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Abstract: In this paper a didactical model is presented. The goal of the model is to work as a 
didactical tool, or conceptual frame, for developing, carrying through and evaluating 
interdisciplinary activities involving the subject of mathematics and philosophy in the high 
schools. Through the terms of Horizontal Intertwining, Vertical Structuring and Horizontal 
Propagation the model consists of three phases, each considering different aspects of the nature 
of interdisciplinary activities. The theoretical modelling is inspired by work which focuses on the 
students abilities to concept formation in expanded domains (Michelsen, 2001, 2005a, 2005b). 
Furthermore the theoretical description rest on a series of qualitative interviews with teachers 
from the Danish high school (grades 9-11) conducted recently. The special case of concrete 
interdisciplinary activities between mathematics and philosophy is also considered.  
 
1. Introduction 
There is worldwide consensus that the society we live in today gets increasingly more and more 
complex. Earlier the problem was often to gather information, whereas the knowledge society of 
today is characterized by the fact that much information is easy accessible. The problem 
nowadays is therefore to survey and filter the great amount of accessible information rather than 
to gain access to it. Thus, the schools have to aim at producing students who are prepared to deal 
with such a great complexity of knowledge, that is, scientifically literate students (Gräber et al., 
2001). In the educational system knowledge is still in a very large scale separated into distinct 
blocks by different subjects. This separation of knowledge has shown itself to be very efficient in 
producing and teaching new knowledge, but does not necessarily provide the students with the 
skills necessary to navigate through the constantly increasing amount of accessible information. 
Interdiscip linary activities between different subjects can help to develop a broader context of 
meaning or understanding for the student, and in this way contribute to the ongoing scholarly 
development and provide the student with the tools necessary to deal with complex problem 
solving waiting in the future.  
 
In spite of the fact that many different subjects and areas often contain more and more 
mathematics-rich elements, mathematics, as a subject, mathematics remains quite isolated.  The 
objective importance of mathematics from a social point of view exists side by side with its 
subjective irrelevance experienced by many people. Niss et al. (Niss, Jensen, Wedege, 1998) 
have characterized this as the relevance-paradox of mathematics. One reason for this could be 
found in the fact that mathematical knowledge is hard to transfer to new domains of knowledge 
by the student. Although the subject of mathematics in its very nature often is described as a tool, 
and therefore should be able to establish obvious connections to other contexts, such transfers of 
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mathematical knowledge between different domains seldom occur (Hatano 1996, Michelsen 
2001). Most of the time subjects have their own specific use of language and system of 
terminology and this can prevent the desirable transfer of mathematical knowledge to other 
contexts and domains. 
 
The purpose of using interdisciplinary elements in the teaching of mathematics is, as concluded 
from the description above, 1) an attempt to broaden the students’ curricular perspective and 
general view by removing the discrete lens that characterizes most schools’ separation of 
knowledge into curriculums and present to the students a more real picture of the role and 
importance of mathematics in extra-mathematical contexts1 2) an attempt to help the students’ 
abilities to transfer mathematical knowledge between different curricular domains. 
 
To be able to work with interdisciplinary aspects in the teaching of mathematics one has to 
consider what connections the subject mathematics has to other subjects and areas of knowledge. 
In the first International Symposium of mathematics and its Connections to the Arts and 
Sciences2  (Beckmann, Michelsen & Sriraman, 2005) such connections  were discussed, and a 
sketch of a didactical model for interdisciplinary activities between mathematics and philosophy 
presented (Iversen, 2005). 
  
Afterwards, the modeling of such activities involving mathematics has continued and the 
purpose of this paper is to present a didactical model, a conceptual frame for the planning, 
completion and evaluation of successfully interdisciplinary activities involving mathematics. The 
model will function as a tool to help develop activities that can facilitate a reasonable transfer of 
mathematical knowledge to other subjects and domains. The model is inspired by the work of 
Michelsen (2001, 2005a, 2005b) and is further developed through the special case of 
mathematics and philosophy and a section is therefore devoted to this specific topic. The section 
will also work as a demonstration of how the model should be understood and applied. 
 
