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Abstract
It is common to have missing genotypes in practical genetic studies. The majority of the existing
statistical methods, including those on haplotype analysis, assume that genotypes are missing at
random—that is, at a given marker, different genotypes and different alleles are missing with the
same probability. In our previous work, we have demonstrated that the violation of this assumption
may lead to serious bias in haplotype frequency estimates and haplotype association analysis. We
have proposed a general missing data model to simultaneously characterize missing data patterns
across a set of two or more biallelic markers. We have proved that haplotype frequencies and missing
data probabilities are identifiable if and only if there is linkage disequilibrium between these markers
under the general missing data model. In this study, we extend our work to multi-allelic markers and
observe a similar finding. Simulation studies on the analysis of haplotypes consisting of two markers
illustrate that our proposed model can reduce the bias for haplotype frequency estimates due to
incorrect assumptions on the missing data mechanism. Finally, we illustrate the utilities of our method
through its application to a real data set from a study of scleroderma.
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1. Introduction
Haplotypes (the combination of alleles on the same chromosome that were inherited as a unit)
are widely used in genetic studies (Schaid, 2004a), such as in population genetics and disease
gene mapping. In population genetics, haplotypes have been shown to be more informative
than single markers, and they have been used to study migration and immigration rates, genetic
demography, and evolutionary history (Harding et al., 1997; Kidd et al., 2000; Tishkoff et al.,
2000; Zhao et al., 2007). In disease gene mapping, studies have shown that methods based on
haplotypes may be more powerful than those based on single markers (Akey, Jin, & Xiong,
2001; Botstein & Risch, 2003; Fallin et al., 2001; Morris & Kaplan, 2002; Schaid, 2004a;
Schaid, Rowland, Tines, Jacobson, & Poland, 2002; Yu & Schaid, 2007b; H. Zhao et al.,
2000). One reason for their importance is that haplotypes play a critical role in our
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understanding of linkage disequilibrium (LD, the non-random co-occurrence of alleles at two
or more loci), which is essential in genetic studies. Usually, haplotypes are not directly obtained
from experimentation because of the high cost of conducting such experiments (Excoffier,
Laval, & Balding, 2003; Li, Khalid, Carlson, & Zhao, 2003; Tregouet, Escolano, Tiret, Mallet,
& Golmard, 2004). Genotyping family members is an alternative way to obtain haplotypes,
but there are practical limitations to this approach (Li et al., 2003; Wijsman, 1987; Zhang, Sun,
& Zhao, 2005). As a result, numerous analytical methods have been proposed to infer
haplotypes (Clark, 1990; Excoffier et al., 2003; Excoffier & Slatkin, 1995; Fallin & Schork,
2000; Hawley & Kidd, 1995; Li et al., 2003; Long, Williams, & Urbanek, 1995; Niu, Qin, Xu,
& Liu, 2002; Stephens & Scheet, 2005; Stephens, Smith, & Donnelly, 2001; Zhang, Sheng,
Morabia, & Gilliam, 2003). Once haplotype frequency estimates are obtained, they can be used
in haplotype-based association analysis (Chiano & Clayton, 1998; Fallin et al., 2001; Schaid,
2004b; Schaid et al., 2002; Zaykin et al., 2002a). Statistically more powerful methods also
have been proposed to simultaneously estimate haplotype frequencies and their effects (Epstein
& Satten, 2003; Lin, Zeng, & Millikan, 2005; Zhao, Li, & Khalid, 2003).

Even with the advancement of modern biotechnologies, data with missing genotypes are still
common in genetic studies. In addition to the possibility of missing data being caused by the
equipment itself, such as any damage to or loss of performance by probes in multiplexed
genotyping platforms, there are other circumstances that contribute to absent data, such as
variation in DNA quality or molecular effects, experimental techniques used (including the
genotype calling algorithms), and the ways in which studies are conducted, which can cause
some individuals (e.g., cases versus controls in case-control studies) and some sites to have
more or less than a reasonable share of missing data (Di et al., 2005; Hao & Cawley, 2007;
Liu, Beerman, Lifton, & Zhao, 2006; Nicolae, Wu, Miyake, & Cox, 2006; Stephens & Scheet,
2005).

