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ABSTRACT 

In  analyzing  genetic  linkage  data it is common  to assume that the locations of crossovers  along a 

chromosome  follow a Poisson  process,  whereas  it  has  long  been  known  that  this  assumption  does  not 

fit the  data. In  many  organisms it appears  that the presence of a crossover  inhibits  the  formation  of 

another  nearby, a phenomenon known  as “interference.” We discuss  several point  process  models  for 
recombination  that  incorporate  position  interference  but assume no  chromatid  interference.  Using 

stochastic  simulation, we are  able  to fit the models to a multilocus  Drosophila  dataset by the method 

of maximum iikelihood. We find  that  some  biologically  inspired  point  process  models  incorporating 
one or two additional  parameters  provide a dramatically  better fit to the data  than  the usual “no- 

interference” Poisson  model. 

T HE phenomenon of interference in genetic recom- 

bination was noticed very  early this century by Dro- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sophila melanogaster geneticists in THOMAS HUNT MOR- 

GAN’S lab (STURTEVANT 1915; MULLER 1916). They 

found  that simultaneous  recombination in two or  three 

nearby chromosomal intervals occurred  much less  of- 

ten  than would be expected under  independence,  and 

that the effect appeared to decrease with distance. At 

present  the biological nature of genetic  interference is 

still not well understood,  nor has it been adequately 

modeled mathematically. Virtually  all multilocus link- 

age analyses use the assumption of no interference. 

Although this assumption may  give consistent results 

for locus ordering  (SPEED et al. 1992)  and estimation 

of recombination fractions in some cases, it clearly does 

not fit the data. It is natural to ask  if such an analysis 

could  be improved by the use  of a reasonable interfer- 

ence  model. What is required is a biologically plausible 

point process model  for crossovers along  a  chromo- 

some, which should be fit to data. The Drosophila data- 

set of MORGAN et al. (1935) is ideal for this purpose. 

Previous attempts to fit a crossover point process to the 

MORGAN et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1935) Drosophila dataset ( COBBS 1978; 

&SCH and LANGE 1983; PASCOE and MORTON 1987; 

GOLDGAR and FAIN 1988; FOSS et al. 1993) have been 

severely limited by the difficulty  of calculating the likeli- 

hood of the  data  under all but  the simplest models. 

Using a Monte Carlo method, we are  able to fit  a wide 

range of point process models to the  data. 

BACKGROUND 

In  diploid eukaryotes, crossing over takes place dur- 

ing  the pachytene phase of  meiosis, when the two ho- 
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mologous versions  of  any particular chromosome have 

each been  duplicated and all four resulting strands or 

chromatids  are  lined up together,  forming  a very tight 

bundle. We model crossovers  as being points located 

along this bundle,  and each crossover  involves  exactly 

two of the  four chromatids. We assume that  the two 

chromatids involved in any particular crossover are  non- 

sister chromatids,  that is, the two chromatids  cannot be 

the two copies of a single homologous  chromosome. 

After crossing over has occurred,  the  four resulting 

chromatids are mixtures of the original parental types. 

In Drosophila, for  each meiosis, we  will have informa- 

tion on only one of these four resulting chromatids. 

If that  chromatid was involved in an odd  number of 

crossovers between two loci, a  recombination is said to 

have taken place between the two loci. 

It is important to keep  in  mind  that crossing over 

takes place among  four chromatids. In  that case the 

two aspects relevant to recombination  are  the distribu- 

tion of  crossovers along  the  bundle of four  chromatids 

and which pair of nonsister chromatids is involved in 

each crossover. The concept of interference is usually 

divided into two parts, corresponding to these two  as- 

pects. First, we  say that  there is position or chiasma 

interference if the  number  and location of  crossovers 

in a given region are  not  independent of the  numbers 

and locations of  crossovers in disjoint regions. Second, 

we  say there is chromatid  interference if it is not  the 

case that each pair of nonsister chromatids is equally 

likely  to be involved in a crossover, independent of 

which  were  involved in other crossovers. There is little 

consistent evidence of chromatid  interference (ZHAO 
et al. 1995b). 

We assume no chromatid  interference and try to find 

a better-fitting point process model  than  the Poisson for 
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the  occurrence of  crossovers along  the  chromosome.  In 

the case  of no chromatid  interference,  the  point pro- 

cess on  the single chromatid can be  obtained from the 

point process on  the  bundle of four by independently 

thinning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Le. ,  deleting)  each  point with probability 

This is because the given chromatid has chance 

of being involved in  a  particular crossover, indepen- 

dent of involvement in any others. As a result of  assum- 

ing  no  chromatid  interference,  the  chance of recombi- 

nation across an interval increases monotonically as the 

interval is enlarged, with an upper  bound of 

The traditional measure of interference is the coinci- 

dence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( STURTEVANT 1915; MULLER 1916), which is ex- 

pressed as a ratio. The  numerator is the  chance of  simul- 

taneous  recombination across both of two disjoint 

intervals on  the chromosome. The  denominator is the 

product of the marginal probabilities of recombination 

across the intervals. 

r1 I 
C =  

+ T11) (To1 + T I , )  ’ 

where C is the  coincidence and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArq is the  chance of i 
recombinations across the first interval and j recombi- 

nations across the  second interval. If there were no 

position interference,  the  coincidence would equal 

one. Observed coincidences tend to be near  zero  for 

small, closely-linked intervals, increasing to  one  for 

more  distant intervals. 

The recombination  point processes considered  here 

are stationary in terms of some distance metric, al- 

though this distance metric is generally not equivalent 

to physical distance. This  point will be discussed further 

below. For each of the  point process models considered 

here,  there is more  than one such choice of a distance 

metric that will make the process stationary; these met- 

rics are  the same up to a multiplicative constant. The 

genetic distance associated with a  chromosome interval 

is defined to be the expected  number of crossovers 

occurring on a single chromatid within that interval. 

The metrics in which the models discussed here  are 

stationary are all constant multiples of genetic distance. 