2. Theoretical Framework 
Working with interdisciplinary activities implies a belief that there exist elements that is general 
and somewhat identical between the knowledge presented in different subjects. We assume that 
such an intersection of knowledge contains more elements the more related3 the subjects are to 
one another, and at least not-empty (Dahland, 1998). There are different ways of trying to 
describe such assumed curricular intersections. In the development of the didactical model 
presented here a notion of competencies is used to identify and characterize the possible 
intersection of knowledge between mathematics and other subjects.     
 
In the educational system of Denmark a huge step forward is taken with the completion of the 
KOM-report for mathematics (Niss et al., 2002). In this Niss lists eight mathematical 
competencies, valid for all steps of education, which is a meant to work as an overall frame for 
                                                 
1 This follows Sriraman (2004) who argued that students are used to viewing knowledge through the discrete lens of 
disjoint school subjects. 
2 The symposium took place 18-21 May 2005 in Schwäbish Gmünd, Germany. See Beckmann, A., Michelsen, C., & 
Sriraman, B (Eds.). , (2005). Proceedings of the 1st International Symposium of Mathematics and its Connections to 
the Arts and Sciences. The University of Education, Schwäbisch Gmünd, Germany, Franzbecker Verlag. 
3 Related should here be understood in a common way. The subject of mathematics is e.g. is supposed to be more 
related to physics than to English. 
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description of the education in mathematics in Denmark. The concept of a mathematical 
competence is here understood as some sort of mathematical expertise, and is more formally 
defined as an insightful readiness to act appropriate in situations which contains a certain kind 
of mathematical challenges.4 The report has been a starting signal to similar competence 
descriptions of other subjects in the Danish educational system.  
 
A description of mathematics by the means of competencies focuses more on the purpose of 
learning mathematics than to the specific curriculum. This description expresses a broader 
minded view on the teaching of mathematics than a normal curricular-dependent view. But Niss 
describes (Niss et al., 2002, p. 66) the eight mathematical competencies as strictly belonging to 
the sphere of mathematics thereby partly closing down the newly constructed bridge to other 
subject domains. Michelsen et al. (2005a) instead argues that some of the competences put 
forward by Niss et al (2002) are actually interdisciplinary competences, and mentions the 
modeling and representational competence as examples.   
 
In this paper we will try to make use of the interdisciplinary potential inherent in a competence 
approach to mathematics on a theoretical didactical level suggested by Michelsen et al (2005a). 
A less bounded description of mathematical competences can then be substratum that enables an 
entanglement of mathematics with other subjects both on an educational theoretical level and on 
a practical level in the classrooms. It is here suggested that the notion of a mathematical 
competence should contain both a narrow and a broad dimension, by means of which such 
characterization of mathematical expertise in the student can both work as a description 
internally in mathematics and as a link to the rest of the world. As an example Niss (2002) 
mentions the ability to reason mathematically i.e. to be able to follow and judge mathematical 
argumentation, as one of the eight described competences. But the ability to be able to follow 
and judge a reasoning is far from restricted to the sphere of mathematics. It is the kind of 
expertise that is important to master in all the school’s different subjects, and it could therefore 
be argued that some sort of reasoning competence is just as essential in physics or philosophy as 
it is in mathematics. Obviously arguments and reasoning often appear in different use of 
language and forms in different subjects, and therefore a reasoning competence is here suggested 
to be characterized by the ability to follow and judge a reasoning in different curricular domains, 
AND being able to distinguish and characterize different types of arguments thereby having the 
ability to go deeply into a certain subject and follow and judge a reasoning characteristic for this 
one subject.  
 
Within mathematics valid arguments often have character of a proof, while arguments in other 
subjects, as e.g. philosophy or history, often are marked by less cogency and more contingent 
elements. In this context mastering the reasoning competence will be understood as the ability to 
distinguish different kinds of arguments but at the same time know why the different arguments 
work in different contexts, and to be able to dive into a specific argument, as e.g. a mathematical 
proof, and follow its string of reasoning. 
 
