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Abstract. This study presents mathematical model of the internal waves and examines wave propagation in 
a two-layer fluid flow. Elements of the functional-analytical approach are used to develop the model. A flat 
unsteady motion of a two-layer liquid under a cover over a flat bottom is considered. The fluid is assumed 
to be ideal and incompressible. Internal waves are caused by external pressure application to the interface 
between the layers, oscillation of the flat bottom and disturbances in the flow. The power of the wave source 
is characterized by dimensionless parameter ε. The problem is formulated, and its solution is based on 
asymptotic analysis for 0<ε<1. 

1 Introduction  
The mathematical formulation of internal waves is in 
particular interest for researchers as it has wide range of 
application in the industry, from oil transportation to 
deep sea constructions. More detailed review of the 
theory can be found in [1]. The main formulations are 
based on the full Euler system equations, which are fully 
nonlinear and computationally expensive to solve. More 
convenient and easier methods of describing the internal 
waves can be achieved by the use of asymptotic models 
with introduction of the dimensionless parameters. There 
are several works on a two-fluid systems, including 
studies based on the rigid-lid assumption [2, 3], weakly 
nonlinear models for the free-surface case [4], stronly 
nonlinear models [5, 6, 7, 8, 9].  

 Fluid flow generated by an oscillating pressures, 
which move along the free surface with a constant 
velocity was previously studied in [10, 11, 12]. The 
problem of the motion of a dipole under a free boundary 
(the dipole oscillates with a constant frequency) was 
investigated in [13, 14]. In most works, a linear 
approximation was used, and it was reported that the 
linear approximation becomes invalid for some values of 
the used parameters. In [11, 12] nonlinear effects are 
taken into account and a uniformly suitable approximate 
solution is constructed.  

In this paper, the motion of a two-layer fluid is 
studied using asymptotic analysis for the case where 
dimensionless property of the source power ε is less than 
unity. The problem is formulated first and asymptotic 
expansion of its solution is developed when ε approaches 
zero. The successive approximations are described by 
linear initial-boundary value problems; therefore, at each 
step, the solution can be found explicitly. The properties 
of this solution are investigated in relation to the input 
data of the problem. 

A flat unsteady motion of a two-layer fluid under a 
cover over a flat bottom is considered. The following 
assumptions are adopted:  

1)  The fluid is ideal and incompressible ; 
2)  Surface tension is neglected ;  
3)  The fluid motion is uniform with a constant 

velocity of V´ until some initial moment t´ = 0 ; 
4)  The source of internal waves begins to act at t´ = 0 

and oscillates with a frequency of ω´ ;  
5)  The source power is characterized by a 

dimensionless parameter ε> 0 ; 
6)  We consider the case where ε < 1 ; 
7)  There are three sources of internal waves: 
a) pressure 𝜀𝜀𝜀𝜀´ is applied to the interface between the 

layers; 
b) some section of the bottom (or lid) oscillates 

according to a given law;  
c) a regular or singular potential of disturbances is 

superimposed on the flow.  
6) The movement in each layer is nonturbulent. 
The problem is formulated as determination of the 

fluid flow and shape of the interface between the layers 
at t '> 0 according to the given mechanism of wave 
generation. 

2 Mathematical model  

2.1 Formulation of the problem 

For simplicity, we will consider the problem within a 
coordinate system in which the motion of the fluid at 
t´<0 is a uniform flow. The x´ axis is directed along the 
unperturbed interface of the layers upstream, and the y´ 
axis is oriented opposite to the direction of the free fall 
acceleration 𝑔𝑔´⃗⃗  ⃗. Then at t´≤ 0 the interface equation is y´ 
= 0. The depth of the lower layer (with density of ρ´2) is 
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H´2, and the depth of the upper layer (with density ρ´1) is 
H´1. We assume that the lower layer is denser that the 
upper layer : ρ´2 / ρ´1> 1.  