We shall choose one for notational convenience and 

call it the stationary metric. Among other things sta- 

tionarity of the  model  means  that  coincidence will be  a 

function of the distances across each of the two intervals 

considered and  the distance between the intervals (in 

terms of the stationary metric)  but  not  their actual loca- 

tions. This also implies that  the intensity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = limlb+ h” 
Pr (at least 1 point in [ t ,  t + h )  ) , where his measured in 

terms of the stationary metric, is the same for all t .  
Furthermore, for the models considered  here  the  con- 

ditional intensity can be defined by p (  z )  = limb+o limf+, 

E - ’  Pr (at least 1 point  in [ t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, t + z + E )  I at least 1 

point in [ t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + 6) ) , where E is measured  in  terms of 

the stationary metric. Intuitively, this is the intensity at 

t + z conditional on a  point  at t ,  and by stationarity 

this depends only on z. When the  conditional intensity 

exists, the  coincidence  function can be defined as the 

coincidence between two intervals, in the limit when 

the stationary widths of the intervals are allowed to go 

to zero, as a function of the stationary distance between 

the two intervals. The coincidence  function is  given by 

the  ratio of the  conditional intensity to the  uncondi- 

tional intensity 

C(z) = -. P(  z) 

P 

Formulae of this type appear in FOSS et al. (1993)  and 

LANDE and STAHL (1993). Note that  coincidence is not 

a  complete description of interference  but measures 

interference only between pairs of intervals. 

Mdtilocus linkage analysis: When one has a  panel 

of genetic markers, one may be interested in making 

a linkage map,  that is, in ordering  the markers and 

calculating genetic distances between them. Alterna- 

tively, one may be interested in using linkage analysis to 

locate a new marker or gene of interest on a previously 

determined  marker  map. In both cases the most infor- 

mative kind of analysis  is multilocus linkage analysis, in 

which one considers recombination  patterns  among all 

the  marker loci simultaneously. 

The Drosophila dataset of MORGAN et al. ( 1935) con- 

sists  of counts of recombination events among  nine 

marker loci on  the  Xchromosome. The nine loci under 

consideration  are scute, echinus, crossveinless, cut,  vermil- 
ion, sable, forked, carnation and bobbed, and they corre- 

spond to observed fly phenotypes. The actual positions 

of the loci on  the X chromosome  are assumed to be 

fixed but unknown, and counts of recombination events 

are made based on  the observed physical characteristics 

of the fly, which are associated with alleles at the  nine 

loci. In Drosophila  melanoguster recombination occurs 

only in females. Consider the X chromosome  inherited 

by a fly from its mother.  This X chromosome will be 

some mixture  of  the two maternal  grandparental X 

chromosomes because of crossing over between them. 

For each of the  nine loci, it can be determined  whether 

the offspring fly inherited its maternal  grandmother  or 

maternal  grandfather’s allele at  that locus. Thus,  there 

are possible observed outcomes. However, each out- 

come has a  complementary  outcome  that is considered 

equivalent, in terms of recombination, namely the one 

in which  all the  grandmaternal and grandpaternal al- 

leles are switched. Therefore,  there  are 2’ possible  re- 

combination  outcomes, and  the  number of times each 

occurs out of 16,136 meioses is recorded in the MORGAN 
et al. dataset. 

If the  nine loci are  ordered, we let AI denote the 

interval between loci j and j + 1. We let X = ( X I ,  . . . , 
Q),  x1 = 0 or 1, j = 1, - * * 8, denote  the event of a 
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recombination in each interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, and 

no recombination in each interval A, for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 
Then each of the 2’ possible recombination outcomes 

would correspond  to one of the Z 8  possible x’s. 

In what  follows we assume the order of the loci  to be 

known. If  the order were not known, the  procedures 

described below could be repeated for each of a small 

number of candidate  orders, and the estimated order 

would be the  one whose  maximized likelihood was high- 

est. We assume that each event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx occurs with some fixed 

probability p,. These events correspond to what is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo b  
served  in the  data. For each x, we  wish to calculate its 

probability p,  under each of the  point process models 

we consider in order to fit the models to the  data by 

maximum likelihood. 

Recall that event x occurs when a given chromatid is 

involved  in an odd  number of  crossovers  in each of the 

intervals Ai for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi = 1 and an even number of 

crossovers in each of the intervals A, for which xI = 0. 
A set of related events will be  denoted y = ( yl , . . . , y8) , 
yj = 0 or 1, j = 1, . . . , 8. y is the event that, on the 

bundle  of  four  chromatids,  at least one crossover occurs 

in each of the intervals A, for which yl = 1 and  no 

crossovers occur in each of the intervals A, for which yi 
= 0. Note that y is an event occurring on the  bundle 

of four chromatids, whereas x refers to just  one of the 

four chromatids. We let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqv denote the probability of the 

event y. The assumption of no chromatid  interference 

gives a  correspondence between these two sets  of proba- 

bilities ( WEINSTEIN 1936) , namely 

1 
p,  = C qr for all x, 

y : l z y 2 x  

and inverting, 

qy = 2 y “  x (-1) (x-Y)’lpx for all y,  
x : l z - x 2 y  

where, for example, y * 1 = yj, and 1 2 y 2 xmeans 

1 2 y, 2 x, for all j .  Thus, to get  the recombination 

probabilities under different  point process models, as- 

suming no chromatid  interference, it would  suffice to 

calculate probabilities for  the simpler events, y,  corre- 

sponding  to zero or nonzero crossovers in the locus 

intervals, on the  bundle of four chromatids. Once we 

can calculate the qv’s in terms of the unknown parame- 

ters and from these, the p,’s, we write  down the log- 

likelihood as 

constant + a, log (p , ) ,  
x 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = (x,, . . . , %) , xj = 0 or 1, a, is the  number 

of  times the event x occurs in the  data and where the 

constant is irrelevant because it does  not involve the 

unknown parameters. We would then maximize the 

likelihood over the unknown parameters. 

MODELS 

It is sometimes assumed that  the problem of model- 

ing  interference is equivalent to that of formulating a 

map  function, i.e., a  function from [ O ,  a) to [ o ,  1/2] 

that maps expected  number of  crossovers to chance of 

a recombination. This is not the case.  First, a map func- 

tion is not a full-fledged model. By itself, a  map  function 

does  not provide probabilities for multilocus recombi- 

nation events when more  than  three loci are involved, 

and so it cannot be fit to data such as that described 

above. In an attempt to remedy this problem, LIBERMAN 

and KARLIN ( 1984)  introduced multilocus map func- 

tions, which are  defined as above, but with the addi- 

tional property that  the  map function relationship be- 

tween expected number of  crossovers and chance of a 

recombination should hold on unions of disjoint inter- 

vals,  as well as on intervals. Unfortunately, these multilo- 

cus map functions correspond to an extremely limited 

class  of models under the assumption of no chromatid 

interference. EVANS et al. (1992) showed that under 

this assumption the only models that have multilocus 

map functions are  the count-location models described 

by KARLIN and  LIBERMAN ( 1979)  and RISCH and LANCE 

( 1979). These models have the undesirable property 

that  the coincidence function is constant, ie., the level 

of interference, as measured by coincidence does  not 

vary at all  with the genetic distance between the  inter- 

vals considered. In actual data coincidence seems to be 

close  to zero for near intervals and close to one for 

more distant intervals (see Figure 2 ) .  For this reason 

the count-location model does  not  appear well suited 

to modeling interference.  It is,  however, easy to fit and 

has been previously fit to the Drosophila data of MOR- 
GAN et al. ( RISCH and LANGE, 1983) . We include it here 

for comparison. The model will be described in more 

detail below. 