This broad minded approach to the notion of competences should be understood as an attempt to, 
over time, change the educational practice which makes it possible that 
 
                                                 
4 My own translation from Danish (ibid.). 
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“Although critical thinking, problem solving and communication are real world 
skills that cut across the aforementioned disciplines students are led to believe that 
these skills are context dependent.”( Sriraman, 2004, p.14). 

 
3. Interviewing high school teachers  
During May 2005 a series of qualitative interviews were conducted. Six high school teachers 
were interviewed individually. The main purpose was to find out: Which didactical (and 
practical) possibilities and obstacles exist for interdisciplinary activities between mathematics 
and other subjects (especially philosophy) in the Danish high school (grade 9-11)?5 The 
interviewees were teachers from different high schools in Denmark and varied both in age and 
seniority. They were chosen so that each one taught either mathematics or philosophy (or both) 
on a daily basis and moreover most of them had been engaged in relevant interdisciplinary 
activities. The hope was to be able to incorporate some of this real- life information into the 
development of the didactical model. In the following I will reproduce some of the, for this 
paper, relevant conclusions one can draw from the conducted interviews.6 
 
Some of the interviewed teachers have conducted interdisciplinary activities between 
mathematics (or physics) and philosophy earlier on in their daily teaching. It has not been 
possible to find any writings about conducted activities between mathematics and philosophy in 
the Danish high school, but some of the interviewed teachers have been involved in documented 
activities involving physics and philosophy. Generally the experiences from these courses were 
positive 
 

“ It’s easy for me to register that the students have been going through these 
activities (involving physics and philosophy) and other teachers can easily do so to. 
… They [the students] own more academically concepts than students usually have. 
They are really good at thinking different subjects together, and they also get very 
good at working together in little groups … I think they simply have a greater 
cultural and historical horizon.” - Teacher 1 

 
The purpose of these activities involving physics and philosophy was primarily to strengthen the 
subject of physics. To embody the  abstractness of physics as one of the interviewed teachers 
told me. This goal was in some sense achieved according to the teacher quoted above and the 
reports of evaluation carried out by the involved students and teachers afterwards. Besides the 
registered positive cognitive effects the students realized that physics can not be reduced to a 
mere collection of dead facts. Physics is a human activity that evolves and therefore 
argumentation actually do count. This shift in the students’ perception of the subject physics 
from being a dusty collection of facts, to being relevant, is an experience that another of the 
involved teachers believe can be re-produced in the case of mathematics.  
                                                 
5 The fact that some of the asked questions particularly involved a reference to the Danish high schools(as opposed 
to any high schools) was because I wanted to find out which effect a forthcoming reform of the Danish high schools 
would have on the daily teaching practice. Most of questions asked involved only general educational components, 
and did not hold any particular reference to any Danish conditions. 
6 All the interviews were conducted in Danish, and the quotes given in the text is therefore my own translation. The 
text in the brackets is my insertions. They are there to give the right coherence in the teachers statements. The 
interviewed teachers are here given only a number, but all the quotes given in this paper are approved by the 
particularly teacher concerned.  
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“We can re-create the part about discovering in the case of mathematics … For 
example the students often only see the end-product when they see a proof for some 
mathematical relation. For them it’s often a strange thing; How have “they” found 
out you are supposed to do like that? They ask themselves. The process from a 
proof starts to crystallize and right to the final version of the proof which needs 
polishing before it appears in a textbook, nice and rounded. That whole process 
one should try in teaching mathematics, I believe it would be very beneficial for the 
students.” -Teacher 2 

 
Besides using philosophy as a tool to illustrate the world and methods of physics the teachers 
involved report how at the same time the activities created the perfect interdisciplinary context 
for developing central concepts from the philosophy of science. Ideas such as: induction, 
empirically investigations and verification were easy for the students to acquire and work with in 
this expanded domain. In this way the activities held the possibility that both involved subjects 
could engage in the work of developing the students’ scientific literacy, but at the same time use 
the cross-curricular context to discover and develop relevant aspects specific to the different 
curriculums. 
 
Others of the interviewed teachers had themselves planned and conducted interdisciplinary 
activities involving mathematics and philosophy. In both cases the activities had been carried out 
in relation to the daily teaching of mathematics, and both set of activities centered about 
argumentation and proof in mathematics. The purpose of the different activities varied slightly 
but fundamentally they both tried to illustrate characteristics of mathematical argumentation and 
how this often is worked out. 
 

