by a structure with an extreme number of links per page. A structure that has a reasonable
number of links per page but causes an occasional selection error may still serve the user better.
In the absence of any simple guidelines for weighing reasonable structures against ideal link labels,
a Web designer may still need to test a variety of structures.

Our second goal was to demonstrate how a process model might be used to test information
structures during the design process. Experimenting with a range of information structures with
human participants is costly and usually not feasible. Relying on the ratings of three judges and
previously established parameters, MESA was able to achieve a rank correlation of 0.85 when
compared to the results collected from human participants. By adding more variance to the label
ratings, the model obtained a rank correlation of 0.863. At this level, the Pearson correlation was
0.841 and thus accounted for 70.7% of the variance in the empirical data.

We have yet to fully explore alternate methods for estimating label relevance. Some methods
are likely to be more accurate but also more costly. For example, one could survey potential users
to collect their relevance ratings and apply the same method we used for our judges’ ratings. Other
methods may be less accurate but also less costly. For example, many Web sites may have similar
distributions of label quality. If true, we could model structural trade-offs on these Web sites by
imposing a “typical” distribution of label quality. We might also find that a small sample of judged
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ratings can provide a useful approximation for typical relevance values throughout the site.

We would also like to consider automatic methods for determining label relevance. We have
discussed some efforts that produce a similarity metric between a pair of words or phrases based
on their co-occurrences in textual corpora. At this time, we do not know how well these methods
produce useful relevance estimates between a target phrase and a link label. Experimenting with
a variety of methods, corpora and navigation domains will help us understand the role of these
methods in predicting navigation costs.

While the model’s performance critically depends on the accuracy of the label ratings, additional
improvements may also come by better understanding how people scan, evaluate and select links.
For example, MESA’s scanning strategy makes the simplifying assumption that people require a
fixed time to evaluate each link label. In reality people require varying amounts of time that
probably increases when a label’s relevance is close to the selection criterion. We may also find
that sometimes people use a comparison strategy instead of the threshold strategy we used in our
simulations. As we obtain better estimates of link relevance, we will be able to explore alternate
methods such as these refinements and learn which of them produce more accurate predictions.
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APPENDIX

The following is the site structure used for the empirical study and the detailed simulations.
The ordering of the items was randomized in the study and is thus arbitrary.

• Small Electronics

– Bread Bakers

∗ Bread slicing guide

∗ Automatic bread maker

∗ Bread maker recipe book

∗ Bread slicing system

∗ Bread machine mix

– Coffee Makers

∗ Coffee cappuccino machine

∗ Coffee maker with timer

∗ Replacement coffee filters

∗ Coffee maker cleaner

∗ Space maker coffee maker

∗ Espresso/cappuccino maker

∗ Water filter

∗ Coffee filter basket

∗ Thermal replacement carafe

∗ Replacement carafe

∗ Coffee grinder/espresso mill

∗ Cone coffee filters

∗ Auto party perk (coffee urn)

∗ Espresso machine

∗ Gold coffee filter

∗ Replacement decanter

∗ Coffee grinder

∗ Permanent coffee filters

∗ Stainless steel coffee maker

– Tea Makers

∗ Electric teakettle

∗ Cordless electric kettle

∗ Hot tea maker

∗ Iced teapot

∗ Hot pot

∗ Teakettle

– Crock Pots/Slow Cookers

∗ Crock pot

∗ Electric deep fryer

∗ Electric fry pan

∗ Fondue pot

∗ Rice cooker

∗ Sandwich maker

∗ Waffle maker

∗ Electric skillet

∗ Roaster oven

∗ Electric kitchen kettle (multi
cooker/steamer)

