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Abstract— Infrastructure interdependency stems from the functional and logical relations among 

individual components in different distributed systems. To characterize the extent to which a contingency 

affecting an infrastructure is going to weaken, and possibly disrupt, the safe operation of an interconnected 

system, it is necessary to model the relations established through the connections linking the multiple 

components of the involved infrastructures. In this work, the modeling of interdependencies among network 

systems and of their effects on failure propagation is carried out within the simulation framework of a failure 

cascade process. The sensitivity of the critical loading value (the lower bound of the cascading failure region) 

and of the average cascade size with respect to the coupling parameters defining the interdependency 

strength is investigated as a means to arrive at the definition and prescription of cascade-safe operating 

margins. 

 

Index Terms—Critical infrastructures, interdependent systems, complex networks, failure cascade. 
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NOTATION 

D initial disturbance on the components in the two identically operating systems 

ij
D  initial disturbance on component ji in system i 

I amount of load transferred over the interdependency links 

K number of links in the two identical systems 

Ki number of links in system i 

L average initial load in the two identically operating systems 

L
i
 average initial load in system i 

Lcr critical load in the two identically operating systems 

L
i
cr critical load in system i 

Lfail limit of operation for components in the two identically operating systems 

L
i
fail limit of operation for components in system i 

ij
L  load of component ji in system i 

L
i
max maximum value of the initial load sampling interval in system i 

L
i
min minimum value of the initial load sampling interval in system i 

M number of interdependency links 

N number of nodes in the two identical systems 

Ni number of nodes in system i 

P load transferred to neighboring components after failure in the two identically operating systems 

P
i
 load transferred to neighboring components after failure in system i 

S average cascade size in the two identically operating systems 

S
i
 average cascade size in system i 

Scr maximum allowable cascade size in the two identically operating systems 

S
i
cr maximum allowable cascade size in system i 

I. INTRODUCTION 

Understanding, modeling, and assessing the normal functioning and the possible faulty conditions of critical 

infrastructures (CIs) is essential to safely design these complex systems, and to effectively operate the services they 

provide. Distributed infrastructures have been modeled as graphs to unravel their structure and dynamics, and to 

evaluate to what extent the structure may impact the dynamics [1]. However, it is evident that infrastructures do not 
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exist in isolation of one another, and the relations among them must be identified to perform realistic and applicable 

analyses [2]. The focus of the research on critical infrastructures must then be shifted from single, isolated systems 

to multiple, interconnected, mutually dependent systems. The aim becomes that of assessing the influences and 

limitations which interacting infrastructures impose on the individual system operating conditions, for avoiding fault 

propagation by designing redundancies and alternative modes of operations, and by detecting and recognizing threats 

[3]. 

In modern society, the linking among service infrastructures is required for optimal and economical operation. 

Yet, these interconnections introduce weaknesses in the systems due to the fact that failures may cascade from one 

system to other interdependent systems until, possibly, affecting the overall functioning, if proper protection of 

interdependencies is not considered [4]. The role of dependencies among infrastructures (so called 

interdependencies), and the intrinsic difficulties arising in their modeling, have been highlighted in empirical 

studies. For example, the database in [5] has been built from public reports of disruptions of CIs from open sources 

like newspapers and internet news. Events have been classified as “cascade initiating” (i.e., an event that causes an 

event in another CI), “cascade resulting” (i.e., an event that results from an event in another CI), and “independent” 

(i.e., an event that is neither a cascade initiating nor a cascade resulting event). The information in the database 

shows in particular that: i) “cascade resulting” events are more frequent than generally believed, and that “cascade 

initiators” are about half as frequent; ii) the dependencies are more focused and directional than often thought; and 

iii) energy and telecommunication are the main “cascading initiating” sectors. 

Interdependencies among telecommunication systems, transportation systems, and power distribution grids played 

a negative role in the small telecommunication blackout which took place in the suburbs of Rome in January 2004 

[6]. The chain of events originated in a major telecommunication service node when a metallic pipe carrying cooling 

water for the air conditioning broke. The resulting flood led to a communication blackout in the area, which in turn 

hit the country’s biggest printed news agency transmissions; stopped the check-in, ticketing and luggage acceptance 

at the International Fiumicino Airport; disturbed post offices and banks operations; and caused problems to the 

communication network connecting the main Italian research institutions. Furthermore, the telecommunication 

blackout had effects on the operation of the power distribution grid causing the disconnection of two control centers, 

and resulting in the loss of control on a number of remote substations in the area of Rome. 

