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ABSTRACT

This paper provides an introduction to the Johnson
translation system of probability distributions, and it describes
methods for using the Johnson system to model input processes
in simulation experiments. For situations in which little or no
sample information is available, we have developed a visual
interactive method to estimate bounded Johnson distributions
subjectively; and we have implemented this technique in
VISIFIT, a public-domain software package. For fitting all types
of Johnson distributions based on sample data, we have
implemented several new statistical-estimation methods as well
as some standard techniques in FITTR1, another public-domain
software package. We present several examples illustrating the
use of VISIFIT and FITTR1 for simulation input modeling.

1. INTRODUCTION

In modeling and simulation of stochastic systems, a major
problem is the selection of probability distributions that will
adequately represent the input processes (populations) driving
the simulation model. When it is feasible to collect sample data
from a target population, simulation input modeling is usually
accomplished by (a) hypothesizing a standard parametric
distribution to describe that population, (b) estimating the
associated parameters based on the sample information, and (c)
performing diagnostic checks to assess the adequacy of the fit
based on a comparison of the sample distribution with the fitted
distribution. In the absence of sample information for
parameter estimation and goodness-of-fit testing, practitioners
usually try to elicit expert opinions about enough numerical

characteristics of the target population (for example, the mode,
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the end points, or the mean) to specify uniquely a member of the
Thus fundamental
consideration in simulation input modeling is the initial selection

hypothesized  distribution  family. a
of a flexible family of distributions —that is, a family capable of
yielding a wide variety of distributional shapes; unfortunately,
many of the standard parametric distributions have an extremely

limited range of possible shapes (Schmeiser 1977).

In this paper we discuss the use of the Johnson (1949)

translation system of distributions to model continuous
univariate populations. (The term method of translation refers to
the transformation of a continuous random variable to a
standard normal variate as explained below.) By incorporating
four highly flexible families of distributions (specifically, the
lognormal, unbounded, bounded, and normal families), the
Johnson system can fit any distribution up to its first four
moments; and in practice the Johnson system has been used
successfully in a wide variety of disciplines. In this paper we
describe a visual interactive method for subjective estimation of
bounded Johnson distributions when little or no sample sample
information is available, and we discuss the software package
VISIFIT in which this visual approach has been implemented.
For fitting all four families of Johnson distributions to sample
data, we present the interactive software package FITTR1. Both
VISIFIT and FITTRI are in the public domain, run on
microcomputers, and are available from the authors upon
request.

This paper is organized as follows. Section 2 contains a
brief introduction to the Johnson system of distributions. The
main issues arising in subjective estimation of probability
distributions are discussed in Section 3. The operation of
VISIFIT is detailed in Section 4. In Section 5 we survey the



methods for distribution identification and parameter estimation
that have been implemented in FITTR1. The operation of
FITTR1 in Section 6. We summarize our
conclusions about input modeling with Johnson distributions in
Section 7.

is described

2. THE JOHNSON TRANSLATION SYSTEM

Let X be a continuous random variable with cumulative
distribution function (CDF) F(x) = Pr{X <x} and probability
density function (PDF) p (x) = F’(x) that are to be estimated
using a flexible family of distributions. Johnson (1949) proposed
four normalizing translations with the general form

3 (1)

Z=~+6f [X__é] ,
where Z is a standard normal random variable, « and § are shape
parameters, A is a scale parameter, ¢ is a location parameter, and

f () is one of the following functions:

In(y), for the Sy (lognormal) family,
tnfy +Vy? + 1], for the Sy (unbounded) family.
fo) =3 , 2
In[y /(1 -y)), for the S (bounded) family,
Y for the Sy (normal) family.