∗ Electric wok

∗ Food steamer

– Indoor Grills

∗ Carousel rotisserie

∗ Space saving buffet range

∗ Cool-touch griddle

∗ Indoor electric grill

∗ Grill machine

∗ Dual burner buffet range

∗ Indoor tabletop grill

∗ Beef jerky works gun

∗ Beef jerky spices

∗ Electric griddle

– Hand/Stand Mixers

∗ Rock salt for homemade ice
cream

∗ Spatula mixer

∗ Ice cream mix

∗ Hand blender with chopper and
disk

∗ Electric ice cream maker

∗ Hand mixer

∗ Auto ice cream maker

∗ Hand/stand mixer

∗ Stand mixer

∗ Ice cream and yogurt freezer

∗ Hand blender

∗ Handy chopper

• Hardware

– Home Hardware

∗ Barrel hold

∗ Picture hanger

∗ Cup hook

∗ Doorstop

∗ Hook and eye

∗ Over door hook

∗ Storage hook

∗ Garment hook

∗ Towel grips

∗ Plant brackets

– Electrical Supplies

∗ Polarized cube taps

∗ Wall hugger tap

∗ Fuse

∗ Dimmer knob

∗ Color tape

∗ Grounding outlet

∗ Plug fuse

∗ Lighted dimmer knob

∗ Surge protector

∗ Cable ties

∗ Rotate-on dimmer knob

∗ Multiple outlet center

∗ Safety caps

∗ Power strip

∗ Push-on dimmer knob

– Hand Tools

∗ Long nose pliers

∗ Socket set

∗ Wrench

∗ Clamp

∗ Adjustable pliers

∗ Bit driver set

∗ Hex key set

∗ Scraper

∗ Hacksaw

∗ Hammer

∗ Screwdriver

– Home security

∗ Door guard

∗ Smoke and carbon monoxide
detector

∗ Fire escape ladder

∗ Surface bolt

∗ Timer

∗ Lamp appliance security timer

∗ Security floodlight

∗ Carbon monoxide alarm

∗ Door viewer

∗ Fire extinguisher

∗ Garage remote

∗ Automatic light

– Bath Storage

∗ Etagere

∗ Paper holder

∗ 3-shelf pole caddy

∗ Wastebasket

∗ Towel bar

∗ Shower basket

∗ Shower caddy

∗ Storage tower

∗ Shower organizer

∗ Bath caddy

∗ Robe hook

∗ Towel ring

– Decorative Lighting

∗ Black light

∗ High intensity bulb

∗ Black party light

∗ Indoor spotlight

∗ Nite light

∗ Red party light

∗ Pink party light

∗ White fan bulb
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∗ White blunt tip bulb

∗ Clear globe

∗ Purple party light

∗ Tubular bulb

∗ Clear blunt tip bulb

∗ White flame tip bulb

∗ White globe light

∗ Green party light

– Plumbing

∗ Snap-on aerator

∗ Drain strainer

∗ Toilet seat bolts

∗ Basket strainer

∗ Toilet flapper

∗ Tub sealer

∗ Sprayer head

∗ Tile trim

∗ Basin stopper

∗ Toilet seat hinges

∗ Toilet bolt caps

∗ Tub stopper

• Automotive

– Tire Care

∗ Tire glaze

∗ Tire foam shine

∗ Wheel cleaner

∗ Tire wet

∗ Tire scrubber

∗ Tire shine

∗ Tire max

∗ Bleach white

∗ Tire care

∗ Wheel detail brush

– Cell Phone Accessories

∗ Rapid charger

∗ Leather case

∗ Speakeasy headset

∗ Boom mike

∗ Cellular passive repeater antenna

∗ Dash mount phone holder

∗ Sport phone case

∗ Phone holder

– Interior Care (Automotive)