Similar occurrences [3] point to the need for identifying infrastructure interdependencies [7], and determining the 

design and operational conditions which can prevent the onset and propagation of cascading failures. 

Due to the highlighted intrinsic complexities related to interdependencies among CIs, their modeling is far from 

trivial, and abstractions can be of help for preliminary investigation and broad understanding. 

Many models and computer simulation techniques exist for analyzing the behavior of individual infrastructures 

(e.g., load flow and stability codes for electric power networks, connectivity and hydraulic analyses for pipeline 

systems, traffic management models for transportation networks), but modeling and simulation frameworks that 

allow the coupling of multiple interdependent infrastructures are needed to address infrastructure protection, 
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mitigation, response, and recovery issues. In developing these, it is important to know that simply linking together 

existing infrastructure models into a reduced model may fail to capture the emergent behavior arising in 

interdependent infrastructures [8]. 

In the last ten years, a number of researchers have focused on the study of interdependent infrastructures, and 

developed a variety of methodologies to be applied for ensuring the safe, reliable, continuous operation of 

interdependent infrastructures. According to [2], these modeling and simulation techniques can be grouped into six 

broad categories: (i) aggregate supply and demand tools, which evaluate the total demand for infrastructure services 

in a region and the ability to supply those services [9]‒[15]; (ii) dynamic simulations, which examine infrastructure 

operations, the effects of disruptions, and the associated downstream consequences [16]-[22]; (iii) agent-based 

models, which allow the analysis of the operational characteristics and physical states of infrastructures [23]-[26]; 

(iv) physics-based models, which analyze physical aspects of infrastructures with standard engineering techniques 

(e.g., power flow and stability analyses for electric power grids or hydraulic analyses on pipeline systems) [27], [28]; 

(v) population mobility models, which examine the movement of entities through geographical regions [29]-[31]; 

and (vi) Leontief input-output models, which in the basic case provide a linear, aggregated, time-independent 

analysis of the generation, flow, and consumption of various commodities among infrastructure sectors [32]-[37]. 

The present work falls in the dynamic simulations category, and aims at developing a simulation framework which 

abstracts the physical details of the services provided by the infrastructures while at the same time capturing their 

essential operating features. Such type of simulation models is appealing because of its simplicity and feasibility of 

use, which allows identifying the factors which most contribute to the safe, efficient design and operation of 

interdependent infrastructures. This knowledge is achieved through the assessment of the extent to which the 

presence of interdependencies affects the performance of the individual infrastructures. In particular, this scheme of 

analysis can be used for a first evaluation of the operational margins of interdependent systems which ensure the 

services provided by the involved infrastructures with cascade-safe conditions and prevent the propagation of 

failures over large areas. 

A model of cascading failures in interdependent network systems is developed as an extension of the work in [38] 

and [16], considering the local propagation of the overload originated from a failure to first-neighbors, and to the 

interdependent set of the failed component. The proposed model differs from similar studies such as [39] because it 

does not rely on the assumption that the load on a component is proportional to the number of shortest paths running 

through it, which do not always reflect the actual routes of the flow in a network; on the contrary, it shares similarity 

with the fiber bundle model in complex networks which has been applied to the blackout scenarios for cascading 

breakdown of power plants from overloading [40]. Similar to the fiber bundle model, if the load in a node exceeds 

its capacity, the node gets disconnected from the network, and the demand is transferred locally to neighboring 

nodes through the edges of the network. Moreover, it is assumed that the network connections cannot fail while the 

vertices are damaged and removed from the systems. 

The current model is applied on a modified literature case study [41] with the aim of identifying the 
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interdependency features most critical for the cascade-safe operations of interdependent infrastructures, and defining 

related cascade-safe operational margins. The findings are in agreement with those of [17], in which a parallel study 

on cascading models in interdependent networks is presented, based on the forest fire model [42], and mean-field 

theory analysis [43]. A percolation threshold [44] is identified above which cascading failures of all sizes can 

propagate in the interdependent systems, and a parameter is found to characterize the cascading threshold in the 

coupled systems. Following [17], the present work adopts the loading level in the interdependent systems as a metric 

for practical application to characterize the percolation threshold in more realistic systems. 