In order to move to the dimensionless variables, we 
assign the value of V´2/ g´ for the length scale, the value 
of V´ / g´ - for the time scale, the value of ρ´1V´2 - for 
the pressure scale, and the value of ρ´1 - for the density 
scale : 

Hj = H´j g´ / V´2, 

λ = ρ´2 / ρ´1, 

ω = ω´V´ / g´ 

where j = 1 for the upper layer and j = 2 for the lower 
layer. 

First we start with the case when the waves are 
generated by some disturbance potential. The fluid is at 
at rest until the initial moment t´ = 0. At t´ = 0, the wave 
generation mechanism begins to operate, which moves in 
the positive direction of the x axis with a constant 
velocity of V´ and oscillates at a given frequency. Within 
the coordinate system which moves together with the 
source of perturbations (this system coincides with the 
system chosen above), we obtain the problem of waves 
on the flow.  

Now we need to find the velocity potential Φj for the 
j-th layer in the following form : 

 𝜑𝜑𝑗𝑗(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝜀𝜀) = −𝑥𝑥 + 𝜑𝜑𝑗𝑗(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝜀𝜀) + 𝜀𝜀χ𝑗𝑗(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) (1) 

where χ𝑗𝑗 are the given perturbation potentials (possibly 
different for each layer), the parameter ε characterizes 
the power of the source. For the functions φj, we have the 
following initial-boundary value problem: 

 𝜑𝜑1 = 0    (η(𝑥𝑥, 𝑡𝑡, 𝜀𝜀) < 𝑦𝑦 < 𝐻𝐻1) (2) 

 ∆𝜑𝜑2 = 0      −𝐻𝐻2 < 𝑦𝑦 < (η(𝑥𝑥, 𝑡𝑡, 𝜀𝜀) (3) 
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 𝜑𝜑1𝑦𝑦 = −𝜀𝜀𝜀𝜀1𝑦𝑦    (𝑦𝑦 = 𝐻𝐻1) (7) 

 𝜑𝜑2𝑦𝑦 = −𝜀𝜀𝜀𝜀2𝑦𝑦          (𝑦𝑦 = −𝐻𝐻2) (8) 

 𝜑𝜑1 = 𝜑𝜑2 = η = 0   (𝑡𝑡 ≤ 0) (9) 

 |η| < ∞, |𝑉𝑉𝜑𝜑𝑗𝑗| < ∞ (𝑡𝑡 > 0) (10) 

Here (2) and (3) are equations of motion in the 
corresponding regions, (4) and (5) are the continuity 
conditions of the normal component of the velocity and 

pressure vectors at the interface y = η (x, t, ε), 
respectively ; (6) - kinematic condition, (7) and  (8) are 
the conditions of impermeability on the lid and bottom, 
(9) is the initial condition. Eq. (10) implies that we 
consider the flows, the velocity field of which is 
described by bounded functions everywhere in the 
region occupied by the fluid. 

If the internal waves are caused by the oscillating 
pressures 𝜀𝜀𝜀𝜀, then χ𝑗𝑗 ≡ 0 (𝑗𝑗 = 1,2) in Eqs. (1) - (10) and 
Eq. (5) should be replaced by the following condition : 
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In the case of an oscillating deformation of the 
bottom or cover, we set χ𝑗𝑗 ≡ 0, and condition (7) is 
replaced by 

 Φ2𝑦𝑦 = 𝜀𝜀(𝑓𝑓𝑡𝑡 + 𝜑𝜑2𝑥𝑥𝑓𝑓𝑥𝑥)     (𝑦𝑦 = −𝐻𝐻2 + 𝜀𝜀𝑓𝑓(𝑥𝑥, 𝑡𝑡)) (7) 

2.2 Asymptotic solution 

The functions φj (x, y, t, ε) and η (x, t, ɛ) will be sought 
for ɛ <1 in the following form : 

 
( ) ( ) ( )

( ) ( )
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Combination of Eq. (11) and Eqs. (2) - (10) along 
with keeping the leading terms when ɛ → 0, we obtain 
that the main term of the asymptotics of the solution 
when ɛ → 0 is described by a linear boundary value 
problem, which is obtained after disregarding nonlinear 
terms in Eqs. (2) - ( 10). 