∗ Amorall interior

∗ Quick detailer

∗ Leather cleaner and conditioner

∗ Fabric refresher

∗ Carpet and upholstery cleaner

∗ Odor eliminator

∗ Power brush vacuum

∗ Foam cleaner

∗ Spot and stain remover

∗ Dash duster

– Automotive Safety

∗ Safe lights

∗ Laminated steel padlock

∗ Club

∗ Emergency road kit

∗ First aid kit

∗ Padlocks

∗ Strobe light

∗ Alarm

– Auto Accessories

∗ Backseat organizer

∗ Fleece seat belt caddy

∗ Visor organizer

∗ Seat belt shoulder pad

∗ CD visor organizer

∗ Nylon shoulder pad

∗ Fleece car seat organizer

∗ Litterbag

– Oil

∗ Engine treatment

∗ Oil funnel

∗ Oil drain

∗ Smoke treatment

∗ Engine degreaser

∗ Oil filter

∗ Stop leaks

∗ Fuel system cleaner

∗ Oil

∗ Fuel injection treatment

∗ Oil treatment

– Car Wash

∗ Sponge

∗ Bug-gone scrubber

∗ Wash mitt

∗ Chamois squeegee

∗ Chamois

∗ Bucket

∗ Scrubbing pad

∗ Dip and wash brush

∗ Leather dryer

∗ Shampoo wash pad

∗ Wash pad

∗ Vehicle wash brush

• Houseware

– Cooking Utensils

∗ Baking spatula

∗ Spatula

∗ Balloon whisk

∗ Pasta fork

∗ Slotted ladle

∗ Stir-fry scoop

∗ Fork

∗ Slot spoon

∗ Measuring spoon

∗ Ladle

∗ Tongs

∗ Pastry brush

∗ Measuring cups

∗ Spoon

∗ Slot spatula

– Glass Drinkware

∗ Margarita glass

∗ Bouquet wine glass

∗ Flute

∗ Mug

∗ Juice glass

∗ Iced tea glass

∗ Tumbler

∗ Cooler

∗ Martini glass

∗ Goblet

∗ Wine glass

∗ Shot glass

∗ Cognac glass

– Dinnerware

∗ Canister

∗ Spoon holder

∗ Dessert plate

∗ Salad bowl

∗ Bowl

∗ Popcorn bowl

∗ Dinner plate

∗ Serving bowl

∗ Cups and saucers

∗ Oval platter

∗ Rectangular baker

∗ Pepper shaker

∗ Salt shaker

∗ Mugs

∗ Soup bowl

∗ Round platter

∗ Square plate

∗ Ice cream bowl

∗ Salad bowl

∗ Pasta bowl

– Cookware

∗ Round grill pan

∗ Round pan

∗ Loaf pan

∗ Pourable saucepan lids

∗ Saucepan

∗ Bake pan

∗ Open saucepan

∗ Bake pan

∗ 10-piece cookware set

∗ Square pan

∗ Universal steamer insert

∗ Jelly roll pan

∗ Saut pan

∗ Open skillet

∗ Muffin pan

∗ Omelet pan

∗ Griddle

∗ Stir fry pan
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∗ Cookie sheet