The paper is structured as follows. The research framework and the motivations for the proposed analysis are 

stated in Section I. The modeling assumptions of interdependencies among network systems are detailed in Section 

II. The resulting algorithm for modeling cascading failures in interdependent networks is illustrated in Section III. In 

Section IV, a crude sensitivity analysis is performed with respect to the main model parameters related to 

interdependency, and conclusions are drawn in Section V. 

 

II. INTERDEPENDENT NETWORK SYSTEMS 

The modeling development carried out in this work considers two interdependent network systems, each one made 

by a number of components (nodes) connected by links (arcs) representing the physical and/or logical relations 

among them. The interdependencies are modeled as links connecting nodes of the two systems; these links are 

conceptually similar to those of the individual systems, and are bidirectional with respect to the “flow” between the 

two interdependent networks. 

The number of interdependency links among interdependent components in the two systems, M, and the fixed 

amount of load transferred over the interdependency links upon a component failure, I, are essential features 

characterizing the “coupling energy” between the two interdependent systems. 

In the following analysis, the interest is on systems with fixed “interdependency energy”, i.e., such that each node 

in system 1 could be interdependent with any other node in system 2, but M is fixed. Communication systems, in 

which each node in system 1 can interact with any other node in system 2 but there is a maximum amount of 

connecting energy between the two systems, could be an example of such energy-limited systems. 

To account for the dynamics of changing connections between the two network systems under developing failure 

cascade processes, Monte Carlo simulations are performed in which M, and I are kept constant, but the 

interdependency connections among components are randomly rewired at each Monte Carlo trial. This approach 

allows evaluating the average systems responses to cascading failures because it accounts for multiple connectivity 

patterns among the M interdependent nodes in the two systems. 

Fig. 1 shows the systems considered. They are two identical networks which are an abstract topological model of 

the IEEE Reliability Test System – 96 [41]. M interdependency links are drawn between them as explained above 

(dashed lines in Fig. 1). In the proposed analysis, interest is on cascade onset and propagation over the bare 

topological structure of the test systems; no reference is made to the specific electrical properties which 
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characterizes these electrical infrastructures. The topology corresponds to the IEEE Reliability Test System – 96; 

however, no other aspect of this paper is related to the real network. 

 

 

Fig. 1.  The topological model of the IEEE Reliability Test System – 96 [41]. Each system i has Ni=24 nodes 

(circles), and Ki=34 links (solid lines), i=1, 2. For visual clarity, only six interdependency links connecting the two 

systems are shown (dashed lines). 

 

III. ABSTRACT MODELING OF CASCADING FAILURES IN INTERDEPENDENT NETWORKS 

Consider two systems of N1 and N2 identical components (N1 = N2 = N = 24 in this study) connected by K1 and K2 

links (K1 = K2 = K = 34 in this study) with random initial loads sampled uniformly between a minimum value L
i
min 

and a maximum value L
i
max, i = 1, 2. The two systems are connected by M interdependency links (M=34 in the study, 

except during the sensitivity analysis with respect to changing M). 

For simplicity, but with no loss of generality, all components in the i-th system are assumed to have the same limit 

of operation L
i
fail, beyond which they are failed (L

1
fail = L

2
fail = Lfail =1 in this study, upon normalization of all loads 

relative to the failure load value). In the reference cascading failure model of [16], when a component fails, a fixed 

and positive amount of load is transferred to each of the system’s components; on the contrary, in the proposed 

extended model, the overload is propagated locally, to the first-neighbors of the failed node within the network 

structure it belongs to (a fixed and positive amount of load, P
i
, i = 1, 2; P

1
 = P

2
 = P = 0.07 in this study), and to the 

interdependent components which the failed component is connected to in the other network system (a fixed and 

positive amount of load, I), if any. If there is no working node in the neighborhood of a failed component or among 

the interdependent nodes connected to it, the cascade spreading along that path is stopped. The case of two fully 

connected systems, where all nodes are first-neighbors and every component in system 1 is interdependent to every 

component in system 2, coincides with the original model proposed in [16]. 

The interdependency links between the two network systems are treated in the same way as the individual system 

links. They are bidirectional connections and upon the failure of a node in system 1 or 2, the fixed amount of load, I, 
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is propagated locally to the nodes in the interdependent network system 2 or 1, if any interdependency is present for 

the failed node. This transfer accomplishes the coupling between the two systems. 

