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ABSTRACT
This paper addresses the problem of modeling interactive
systems*. We aim to provide an easy way for elaborating the
behavior specification of a system using hierarchical colored
Petri nets. Our modeling approach comprises two levels of
abstraction: the use case level corresponding to the use case
model as defined in the Unified Modeling Language (UML)
and the scenario level as refinement of the former one. The
color aspect of nets is used at the scenario level to preserve
the independence of several scenarios after their integration.

The benefits of our approach consist in the structuring
of the scenario acquisition and in the new approach of
merging them using colors and chameleon tokens.

1. INTRODUCTION
The need for formal techniques for analyzing systems is
widely acknowledged, a large range of existing formalisms
being in use for specifying systems. In modeling interactive
systems visual formalisms are needed to reduce the gap
between users and analysts. Object-oriented methods like
UML (Booch et al. 1997) offer one of these formalisms
(Statecharts), yet they only address the dynamic behavior of
individual objects. The behavior of the overall system can
not be described explicitly; it must be synthesized from the
Statecharts of the objects of the system.

The main contribution of this paper is to provide an
approach for the formal specification of the behavior of an
overall system. We propose a process for deriving system
specifications combining the UML as object-oriented
method and colored Petri nets as formal method. At the
beginning of the process, we elaborate a use case diagram
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according to the UML. Then we transform this diagram into
a first Petri net having use cases as places and user
interactions as guard conditions of transitions. Each place of
this first net (use case) is then refined by a colored Petri net
constructed from the scenarios associated with the various
use cases. The choice of colored Petri nets as formalism was
guided by natural support for concurrency and the notion of
colored tokens that is crucial in scenario integration. The
use of colored Petri net tools may allow for verification and
simulation of the resulting specifications. Especially, several
use cases may be executed concurrently, and several
scenarios and several copies of the same scenario may be
simulated. Two further contributions of our work is a new
algorithm for integrating scenarios and the notion of
chameleon token, introduced in order to have specifications
capture exactly the scenarios of the system and nothing
more.

In this paper, we first introduce in section 2 the
formalism used to describe Petri nets, as a basis for
describing our integration algorithm. In section 3, we
provide an overview of the UML, with a special focus on
use case diagrams and sequence diagrams. Then, in section
4, we present the process for deriving system specification.
Section 5 presents related work, and section 6 concludes this
paper.

2. PETRI NETS  AND COLORED
PETRI NETS

Petri Nets (PN) are in use in a large variety of different
areas. Their application ranges from informal to formal
systems and from software to hardware systems and from
sequential to concurrent systems. As mentioned in (Jensen
1997) Petri nets are used in communication protocols,
distributed algorithms, computer architecture, computer
organization, human-machine interaction and many others
areas.

A simple PN is defined as a bipartite graph consisting
of places, transitions and tokens.  PN = <P, T, A, M>. P: the
set of places, T: the set of transitions, A: the set of directed
arcs connecting places and transitions and M: the set of
tokens resident in places at a given moment. In addition, a



net may have an associated set of enabling and firing rules
to determine under what conditions (particular marking) a
transition is enabled and may fire.

In real-world systems, we often find many parts that
are similar. These parts must be represented by disjoint and
identical sub-nets in PNs. This means that the net becomes
largely and it becomes difficult to see the similarities
between the individual sub-nets. CPNs provide a more
compact representation where individual sub-nets are
replaced by one sub-net with different kind of tokens, each
token having a color and representing a different sub-net in
the equivalent PN.

There are many various definitions of CPNs. In our
work, we use Lakos’s definition (Lakos 1994), which is
slightly different from Jensen’s formulation (Jensen 1997).

Some definitions to understand for the CPN
formalization:
a) the set of elements of type T can be denoted T.
b) the multi-set of elements of type T is denoted T*.
c) multi-set addition, subtraction, scalar multiplication,

comparison operations are denoted in the usual way
(m1 – m2, m1 <= m2, etc.)

d) the type of a variable v is denoted Type(v).
e) the type of an expression expr is denoted Type(expr).
f) The set of variables in expression expr is denoted

Var(expr).
g) The binding b of a set of variables V, where ∀ v ∈ V:

b(v) ∈ Type(v)

A colored Petri net (CPN) is defined as a tuple <∑, D, P, T,
A, τ, G, E, I> where:
∑ is a finite set of non-empty types, called color sets.
D is a finite set of data fields.
P is a finite set of places with P ⊆ D.
T is a finite set of transitions with D ∩ T = ∅.
A is a finite set of arcs such that A ⊆  P x T ∪ T x P.
τ is a color function, τ: D  → ∑,  ∀ p ∈ P, τ(p) = C* and C*
∈ ∑.
G is a guard function,  G: T → expr where:

∀ t ∈ T: [Type(G(t)) = bool ∧ Type(Var(G(t))) ⊆ ∑]
E is an arc expression function, E: D x T ∪ T x D → expr
where:

E(x1, x2) = ∅   if (x1, x2) ∉ A and
∀ a ∈ A: [Type(E(a)) = τ(p(a)) ∧ Type(Var(E(a))) ⊆ ∑]
p(a) is the place of arc a.