Existing methods handle missing genotype data in mainly two ways. The first way is to obtain
complete data by either eliminating or imputing missing data prior to analysis (Hastie,
Tibshirani, & Friedman, 2001; Yu & Schaid, 2007a; Zhang et al., 2003). The second way is
to handle missing genotypes in the model, usually by assuming either explicitly or implicitly
that missing is “at random” (i.e., at a given marker, different genotypes and different alleles
are missing with the same probability and that the “missingness” at different markers is
independent), both in haplotype frequency estimation (Excoffier & Slatkin, 1995; Li et al.,
2003; Stephens et al., 2001; Tregouet et al., 2004) and in haplotype association analysis
(regardless of the frequencies of genotypes or alleles at the same marker, regardless of the
frequencies of haplotypes under consideration, and regardless of phenotype—i.e., disease
status) (Epstein & Satten, 2003; Tregouet et al., 2004). This missing data mechanism
assumption is likely to over-simplify the reality. In practice, even very carefully designed
studies, such as HapMap and the Wellcome Trust Case Control Consortium, have informatively
missing genotypes (Hao & Cawley, 2007; The Wellcome Trust Case Control Consortium,
2007).

In our previous work (Liu et al., 2006), we showed that haplotype frequency estimates can be
biased when using methods that assume missing at random if this assumption is violated.
Similarly, haplotype association analysis may be biased as well, inducing both false-positive
and false-negative evidence of association. To overcome this problem, we proposed a general
model to characterize the missing data mechanism across a set of two or more biallelic markers
simultaneously. Under our model for missing data, we proved that haplotype frequencies and
missing data probabilities are identifiable if and only if there is LD between these markers. A
simulation study showed that our proposed model can reduce biases caused by incorrectly
assuming missing at random, thus providing more accurate statistical inference.
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In this article, we extend our previous work to markers with multiple alleles. We investigate
the relationship between the identifiability of our model parameters and LD between the
markers. In addition, we use simulations based on two markers to illustrate that our proposed
model can reduce biases induced by inappropriate handling of missing genotype data, thus
providing more accurate statistical inference. Our method is then applied to a real data set from
a study of scleroderma to demonstrate its utility in practice.

2. Proposed Missing Data Model
2.1 Notation and Assumptions

Let G = g = {g1, g2, ...,gL} denote a subject's genotype at L markers, gi denote the genotype
at marker i, and H = (h, h’) denote haplotype pair, h and h’, carried by this subject, where (h,
h’) is considered as ordered to avoid a factor of 2 in the likelihood functions when the two
haplotypes are different. If L = 1, G and H are both genotypes at the single marker. However,
because (h, h’) is ordered, we distinguish the parental origin of the two alleles at the single
marker when we use H. We let S(g) denote the set of haplotype pairs {H = (h, h’)} that are
consistent with G = g, ph denote the frequency of haplotype h in the study population, ng denote
the number of individuals with genotype g, and n denote the sample size. For simplicity, we
consider only two markers in the following analysis, and the extension to multiple markers is
straightforward. Denote the two markers as A and B, and assume that these two markers have
M and N alleles (M,N ≥ 2), respectively. Let {A1, A2, ..., AM} be the M alleles of marker A
and {B1, B2, ..., BN} be the N alleles of marker B. Let phArBs denote the frequency of a haplotype
consisting of two alleles, Ar and Bs, at the two markers A and B, respectively, and let pAr and
pBs denote the two allele frequencies. We use α and γ to denote missing probabilities at markers
A and B, respectively, and we assume that missingness is independent between markers and
that there is Hardy-Weinberg equilibrium (HWE) for the two markers in the general population.

2.2 Missing Data Model
We have proposed a missing data model for biallelic markers such as SNPs (Liu et al., 2006).
For one SNP with two alleles, A and B, Table 1 in Liu et al. (2006) shows the genotype
penetrances—i.e., the conditional probability of observing one genotype given the true
genotype. We define the probabilities related to missingness as follows.

where “?” stands for a missing allele and M = 2—i.e., marker A has two alleles, A1 and A2.
This missing data model is very general, and the missing at random model corresponds to

. Note that we assume that it is possible to observe partial
genotypes—e.g., A1?. We showed that the parameters of the above model are not identifiable
if only one SNP is studied, and we further showed that for two SNPs, the model parameters
(i.e., haplotype frequencies and missing data probabilities) are identifiable if and only if there
is LD between the two markers (Liu et al., 2006).