To start the cascade, an initial disturbance imposes an additional load 
ij

D  on each component ji of the two 

systems, ji = 1, 2,…, Ni, i = 1, 2 (
1j

D =
2j

D = D = 0.02 in this study). If the sum of the initial load
ij

L and the 

disturbance
ij

D of component ji in system i = 1, 2 is larger than the component load threshold L
i
fail, component ji fails. 

This failure occurrence leads to the redistribution of additional loads, P
i
 on the neighboring nodes, and I on the 

interdependent nodes, which may, in turn, get overloaded, and thus fail in a cascade which follows the connection 

and interdependency patterns of the network systems. As the components become progressively more loaded, the 

cascade proceeds. 

The algorithm for simulating the cascading failures proceeds in successive stages as follows: 

0 At stage m = 0, all N1+N2 components ji = 1, 2,…, Ni, i = 1, 2 in systems 1 and 2 are working under independent 

uniformly random initial loads
ij

L  [L
i
min, L

i
max], with L

i
max  L

i
fail, ji = 1, 2,…, Ni, i = 1, 2. 

1 M interdependency links between system 1 and system 2 are generated, connecting two randomly selected 

components; multiple interdependency links are allowed for each component. 

2 An initial disturbance
ij

D , ji = 1, 2,…, Ni, i = 1, 2, is added to the load of each component in the two systems.  

3 Each component that has not failed is tested for failure: for ji = 1, ..., Ni, if component ji has not failed, and its 

load 
ij

L > L
i
fail, then component ji in system i fails, i = 1, 2. 

4 The component loads are incremented, taking into account the network topology, i.e. the failed component 

neighborhood: for each failed node in system i, the load of its first-neighbors is incremented by an amount P
i
, i = 

1, 2. If the working neighborhood set of the failed node is empty, the associated failure propagation into the 

system comes to an end. 

5 The component loads are incremented, taking into account the interdependency pattern, i.e., the nodes 

interdependent to the failed component: for each failed node in system 1 or 2, the load of its interdependent nodes 

in system 2 or 1 is incremented by an amount I. If the interdependency set of the working components of the 

failed node is empty, the associated failure propagation to the interdependent system comes to an end. 

6 The stage counter m is incremented by 1, and the algorithm is returned to step 3. 

The algorithm stops when failures are no further propagated within or between the two systems. 

Various initial system loading levels are evaluated, varying the uniform sampling ranges [L
i
min, L

i
max], i = 1, 2, 

whose midpoints, L
i
, are indicators of the average initial systems loading levels. Large L

i
 values relate to operating 

conditions in which the systems are more stressed. In this study, when the systems are operating at varying average 

initial load, L
i
, its range of variation is [0.5, 1] at steps of 0.005. 
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IV. SENSITIVITY ANALYSIS 

The effects of the interdependencies between the two systems are shown in Fig.2 in terms of the average cascade 

size, S
i
, i.e., the number of failed components in the i-th system at the end of the cascade spread, versus L

i
, which 

represents the system operating level, i = 1, 2. For each value of L
i
, varying in the range [0.5, 1] at steps of 0.005, 

100,000 Monte Carlo simulations have been repeated. In these simulations, L
i
fail=1, 

ij
D =2%, P

i
=I=7%, Ki=M=34 for 

ji = 1, 2,…, Ni, i = 1, 2. Each simulation corresponds to a different sampled pattern of the M interdependency links. 

 

 

Fig. 2.  The average cascade size vs. the average initial load. Triangles: isolated single system. Squares and circles: 

identical interdependent systems. 

 

The triangles in Fig. 2 represent S
i
 in system i = 1, 2, as a function of L

i
=L, for the isolated single system i = 1, 2, 

i.e., when no interdependency is present. The overlapping squares and circles represent the same quantity S
1
 = S

2
 for 

the identical and identically operating systems 1, and 2, respectively. 