Poisson model: COX and ISHAM ( 1980) provide an 

introduction  to  point processes. The simplest crossover 

point process model we consider is the Poisson  process. 

This model was proposed for recombination by HAL- 

DANE (1919)  and continues to be virtually the only 

model used in linkage analysis. The model allows no 

interference at all, i.e., crossing over  in disjoint intervals 

is independent, or the presence of one crossover does 

not  alter the chance of others  occurring nearby. Thus, 

the coincidence function has the constant value 1.  In 

the  general formulation of the Poisson model, we let pt 
denote the intensity of the process at physical location t 
along the  bundle of four chromatids, i.e., 

P (at least 1 point in ( t ,  t + h ]  ) 
pI = lim 

h-0 h 

We shall not consider cases in which  this limit does  not 

exist, nor in which p, is not integrable. Then  the  chance 
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of no crossovers  in a given interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb )  is exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( -J% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p,d t )  , or in . the  homogeneous case where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApL = 

p for all t .  To get the probability of a given event y ,  i .e., 
the event of at least one crossover  in each interval for 

which y, = 1 and  no crossovers in each interval for 

which yi  = 0, we multiply the  appropriate probabilities 

for each interval using independence. 

If we let 1 1 ,  . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) denote  the physical locations of 

the  nine marker loci, then from recombination  data 

the estimable quantities in the Poisson model  are  the 

genetic distances ( i e . ,  expected  numbers of crossovers 

on  a single chromatid) between the markers, namely, 

(The factor of occurs because each crossover on 

the  bundle of four  chromatids is assumed to involve a 

given chromatid with chance  Thus, from the  data 

one  cannot infer  anything  about possible inhomogene- 

ity of the Poisson intensity, because this cannot be sepa- 

rated from the unknown locations of the marker loci. 

Similarly, one  cannot estimate the actual locations of 

the markers nor  the physical distances between them. 

Associating the interval [ 0, 11 on  the real line with the 

chromosomal  segment between the  outermost loci 

under consideration and letting p, and 0 = lI < < 
4) = 1 be  as before,  let p = si, p,dt and M ( z )  = p" 
st) p,dt, for all z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [0, 11. Then M :  [ 0, 11 "f [ O ,  11 is 

monotone  nondecreasing and  onto ( i .~., for every point 

u~ E [ 0,1] there is some z E [ 0,1] such that w = M (  z )  ) , 
hence continuous. M can be thought of as a  continuous 

cumulative distribution function (cdf)  on [ 0, I ] .  If  we 

transform each point of the Poisson  process by A 4 ,  then 

the resulting process is homogeneous Poisson  with inten- 

sity p. The transformed homogeneous process on [ 0, 11 

with marker locations M (  lI ) < - < M (  4 ) )  and  the 

original inhomogeneous process on [O, 13 with marker 

locations lI < < 4, would both produce recombina- 

tion data with the same distribution. Thus, without loss  of 

generality, we  may consider only homogeneous Poisson 

processes, that is, we let p, = p for all t .  The estimable 

parameters of the model are  the genetic distances, d l ,  
. . . , &, between the markers, and in terms of these the 

probability  of the event y is 

x n e-2112?, (1 - e - 2 d , )  (I-?,) 

, = I  

Note that p can be written in terms of this parametriza- 

tion: p = 2 E:=, d , .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gamma model: The distances between crossovers in 

the  homogeneous Poisson model  are independent ex- 

ponential  random variables, or equivalently, gamma 

with shape  parameter 1. One way to generalize the Pois- 

son model would be to consider renewal processes with 

general gamma interarrivals, thus  adding  an  extra pa- 

rameter to the  model. On the real line the stationary 

renewal process with gamma interarrivals can be formu- 

lated as  follows.  Given a  point  at location w, the density 

of the distance to the  next  point to the  right is 

where Istands for interarrival, r( y )  = J;;" pysy" p P v '  ds 9 

and this is independent of the  occurrence of  any points 

to the left of 7u. The distribution of the  next  point to 

the left of w is the same; there is no directionality. The 

distribution of the distance to the first point to the  right 

(or equivalently left) of 7u, when it is not assumed that 

a point has occurred  at zu, has density 

The intensity of the process is then p / y .  Letting y = 

1, we would get  the Poisson model. The coincidence 

function  for  the gamma model is 

r 

C ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 f ; ' ( z ) ,  
P n = l  

where f ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl-( y n )  "py7 'zy7 ' "~pvz.  
We associate the interval [ 0, 11 with the  bundle of 

four  chromatids, and we consider the above process 

restricted to [ 0, 11 . Then  the chance of at least one 

crossover occurring  on  the  bundle of four  chromatids 

is a = s ,f; ,( ( z )  dz, and given that  at least one crossover 

occurs, the density of the distance from the 0 end of 

the  bundle to the first crossover is a - I f , , ,  ( z )  . Given a 

crossover at location w E [ 0, 11,  the  chance  that  an- 

other crossover occurs between w and 1 is @( w) = 

sb7'f,( z ) d z .  Given a crossover at location 7u, and given 

that at least one crossover occurs between w and 1, the 

density of the distance from w to the  next crossover 

between wand 1 is @ (  w) "A(  z )  . Note that all distances 

are in terms of a metric whose relationship with  physical 

distance is unknown but which is a  constant multiple 

of genetic distance. 

We consider the gamma model on the bundle of four 

chromatids, and  the points are  then independently 

thinned, each with chance ( Z.C., each point has 

chance to be deleted, independently of  which other 

points are  deleted) to get the crossover point process 

on a single chromatid. We do  not restrict consideration 

to the particular case of gamma with integer shape pa- 

rameter,  but  the use  of the gamma renewal  process  with 

integer shape parameter to model crossover occurrence 

has a long history. FISHER P t  al. (1947) proposed that 
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the crossover point process along a single chromatid be 

viewed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a renewal  process  with interarrival density f (z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'/*T sech ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'/*Tz) tanh ( '/*7rz). OWEN (1949, 1950) 

found  that a gamma interarrival density  with shape pa- 

rameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and scale parameter 2 was mathematically  trac- 

table and closely approximated the renewal  process  pro- 

posed by FISHER et al. CARTER and ROBERTSON (1952) 

used the gamma with shape parameter 2 as a four-strand 

model and applied various  models of chromatid interfer- 

ence to get  the chance of recombination across an inter- 

val for a single chromatid. PAYNE ( 1956) considered the 

gamma with integer shape parameter as a twestrand 

model. He compared coincidence curves for the gammas 

with shapes 2 and 3 to data. COBBS ( 1978) considered 

the gamma with integer shape parameter as a four-strand 

model, assuming no chromatid interference. He fit the 

model to Neurospora and Drosophila data by comparing 

the observed distribution of the number of  crossovers  in 

a segment (ignoring those that could not  be observed) 

to the number predicted by the model. STAM (1979) 

considered various mathematical aspects  of the same 

model, and Foss et al. ( 1993) also considered this model, 

comparing the coincidence curves from the model to 

coincidence curves for Drosophila and Neurospora data. 