“When we speak about method, we did something about; When do you examine 
something and when do you actually construct a proof? And also, what is needed to 
construct a proof and what is the nature of a mathematical proof? These issues are 
very philosophical I think, and the activities were a great success for the 
students.”- Teacher 3 

 
“We worked with paradoxes and reasoning and things like that … The overall 
theme was argumentation. It was a very good course, and the students were very 
fond of it.” - Teacher 4 

 
The work with these topics in mathematics was carried through based on a wish to equip the 
students with some general tools, or concepts, which could function as some sort of cognitive 
scheme for their ongoing daily struggle for learning mathematics. 
 
 
 
 

“A part of the teaching is about giving them [the students] a set of concepts which 
they can use to relate to what the are doing concretely. When they engage in a 
specific task in mathematics, they now have some concepts, some work habits, 
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some patterns, some ways of thinking which they can use to throw light on what 
they are actually doing.” - Teacher 3 

 
Mathematics propagates through a large and branching taxonomy of concepts and ideas. Several 
of the interviewed teachers pointed out that, cross-curricular activities between mathematics and 
a subject as philosophy should deal with concepts placed fairly high in the mathematical 
taxonomy used in the high school. To illustrate this point we can consider the relative position of 
two mathematical concepts in the taxonomy. Look for example at say the concept of function and 
a specific function as f(x)=sin(x). Both entities can be considered as a concept that a student in 
the high school should become acquainted with at some point. The concept of function however 
will be placed highest of the two in a taxonomy of mathematical concepts, and we will therefore 
regard this as a meta-concept in comparison with f(x)=sin(x). This way there also exists meta-
concepts in comparison with the concept of function. The concept of functional is an example of 
a such, and the use of the name meta-concept will therefore always be relative. 
 
For high school students the concept of proof will be regarded as a meta-concept most of the 
time and a direct investigation of this in the classroom by the students will often involve several 
problems. According to Dreyfuss (1999) most of the students on this educational level has a very 
restricted knowledge about what constitutes a mathematical proof. Also Hazzan and Zazkis 
(2005) point to the importance of trying to help the students acquire relevant mathematical meta-
concepts as e.g. the proof.  
 
According to Niss (1999) a major finding of research in mathematics education is students’ 
alienation from proof and proving. Students’ conceptions of the mathematical proof and those 
held by the mathematical community is separated by a huge gap. Niss concludes that 
 

“Typically, at any level of mathematics education in which proof or proving are on 
the agenda, students experience great problems in understanding what a proof is 
(and is not) supposed to be, and what its purposes and functions are, as they have 
substantial problems in proving statements themselves, except in highly 
standardized situations.” (Niss , 1999, p. 18). 

 
Instead the students’ consider proofs and proving as strange rituals performed by professional 
mathematicians that are not really meant to be understood by ordinary human beings. The 
activities referred to above by the interviewed teachers are exactly concerned with these 
problems and shows how other subjects such as philosophy can be used in the struggles. 
 
The interviewed teachers generally believed that interdisciplinary activities involving 
mathematics were very relevant for the students. Focusing on the special case of mathematics 
and philosophy some of teachers suggested that relevant activities could take as a starting point 
the purpose of illuminating the structure of mathematics, its fields of study and its characteristic 
form of argumentation. It comes as no surprise that the examples mentioned here are of a very 
general character. Engaging in interdisciplinary activities should hold the possibility of gaining 
something for all the involved subjects, and this would indeed be a very difficult premise to 
fulfill for both mathematics and philosophy if the activities centered about the quadratic equation 
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and Socrates’ famous Defence. Both are examples of a far to narrow approach to 
interdisciplinary activities determined too much by curricular considerations. 
 
In spite of a general optimism shared by the interviewed teachers towards integrating the 
teaching of mathematics with other subjects, several of them also point to a number of 
difficulties with the subject of mathematics that must be overcome if the interdisciplinary 
activities should be rewarding.  
 