As expected, the interdependencies cause a shift to lower values of the loading threshold for which the cascading 

phenomenon starts appearing with significance (from approximately 0.9 for the individual isolated system to 

approximately 0.8 for the interdependent systems). As L
i
=L increases, the systems are increasingly vulnerable to 

cascading failures. The transition, to the region where cascade of significant size appear, is smoother for the two 

interdependent networks than for the individual isolated system. This result is due to the fact that cascades appear at 

lower L
i
=L in the interdependent networks, which thus are less stressed, and prone to their propagation. As found in 

[17], the interdependencies between the two networks make access to the critical point easier, which means that the 

systems when coupled are more susceptible to large-scale failures, and a failure in one system can cause a similar 
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failure in the coupled system. 

To quantitatively assess the effects of the interdependency in Fig. 2, a threshold representing the maximum 

allowable cascade size, S
i
cr, in system i = 1, 2, can be set. The intersection with the horizontal line, S

i
 = S

i
cr, identifies 

the critical load, L
i
cr, beyond which the threshold is exceeded in system i = 1, 2. S

i
cr is interpreted as the maximum 

number of components which can be lost in system i without affecting the global service provided by the 

infrastructure. This threshold can vary from system to system, and is a distinguishing feature of the provided service. 

In the following, for simplicity but with no loss of generality, S
1

cr = S
2

cr = Scr = 15% is assumed, which identifies L
1

cr 

= L
2

cr = Lcr = 0.8662 for the individual systems in isolated conditions and L
1

cr = L
2
cr = Lcr = 0.7266, for the two 

interdependent systems (Fig. 2). 

L
i
cr is a relevant feature of a network system because it identifies, together with the continuous change in gradient, 

a type-two transition [45] between the cascade-safe region and the onset of disrupting cascades in terms of the 

loading conditions, L
i
. Along with S

i
, it gives essential information on the system vulnerability towards cascading 

failures, and it can help identify safety margins of system operation. On the other hand, see from Fig. 2 that S
i
 has 

small values until it reaches the proximity of L
i
cr, beyond which the transition to cascade region occurs. Thus, its use 

as a vulnerability indicator needs to be gauged against the sensitivity of detecting small changes in its value. Then, 

appropriate countermeasures of reducing the working load for limiting the failure propagation can be taken as the 

operation conditions are approaching L
i
cr. From Fig. 2, observe that the transition from cascade-safe to cascade 

regime is smoother for interdependent networks, allowing more time for reacting against the cascading failure onset. 

Fig. 3 shows the probability distribution function for S
1
 in the interdependent system 1, when L

1
 = L

1
cr. The point 

is characterized by the L
1

cr value at which the percolation transition occurs [44], and cascades of all sizes can 

propagate in the interdependent systems. The power-law tail for large S
1
 values developed at the critical point L

1
cr 

with an exponent of approximately -0.4 is consistent with the forest tree model analyzed in [17]. It is important to 

stress that even at the critical point L
1

cr, which marks the upper bound of the cascade-safe region, cascades of 

significant size (S
1
=22, i.e. 92% of the system size N1=24) appear, even if their frequency is extremely low. Once 

more, this finding points to the fact that the use of L
i
cr as a vulnerability indicator needs to be gauged against the 

sensitivity of detecting small changes in its value. Then, appropriate countermeasures of reducing the working load 

for limiting the failure propagation can be taken as the operation conditions are approaching L
i
cr. 
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Fig. 3.  The probability distribution of the cascade size S
i
 at the critical load L

i
cr. In these simulations L

i
fail=1,

ij
D =2%, 

P
i
=I=7%, Ki=M=34 for i=1, 2. 

 

To understand the effects on the cascade process of the parameters characterizing the interdependency between 

the two systems, we conduct a further sensitivity analysis in several operating conditions which reflect real system 

operations. 

 

A. Sensitivity with respect to the load of interdependent system 2 

The following analysis aims at assessing the extent to which an interdependent system working at different, fixed 

load levels influences the coupled network system with respect to its vulnerability towards cascading failures. To 

this aim, the variation of L
1

cr is assessed while system 2 is working at fixed constant loads; the analysis is performed 

crudely for fixed values of average initial loads of system 2 ranging between L
2
=0.5 and L

2
=1, in steps of 0.05. 

Fig. 4 shows the results of this analysis. As expected, the coupling between the two systems is such to weaken the 

resistance of system 1 to failure cascade, forcing it to be operated at increasingly lower levels as L
2
 increases. The 

emerging functional dependence, however, could not be easily anticipated. L
1

cr  decreases linearly for system 2 

loading levels below L
2
=0.75, and suddenly drops when system 2 loading levels rise above L

2
=0.75, until it saturates 
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for system 2 average initial loads beyond L
2
=0.9. This behavior indicates that, when L

20.9, system 1 experiences 

unbearable cascades irrespective of its loading level. There is no cascade-safe region for system 1 when system 2 is 

operating beyond 90% of L
2
fail. 