Without loss of generality, we assume that § > 0 and A > 0. We
also observe the following standard conventions: (a) for the Sy
(normal) family, we always take A=1 and £ = 0; and (b) for the
S; (lognormal) family, we always take A= 1. Note that once the
functional form f() has been identified and the parameters
{7, 6, A, £} have been estimated by one of the fitting techniques
described below, generating random variates from the fitted
Johnson distribution is straightforward —given a random sample
Z from the standard normal distribution, we compute the
corresponding realization of the target variate X as follows:

reconr (£

where
e, for the S, (lognormal) family,
% [ez - e_z] , for the Sy (unbounded) family,
@)= , 4
1/(1+e~%), fortheSp (bounded) family,
z for the Sy (normal) family.
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Thus the practitioner merely needs a standard normal random
variate generator in order to sample variates from any of the
Johnson distribution families. Both univariate and multivariate
Johnson distributions are available in the INSIGHT simulation
language (Roberts 1983).

For each distribution family in the Johnson system, the
corresponding probability density function (PDF) is

2
6§ lx-¢ 1 x-¢
x) = —F— expd — |y + 6 5
o) = 7155 e E ”} B
for all x €H, where
1/, for the Sy (lognormal) family,
1/Vy?+1, for the Sy (unbounded) family,
fo)= (6)
1/[y (1 -y)], for the Sp (bounded) family,
1, for the Sy (normal) family,
and where the (closed) support H of the distribution is
(€, +o0) for the Sy (lognormal) family,
(~o0, +o0) for the Sy (unbounded) family, o
H=
[€. € +2] for the Sp (bounded) family,

(—o00, +00) for the Sy (normal) family.

Thus we see that the terms bounded and unbounded describe the

support of the density p(x), which is also the space of the
associated random variable X. As an aid in describing the
location, scale, and shape of the distribution of X, we define the
moments

p=E(X] and p, =E[X -pf], c=234. (8

Thus g is the mean and u, is the variance of X. The skewness
and kurtosis of X are

VB =/t and By = pa/ub 9)

respectively.

Figures 1 and 2 show some typical densities in the Sy and
Sp families with the corresponding values of the shape
parameters as well as the skewness and the kurtosis. To
conserve space, we have omitted density plots for the more
familiar normal (Sy) and lognormal (S;) densities. Figures 1
and 2 actually show the density of the standardized variate Y =
(X - €)/A, which has location parameter zero and scale
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Figure 1: Some Typical Densities in the Sy Family

parameter one, in order to clearly reveal the role of the shape
parameters - and é in determining the layout of a distribution in
each of these families. Note that an Sy or Sp distribution is
symmetric about its mean g if and only if v = 0. If 4 is fixed,
then as § increases we observe that the corresponding Sy or Sp
density becomes more sharply peaked. As suggested by Figure
1, every Sy distribution has a unique mode. Figure 2
demonstrates that Sp curves may be either unimodal or bimodal
with an antimode between the two modes. Figure 2(c) is a
deformation of Figure 2(a) in which the right-hand mode and
the antimode have coalesced into a point of inflection. Figure 2b
shows that the Sp fumily includes distributions that are nearly
uniform over the interval [€, £ + A]. Finally we note that for both
the Sy and Sg families, the density p (x) and all of its derivatives
tend to zero as x tends to extreme values in the support H; this
means that the density is a “perfectly smooth” (infinitely
differentiable) function of x for all real values of x. Other well-

known families of distributions do not possess this smoothness

property.

3. SUBJECTIVE DISTRIBUTION FITTING

1.1. Johnson S Alternatives to Common Input Distributions

In developing a visual interactive approach to finding input
distributions when little or no sample information is available,
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Figure 2: Some Typical Densities in the Sp Family

we confined ourselves to the Sp family because it matched well
our notions of the general characteristics of many potential
envisioned target distributions. The Sp distributions are
bounded, thin-tailed, and capable of matching the skewness and
kurtosis  of many practical distributions.  Real-world
measurements are always bounded, even if only by the limits of
technology, and typically extremal values near the end points of



a distribution are unlikely.