In this paper we calculate approximate probabilities of 

the different possible  multilocus recombination events 

under  the model, and we fit the model to the data by 

maximum likelihood. We are able to compare observed 

to expected frequencies of recombination events. This 

subsumes both the comparisons of distributions of num- 

ber of  events and of coincidence curves. 

The gamma interarrival process with integer shape 

parameter has been used in the  literature so often 

largely because of relative mathematical tractability. 

However,  FOSS et al. ( 1993) propose it to explain cer- 

tain empirical observations concerning recombination 

and  gene conversion ( a  nonreciprocal  exchange of  ge- 

netic material between homologous chromosomes). 

First, gene conversion is associated with a high fre- 

quency of recombination of flanking markers ( MORTI- 

MER and FOGEL 1974). Second,  gene conversions seem 

to occur  independently in disjoint intervals, but  gene 

conversions accompanied by recombination do not; 

rather, they appear to inhibit each other ( MORTIMER 
and FOGEL 1974).  The model  proposed by Foss et al. 
(see also  STAHL  1979; MORTIMER and FOGEL 1974) is 

that initial precrossover events occur  along  the  chromo- 

some according to a Poisson process. Each such event 

results in a gene conversion and may or may not result 

in a crossover as well. Their model holds that every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( m  
+ 1 )  st initial event results in a crossover. If the first 

event has chance 1 / ( m  + 1) to form a crossover, then 

the model is equivalent to  the stationary gamma interar- 

rival model with shape  parameter m + 1. 

We note  that, as  in the case of the Poisson model, if 

we fit the stationary gamma renewal process, we are 

also  allowing for  the possibility that  the  true physical 

process may be nonstationary. The class  of models cov- 

ered by the analysis  consists  of those for which a mono- 

tone  nondecreasing onto transformation M [ 0 ,  13 -+ 

[ 0 ,  13 (i.e., a continuous, cdf on [ 0 ,  13 ) exists that 

maps the model to a stationary model. The models 

corresponding to almosteverywhere differentiable M's 
are those that can be formulated as  follows.  Given a 
point  at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  the density of the distance to the first point 

to the  right of w is 

where p t  = p X d M (   t )  / dt. The density  of the distance 

to the first point to the right of a given location w ,  when 

it is not assumed that a point has occurred at w, is 

The intensity of the process at location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is y - ' p r .  Note 

that  the coincidence function is identical to that for 

the stationary case. 

The estimable parameters are  the  shape  parameter 

y and the genetic distances d l ,  . . . , 4.  Note that p can 

be written, in terms of this parametrization, as p = 
2 y  X:=l d, .  It has not proved possible to write down an 

explicit expression for the likelihood of the  data under 

the gamma model, except in the case  of integer-shape 

parameter (ZHAO et al. 1995a). Instead, the likelihood 

has been simulated, as described below. 

Hard-core model: Another generalization of the 

Poisson model would be to have the points follow a 

Poisson process but with no two points allowed to  be 

closer than a certain fixed distance h. This is  known  as 

a hard-core model (see e.g., STOYAN et al. 1987).  On 

the real line this is just a stationary renewal process with 

interarrivals distributed as exponential plus a constant. 

That is,  given a point  at location w ,  the distance to the 

next  point to the  right (equivalently, left) has density 

pe-pL(z-h)  for z > h 

0 otherwise. 
= 

The distribution of the distance to the first point  to  the 

right (equivalently, left) of w ,  when it is not assumed 

that a point has occurred at w ,  has density 

K h  
if z s h  

The intensity of the process is p/ (1 + ph) . Letting h 
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= 0, we would get  the Poisson model. The coincidence 

function for the hard-core model is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m 

where 

Again, we associate the interval [ 0,1] with the  bundle 

of four chromatids. The restriction of this stationary 

renewal process to the interval [0, 11 works  exactly  as 

in the gamma case. As before, this hard-core model is 

equivalent, in terms of the  data,  to any model resulting 

from a transformation of the interval by a  continuous 

cdf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  The models corresponding to almost-everywhere 

differentiable M’s are those that can be formulated as 

follows.  Given a  point at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw ,  the density of the distance 

to the first point to the  right of w is 

( 0  otherwise, 

whe;se, = p X d M (  t )  / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdt, and h, > 0 is any solution 

of s, pSds = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB ,  where B = hp. The density  of the 

distance to the first point to the right of a given location 

w ,  when it is not assumed that  a  point has occurred  at 

w .  is 

The intensity of the process at location tis pl /  (1 + B) . 
The estimable parameters  are  the hard-core genetic 

distance, hg = 1/2 B/ ( 1 + B )  , and the genetic distances 

between the points, dl, . . . , &. Note that p can be 

expressed in terms of this parametrization as p = (1 - 

2 4 ) ”  X:=l d,. As the  number of loci increases, the 

likelihood quickly becomes very complicated, and  no 

tractable general form has been found. 

King-Mower model: In one version of a model sug- 

gested by KING and MORTIMER (1990), points are put 

down on a segment of the real line according to a Pois- 

son process with parameter p, just as  in the original 

stationary Poisson model described above. Starting 

from time 0, each point  independently waits an expo- 

nential amount of time  with parameter h before starting 

polymer growth, i .e., the density of the time to polymer 

growth is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf( t )  = l e - ” .  When a polymer starts to grow 

from a  point, it grows  in both  directions at a  constant 

rate g. If a polymer from one point hits another  point 

that has not yet started to grow, the  latter  point is de- 

leted. At first glance this process appears to be nearly 

identical to the one-dimensional version  of the  John- 

son-Mehl model (JOHNSON and MEHL 1939, but MEIJER- 

ING 1953 is more readable) for random tessellations. 