The subject of mathematics is regarded as a subject that holds great technical difficulties for the 
students. According to the interviewed teachers exciting problems and topics in mathematics 
often demands a severe amount of preparation from the students before they can engage with the 
activities thereby losing the immediate interest that is so important for the learning process 
(Mitchell, 1993). Other subjects, e.g. philosophy, is for most students easier to engage in and this 
often leads to a shift in the students attention away from the mathematical content of the chosen 
topic. For that reason the development of successful interdisciplinary activities involving 
mathematics needs the development of a working culture among teachers and students where it is 
respected that a subject as mathematics can be hard accessible and show this problem extra 
attention in the classroom. 
 
Most of the interviewed teachers highlighted the fact, that in many cases interdisciplinary 
activities end up bringing in the mathematics teacher to simply help the students read of some 
values on a prefabricated curve or similar. Here the actual mathematical content is far from 
challenging or relevant for the students (or the teacher). To avoid this situation one of the 
interviewed teachers point out that 
 

“There’s an interaction between the other subject [than mathematics],, the way it 
asks its questions and the areas of mathematics you can point out and work with. 
Sometimes mathematics and the other subject actually pose the same kinds of 
questions but they each give different kinds of answers. … The problems that the 
activities are meant to center on must have double-relevance, and that means that 
they should have relevance both in the reality to which they belong and also in 
mathematics. As a thought I think that is very correct because often they [the other 
teachers] say; Yes, this topic is really interesting could the mathematics teacher 
please come in here and help reading of the curve! I answer: No, no that’s not 
really interdisciplinary activities.” - Teacher 4 

 
The subject domains involved in the activities must in some sense meet and use each other 
properly. Subjects are not actually co-operating when the co-operation is reduced to a parasitic 
process where one of the subjects de facto is not gaining anything as described in the above 
quote. 
 
4. Modeling interdisciplinary activities involving mathematics and philosophy 
The purpose of developing a didactical model for interdisciplinary activities involving 
mathematics and philosophy is, as mentioned earlier on, multiple. The model should function as 
a link between educational theory and the daily teaching practice in mathematics, both in the 
development of new activities, the carrying through of already planned ones and the evaluation 
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of completed activities. The model gets inspiration from the work of Michelsen (2001, 2005a, 
2005b), and a former version was presented at MACAS 1 and described in Iversen (2005). The 
didactical model consists of three phases - the horizontal intertwining, the vertical structuring 
and the horizontal propagation. Freudenthal (1991) introduced the idea of two different types of 
mathematization in an educational context – horizontal and vertical mathematization. In the 
horizontal mathematization students develop mathematical tools that help them organize and 
work with mathematical problems situated in real- life situations. The process of reorganizing the 
mathematical system itself Freudenthal designates vertical mathematization. Also Harel & Kaput 
(1991) sees a distinction between horizontal and vertical growth of mathematical knowledge. 
They associate the term horizontal growth with the translation of mathematical ideas between 
extra-mathematical situations (and models of these) and across other representation systems. By 
vertical growth is understood the construction of new mathematical conceptual systems. 
 
5. The Horizontal Intertwining 
As mentioned by some of the interviewed teachers interdisciplinary activities involving 
mathematics very often end up as fictitious constructs without much relevant mathematical 
content. In the first phase of a cross-curricular collaboration the attention should be centered on 
the importance of obtaining a real intertwining of the involved subjects. Such a curricular 
intertwining involves considerations about which fields of study, problems and methods in 
mathematics and the other subjects involved that have potentiality as interdisciplinary elements. 
Such elements must not originate from oversimplified lingual similarities among the subjects, 
but instead from considerations about how these elements can be used later in the continued 
learning of e.g. mathematics. This kind of intertwining of the subjects’ core subject matter the 
students will often experience as “the meeting of different subjects”, and the term of horizontal 
refers therefore to the students pre-understanding of the chosen curricular element as belonging 
to both mathematics and another involved subject, but not necessarily as an subject-exceeding 
element. Often the students do not consider ideas to be related because of their logically 
connection, but because they are being used together in the same kind of problem solving 
situations (Lesh & Doerr, 2003; Lesh & Sriraman, 2005). Michelsen et al. (2005a) suggest the 
term horizontal linking to describe the process of identifying contexts across mathematics and 
other subjects of science that are suitable for integrated modeling courses. I will here suggest the 
notion of horizontal intertwining to describe a related process of identifying and characterizing 
interdisciplinary problems and context suitable for integrating the subjects of mathematics and 
philosophy, thereby emphasizing the broader scope the integration of mathematics with a subject 
not from the natural sciences demands. 
 