Figure 3 depicts the capability of the S family to mimic the
properties of three distributions that are commonly used in
large-scale discrete simulation studies—the triangular, normal
and beta distributions. Although Sg densities will not closely fit
all
alternatives. For example, the paired Sp and triangular densities

triangular  distributions, they can serve as appealing
shown in Figure 3(a) have the same minimum, maximum, and
mode; and the standard deviation of each Sp distribution is
taken as one-sixth of the range. Figure 3(b) shows that an Sp
density can yield an excellent approximation to a normal density
over a bounded interval. Figure 3(c) shows by setting the
parameters {~, 6, A, ¢} of an Sp distribution to yield the same
end points, mean, and variance as a unimodal beta distribution,
we obtain a fitted Sp density which closely approximates the
beta density.

Historically the Sg distribution has been difficult to work
with because of the mathematically complex relationship of its
shape to the parameters v and 6. There are no convenient
explicit equations relating the mode or any of the moments of an
Sp distribution to its parameter values. Therefore, for the
distribution to be useful, the shape parameters must be recast
that
characteristics of a target distribution.

into familiar terms correspond to the envisioned

3.2. Subjective Specification of Sy Distributions

Describing an envisioned distribution in sufficient detail to
permit its approximation by a parameterized functional form is a
nontrivial task, even when restricting consideration to smooth,
thin-tailed, unimodal densities such as the Sp densities.
Typically, numerical measures of central tendency, variability,
and other complex nuances of a density’s “shape” are employed.
Familiar examples inciude the mean, standard deviation,
skewness, and kurtosis. While these statistical descriptors are
easy to obtain from raw data, they are difficult to estimate for an
envisioned distribution. The mean of an asymmetric, bounded
distribution rarely coincides with other common measures of
central tendency such as the mode, median, and midrange; and
inexperienced estimators are frequently unable to make the
proper distinctions among these measures (Spencer 1963).
Subjective estimates of means are influenced by distributional
variance and skewness, and may be biased (Beach and Swenson
1966). Intuitive variability estimates inappropriately
correlated with the magnitude of the mean (Lathrop 1967).
Descriptors defined in terms of a distribution’s higher moments

are

are for practical purposes unavailable except by calculation from
data.

311

—— Johnson SB
- - - {riangular

Figure 3(a): Matching Triangular and S g Densities

Br D
—— Johnson S8
- == normal

8l

0
-0.2 0 0.2 0.4 0.8 1.2

Figure 3(b): Matching Normal and S5 Densities

——— Johnson SB
—-— bota

Figure 3(c): Matching Beta and § g Densities



We believe that a target distribution’s mode is more easily
specified than any other measure of central tendency. It is a
natural, easily understood “best guess” of what one is most likely
to see on any single realization of the target random variable.
Unlike the mean, the mode is not necessarily tied to the
behavior of the distribution in its tails; and unlike the median, it
is not necessarily tied to the degree of asymmetry in the
distribution. For skewed distributions, estimates of the mode
and median are demonstrably better than estimates of the mean
(Peterson and Miller 1964).

In addition to the end points and mode, which suffice for
the triangular distribution, at least one other descriptor is
necessary to uniquely specify the more complex functional form
of the Johnson S distribution. Fortunately, percentile points for
envisioned distributions can be subjectively estimated with
accuracy (Kahneman, Slovic, and Tversky 1982). An Sg
distribution can be uniquely determined by its end points
together with (a) two percentile points, or (b) the mode and one
Doubilet et al. (1985) have developed a
method for the estimation of a logistic-normal distribution
(which is a Johnson Sg distribution with £ = 0.0 and A = 1.0)
from the mean and either the Sth or 95th percentile point.

percentile point.

Even when an Sg distribution can be found with the desired
characteristics, the corresponding density may have a shape
quite unlike what the modeler imagines, as with a distribution
bounded between 0.0 and 1.0 with a mean of 0.45 and a mode of
0.1. I a modeler fails to describe the target distribution

accurately (that is, if he specifies characteristics inappropriate
for the envisioned distribution), then the only way that this can
be detected in the absence of data is by visual inspection of the
resulting density’s shape. The VISIFIT software package is
designed to permit visual display and interactive editing of the
density shape.