In  that  model points are  born over time and immedi- 

ately start growing  polymers (called “crystals” byJOHN- 

SON and MEHL 1939)  at rate g in both directions. In 

the Johnson-Mehl model the  rate of birth in an unpoly- 

merized interval [ w ,  w + h,) during an interval of time 

[ t ,  t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb) is p h l b  + o (  h l b ) .  That is, in any infinitesi- 

mal interval of time [ t ,  t + b) , it is a Poisson process, 

with parameter p b ,  on the unpolymerized part of the 

line. In any  small unpolymerized interval [ w ,  UI + h,) 
along the  line,  one waits an  exponential  amount of 

time, with parameter phi, for a  point to appear  and 

start growing.  However,  in the King-Mortimer model 

the chance  that  a polymer starts to grow  in a small 

unpolymerized interval [ w ,  w + h,) during an interval 

of time [ t ,  t + b) can be shown to be phe-“h11~2 + 
o(  h,&),  i e . ,  it varies  over time, going monotonically to 

zero. 

In the King-Mortimer model there is an initial Pois- 

son distribution of points, then  the polymerizing pro- 

cess  takes place over time, and  then  there is some re- 

sulting final distribution of points. Intuitively, it is clear 

that  the final distribution of points would not  be af- 

fected if time were  slowed  down or speeded up by some 

constant multiple c, as long as the initial Poisson distri- 

bution of points  remained the same. This would be 

equivalent to changing h to A and changing g to cg. 

Therefore, it is not surprising that  the final distribution 

of points is determined by p and g/ X only. Thus, with- 

out loss of generality, we  may take A = 1. 

KING and MORTIMER ( 1990) choose parameter values 

for which their simulations appear to resemble ob- 

served data,  but they do  not actually fit the model. They 

consider the process as defined  on  a line segment. In 

that case points are  more likely to occur near  the  ends 

of the segment, because there  are no points outside the 

segment to interfere with them. This is  also true in the 

case of the hard-core model defined on a segment. We 

instead consider the process as defined on  the real line 

and  then restricted to [ 0, 11. In  that case the points 

near  the  ends of the segment behave  as if other points 

lying outside the segment could interfere with them, 

and  the model is stationary. As before,  a nonstationary 

model resulting from a transformation of the interval 

[ 0, 13 by a  continuous cdf M is indistinguishable, in 

terms of the  data, from the stationary model. This non- 

stationarity is  of a different type from that  introduced 

by considering the process only on an interval, as KING 

and MORTIMER (1990) have done.  The nonstationary 

models with  almost-everywhere differentiable M’s COV- 

ered by this analysis are those in  which the initial Pois- 

son distribution has inhomogeneous  parameter /.L~ = 

p d M (  t )  / d t ,  and  the growth rate of a polymer that has 
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reached position t is  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg d M (  t )  / dt. We note  that  the 

stationary process is not a renewal process; given a  point 

at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw E [ 0, 11, the distribution of the distance to the 

next  point to the  right of w is not  independent of the 

occurrence of other points  to  the left of w .  
To specify the stationary King-Mortimer model on 

[ 0, 11 , it is convenient to determine  the  distribution 

of the time when a polymer growing from somewhere 

outside [ 0, 11 would reach  that interval. To  do this, we 

ignore,  for  the  moment,  points inside [ 0, 11 that  could 

potentially polymerize and prevent any outside poly- 

mers from ever reaching [ 0, 11 . To calculate the distri- 

bution of the time when a polymer from ( 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) reaches 

1, we let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,, for  each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi > 1, be the distance between 

the  ith  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  - 1 ) st initial points to the  right of 1. If 

XI is the distance from 1 to the first initial point to the 

right of 1, then  the X, are  independent  exponential( p )  . 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, be the waiting time for polymer growth of the  ith 

initial point to the  right of 1. The Z, are  independent 

exponential( 1 ) . Let S, = g" Z;=l X,. Then  the  chance 

that no polymer arrives at 1 from the  right before time 

t is 

P(S1 > t )  
cc 

+ P ( S ,  5 t < S, + 5 > t ,  for a l I j 5  2). 
1 = 1  

The ith  term of the sum is found to be 

and so the  required probability is 

e'lg( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - l - C O  

One minus this quantity is the cdf of the time that  a 

polymer first arrives from the  right (equivalently, left) 

at any  given point.  This cdf is useful for simulating the 

process. Substituting 2g in for g gives the cdf of the 

time that  a polymer first arrives at any  given point from 

either  the  right  or  the left, ignoring  the possibility that 

the  point itself  grows first and prevents the polymer's 

arrival. From this we can calculate the intensity of the 

point process, which isjust  the intensity, y ,  of the initial 

Poisson process multiplied by the chance  that  a given 

initial point starts to grow before another polymer ar- 

rives. This is 

where a = 2pg and r( x, y )  = Sh t"" e-'dt, known  as 

the  incomplete  gamma  function. The estimable param- 

eters under this version of the King-Mortimer model 

are  the  genetic distances, d l ,  . . . , &, and  the expected 

time for  a polymer to traverse the distance between 

two adjacent  points  in  the initial Poisson process, as a 

multiple of expected waiting time for  a polymer to start 

growing: T = ( y g )  -' = 2 6 ' .  Note that y can be ex- 

pressed in terms of this parametrization: 

No closed-form expression is known for  the likelihood 

of recombination  data under this model, nor  for  the 

coincidence  function. Both  of these are  obtained  here 

by simulation. 

K-M 11 model: The second King-Mortimer model 

(KING and MORTIMER 1990), which shall be called here 

K-M 11,  is the same as the previous model  except  that  a 

parameter is added  for  termination of polymer growth, 

once it has started. That is, under  the set-up of the 

previous model,  each polymer now  grows for  an  inde- 

pendent  exponential( 1 / v )  amount of time, or until 

it hits another polymer, whichever happens first. The 

possibility  of  early termination of a polymer has the 

effect of  allowing interference to operate over a smaller 

range  than before. Interference can then be made 

more  intense, yet more localized, than in the  ordinary 

King-Mortimer model. For this model  there is no 

known expression for  the intensity, the likelihood of 

recombination  data nor for  the  coincidence  function. 

The parameters estimated are  the  genetic distances, d l ,  
. . . , 4,  the  expected time for  a polymer to traverse 

the distance between two adjacent points in  the initial 

Poisson configuration (given  that growth does not ter- 

minate up to that  time) , T,  and  the expected time to 

terminate polymer growth, v, where each of these times 

is expressed as a multiple of the expected waiting time 

for  a polymer to start growing. 