Successive approximations problem can be 
constructed using the Stokes method [6]. In this method, 
the functions 𝜑𝜑1

(𝑘𝑘) and 𝜑𝜑2
(𝑘𝑘) can be found at the k-th 

step so that they are harmonic in the strips 0 <y <H1, -H2 
<y <0, respectively. In addition, each term in Eqs. (4) - 
(6) can be expanded into Taylor series in the vicinity of 
the unperturbed position of the interface between the 
layers (y = 0). For instance: 
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Then Eq. (11) is inserted into the above series. 
Moreover, at each step, we obtain a linear 
inhomogeneous initial-boundary value problem in a 
fixed domain. General form of this problem can be 
formulated as follows : 

 ∆𝑢𝑢1 = 0    (0 < 𝑦𝑦 < 𝐻𝐻1), (12) 

 ∆𝑢𝑢2 = 0      (−𝐻𝐻2 < 𝑦𝑦 < 0 (13) 
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 (𝑢𝑢1 − 𝑢𝑢2)𝑦𝑦 = 𝑓𝑓1(𝑥𝑥, 𝑡𝑡    (𝑦𝑦 = 0), (14) 

 ( )1 1 2 2 2

( 0)

( , )t x t xu u h u u h f x t
y

− + − − +

=

=  (15) 

 ℎ𝑡𝑡 − ℎ𝑥𝑥 − 𝑢𝑢2𝑦𝑦 = 𝑓𝑓3(𝑥𝑥, 𝑡𝑡)    (𝑦𝑦 = 0), (16) 

 𝑢𝑢1𝑦𝑦 = 𝑓𝑓4(𝑥𝑥, 𝑡𝑡)    (𝑦𝑦 = 𝐻𝐻1), (17) 

 𝑢𝑢2𝑦𝑦 = 𝑓𝑓5(𝑥𝑥, 𝑡𝑡)    (𝑦𝑦 = −𝐻𝐻2), (18) 

 𝑢𝑢1 = 𝑢𝑢2 = ℎ = 0    (𝑡𝑡 < 0), (19) 

 |𝑉𝑉𝑢𝑢𝑗𝑗| < ∞,    |ℎ| < ∞    (𝑡𝑡 > 0), (20) 

Here 𝑢𝑢𝑖𝑖 = 𝜑𝜑𝑖𝑖
(𝑛𝑛), h = η(𝑛𝑛), j = 1,2, n = 0,1,….  

The functions fk (x,t) for the n-th step are determined 
through the previous approximations 
𝜑𝜑𝑖𝑖

(0), 𝜑𝜑𝑖𝑖
(1), … 𝜑𝜑𝑖𝑖

(𝑛𝑛−1) in accordance with the Stokes 
procedure. 

Remark 1. The Stokes procedure is applicable if at 
each step we analytically obtain functions 𝜑𝜑𝑗𝑗

(𝑛𝑛),  𝜑𝜑𝑗𝑗𝑡𝑡
(𝑛𝑛) 

in x, y and functions η(𝑛𝑛), η𝑡𝑡
(𝑛𝑛) - in x. 

This may impose considerable restrictions on the 
type of acceptable disturbances.  

Remark 2. In case the waves are generated from 
oscillating bottom or due to the disturbances 
superimposed on the flow, the Stokes method is applied. 
The form of the successive approximations is identical to 
Eqs. (12) - (20). 

Solution of Eqs. (2) - (10) in the exact form can be 
difficult, so that we consider the limit problem of Eqs. 
(12) - (20) under fairly general assumptions on the 
functions 𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡) (k=1,2,…,5). 