I is an initialization function, I: D → expr, where
I(d) is a closed expression and ∀ d ∈ D: [Type(I(p)) = τ(p)].

In this definition, arcs expressions specify tokens
which are being added or removed by transitions. Both
places and variables of expressions are typed, and the initial
marking is defined by the initialization function I.

3. THE UNIFIED MODELING
LANGUAGE
The UML represents the unification of the best-known
object-oriented methodologies, to provide a standard in the
domain of object-oriented analysis and design. The UML
does not provide a process for developing software, but it
gives a syntactic notation, to describe all parts of a system
(data, function and behavior) through a number of diagrams
(class diagram, use case diagram, sequence message
diagram, collaboration diagram, state diagram, activity
diagram, implantation diagram and deployment diagram).

The use case diagram in UML presents a collection of
use cases and the external actors whose interact with the
system. A use case is a generic description of an entire
transaction involving several objects of the system. Use
cases are represented as ellipses, and actors are depicted as
icons connected with solid lines to the use cases which they
interact with. One use case can call upon the services of
another use case. Such a relation is called a uses relation and
is represented by a directed dashed line. The direction of  a
uses relation does not imply order of execution. Figure 1
shows an example of a use case diagram corresponding to
an automatic teller machine (ATM). There is one actor
(customer) interacting with four use cases (Identify, Deposit,
Withdraw, and Balance), the use case Print for example is
used by three use cases (Identify, Deposit, and Withdraw).

An execution (instance) of a use case is called a
scenario, there might be many possible scenarios for one use
case. Scenarios can be represented by sequence diagrams or
collaboration diagrams, and conversion between these
diagrams is possible. We have chosen to represent scenarios
by sequence diagrams for their simplicity and their wide
use. In the rest of this paper we will call them scenario
diagrams.

Figure 1: Use case diagram of ATM
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A scenario diagram shows interaction among a set of
objects in temporal order. In Figure 2, we give an example
of two scenarios corresponding to the use case Identify of
the ATM system.

4. DESCRIPTION OF APPROACH
In this section, we describe the process for obtaining the
formal specification of the behavior of the system to be
modeled. Note that we address the behavior of the entire
system and not just the behavior of its constituent objects.
For this purpose, we have used in our approach the two
kinds of UML diagrams described in the previous section
and combined them with colored Petri nets. The approach is
a four-step process:
1. the elaboration of the use case diagram of the system,

and the generation of the corresponding PN ;
2. the refinement of uses relations and the updating of the

PN of step 1;
3. the elaboration of several scenarios for each use case;
4. the integration of the scenarios by use case;

4.1. Elaboration Of The Use Case Diagram

We begin by elaborating the use case diagram of the system,
and then we derive the first PN where each use case is
transformed into a place of the PN. The transition leading to
this place is guarded by a condition corresponding to the
initiating of the use case by the actor. We add in the
generated PN a place Begin modeling the entry of the
system (initial point), and after execution of the use cases,

the system returns to its initial place Begin. This place will
contain several tokens for modeling the concurrent
execution of use cases. For example, Figure 3 shows the
derived PN for an ATM system. We use a unique prefix to
distinguish the guard conditions of the different use cases.
In the example below we are using the first letter to refer to
a specific use case (‘W initiated’ means the use case
Withdraw initiated, and ‘W exited’ means the end of the use
case Withdraw).

4.2. Refinement Of Uses Relation

In the use case diagram, a use case can call upon the
services of another with the relation uses. This relation may
have several meanings depending on the system. Consider
two use cases Uc1 and Uc2, the relation uses between them
may be interpreted in different ways. Figure 4(a) gives the
general form of this relation (Note that in use case diagrams,
control constructs such as loops and conditions which would
lead to a more general form of this relation, are not
considered). Uc1 is decomposed into three sub-use cases:
Uc11 represents the part of Uc1 executed before the call of
Uc2, Uc12 is the part executed concurrently with Uc2, and
Uc13 is the part executed after termination of Uc2

(synchronization). It is possible that two of these three sub-
use cases are empty, resulting in one of the configuration
types shown in Figure 4(b),  Figure 4(c), Figure 4(d), Figure
4(e), Figure 4(f) and Figure 4(g).