Count-location model: In the count-location model 

(KARLIN and LIBERMAN 1979, called the "generalized 

no interference model" by RISCH and LANCE 1979) the 

number of crossovers  is chosen according to some 

count distribution c,  where c is given by k, cl , . . . , and 

c, = P( i crossovers). Given the  number of crossovers, 

their locations are  independent  and identically distrib- 

uted  (i.i.d.)  along  the  bundle of chromatids,  according 

to a location distribution v that  does not vary  with the 

count.  The count-location model can be thought of  as 

a modification of the Poisson process model, in which 

the  number of  crossovers occurring is no longer Pois- 

son,  but  their locations are again i.i.d.  as  in the Poisson 

model.  In  the count-location model  the  coincidence 

function is constant: 

n 

C ( z )  = i ( i -  l ) c ,  /( i i q .  
*=2 j =  1 

The version of the count-location model  considered 

here allows no more  than  three crossovers to occur 
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TABLE 1 

Observed  and expected  counts under  the  fitted  models for five  loci with chi-square  statistics 

Recombination Observed Expected  Expected  Expected  Expected Expected Expected 
event data Poisson gamma  hardcore King-Mortimer count-location K-M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 

0000 10431 11014.1 10497.1 10837.0 10783.6 10434.0 10443.1 

1000 771 596.6 738.9 682.7 686.1 777.6 767.4 
0100 1579 1246.9 1537.6 1360.6 1390.0 1556.1 1560.4 
0010 1221 931.3 1214.0 1058.7 1064.2 1184.7 1210.7 
0001 1994 1664.1 1979.7 1685.2 1811.7 2036.4 2018.0 
1100 4 67.5 1.5 13.5 25.2 16.0 7.3 
1010 7 50.4 12.0 69.3 35.8 11.8 12.4 
01 10 4 105.4 4.0 35.1 43.1 23.4 13.2 
1001 46 90.1 73.0 106.3 85.2 20.2 32.9 
0101 53 188.4 68.0 208.1 138.5 42.1 48.6 
001 1 25 140.7 10.1 71.7 64.8 31.5 20.8 
1110 1 40.3 0.1 7.9 7.8 2.3 1.3 
1101 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 40.3 0.1 7.9 7.8 2.3 1 .3 
101 1 1 40.3 0.1 7.9 7.8 2.3 1.3 
0111 1 40.3 0.1 7.9 7.8 2.3 1.3 
1111 1 40.3 0.1 7.9 7.8 2.3 1.3 
Chi-square zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 773 51 420 267 67 17 
df - 8 7 7 7 6 6 

Triple  and  quadruple recombination events are quite  rate.  These events were pooled in the analysis because accurate probabili- 
ties for  the events could not be computed by simulation. 

simultaneously, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi .e., c, = 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcj = 0 for i > 3. 
The location distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv may be taken to be uniform 

without loss of generality, because the class  of models 

covered by this  analysis will include all those with  loca- 

tion distributions having a  continuous cdf. The intensity 

of the process is Z:,, ic, . The model can be parame- 

trized in terms of the genetic distances, dl,  . . . , &, and 

q, and cl. The likelihood can be calculated explicitly  in 

terms of these parameters. 

To fit any  of these models to recombination data, it 

is necessary to be able to calculate qr for any y ,  that is, 

the probability of any combination of zero and nonzero 

crossover counts in the  eight marker intervals, as de- 

scribed above. This is trivial for the Poisson model and 

the count-location model. For the  other models this 

involves integrating  the density over  all  possible  realiza- 

tions compatible with y ,  assuming that  the density is 

known or can be computed. So far, these integrals ap- 

pear virtually  impossible to do exactly, except in the 

special  case of gamma with integer shape parameter. 

As a result, they  have been calculated here by Monte 

Carlo methods. For the Poisson, gamma, count-location 

and K-M I1 models, the recombination probabilities 

were computed for events among all nine loci, whereas 

for the other models only a subset of five  of the  nine 

loci  were used. 

For a given model the probability qr depends  not 

only on the model parameters but also on the relative 

locations of the loci.  For each choice of model parame- 

ters, a large number n of realizations of the  point pro- 

cess are simulated. Using these simulations, the desired 

probability qr can be estimated, for any set of locus 

locations, by the observed frequency of the event y. 

From the q's the estimates of the probabilities of the 

observed recombination events can be computed,  and 

from these, the estimated likelihood of the observed 

data is computed. Recombination events  in  which three 

or more recombinations took place  were so rare in this 

data  that their probabilities are very difficult  to  esti- 

mate. These rare events were pooled in  this  analysis. 

Holding  the  point process parameters fixed, the likeli- 

hood can then  be numerically maximized  over the locus 

locations by the Nelder-Mead search  algorithm 

( NELDER and MEAD 1965). This maximization is done 

TABLE 2 

Fitted  point  process  parameters for five  loci 

Model Parameter(s) '' 

Gamma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = 6.41 (0.280) 
Hard-core hK = 0.116 (0.004) 

King-Mortimer I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = 0.038 (0.005) 

Count-location q, = 0.311 (0.005), c, = 0.641 (0.007) 
(redundant parameters: G> = 
0.0448 (0.005), CS = 0.0032 

(0.002)) 

0.244 (0.187) 
K-M I1 T =  1.01 X (2.44 X = 

Estimated standard deviations in  parentheses. 
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TABLE 3 

Fitted  genetic  distances  between  adjacent  markers for five loci 

1039 

Genetic  Count- 
distances Poisson Gamma Hard-core K-M I location K-M I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( x ) - ( e c )  0.054 (0.002) 0.051 (0.002) 0.055 (0.002) 0.052 (0.002) 0.052 (0.002) 0.050 (0.003) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(ec)-(cu) 0.114 (0.003) 0.100 (0.003) 0.100 (0.003) 0.101 (0.002) 0.104 (0.002) 0.102 (0.005) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( a ) - ( c t )  0.085 (0.003) 0.077 (0.003) 0.077 (0.002) 0.076 (0.002) 0.079 (0.002) 0.079 (0.003) 

(ct)-(v) 0.152 (0.004) 0.132 (0.004) 0.129 (0.003) 0.135 (0.003) 0.136 (0.003) 0.132 (0.007) 

Estimated  standard  deviations in parentheses. 

using the same set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn simulated realizations. For each 

choice of model  parameters,  the process can be re- 

peated,  generating  a new set of n realizations and max- 

imizing the estimated likelihood over the locus loca- 

tions. The Nelder-Mead search algorithm can then be 

used to maximize over the  model parameters. This is 

an  extension of a  method described in DIGCLE and 

GRATTON (1984).  The  number of realizations simu- 

lated, n, was taken to be 160,000 initially and was in- 

creased to 960,000 as a maximum was approached. 