4, USING THE VISIFIT SOFTWARE

VISIFIT combines flexible numerical description with
interactive visual curve modification to capture and refine
available subjective information into a parameterized Johnson
Sg density. Primary design goals were ease of use, high speed on
inexpensive microcomputers, and the requirements of minimal
information and information processing from the user. VISIFIT
should run under most versions of MS-DOS or PC-DOS (we
recommend version 3.0 or higher) on all IBM-compatible
microcomputers. A numeric coprocessor is utilized if present,
but it is not required. Because VISIFIT performs extensive
floating-point computations, we strongly suggest running it on a
fast AT-class microcomputer (that is, a machine running at or
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above 6 MHz) with a numeric coprocessor. VISIFIT requires at
least 112K bytes of memory to execute. Currently, VISIFIT
supports two types of video-display graphics: (a) color graphics
for EGA- and VGA-compatible display adapters; and (b)
Hercules monochrome graphics.

4.1, Specifying the Desired Characteristics

At the outset of the interaction with VISIFIT, the user must
specify the upper (maximum) and lower {minimum) end points
of the distribution. These are subject to later modification, if
desired. Next the modeler is prompted for values of any fwo of
the following characteristics:

1. Mode

Mean

Median

Arbitrary percentile point(s)

Width of the central 95% of the distribution
Standard deviation

Yok W

=

Significantly, the user is free to provide two arbitrary,
asymmetric percentile points, such as the 10th and 25th
percentile points. Unlike other algorithms (Mage 1980), there is
no requirement that the four specified numerical characteristics
(namely, two end points and two percentile points) must
correspond to equidistant normal deviates. When the user gives
no indication of the desired spread, VISIFIT suggests up to three
choices for the standard deviation: (a) one-sixth of the range; (b)
the the triangular
distribution with the user’s specified measure of centrality; and
(c) the standard deviation that yields the closest fit to a normal
distribution within the specified interval [£, £ + A]. VISIFIT also
allows the user to specify the parameters of a beta distribution,

standard deviation of corresponding

to which it fits an Sp with the same end points, mean, and
standard deviation.

By accepting a variety of different descriptions, VISIFIT
minimizes the need for prior processing of information. The
modeler is free to use whatever information is convenient,
familiar, or easily understood. After the user has entered the
desired numerical characteristics of the target population,
VISIFIT computes the parameters for the Sg distribution that
most closely matches those characteristics. Several numerical
and approximative techniques are employed in this calculation,
and all are detailed in DeBrota et al. (1989).

4.2, Interactive Curve Modification

Once the parameterization of the fitted Sp density is



complete, the user is immediately presented with the
distribution’s actual shape on a graphical display screen. Such
visual feedback will sometimes suggest to the user different
values for the characteristics of the target random variable X
than were originally chosen. From these revised specifications a
new set of parameter values is generated, and then a new fitted
density is presented to the user (see Figure 4). Cyclic interaction
permiits the user to experiment with different curve shapes until

a satisfactory one is obtained.

VISIFIT also provides a still simpler scheme of interactive
curve shape modification that frees the user from having to deal
with numerical input by providing single-keystroke commands
that directly manipulate the shape of the displayed curve. The
modeler can adjust the shape of a displayed Johnson Sy curve by
trial-and-error until he is satisfied with the way it looks.
Motivated by our belief in the universal ease of specifying the
mode, width, and percentile points of a distribution, we
implemented various single-keystroke commands producing the
following immediate effects:

1. Move the mode towards the upper bound
2. Move the mode towards the lower bound
3. Increase the width of the curve

. Decrease the width of the curve

. Move the 2.5th percentile point to the right
. Move the 2.5th percentile point to the left

. Move the 97.5th percentile point to the right
. Move the 97.5th percentile point to the left

00 ~1 Oy L A

The magnitude of the change (in the direction indicated by the
choice of control key pressed) is determined by an adaptive
seeking strategy. The modeler need only indicate the direction
of desired change from each displayed curve to the next. The
curve can be updated approximately twice each second on an
IBM PC/AT class machine with a numeric coprocessor, and thus
the overall process of changing a curve, even drastically from an
initial shape, takes at most a few seconds in the hands of an
experienced user.