The trend found indicates that the coupling between the two interdependent systems is such that under given 

loading conditions and beyond certain thresholds, the effects of the system nonlinearities become relevant, and an 

emergent behavior arises in the interdependent systems [7]. This result is in agreement with [17], in which it was 

found that symmetric coupling of network systems actually decreases nonlinearly the percolation threshold above 

which cascading failures of all sizes can propagate in the interdependent systems. In the present model, the 

percolation threshold for the propagation of cascading failures is given by L
1

cr, which has a nonlinear relation with 

the load of the interdependent system, L
2
. 

 

 

Fig. 4.  Critical load, L
1

cr, in system 1 for constant average initial load levels, L
2
, of system 2. 

 

This result points to the fact that the loading level of the interdependent system plays a role of paramount 

importance in the failure behavior of its companion coupled system because it affects the cascading failure behavior 

of the latter in an unpredictable way. When designing and operating interdependent infrastructures, it is then 

necessary to control the operating levels of the systems, and assess the values beyond which nonlinearities start 

governing the system cascading failure behavior. 
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B. Sensitivity with respect to the number of interdependency links, M 

In the following analysis, the effects of M on the vulnerability to cascading failures are assessed in two different 

system operating conditions. 

In the first case, both systems are operating at the same varying L
1
= L

2
= L[0.5, 1] at steps of 0.005, and the 

variation of L
1

cr is analyzed with respect to M (Fig. 5). L
1

cr is assessed starting the cascade simulation from L=0.5, 

and increasing this value until the onset of the cascade regime is encountered. Because both systems are identical 

and operate at the same loading conditions, they will show identical trends of L
1
cr = L

2
cr = Lcr, similarly to what is 

observed in Fig. 2. See from Fig. 5 that there is an approximately linear functional relationship between Lcr and M, 

up to the value M=70 for which the system cascade-safe region disappears. If M  70, the systems are going to 

experience unbearable cascades irrespective of the loading level. There is no cascade-safe region when more than 

M=70 interdependency links are present between the two systems. Thus, if one were to try to protect the 

interdependent systems from cascade failure by controlling M, it appears that nonlinearities do not play a significant 

role. A linear decrease of the cascade-safe region is to be characterized with respect to the addition of 

interdependency links between the two systems instead. 

The characterization of this relationship is relevant in the definition of cascade-safe operating regimes for the 

interdependent systems: for a fixed M, a critical loading level can be identified below which the systems can be 

safely operated. In the present example, it turns out that there is no safety margin when more than M=70 

interdependency links are present between the two systems, which is more than twice the number of links in each 

system, Ki=34, i =1, 2. This means that beyond M=70, cascades of significant size spread in the network irrespective 

of L. 

 

 

Fig. 5.  Critical load, L
1

cr = L
2

cr = Lcr, in systems 1 and 2 vs. M. Both systems are working at the same varying 

average initial loads, L
1
= L

2
=L. In these simulations I=0.07. 
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In the second case, both systems are operating at the same constant L
1 
= L

2 
= L = 75% of L

1
fail = L

2
fail = Lfail, and S

1
 

= S
2
 = S is assessed with respect to the variation of M (Fig. 6). 

As expected, S
1
 = S

2
 = S increases as M increases until a saturation value is reached, which is a function of the 

load transferred over the interdependency links, I, and the constant L. 

Cascade-safe operating regimes can be identified with respect to S; once the operating level is known (L = 75% in 

this case), the systems can be operated or designed to limit the maximum S. As an example, from Fig. 6 see that to 

have cascades involving less than 15% of the system components, no more than M=29 interdependency links can be 

operated between the two systems.  

 

 

Fig. 6.  Average cascade size, S
1
= S

2
= S, in systems 1 and 2 vs. M, while both systems operate at the same constant 

working load, L
1
= L

2
=L = 0.75. In these simulations, I=0.07. 

 

C. Sensitivity with respect to load transferred over the interdependency links, I 

In the following analysis, the effects of the load transferred upon failure over the interdependency links of the failed 

component, are assessed in the same two system operating conditions introduced in Section B. 