There  are standard algorithms for simulating from 

exponential and gamma distributions (see RIPLEY 

1987). In  addition  to  these, we must be able to simulate 

from  the first-point distributions of the  gamma and  the 

hard-core models, and also, in the King-Mortimer 

model,  the  distribution of the first time that  a polymer 

from  outside  the [O, 11 interval first hits 0  from below 

(or equivalently, hits 1 from  above) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
In  the  gamma case if the shape  parameter is an inte- 

ger, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, then  a  random variable from  the first-point 

distribution can be realized by simulating the sum of k 
independent exponential  random variables, where k is 
chosen uniformly on 1, . . . , 7. For noninteger 7 ’ s  one 

can do rejection sampling using the  next highest inte- 

ger  (see RIPLEY 1987 for a discussion of rejection sam- 

pling). For the  hard-core  model with hard-core dis- 

tance h and Poisson parameter p, the first point will be 

uniform on [ 0, h ]  with probability h/ ( 1 / p + h )  and 

exponentially distributed  on [ h,  00) with probability 

To simulate from the King-Mortimer model on  an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I / P ) / (  I / Y  + h ) .  

interval, one must be able to simulate the  distribution 

of the first time that  a polymer from  outside  the interval 

reaches  the interval from  the left, or identically, from 

the  right. The distribution, which was derived in the last 

section, can be simulated by rejection sampling using 

exponential( p) for pg 5 1 and  exponential( 1 /g) for 

pg 2 1. For the K-M I1 model even this distribution is 

not known but is simulated by looking at  the process 

over a very large interval and  then restricting to a small 

interval, where edge effects may be assumed to be negli- 

gible. 

RESULTS 

SPEED et al. ( 1992)  found  that as a result of assuming 

no chromatid  interference, certain constraints must be 

satisfied by the probabilities of recombination events. 

Namely, 

0 5 ( - 1 )  ( ~ - ~ ) “ p ~  for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. 

Furthermore,  for any set of p ’ s  that satisfies these con- 

straints, there is a  no-chromatid-interference  model 

that is compatible with them. It is interesting  to  note 

that  for  the five loci considered,  the observed frequen- 

cies  of the  recombination events satisfy  all eight nontriv- 

ial constraints of the  ones  required above. Only a single 

observation prevents this from being true  for  the 37 

nontrivial constraints on all nine loci. Of course, this is 

not proof  that the assumption of no chromatid interfer- 

ence is correct  but simply that  the  data  are not incom- 

patible with this assumption. 

y z x  

TABLE 4 

Point-process  parameters  and  chi-square  statistics for ninelocus fit 

Model Parameter(s)” Chi-square d.f. 

Poisson None 1672  30 
Gamma y = 4.94 (0.124) 107 29 
Count-location Q, = 0.057 (0.008), q = 0.434 (0.017) 889 28 

redundant  parameters: Q = 0.434 (0.017), c3 = 0.075 (0.008) 
K-M I1 T = 1.84 X (7.30 X IO-“), u = 1.08 (0.337) 294  28 

‘‘ Estimated  standard  deviations in parentheses. 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

Genetic distances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor ninelocus fit 

Genetic distances Poisson  Gamma  Count-location K-M I1 

(sc)-(ec) 0.054 (0.002) 0.053  (0.002) 0.053  (0.002) 0.046 (0.002) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(ec)-(m) 0.1 14  (0.003) 0.098 (0.002) 0.107  (0.003) 0.096 (0.004) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 4 4 4  0.085  (0.003) 0.075 (0.002) 0.082 (0.002) 0.078 (0.003) 
( 4 4 4  0.152  (0.004) 0.133 (0.002) 0.141 (0.003) 0.141 (0.005) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 4 4 4  0.089  (0.003) 0.085 (0.002) 0.086 (0.002) 0.088 (0.004) 

(s)-(f) 0.184  (0.004) 0.157  (0.003) 0.17 1 (0.004) 0.163 (0.007) 

(f)-(car) 0.081 (0.002) 0.075 (0.003) 0.078 (0.002) 0.071 (0.003) 
( cur) - ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbb) 0.046  (0.002) 0.044 (0.002) 0.044 (0.002) 0.039  (0.002) 

Table 1 shows Pearson chi-square statistics for  the 

five-locus models, and Table 4 shows them  for  the nine- 

locus models. In all  cases the p values are smaller than 

0.01,  implying significant misfit  of  all models. However, 

with the  addition of a single parameter,  the chi-square 

statistic in the five-locus  case  is brought down from 773 

(Poisson model) to 51  (gamma model), and in the 

nine-locus case from 1672 (Poisson model)  to 107 

(gamma  model). This  represents a tremendous im- 

provement. In the five-locus  case the best-fitting model 

is the K-M I1 model, which adds two parameters  to  the 

a 

1 Poiss H-core K-M I Gamma Ct-loc K-M II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c; 

Poisson model and has a chi-square statistic of 17, com- 

pared  to 773 for  the Poisson model. The K-M I1 model 

is outperformed by the gamma model in the nine-locus 

case. One interpretation is that K-M I1 does a reasonably 

good job of modeling interference between nearby 

markers but that it is not flexible enough  to simultane- 

ously model both close and medium-range interfer- 

ence, as required in the nine-locus dataset. 

Tables 2 and 3 contain fitted parameter values, with 

estimated standard deviations, for the five-locus  models, 

and Tables 4 and 5 show  them for the nine-locus  models. 

r 
0 

8 

E l  
Poiss H-core K-M I Gamma Ct-loc K-M II - 0  t r  

8 
I 

b 

Poiss H-core K-M I Gamma Ct-loc K-M II 

d 

Poiss H-core K-M I Gamma Ct-loc K-M It 

FIGURE 1.-Distribution  of the number of  crossovers among the first five  loci  of the MORGAN et al. (1935) dataset, for each 
of the models under consideration, relative  to the data distribution. (a )  The chance of zero  crossovers for each of the models 
minus  0.310, the proportion of  cases  in  which zero recombinations occurred among the first five  loci  in the data. (b-d) Similar 
bar graphs for the probabilities of 1, 2 and 3 or more crossovers,  respectively. The data proportions to which these numbers 
are compared are 0.656,  0.0337 and 0.000496,  respectively. 
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FIGURE 2.-Plots of coincidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus. genetic distance for the  five-locus models. The points represent coincidence calculated 
from the data for each pair of atomic intervals among the nine  loci.  The corresponding genetic distance for each pair is 
calculated between the midpoints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the two intervals. The curves represent five-locus model coincidences. a is the Poisson 
model, b is the hard-core model, c the King-Mortimer model, d the gamma model, e the count-location model and f the K-M 
I1 model. 