Modification of the end points may be accomplished in two
ways. The scale of the x-axis may be changed, preserving the
shape of the distribution while altering the absolute values of the
end points. This rescaling also changes the absolute values of
the mode and width. Alternatively, the absolute values of the
mode and width may be preserved during a change in the end
points, in which case a new curve with a visually different shape
is obtained.

left/right arrow keys move peak, up arrow widens curve, down arrow narrows it

2.5%ile point located
at 7.06

peak (mode) located
at 15.0

97.5%ile point located
at 36.3

P

0.000

50.0

tic marks fall on multiples of 5.00

#%x* hit enter when you are satisfied with the curve displayed *%%*

Figure 4: VISIFIT's Graphical Display
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5. METHODS OF DISTRIBUTION FITTING WITH DATA

In contrast to the case involving little or no sample
information, we now consider the problem of fitting Johnson
distributions to sample data. We assume that the target

population can be adequately described by a distribution in the

Johnson system; and we want to use sample data from this
population for two purposes: (a) to identify the Johnson
distribution family that provides the most appropriate model for
the population, and (b) to compute the parameter values for the
selected family that yield the “best” fit. Thus in this section, our
basic approach to simulation input modeling is to use sample
data to determine the form of the input model as well as the
parameter values for that model.

Fitting Johnson distributions to sample data generally
requires the user to select a fitting method as well as a fitting
criterion. In this section we discuss four basic distribution-fitting
methods —moment matching, percentile matching, least squares,
and minimum L, norm estimation. For the last two fitting
methods, we must also specify a fitting criterion that measures
the “distance™ between the sample distribution and the fitted
Johnson distribution. It has been our experience that no single
fitting method or fitting criterion is uniformly superior in all
cases; different applications may require different statistical tools
to yield appropriate input models.

5.1. Moment Matching

Suppose we have a random sample {x;:j =1, .., n} from
the target distribution F() that is to be approximated by a
Johnson distribution. Then the sample analogs of equations (8)
and (9) are

Q:n'IZx]; (10)
=1

n
fe=n 'Y (- ), ¢ =23, 4;
] =1

7

A
A A ~ A A2
Vb= ﬂa/#zzs/zv and By = g/ (1)
For every possible pair of values of the sample skewness and
sample kurtosis, there is exactly one Johnson distribution whose
The

moment-matching technique for fitting a Johnson distribution to

theoretical skewness and kurtosis match these values.

sample duta uses the values of the sample statistics (11) to
identify the appropriate distribution type from the four families
defined by equations (5) through (7). As discussed just after
equation (2), the number k of parameters to estimate depends
on the selected distribution type; and the principle of moment
matching prescribes that the first & sample moments should be

314

equal to the corresponding theoretical moments of the fitted
Johnson distribution. The resulting system of k nonlinear
equations in k& unknowns is then solved to obtain the parameter

estimates for the fitted distribution.

5.2. Percentile Matching

Percentile matching involves estimating k& parameters of a
Johnson distribution by matching k selected percentiles of the
standard normal distribution with the corresponding sample
percentile estimators for the target population after those
sample percentiles have been “normalized” via equation (1).
For given percentages {a;:1<j<k}, the corresponding
percentiles {z4,} and {x,} of the standard normat distribution
®() and the unknown target distribution F() are respectively
defined by

2oy =@ Ney) and xo = F ey, j=1.. k. (12)
For example when k& = 2, it is common to select the percentages
{oy = 025, oy = 0.75}; and this implies that the lower and upper
standard normal quartiles zg,5 = —0.674 and zg7s = 0.674 are
to be matched. Once the functional form f () in equation (2) has
been identified by some means, the method of percentile

matching attempts to solve the k nonlinear equations

Zaj =4+ 6'f[(faj _E)/’\]v ] sty k (13)
in the k£ unknowns among the parameters {~, 6, A, £}, where fa,'
is a standard sample estimator of the percentile Xo; of the target

population.