A relation of type (g) between Uc1 and Uc2 means that
Uc2 precedes Uc1, this implies that Uc1 is not directly
accessible from the place Begin. So transitions form Begin
to Uc1 must be changed to transitions from Uc2 to Uc1.

In the ATM system (Figure 1), the relation uses
between (Deposit, Identify), (Withdraw, Identify) and
(Balance, Identify) are of type (g), and the relations between
(Deposit, Print), (Withdraw, Print) and (Balance, Print) are
of type (e). Figure 5 shows the updated PN representing the
refinement of the uses relations.

4.3. Scenario Elaboration

As a result of step 2, we obtain a list of elementary use cases
denoted {Uc1, Uc2, … , Ucn}. For each use case  Uci the
analyst acquires the related scenarios {Sci1, Sci2, … , Scim}.
The acquisition of a scenario Scik comprises the construction
of the scenario diagram and the associated table of object
states. This table is derived from the scenario diagram by
following the exchange of messages from the top to the
bottom and identifying the changes in object states after
sending the messages. Table 1 gives as an example the
object states table, associated to the first scenario of the use
case Identify described in Figure 2. In this table a scenario
state is represented by the union of the states of the objects
participating in the scenario.

Figure 2: Example of two scenario diagrams
                corresponding to  the use case Identify.
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From this table, we obtain a CPN associated to the
scenario by transforming scenario states into places and
messages into guard conditions for transitions. Figure 6
shows the CPN for the first scenario of the Identify use case.
We give the same color to all places in the obtained CPN,
whith place B representing the beginning of the use case.
All scenarios related to the same use case have the same
initial place but different colors.

4.4. Scenario Integration

In this step, we aim to merge several CPNs corresponding to
all scenarios of a use case Uci, to produce a new CPN
modeling the behavior of the use case as a whole. The
proposed algorithm provides an incremental way for
integrating scenarios. If we consider two scenarios Sc1 and

Sc2 for a given use case and their corresponding CPNs, the
algorithm will merge places in Sc1 and Sc2 having the same
scenario state into the same place. The merged place will
have as color the union of colors of the two scenarios. For
transitions, the algorithm looks for transitions in the two
scenarios that have the same input and output places and
merges them with an OR between their condition guards. In
the following, we give a formal description of the algorithm.
We use // for delimiting comments.
Sc1 = <∑1, D1, P1, T1, A1, τ1, G1, E1> where:

∑1 = {c1},
τ1: D1  → {c1},
G1 is formed by conditions associated to messages,
E1 is the identity function.

Sc2 = <∑2, D2, P2, T2, A2, τ2, G2, E2>

 (a)

(g)(f)

(d)(c)

  (b)

  (e)

Figure 4: Refinement of the relation uses.
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Figure 3: PN corresponding to the ATM system.
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∑2 = {c2},
τ2: D2  → {c2}.

Sc = <∑, D, P, T, A, τ, G, E>
∑ = {{c1} ,{c2} ,{c1,c2}},
D = D1 ∪ D2,
P = P1 ∪ P2,
τ: D → ∑ where

∀p ∈ P1 ∩ P2 : τ(p) = {c1,c2},
∀p ∈ P1 \ (P1 ∩ P2) : τ(p) = {c1} and
∀p ∈ P2 \ (P1 ∩ P2) : τ(p) = {c2}.

The construction of the resulting set of transitions T, is
given by the following algorithm:
Begin

T = ∅
For  each t ∈ T1

calculate •t and t•     
//   •t = {p|(p, t) ∈ A} and t• = {p|(t, p) ∈ A}
If ∃ t’ ∈ T2  •t’ = •t and t’• = t• then   // merge

T = T ∪ {t}
T2 = T2 \ {t’}
G(t) = G1(t) ∨ G2(t’)
delete t’ from  A2, G2 et E2

Else
T = T ∪ {t}
G(t) = G1(t)

Endfor
For each t  ∈ T2    // remainder transitions in T2

T = T ∪ {t}
G(t) = G2(t)

Endfor
// calculation of A
A = A1 ∪ A2

// calculation of E
For each a  ∈ A having the form (p,t)

Type(E(a)) = Type(τ(p))
For each a  ∈ A having the form (t,p)

Type(E(a)) = Type(τ(p)) ∩ Type(τ(•t))
End.