The results  shown for  the Poisson are from a calculation 

rather  than from simulation, but  the simulated results 

are virtually identical. In the case  of the gamma model, 

the likelihood can actually be calculated in the case  of 

integer-shape parameter (ZHAO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1995a). In the 

nine-locus  case using this likelihood calculation, the best 

fit is obtained using shape  parameter 5, which agrees 

with the results given here  for  the nine-locus case. This 

would correspond to four  gene conversion  events  be- 

tween each crossover in the framework described in Foss 

et al. ( 1993).  The count-location model has previously 

been fi t  to the MORGAN et al. ( 1935 ) dataset by RSCH 

and LANCE ( 1983), using a calculated, rather  than simu- 

lated, likelihood. In  their calculation they did not pool 

events in which three or more recombinations occurred. 

Thus, they  maximized a slightly different likelihood than 

the one maximized here. Still, the results are very close 

to those obtained  here. Note that  the estimates of genetic 

distances and their standard deviations were  fairly  similar 

for all models. The Poisson model gives  very similar  esti- 

mates to the  other models for small genetic distances 

( <10 cM)  but overestimates larger genetic distances rel- 

ative to the  other models. 

The SDs were estimated by simply taking numerical 

derivatives  of the  recombination probabilities ( p i s  in 

the  notation given above) with respect to the estimated 

parameters and using these to calculate the Fisher infor- 

mation matrix. A better  approach,  not taken here, 

would be to smooth  the likelihood surface before calcu- 

lating derivatives. 

The Pearson chi-square statistic measures the overall 

goodness-of-fit of each model. We consider two addi- 

tional criteria that do  not indicate goodness-of-fit  as 

directly as the chi-square does  but  that are easy  to inter- 

pret  and may be useful for  understanding  the perfor- 

mance of the models. First, we consider  the  number of 

crossovers predicted by the models. Figure 1 shows that 

the five-locus  Poisson model  predicts  too few single 

crossover events and too many of all other types of 

events. This shows up in Table 1 as an underestimate 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’1 2 
I 

d 

n I Poiss K-M I I  Ct-loc Gamma 

2J , Poiss K-M It Ct-loc Gamma 

e 

I Poiss K-M II Ct-loc Gamma 

FIGURE 3.-Distribution of the number of crossovers among all nine loci of the MORGAN et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. ( 1935) dataset for each of the 
models under consideration relative to the data distribution. ( a )  The chance of zero crossovers for each of the models minus 
0.056, the proportion of cases in which zero recombinations occurred in the data. (b-e) Similar bar graphs for the probabilities 
of 1, 2, 3 and 4 or more crossovers, respectively. The data proportions to which these numbers are compared are 0.485, 0.429, 
0.030 and 0, respectively. 

of the  number of single recombination events among 

the five loci and  an overestimate of  all other types of 

recombination events. Figure 3 shows that in the  nine- 

locus case, the Poisson model predicts too few single 

and double crossover events and too many  of  all other 

types. The gamma, count-location and K-M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 models 

all do well at matching  the distribution of the  number 

of  crossovers  in the  data,  although  the K-M I1 model 

does  not do nearly as well with nine loci and with  five. 

The  other aspect of the models which we shall con- 

sider is the  coincidence function which is discussed 

above. Figure 2 shows coincidence us. genetic distance 

for the five-locus models, and Figure 4 shows it for  the 

nine-locus models. Recall that  coincidence is a measure 

of the  degree to which one crossover inhibits the forma- 

tion of another nearby. For the Poisson model coinci- 

dence is one, reflecting no interference. The coinci- 

dence curves for the models have been calculated (or 

simulated, in the case  of the King-Mortimer and K-M I1 
models) using infinitesimal intervals. The coincidence 

curves of the gamma model and  the King-Mortimer 

model give the best approximation to the  data in the 

five-locus  case, whereas the gamma and K-M I1 models 

do best in the nine-locus case. 

The strange shape of the coincidence curve for  the 

hard-core model can be explained as  follows:  in the 

hard-core model, no points are allowed  within a fixed 

distance of the crossover point  that is assumed to lie at 

0 (for  the purpose of making the coincidence curve). 

Immediately after that fixed distance has been sur- 

passed, one is waiting an exponential amount of time 

for  the  next  point, whereas in an interval chosen at 

random  the intensity is  less than exponential because 

there is a chance of another crossover already having 

occurred nearby. This explains the spike in the coinci- 

dence curve for the hard-core model, and  the hump in 

the  coincidence curve for  the gamma model can be 

explained similarly. As the distance from the given 

crossover gets close to  the  mode of the gamma interar- 

rival distribution, one is more likely to have another 

crossover than one would be to have a crossover  in a 

given interval chosen at random. 
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FIGURE 4.-Plots of coincidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus. genetic  distance for the nine-locus models. The points represent coincidence calculated 
from  the  data for each  pair of atomic intervals among  the  nine loci. The  corresponding genetic  distance for each  pair is 
calculated between the midpoints of the two intervals. The curves represent nine-locus model  coincidences.  a is the K-M I1 
model, b is the count-location model  and c is the  gamma model. 

It  should be noted  that  the  coincidence curve for  the 

count-location model is constant, even if the distribu- 

tion of points is i.i.d. but  nonuniform.  The reason is 

that  the x axis represents  genetic, not physical distance, 

that is, it represents  the  expected  number of crossovers 

and so is automatically rescaled to be  uniform. Note 

also the anomaly that  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK-M I1 model fits the  data 

better  (according to chi-square)  in  the five-locus  case 

than  in  the nine-locus case, but  the  coincidence curve 

resembles the  data  much  more closely in the nine-locus 

case. 

DISCUSSION 

Although none of the models fit the  data, several of 

the models were able to capture certain aspects of the 

data. The best overall model of the  ones  considered 

was the renewal model with gamma interarrivals. It gave 

reasonable estimates of the  numbers of crossovers and 

matched  the  interference  pattern  in  the  data as mea- 

sured by the  coincidence.  In  terms of the chi-square 

statistic, the  gamma  model  represents  a  huge improve- 

ment over the Poisson model.  Furthermore, in the case 

of integer  shape  parameter,  the  gamma  model may 

prove tractable enough to use in mapping applications. 

This work represents  a first attempt to systematically 

fit a  range of point process models to recombination 

data. A suitable model, such as the  gamma  model, may 

be of great use in assessing the impact of interference 

on conventional linkage analyses and genetic  mapping. 

It may even be possible to apply such a model in genetic 

mapping, thereby making more efficient use  of the 

data. 
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