In practice, most of the time we do not have partial calls (e.g., only one of the two alleles is
missing at one marker), and sometimes even when there are partial calls investigators simply
do not report them, but only report complete calls (Liu et al., 2006). Therefore, in this study
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we only consider complete calls. For a marker with K alleles, there are  possible
genotypes (without considering missing genotypes). We define the probabilities (i.e., the
penetrances) related to missingness as follows for a marker with three alleles denoted as A1,
A2, and A3:

Table 1 shows the genotype penetrances for the model for this marker.

For a marker with K alleles, there are  degrees of freedom from the data if missing

genotypes are observed. There are  parameters for missing probabilities and (K – 1)
parameters for allele frequencies. The number of parameters exceeds the number of degrees
of freedom, so under the above model the parameters are not identifiable if one marker is
considered. If there are two markers, we have the following proposition, which can be viewed
as a generalization of our previous finding for two biallelic markers.

Proposition: Under the above model with two markers, the model parameters (i.e., haplotype
frequencies and missing data probabilities) are identifiable if and only if there is LD between
the two markers.

Proof: Assume that we have two markers, A and B, under study, with the notations defined
above. We have proved the proposition for two biallelic markers in our previous work (Liu et
al., 2006). To prove the current proposition, we organize the proof into three steps. In step 1,
we consider the simplest case, M = 3 and N = 2. In step 2, we generalize the simplest case to
the case in which M >1 and N = 2. In step 3, we consider the general case in which M and N
are arbitrary integers with M > 1 and N > 1. The amount of LD between alleles Ar and Bs can
be measured by Drs = hArBs – pAr pBs (Kalinowski & Hedrick, 2001; Nothnagel, Furst, & Rohde,
2002). It is easy to see that for two bi-allelic markers the absolute values of the four Drs's are
equal. Drs = 0 (r = 1,---,M and s = 1,---,N) means that there is no LD—i.e., linkage equilibrium
(LE)—between two markers A and B. Without loss of generality, we assume that all of the
allele frequencies are strictly between 0 and 1.

Step 1: We focus on alleles A1 and B1 first. We can “pool” alleles {A2, A3} at marker A and
denote it as A−1, and we can think of A−1 as a pseudo-allele. Now, we have two biallelic markers
with alleles {A1, A−1} and {B1, B2}, respectively. The genotype penetrances for marker A are
shown in Table 2, where

From our previous proposition (Liu et al., 2006), we know that α1,1, β1,−1, β−1,−1, the missing
probabilities for marker B, and the haplotype frequencies are identifiable if and only if there
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is LD between the pseudo-biallelic marker A and the biallelic marker B. We also have the
following expression:

Similarly, if we “pool” alleles {A1, A3} at marker A and denote it as A−2, parameters α2,2,
β2,−2, β−2,−2 and the haplotype frequencies are identifiable. In addition, we have

If we “pool” alleles {A1, A2} at marker A and denote it as A−3, parameters α3,3, β3,−3, β−3,−3
and the haplotype frequencies are identifiable. In addition, we have

From the above procedure we can see that pA1, pA2, pA3, β1,−1, β2,−2, and β3,−3 can be identified
uniquely (pA1, pA2, pA3 can be obtained from haplotype frequencies). Thus,we have the
following equations:

(P1)

The determinant of the above equations is

It is not equal to zero if the allele frequencies are not zero, which is assumed, and therefore
α1,2, α1,3, and α2,3 can be identified uniquely. This proves the proposition in the case of a tri-
allelic marker and a biallelic marker.