∗ Round cake pan

– Specialty Cooking

∗ Salsa bowl and ladle

∗ Bread warmer basket

∗ Tortilla griddle

∗ Pizza peel

∗ Bread baking stone

∗ Chopsticks

∗ Pizza baking stone and rack

∗ Mexican griddle

∗ Stir-fry cookbook

∗ Everyday fiesta cookbook

∗ Bread baking stone and rack

∗ Tortilla warmer

∗ Wok set

∗ Pizza and pasta cookbook

∗ Wok

∗ Fiesta taco holders

– BBQ Tools and Gadgets

∗ Grill brush

∗ Can opener

∗ Steel tongs

∗ Grill basket

∗ Salt shaker

∗ Turner

∗ Sugar shaker

∗ Grill basket

∗ Corn holders

∗ BBQ skewers

∗ Basting brush

∗ BBQ set

∗ BBQ tongs

∗ BBQ brush

∗ Thermometer

∗ Salad tongs

– Kitchen Gadgets

∗ Utility hooks

∗ Bag clip

∗ Splatter guard

∗ Wooden plate easel

∗ Small bowl

∗ Faucet nozzle

∗ Sugar holder

∗ Tooth pick holder

∗ Sugar pourer

∗ Ashtray

∗ Salt and pepper shakers

∗ Plate cover

∗ Grater

∗ Chip clips

∗ Magnetic clips

∗ Wedger/corer

∗ Shakers

∗ Cheese shaker

∗ Strainer

∗ Sink stopper

• Garden

– Grill Accessories

∗ Mitt

∗ Porcelain grill

∗ Steak basket

∗ Heavy-duty matches

∗ Basic kettle cover

∗ Grill scrubber

∗ Kabob set and frame

∗ BBQ set

∗ Tool holder

∗ Spatula

∗ Stainless steel forks

∗ Charcoal lighter

∗ Electric rotisserie

∗ Basting set

∗ Tongs

∗ Butane lighter

∗ Thermo fork

∗ Charcoal

∗ Grill brush

– Patio Accessories

∗ Outdoor clock

∗ Mud brush

∗ Thermometer

∗ Stepping stone

∗ Sandstone candleholder

∗ Hose guide

∗ Gazing ball metal stand

∗ Wall plaque

∗ Gazing ball base

∗ Birdbath

∗ Gazing ball

– Patio Furniture

∗ Wrought iron chair

∗ Cushioned swing

∗ Folding chair

∗ Clamp with umbrella

∗ White steel accent table

∗ Children’s sand chair

∗ Captain’s chair

∗ Resin Adirondack

∗ Lounger

∗ Resin chair

∗ Chair

∗ Resin table

• Sporting Goods

– Lanterns

∗ Dynalight

∗ Flashlight

∗ Table lamp

∗ Mantles

∗ Lantern spark igniter

∗ Headlight

∗ Tent light

∗ Lantern

∗ Emergency candles

∗ Area light/flashlight

∗ Rechargeable lantern

∗ Sport light

∗ Propane lantern

∗ Floating lantern

∗ Tub candles

∗ Candle lantern

∗ Replacement globe

– Knives/Multi Tools/Two-way
Radios

∗ 2-way radio

∗ Flashlight/radio

∗ Camper’s tool

∗ Pocket sharpener

∗ Swisscard

∗ Serrated knife

∗ Multilock

∗ Pocketknife

∗ Walkie-talkies

∗ Multiplier

∗ Swiss Army knife

– Weights/Fitness/Exercise

∗ Sport towel

∗ Slimmer short

∗ Mesh gloves

∗ Heavy tension spring grips

∗ Lycra gloves

∗ Wrist ring

∗ Wrist band

∗ Dumbbell set

∗ Waist slimmer belt

∗ Walking weights

∗ Handheld weights

∗ Wrist/ankle weights

∗ Headband

∗ Resistance band

∗ Contour belt

∗ Cast iron hex dumbbells

∗ Squeeze ball

∗ Neoprene fitbell

∗ Sauna suit

– Tents

∗ Tent peg mallet

∗ Braided polyester cord

∗ ABS tent stakes

∗ Steel tent pegs

∗ Tent whisk and dustpan

∗ Canvas tent repair kit

∗ Heavy-duty tarpaulin

∗ Tent stake puller

∗ ABS tent pegs

∗ Guy ropes and slides

– Fishing Rods/Fishing Reels
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∗ Fishing line

∗ Spinner bait

∗ Fishhooks

∗ Protective eyeglasses

∗ Brass snap swivels

∗ Horizontal rod rack

∗ Dip net

∗ Spinning reel

∗ Stringer

∗ Minnow spin

∗ Fishing rod

∗ Bobber stops

∗ Jighead

∗ Float assortment

∗ Brass casting sinkers

∗ Power bait

∗ Maribu jigs

– Bike Accessories

∗ Seat wedge pack

∗ Water bottle

∗ Frame bag

∗ Handlebar water bottle

∗ Handlebar bag

∗ Bike seat

∗ Kickstand

∗ Seat cover

∗ Bike glove

∗ Headlight / mirror/bell set

– Camping Accessories

∗ 3-piece knife/fork/spoon set

∗ Cast iron griddle

∗ Propane

∗ Tripod grill

∗ Nesting utensil set

∗ Plastic cutlery set

∗ Enamel plate

∗ Grill pan

∗ Griddle

∗ Charcoal water smoker and grill

∗ Extendable cooking fork

∗ Nylon spoon

∗ Nylon spatula

∗ Cast iron Dutch oven

∗ Enamel percolator

∗ 5-piece mess kit

∗ Hand grill

∗ Enamel kettle with cover

∗ Enamel bowl

∗ Enamel mug
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