5.3. Least Squares

Least squares estimation for the Johnson system involves
minimization of the distance between a vector of “uniformized”
order statistics and its corresponding expected value. Given the
order statistics X(1y < < x(n) obtained by sorting the random
sample {x; : 1</ <n} in ascending order, we can transform the

ith order statistic Xx(;) into the uniformized order statistic

Ugy = <I>{v + 6f[¥]} i=1 ...

If the translation (1) yields a standard normal variate exactly,
then Uiy has the distribution of the ith smallest observation in a
sample of n random numbers from the uniform distribution on
the unit interval (0, 1). In this case U(,-) has expected value p; =
E[U(.-)] =i/(n +1). The “error” ¢; = Ugy — o tepresents the

(14)



random deviation between the observed and expected values of
the ith uniformized order statistic so that

i(n=i+1)

E T =0 dV 5l =,
le:} = 0 and Varls] (n + 12 +2)

i=1,.. (15)

, n

Assigning the weight w; to the error g, we can formulate
the least squares approach to parameter estimation for the
Johnson system as follows:

minimize 3 w;-e? (16)
BEAE iz
subject to
6> 0,
>0 for SU,
A >X(n)—£ fOl'SB, (17)

=1 for §; and Sy,
¢ <xq) for S; and Spg,
=0 for Sy.

When the weights {w;} in (16) are all equal to one, the objective
function is equal to |U ~p|?%, the squared length of the
distance between the vector U = [U(yy, ..., Un)] of uniformized
order statistics and its expected value p = [p, ..., po]; and in this
case the minimization of (16) yields the ordinary least squares
(OLS) estimators for v, 6, A, and €.

Since the errors {g;} in (16) do not have a constant
variance, it is reasonable to take w; = 1/Var[e,] fori = 1, ...
With this setup, we obtain the weighted least squares (WLS)
estimators of the Johnson parameters. In a wide variety of
applications, Swain, Venkatraman, and Wilson (1988) obtained
WLS fits for Johnson distributions that were comparable and
often superior to the fits obtained by the other methods

,n.

described in this paper.

5.4. Minimum L, Norm Estimation

In this section we discuss the use of L and L, norms in
estimating the parameters of the Johnson distribution. The
principle is to minimize some metric describing the distance
between the empirical distribution function F,() and the fitted
distribution function ﬁ(). If 1<p < oo, then the L, norm for

the distance between F, () and lf"() is defined as
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[ 1p

IFa = Fll, =| [ |Falx) - Fx) | ?dF(x)

— 00

(18)

When we take p =1 in (18), the L, norm |[F,,—ﬁ]|1 is the
“area” between the plot of the empirical distribution F, (x) and
the plot of the fitted distribution F(x) for all real x. The L,
norm is

1P = Flloo = max | Fax) - F(x) | (19)

—o0<z <o

the Kolmogorov-Smirnov goodness-of-fit statistic corresponding
to the fitted distribution F. In each case, the minimization of
(18) is carried out subject to the constraints given in display (17).
Since L and L, norm estimation directly seek to eliminate the

the fitted
distribution, the resulting fits are very appealing visually.

gap Dbetween the empirical distribution and

6. USING THE FITTR1 SOFTWARE

All of the fitting methods described in Section 5 have been
implemented for the Johnson translation system in the
interactive software package FITTRI. In this section we briefly
describe the operation of FITTR1. For a complete description
of this software and the numerical methods on which it is based,
see Venkatraman and Wilson (1987). As for VISIFIT, FITTR1
should run on all IBM-compatible microcomputers using
versions of MS-DOS or PC-DOS numbered 3.0 or higher.
FITTR1 will use a numeric coprocessor if it is present, and this
is strongly recommended for fitting distributions to large data
sets. The current version of FITTRI, which is configured to
handle data sets of up to 500 observations, requires 212K bytes
of memory to execute. Because all of the output of FITTR1 is
plain text, virtually any video display can be used to run FITTR1.