Note that it is possible that when pooling alleles Ar and As the resulting pseudo-biallelic marker
A may be in LE with marker B. We can show, however, that this may happen for at most one
pair of alleles {Ar, As} at marker A. Assume that the pooling of alleles {A1, A3} and the
pooling of alleles {A1, A2} both lead to LE with marker B. Then we should have

(1)
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(2)

(3)

(4)

(5)

(6)

From (3) and (5) above, we have pA1B1 = pA1 · pB1, and from (4) and (6) we have pA1B1 =
pA1 · pB1. Together with (1), (2), (5), and (6), this means that markers A and B are in LE, which
contradicts the condition of the proposition.

Without loss of generality, we assume that only pooling alleles {A1, A2} leads the pseudo-
biallelic marker A to be in LE with marker B. Thus, from pooling alleles {A1, A3} and alleles
{A2, A3} we know that α1,1, β1,−1, β−1,−1, α2,2, β2,−2, β−2,−2 and that the haplotype frequencies
of A1B1, A1B2, A2B1, A2B2 can be identified. Therefore, all the allele frequencies can be
identified. From the observed data we know that

which means that β3,−3 can be identified uniquely. Therefore, we still have equations (P1) and
the consequent conclusion as shown above. Actually, knowing all of the allele frequencies
allows us to obtain αr,s at marker A with the observed data:

Step 2: We have proved the proposition for M = 3 and N = 2. Now, assume that the proposition
holds for M = K ≥ 3 and N = 2. Based on this, we now prove that the proposition holds for M
= K + 1 and N = 2. For any missing probability related to genotype AuAv (denoted as αu,v),
pool any two alleles other than Au and Av to “form” a pseudo-allele. Now, marker A has K
alleles. From the above assumption, we know that the proposition holds in this case, so αu,v
can be identified. A similar procedure works for haplotype frequencies.

Much like the case of M = 3, pooling alleles {Ar, As} may lead the pseudo-marker A to be in
LE with marker B. Similarly, we can show that for {r,s : r ≠ s, and r,s = 1, ---, M} at most one
pair of {r, s} may lead the pseudo-marker A to be in LE with marker B, after pooling alleles
{Ar, As}. Therefore, all of the parameters except αr,s can be identified. Observe that Pr(O =
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(Ar As)) = 2pAr pAs (1–αr,s), where αr,s can be obtained. So the proposition holds for any number
M > 1 and N = 2.

Step 3: For the most general case, the proof is similar to the above for N = 2. Specifically, we
can first prove the proposition for any number M and N = 3. Then we assume that the
proposition holds for M and N = K ≥ 3. Similar to the above, we can show that the proposition
holds for N = K + 1, which proves the proposition.□

2.3 Haplotype Frequency Estimation
The observed data likelihood is

where the notation was defined before. When the two markers are in LD, the parameters are
identifiable, and they can be estimated using the EM algorithm in a straightforward way (Liu
et al., 2006).

3. Simulation Results
In our simulations, the first marker was simulated to have three alleles and the second to have
two alleles. We have compared the performance of our method with HAPLO.STATS
(Sinnwell, Schaid, Roland, & Yu, 2007) in estimating haplotype frequencies using simulated
data. When there were no missing data, or when the data were missing at random, both methods
gave accurate estimates of haplotype frequencies (Tables 3 and 4). When there were
informatively missing data, our method could give accurate estimates of haplotype frequencies
and missing data probabilities, whereas HAPLO.STATS gave biased estimates for haplotype
frequencies. Table 5 shows the results from our method and HPALO.STATS from one
simulation study in which 1,000 data sets were simulated, each with a sample size 1,000.
Haplotype frequencies were set as 0.35, 0.15, 0.05, 0.1, 0.25, and 0.1. The missing probabilities
were set as (0.22, 0, 0, 0, 0, 0) for the first marker and (0.16, 0, 0) for the second marker.

We noticed in our simulation study that when there are no missing data the performance of our
method and that of HAPLO.STATS are almost identical (the estimates from the two methods
only differ after the fifth decimal places). When there are missing data (missing at random or
not), the point estimates are similar (when missing is at random), but the standard deviations
from our method are usually larger than those from HAPLO.STATS. This is expected because
our method includes more parameters than HAPLO.STATS does. We also noticed that the
estimates of haplotype frequencies from our model are more accurate, with smaller variation
than those of missing probabilities.