The interdisciplinary activities should be chosen so they set up non-routine problems, which in 
order to be solved properly, need the involvement of all the involved subjects. A competence 
approach to the subject of mathematics contains a possibility to identify such relevant subject-
exceeding elements, because this approach focuses on what the students master after going 
through the courses, and not on concrete curricula. As argued in the theoretical section of this 
paper such an approach demands a broadminded view on the notion of competencies to be able 
to work as an educational tool. 
 
A horizontal intertwining of the subjects designates a weaving together of the involved subjects’ 
core subject matter by identifying non-routine problems and contexts suitable for integrating 
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mathematics and philosophy. In order to be able to do this one needs to clarify what constitutes 
such core subject matters. Furthermore, such a weaving together of subjects demands a 
clarification of the overall purpose of the activities. The purpose must have relevance for both 
mathematics and the other subjects involved in order to be justified. In practice it can span a 
wide field of areas; from helping the cognitive growth of the individual student (e.g. in relation 
to concept formation), trying to strengthen the motivation for the involved subjects or even 
trying to create a unified view of knowledge and science in the students.   
 
6. The Vertical Structuring 
A reasonable intertwining of the involved subjects facilitates the possibility that the student can 
identify with the cross-curricular aspects of the chosen problems, and thereby engage 
meaningfully in the activities. A clarification of the overall purpose with the activities will from 
the beginning help the teacher to follow the students’ cognitive development along the activities. 
Such observations will often involve that the mathematics teacher abandons the usual 
authoritarian role and take on a more guide-like function instead.7 From a combination of the 
involved subjects’ core subject matter the student should under suitable guidance and activity go 
through a cognitive development – a so called vertical structuring - that will root the cross-
curricular phenomenon concerned conceptually. It is crucial for a successful interdisciplinary 
engagement that the involved phenomena are central for the further learning of mathematics. If 
the purpose of the activities is the formation of new mathematical concepts the vertical 
structuring could be described as the construction of a new mathematical concept image (in the 
sense of Tall and Vinner, 1981). More theories describe how the formation of a new concept 
image in the student involves a qualitative change in the students perception of the specific 
concept. The change of perception is registered as a cognitive shift between perceiving the 
mathematical concept as an activity (or a process) and viewing the concept as an entity in itself 
i.e. a kind of structure or object (Dubinsky 1991, Sfard 1991, Tall 1997, 2001).  
 
In activities where the over-all purpose is to equip the students with a greater curricular 
perspective and overview we can describe the vertical structuring as the cognitive development 
of a new cross-curricular platform in the student, whereto new knowledge later can be attached 
to and grow from. 
 
7. The Horizontal Propagation 
A successful vertical structuring should be evaluated in a greater perspective. The development 
of new significant concepts and connections based on interdisciplinary elements should be 
further developed in the different curricular domains of mathematics and philosophy. According 
to Lesh & Doerr (2003) the real challenge of the teacher is not only to introduce new ideas and 
concepts but also to create situations where the students need to express their current ways of 
thinking so this can be further tested and revised in directions of stronger development. In the 
case of mathematics the student should be allowed to use the newly learned knowledge in 
different mathematical activities and thereby apply, test and approve the specific mathematical 
concepts in question for the purpose of developing a more firm and generalized mathematical 
structure in the end. This is only possible if the original purpose with the activities is aimed at 
such a propagation of the new knowledge in other contexts. In other words the vertical 
structuring should be followed up by a horizontal propagation of the newly acquired structures in 
                                                 
7 For a more developed description of this shift in the teachers role in the classroom, see e.g. Gravemeijer (1997). 
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the students and thereby this knowledge can find its use in both mathematics and other involved 
subjects. 
 