In general, after integrating several scenarios, the
resulting specification captures the initial scenarios and
perhaps even more. Figure 7 illustrates this problem. The
resulting scenario Sc will capture Sc1 (B,S1,S2,S3,S4,S5),
Sc2 (B,S1,S6,S3,S7,S5) and two other scenarios
(B,S1,S2,S3,S7,S5) and (B,S1,S6,S3,S4,S5). In the initial
place B of Figure 7, what color will have the token? If it has
c1 (respectively c2) as color that means that we have chosen
to execute Sc1 (respectively Sc2). But in this place we do not
know which scenario the user will execute. For solving this
problem, we have introduced a “chameleon token” (token
with several colors). As soon as it visits the places of the
integrated net, depending on the sequence of transitions
fired, it will be marked by the intersection of its colors and
the colors of the place visited. In Figure 7, we represent the
chameleon token with a white color (similar to the white
color of light which is in reality composed of several
monochromatic colors). When this token passes to the place
S1, it stays multi-color {c1, c2}, and if it passes from S1 to S2,

its color changes to c1 and keeps it along the rest of the net,
or if it passes from S1 to S6, its color changes to c2 and keeps
it along the rest of the net.

5. RELATED WORK
In the area of scenario integration, most research has only
addressed the problem of sequential integration (Koskimies
and Makinen 1994; Some et al. 1995; Desharnais et al.

Table 1: Object states associated to the first scenario of Identify.

Figure 6: CPN corresponding to Identify scenario.

[Card_ok][Pin_ok][check][connect][Enter_pin][Prompt_pin][Insert_card]

B S1 S2 S3 S4 S5 S6 S7 S8

Objects

Messages

Customer ATM Bank Account Scenario state

Insert_card Present Card_in S1 = {Present, Card_in}

Prompt_pin Present Wait_pin S2 = {Present, Wait_pin}

Enter_pin Present Pin-entered S3 = {Present, Pin_entered}

Connect Present Pin-entered Connected S4 = {Present, Pin_entered, Connected}

Check Present Pin-entered Connected Checked S5 = {Present, Pin_entered, Connected, Checked}

Pin_ok Present Pin-entered Valid_pin Checked S6 = {Present, Pin_entered, Valid_pin, Checked}

Card_ok Present Valid-card Valid_pin Checked S7 = {Present, Vaild_card, Valid_pin, Checked}

Print_menu Present Menu Valid_pin Checked S8 = {Present, Menu , Valid_pin, Checked}



1997), and few researchers have been interested in a more
general form of integration.

Koskimies (Koskimies and Makinen 1994) presents an
algorithm for synthesizing a Statechart for an object of a
system from a list of scenarios. He infers a Statechart that is
able to execute all traces corresponding to the input
scenarios. Desharnais (Desharnais et al. 1997) defines a
scenario as the union of two relations Re and Rs where Re
represents the relation of the environment which captures all
the possible actions of the environment and Rs the relation
corresponding to the system reaction. The scenario
integration is given by the composition of the scenarios
relations. Glinz (Glinz 1995) gives a way for composing
scenarios represented by Statecharts using some operators
(conditional, iterative and concurrent) , but without
supporting scenarios overlapping. Dano (Dano et al. 1997)
has proposed a formalization of use cases with Petri nets, he
defines a list of temporal relations between use cases (begin
at the same time, end at the same time, one after the other,
etc.).

6. CONCLUSION
In this paper, we have proposed an new approach for
elaborating a specification of the system behavior  by using
two kinds of Petri nets: a simple Petri net modeling the
relation between use cases linked to several colored Petri
nets representing the use cases behavior. We have also
given an new algorithm for scenario integration which
merges several scenarios corresponding to the same use case
and preserves the independency between these scenarios
after integration by means of colors.

There are several advantages with the proposed
approach. First, the process of scenario acquisition is more
structured. In  the work described in the previous section,
the user gives the analyst the scenarios without any
guidance, covering the entire system or covering several
tasks (use cases), or representing a part of a use case. In our
work, we acquire scenarios use case by use case which we
consider as more natural. Second, our approach solves the
problem of interleaving scenarios by means of colors and
chameleon tokens. Finally, as a consequence of using Petri
nets, our approach allows modeling of concurrency between

use cases, between scenarios and between copies of the
same scenario.

 As future work, we plan to extend our work by
deriving a specification for interface objects and generating
a prototype of the user interface. The verification aspect will
also be addressed, in order to provide an incremental
method for verifying the entire system, for example to
consider verifications at the two levels of detail (use case
level and scenario level). Finally, the impact of chameleon
token on existing methods for verification and simulation
will be studied.
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Figure 7: Problem of interleaving between scenarios.
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