4. Application to Scleroderma Data
Systemic sclerosis (SSC), also called scleroderma, is a rare, chronic, autoimmune disease that
afflicts an estimated 150,000 to 500,000 Americans, primarily females who are 30 to 50 years
old at onset (Mayes, Varga, Buch, & Seibold, 2007). Clinically, the disease is divided into two
major subtypes: diffuse cutaneous SSc (dcSSc) and limited cutaneous SSc (lcSSc). The diffuse
cutaneous subtype is the most severe form and is generally more life threatening. It has a rapid
onset, involves more widespread skin hardening, and is generally associated with significant
internal organ involvement, especially renal crisis and diffuse alveolitis of the lung, along with
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anti-topoisomerase (anti-topo) auto-antibody. The limited cutaneous subtype (also called
CREST Syndrome) is much milder and has a slow onset and progression. It is distinguished
by Raynaud's phenomenon, telangiectasias, pulmonary hypertension, and the presence of
anticentromere antibody (ACA). However, there is significant overlap in both the clinical
manifestations and the specific auto-antibodies that occur in these two subtypes. It is not known
what predisposes a susceptible individual to develop one subtype versus another, nor is there
significant information about how the two disease subtypes may be pathogenically related.
Studies have shown that genetic factors influence both the incidence and clinical manifestations
of scleroderma (Arnett et al., 2001; Assassi & Tan, 2005; Tan et al., 1998; Wu et al., 2006).
In a recent study, we analyzed a DNA repository for known, functional polymorphisms in the
gene for the innate cytokine, macrophage, migration-inhibitory factor (MIF) (Baugh et al.,
2002; Wu et al., 2006).

The data set contains genetic and clinical data collected from the Scleroderma Family Registry
and DNA Repository at the University of Texas Health Science Center at Houston. A total of
740 subjects were studied; 203 of them had diffuse cutaneous SSc (dcSSc), 283 had limited
cutaneous SSc (lcSSc), and the remaining 254 healthy subjects served as controls. Of the total
sample, 655 of the subjects were white and 532 were female. A CATT(5–8) tetranucleotide
repeat polymorphism at position −794 (with 5, 6, 7, and 8 repeats—i.e. four alleles) and a G/
C single-nucleotide polymorphism (SNP) at position −173 (with two alleles) in the 5’ promoter
region of MIF had been genotyped for each subject.

There were 34 missing genotypes of CATT repeats at position −794, and 18 missing genotypes
of SNP at position −173. For the CATT tetranucleotide repeat, there were 11 (4.33%) missing
genotypes in controls, 16 (5.65%) in the lcSSc patient group, and 7 (3.45%) in the dcSSc patient
group. For the SNP, there were 2 (0.79%) missing genotypes in controls, 13 (4.59%) in the
lcSSc patient group, and 3 (1.48%) in the dcSSc patient group. There were no partial missing
genotypes. Analysis did not find evidence of a haplotype effect (for the two closely linked
polymorphisms described above) between cases and controls; however, there was evidence of
a haplotype effect between the dcSSc patient group and the lcSSc patient group. More details
about the data and the study have been published earlier (Wu et al., 2006).