In the first case of both systems operating at the same varying average initial load, the variation of Lcr is 

investigated as a function of I (Fig. 7). Similar to the findings of the previous analysis, an approximately linear 

functional relationship emerges. The system cascade-safe region is dropping slowly, and only when I=25% of Lfail is 

transferred over each interdependency link, cascades of significant size spread in the network irrespective of L. This 

slow drop points to the fact that I is a less critical parameter in designing and operating interdependent network 
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systems against cascading failures. 

As before, cascade-safe operating regimes for the systems can be identified with respect to Lcr: for a fixed value of 

I, a critical loading level can be determined below which the systems can be safely operated. In the present example 

(Fig. 7), if I=9%, operating the systems beyond Lcr=70% of Lfail, could result in cascading sizes larger than the 

maximum allowable size (15% of the system size, N=24). 

 

Fig. 7.  Critical load, L
1

cr = L
2

cr = Lcr, in systems 1 and 2 vs. I, while both systems work at the same varying average 

initial load, L
1
= L

2
=L. In these simulations, M=34. 

 

In the second case of both systems operating at the same constant L
1
= L

2
= L = 75% of L

1
fail = L

2
fail = Lfail = 1, S

1
 = 

S
2
 = S is assessed with respect to the variation of I (Fig. 8). 

As expected, S increases as I increases until a saturation value is reached, which is a function of M and the 

constant L. Cascade-safe operating regimes can be identified with respect to S: given the operating level (L = 75% in 

this case), the systems can be operated or designed to limit the maximum S. As an example, from Fig. 8 it can be 

understood that to have cascades involving less than 15% of the system components, no more than I=5.4% of Lfail 

should be allowed to flow over each interdependency link connecting the two systems. 
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Fig. 8.  Average cascade size, S
1
= S

2
= S, in systems 1 and 2 vs. I, while both systems operate at the same constant 

working load, L
1
= L

2
= L = 0.75. In these simulations M=34. 

 

V. CONCLUSION 

An abstract model of cascading failures in interdependent network systems has been developed. Its application on 

a modified literature case study network structure has shown the usefulness of this kind of models for identifying the 

relevant factors affecting the failure cascade process, and for capturing their relationships with the effects of the 

cascade. 

The simulation results show that the critical load, Lcr, and the average cascade size, S, give essential information 

on the system vulnerability towards cascading failures, and help identify cascade-safe regions for the system 

operations. 

To investigate the effects of the parameters characterizing the interdependency between the two systems, a 

sensitivity analysis has been performed in several operating conditions which reflect real system operations. 

The analysis has revealed that the interdependent system loading level is a vital feature to control because it 

affects the interdependent systems cascading failure behavior in an unpredictable way. In particular, when designing 

and operating interdependent infrastructures, it is important to determine the threshold level of loading beyond 

which nonlinearities emerge in the system cascading failure behavior. 

The results of analyses of this kind allow defining cascade-safe operating regimes with respect to Lcr for the 

network systems: given the number of interdependency links in the system, M, and the load transferred over the 

interdependency links, I, loading levels can be identified below which the systems can be safely operated. 
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Furthermore, cascade-safe operating regimes can be identified with respect to S. Once the operating level is 

known, the systems can be designed or operated, tweaking M and/or I, to limit the maximum S. 

An interesting direction currently under investigation is the extension to coupled infrastructures of an analytical 

model for computing thresholds of criticality. The thresholds are functions of  the average degree of the network, 

and of the amount of load transferred in the uniform network base case. 

As a concluding remark, a recent NSF workshop report points at the fact that uncertainty is pervasive in complex 

systems [46]. Thus, developing reliable predictions about system behavior in the face of the large numbers of 

uncertain parameters in models of actual complex systems is a major challenge. Quantifying this uncertainty, and 

determining how it propagates throughout the system is a key aspect of reliable prediction and control of cascading 

failure in critical infrastructures. Indeed, the choice of the model parameters can be critical for the system response, 

and for the full representation of the variability associated with the system response, including that due to the 

uncertainty in the model parameters (e.g. I). Therefore, the evaluation of the cascade-safe operating margins will be 

complemented with a full quantification of uncertainty in a following study. This future study will add a further 

level of confidence to the findings of the sensitivity analysis. 
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