In this way the cross-curricular elements can work as a new basis, or context, for the student 
which can use it in the continued learning of mathematics furthermore in the development of 
new interdisciplinary connections between subjects thereby being able to overcome the crucial 
problems of transfer mentioned in the theoretical section of this paper. This is the true gain of 
such interdisciplinary activities. 
  
After the carrying through of a longer cross-curricular course one of the interviewed teachers 
describes an example of what could be characterized as a horizontal propagation as follows 
 

“I see the acquired competencies applied in many different places. They [the 
students] simply travel faster over the learning-ground. One can say that they 
fundamentally have a greater prerequisite for both conceptual entities and in 
working contexts.” - Teacher 1 

 
8. Designing relevant activities involving mathematics and philosophy 
After sketching the different components that make up the didactical model it should be 
illustrated how it can be used in the development of relevant interdisciplinary activities between 
mathematics and philosophy. Here we consider the special case of proof and proving in 
mathematics and philosophy. 
 
First we need to identify relevant non-routine problems, topics or phenomena which can function 
as curricular-exceeding elements between the two subjects and thereby establish a reasonable 
horizontal intertwining. We can use a competence approach to the curriculums of mathematics 
and philosophy respectively, hereby focusing on what cognitive qualities the two subjects aim at 
developing in the students. Common to the two subjects is a (seemingly endless) search for 
logically healthy arguments and conclusions and the ability to follow and judge such kind of 
reasoning therefore belongs to the core subject matter in both mathematics and philosophy. In 
planning the activities we can therefore reasonably focus on developing some sort of reasoning 
competence as mentioned earlier. This involves an ability to compare and differentiate the 
different kinds of argumentation used by the two subjects, but also the ability to dive into 
specific arguments from each subject and be able to follow and judge such specific reasoning. 
 
In all of the school’s different subjects the students’ ability to argue clearly and reason 
reasonably plays an important role, and a development of this capacity is a key area in both 
mathematics and philosophy. Philosophy is in fact often characterized as a subject that tries to 
generate and develop the students’ ability to understand and use forms of argumentation and 
knowledge that cut across the school’s different disciplines and dimensions. 
 
Mathematical reasoning takes many forms but is in its clearest form crystallized as actual proofs. 
The power to give a definite proof for a certain conjecture is characteristic for the subject of 
mathematics and the students’ knowledge about the meta-concept of proof is, as argued earlier in 
this paper, therefore central in the teaching activities in the high school. In philosophy the idea of 
proof also plays a key role. Earlier on, philosophers tried to transfer the mathematical (in some 
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sense Euclidean) idea of proof to actual philosophical arguments. The most famous philosophical 
“proofs” are the proofs of the existence of God. These were put forward by e.g. Anselm of 
Canterbury and Thomas Aquinas, who both believed that giving a formal proof of the existence 
of God was actually possible. The high school teachers who took part in the interviews also 
highlighted argumentation and the concept of proof as phenomena that could transcend the gap 
between the subjects of mathematics and philosophy and thereby overcome the problem of 
transferring mathematical knowledge to other contexts and domains. 
 
To sum up we have, starting from a wish to advance the students’ ability to argue and reason 
within mathematics and philosophy identified the concept of proof as a concrete topic suitable 
for a curricular intertwining of the two involved subjects. 
 
The activities originate from a study of which role the actual proving of statements and 
conjectures holds within the two subjects. What constitutes a proof? At what point can we say 
we actually have proven something? And what kind of knowledge does a proof give us? Is it 
true? Is it unchangeable? 8 In practice one could use simple proofs, easy for the students to 
master mathematically, such as small proofs from the classical Elements by Euclid himself  
(Euclid,  2002). E.g. using the proof that the sum of the angles in a (Euclidean) triangle is equal 
to the sum of two right angles or the proof of the Pythagorean theorem. Then comparing these to 
actual proofs of philosophical character e.g. a modern version of Anselms Ontological proof of 
the existence of God. It is important that the students subsequently are placed in different 
situations where they themselves are forced to work out small proofs thereby experiencing the 
process of trying to argue for a conjecture. This will enable the students to apply, test and further 
develop their understanding of the concept of proof. An understanding that (hopefully) in time 
will evolve further and be a useful tool for the students. 
 