The data were originally analyzed with HPlus 2.1.1, with missing at random being assumed
for missing genotypes (Li, Khalid, Carlson, & Zhao, 2003; Wu et al., 2006). To be fair, to date
there is no haplotype analysis method that can handle informatively missing genotypes for
multi-allelic markers with samples of unrelated individuals, although there is no reason to
believe that the missing genotypes are actually missing at random. In this study, we re-analyzed
the data with HAPLO.STATS and with our proposed method. Because there was a very small
number of 8 CATT repeats at the −794 CATT repeat polymorphism (4 in controls, 1 in patients
with dcSSc, 0 in patients with lcSSc), we pooled 7 and 8 repeats together (which results in
three alleles at this marker). We employed a commonly used likelihood test (Zaykin et al.,
2002b; Zhao, Curtis, & Sham, 2000), and the significance level was calculated by re-sampling
(Zaykin et al., 2002b; J. H. Zhao et al., 2000). Tables 6 and 7 provide the results for the case
group vs. the control group and for the dcSSc patient group vs. the lcSSc patient group. Not
surprisingly, the results from HAPLO.STATS confirmed the original findings. For cases vs.
controls, the new method had the same results. However, for the dcSSc patient group vs. the
lcSSc patient group, the new method gave different results. Missing probability estimates from
our method are shown in Table 8. Obviously the missing pattern was far from random for this
study sample, within and between different subject groups.
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5. Summary and Final Notes
Missing genotypes are commonly encountered in genetic studies. The majority of statistical
methods have usually been developed under the assumption of missing at random, which may
be too simplistic and even invalid in many situations. There have been some studies
investigating informative missingness (Allen, Rathouz, & Satten, 2003; Chen, 2004), but they
considered different study designs involving related individuals. We have demonstrated that
use of the missing at random assumption may lead to biased results. In this work, we have
proposed to model informatively missing genotypes in haplotype analysis. We have
analytically characterized the relationship between the identifiability of model parameters and
LD between the markers under study, and we have shown that the presence of LD allows us
to uniquely identify all of the parameters in this general missing data model, together with
haplotype frequency estimates. We have also used Monte Carlo simulations to evaluate the
proposed method. All simulation studies showed that our proposed methods perform well. We
finish our considerations with a few remarks.

Remark 5.1. There are generally two ways to deal with missing data in practice: incorporating
the missing data mechanism into the analysis (as is done in this work), or imputing the missing
values. The advantage of the first approach is obvious. In many situations, however, there may
be a need to impute the missing values. For example, the principal component analysis cannot
deal with missing data.

Remark 5.2. Given the availability of our model and the fact that missing at random is a special
case in our model, it is always safer to analyze the data under this general model for markers
in LD, and our model also allows the missing-at-random hypothesis to be tested. However, we
noticed in our study that the standard errors of the estimates from our method are usually larger
than those from HAPLO.STATS (e.g., Table 4). This is expected because our method includes
more parameters. As a consequence, our method may have lower power, although the power
loss may be small (Liu et al., 2006). This is common in statistics and is the price that needs to
be paid in order to use more complicated models. Prior to analysis, we suggest that the users
explore their data first, such as looking at the missing rates and distributions. If the missing
rates are low and/or the missing distributions do not seem to have obvious patterns, it may be
acceptable to use simple models with the random-missing assumption. In addition, users can
test whether the missingness is random or not using the new method and then choose among
the models accordingly. Model selection criteria, such as AIC and BIC, can also be used to
help in choosing the appropriate methods for the data.

Remark 5.3. Although our method failed to find evidence of a haplotype effect in either the
scleroderma cases vs. controls or the dcSSc patients vs. the lcSSc patients, we do not conclude
that there are no haplotype effects. There may be some confounders that mask the real signal,
or the sample size may not be large enough for our method to detect the real effect. Further
studies are needed to confirm these findings.

Remark 5.4. Although our proposed method is attractive, there are still limitations. We have
dealt with only two markers in our study, although it is indispensable to analyze more markers
in practice. Although the extension to more markers is computationally challenging, it is
straightforward in principle. Some numerical techniques can be used to control the increased
computation costs. For example, the partition-ligation method (Niu et al., 2002) is a potential
way to reduce computing burden.

Remark 5.5. Although our missing data model is much more general than those currently in
use, we do assume independent missingness at markers and HWE. These assumptions are
reasonable in general. However, under certain circumstances they may be violated and may
need to be relaxed for more general use of our method. In this paper, we have assumed that all
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genotyped data are correct without error. However, just like missing data, genotyping errors
are commonly encountered in practice as well. Handling genotyping errors represents another
promising future direction for research.
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Table 2

Genotype Penetrances for a Tri-Allelic Marker after “Pooling” Two Alleles to Form a Pseudo-Biallelic Marker

A1A1 A1A−1 A−1A−1 ??

A1A1 1- α1,1 0 0 α1,1

A1A−1 0 1- β1,−1 0 β1,−1

A−1A−1 0 0 1- β−1,−1 β−1,−1

NOTE: The column headings are the possible observed genotypes. The row headings are the true genotypes. Each entry is the probability of observing
the observed genotype given the true genotype.
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