The program begins execution by prompting the user for:
(a) the name of a “script” file that will maintain a record of the
entire interactive session, and (b) the filename for the data set to
be fitted. (At a later time, the first file can be printed out to
provide a hard copy of the results of the interactive session.)
After the user has responded to these prompts, the data set is
read in, some basic data checks are performed, and standard
descriptive statistics are calculated and displayed. FITTRT also
automatically computes and displays the results of fitting the
data set by moment matching. Beyond this point in the
interactive session, FITTR1 is command-driven. The available
commands provide for fitting Johnson distributions, generating
tables and plots of fitted and empirical distributions, and



manipulating input data files. Some of these commands are
explained below,

stat Command: Displays the computed sample statistics—
namely, the mean, standard deviation, skewness, and kurtosis as
defined in (10) and (11).

fit ijkm Command: Fits a new distribution to the sample
data set as specified by the fitting code ijkm. The four digit
code ijkm is parsed to obtain the values of the variables i,
3,
assigned to these variables.

k and m. The table below describes the values that can be

0 = automatic distribution selection
1 = §; distribution
i | 2 = Sy distribution
3 = §p distribution
4 = Sy distribution
0 = no end point known
. { 1 = lower end point known
] 2 = upper end point known
3 = both end points known
X 0 = compute starting parameter values
1 = use previous parameter values
0 = moment matching
1 = percentile matching
n = ordinary least squares estimation of the CDF
3 = weighted least squares estimation of the CDF
4 = L, estimation of the CDF (minimize sum of absolute errors)
5 = L estimation of the CDF (minimize maximum absolute error)

The command f£it 0 has special meaning: it identifies the type
of distribution to fit based on the value of the pair (ffl, 32) and
also performs parameter estimation by moment matching.

par Command: Displays the parameters of the fitted
distribution —namely the type of distribution that has been fitted,
the fitting method, and the current values of the parameters 7, 6,
A and €.

gof Command: Computes chi-square and Kolmogorov-Smirnov
goodness-of-fit statistics for the latest estimated Johnson
distribution.

cdf and pdf Commands: Create files of fitted and empirical
CDFs (respectively, PDFs) that can be used as input to plotting
packages for display on high-resolution output devices (usually
color monitors and/or laser printers). The plot-files generated
by this command are ASCII (plain text) files—that is, they
contain free-format numbers specifying the appropriate abscissa
(x) and/or ordinate (y) values for the points to be plotted. To
create the desired graphs, the user may pass these files to any
available plotting package. The specified points should be
connected with straight lines to obtain the desired graph. Note
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that the cdf command can also be used to display tables of
fitted versus empirical CDFs directly on the terminal,

7. CONCLUSIONS

As a general tool for simulation input modeling, the main
advantage of the Johnson translation system of probability
distributions is its flexibility in approximating the target
distributions that arise in a diversity of applications. The main
disadvantage of the Johnson system is its analytical intractability.
The software packages FITTR1 and VISIFIT have been
specifically designed to alleviate this limitation.

Another attractive feature of the Johnson system is that it
can be extended easily to provide systems of multivariate
distributions, and this property should enable us to conveniently
model dependencies among the inputs to a simulation.
Multivariate extensions of FITTR1 and VISIFIT are currently
being developed (Venkatraman 1988).

In many simulation studies the analyst has both sample data
and subjective information about the input process to be
modeled, and he would like to use both sources of information in

an integrated procedure for building a simulation input model.
We are currently pursuing methodology and software that
effectively synthesizes VISIFIT and FITTR1 to provide a unified
approach to input modeling.
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