Through an experimenting approach, as described above, to the idea of proof a vertical 
structuring of the meta-concept proof should be developed. At the same time focus is on the 
students’ ability to separate different kinds of argumentation. Most of the interviewed teachers 
agree that this would be of significant importance in the students’ continued engagement with 
both mathematics and philosophy. 
 
A vertical structuring of the concept of proof subsequently work as a structure which must be 
applied, re-valued and tested further in the daily teaching practice that follows within both 
subjects. Hereby obtaining a horizontal propagation of the newly acquired knowledge which 
results in a greater basis or context for the further learning and understanding of both 
mathematics and philosophy. 
 
The Danish Ministry of Education has recently published an Education Manual for the high 
schools. The manual focuses on interdisciplinary activities and a large part is devoted to 
paradigmatic examples of concrete activities. In this manual I’ve contributed to more fully 
describe activities between mathematics and philosophy as the one sketched above.9 
 

                                                 
8 All questions Niss (1999) emphasized as extremely difficult for students to answer properly. 
9 The manual can be found at http:us.uvm.dk/gymnasie/vejl/?menuid=15 (unfortunately only in Danish). 
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9. Conclusion 
In the paper a didactical model which should function as a concept frame for the development, 
completion and evaluation of interdisciplinary activities involving mathematics and philosophy, 
was presented. The model consists of three phases that these activities involve; The horizontal 
intertwining, the vertical structuring and the horizontal propagation. Although the model is 
presented as linear, the process of going through the different phases is in some sense to be 
understood as an iterative process that can be run through several times by each student.   
 
In the description of the first phase it was argued that it is of great importance that the actual 
mathematical content in interdisciplinary activities is not reduced to simple instrumental 
activities. Instead one should seek to identify and characterize interdisciplinary phenomena and 
contexts which can facilitate a proper intertwining of the different subjects involved by setting up 
relevant non-routine problems which need the involvement of both mathematics and philosophy 
to be answered. This can be enabled by a competence-approach as to what constitute 
mathematical skills. Such an approach is broader than the usual curriculum-approach to 
mathematics which often works as a drag to the development of successful interdisciplinary 
activities. 
 
The model’s second phase describes how the students’ engagement in the planned activities 
should facilitate a vertical structuring which leads to the development of new conceptual 
systems, objects or contexts in the student. This can appear as a formation of new mathematical 
concept images, by which the interdisciplinary phenomenon considered, conceptually is 
anchored. This can work as a further basis in the students’ continued learning of both 
mathematics and philosophy. 
 
Finally the third phase focuses on how ongoing activities involving the newly acquired 
constructions are the overall purpose with all interdisciplinary activities. Furthermore it is argued 
that the cross-curricular phenomenon should be applicable in the daily teaching practice through 
a horizontal propagation of the considered phenomenon in both mathematics and the other 
subjects involved. 
 
An anchoring of the model in the daily teaching practice was sought through a series of 
qualitative interviews of Danish high school teachers. Furthermore the model was illustrated 
through a design of a concrete interdisciplinary activity between mathematics and philosophy, 
and it was thereby argued how the model can be used to develop concrete interdisciplinary 
activities between these two subjects. The sketched activities take the concept of proofs and 
proving as a starting point and centers themselves around argumentation and reasoning in both 
mathematics and philosophy. 
 
As the modeling of such activities is still (and perhaps always) a work- in-progress the presented 
model is somewhat tentative in its nature. The model originates from a wish to develop a concept 
frame for interdisciplinary activities between mathematics and philosophy, and found inspiration 
in the work of Michelsen (2001, 2005a, 2005b) which centers about interdisciplinary activities 
between mathematics and physics. A further perspective is to continue the work of developing 
concrete teaching activities, as well as trying to adapt and evaluate the model’s strengths and 
weaknesses as a didactical tool to integrating the subjects of mathematics and philosophy. The 
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author, therefore, invites all interested readers to further test and revise the model as well as 
concrete realizations and afterwards sharing experiences which hopefully will lead to the 
improvement of the didactical model as a result. 
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