We propose to define the solution of Eqs. (12) - (20) 
as generalized functions of slow growth in x, 
continuously differentiable in y in the corresponding 
domains. This function can be written as follows: 
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2.3 Linear approximation 

If we insert the following equations 
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into Eqs. (12) - (20), then the functions 𝑢𝑢1, 𝑢𝑢2, h will 
result  the leading terms of the solution asymptotics of 
the Eqs. (2) - (10) when ɛ → 0. In accordance with 
condition (7´), we accept f𝑘𝑘 ≡ 0, (k=1,2,3,4), f5 =
𝑓𝑓𝑡𝑡(𝑥𝑥, 𝑡𝑡), then we obtain the asymptotics of the solution to 
the problem of fluid motion caused by periodic bottom 
deformations, etc. Thus, relations (12) - (20) describe a 
linear approximation in the problem of internal waves in 
a flow of a two-layer fluid with an arbitrary mechanism 
of wave formation.  

We assume that  𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡) have the following 
properties:  

1) 𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡) ≡ 0 , t<0; 
2) 𝑓𝑓𝑘𝑘 (𝑥𝑥, 𝑡𝑡 + 2π

ω
) = 𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡), t > 0,  

3) 𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡) are absolutely integrable with respect 
to x for -∞<x<+∞; 

4)  𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡)  are integrable with square in t on the 
interval (0, 2π / ω); 

5) The functions ∫ fk(x, t)+∞
−∞ 𝑒𝑒−𝑖𝑖𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥 are Hölder 

in ξ. 
It is known that functions of this type can be 

represented in the form of Fourier series 

𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡) = ∑ 𝑓𝑓𝑘𝑘𝑛𝑛(𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡
∞

𝑛𝑛=−∞

 

where 

𝑓𝑓𝑘𝑘𝑛𝑛(𝑥𝑥) =
𝜔𝜔
2𝜋𝜋

∫ 𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡)

2𝜋𝜋/𝑖𝑖

0

𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡𝑑𝑑𝑡𝑡 

Since Eqs. (12) - (20) are linear, it is sufficient to 
know their solution only for a special form of the right-
hand sides 

𝑓𝑓𝑘𝑘(𝑥𝑥, 𝑡𝑡) = ∑ 𝑓𝑓𝑘𝑘𝑛𝑛(𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑛𝑛𝑡𝑡
∞

𝑛𝑛=−∞

 

where H(t) is the Heaviside function, H(t) = 0 for t≤0 
and H(t) -1 for t> 0. In this case, the complete solution is 
built according to the superposition principle. 

It is convenient to deal with the the velocity field 
rather than potentials u1, u2 : 

 u1y(x, y, t) = ∑ 𝑀𝑀𝑛𝑛𝑓𝑓𝑛𝑛𝐻𝐻(𝑡𝑡)5
𝑛𝑛=1  (22) 

where operators Mn act according to the rule 

 𝑀𝑀𝑛𝑛v(x) = 1
2𝜋𝜋 ∫ v𝐹𝐹Kn∞

−∞ (𝜉𝜉, 𝑦𝑦, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑𝜉𝜉 (23) 

The symbols 𝐾𝐾𝐾𝐾(𝜉𝜉, 𝑦𝑦, 𝑡𝑡) of these operators have the 
following form : 
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(24) 

where q0(ξ)= q`(ξ)thξH1,   π1(ξ)=ξ+π(ξ),  π2(ξ)=ξ-π(ξ), 
π(ξ) = √(𝜆𝜆 − 1)𝜉𝜉/(𝑞𝑞`(𝜉𝜉)), q`(ξ) = λ cthξH2 + cthξH1,

S(ξ, t) = 𝜋𝜋(𝑖𝑖)
2

{𝑒𝑒𝑖𝑖𝑖𝑖2𝑡𝑡−𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡

𝜋𝜋2−𝑖𝑖
− 𝑒𝑒𝑖𝑖𝑖𝑖1𝑡𝑡−𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡

𝜋𝜋1−𝑖𝑖
}. 
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Similarly, Fourier series can be constructed for 
u2y(x,y,t), h(x,t). 

Properties of 𝐾𝐾𝑗𝑗(𝜉𝜉, 𝑦𝑦, 𝑡𝑡) can be listed as the 
following :  

a) infinitely many times differentiable with respect to 
y, t for any ξ; 

b) continuous in ξ;  
c) infinitely differentiable with respect to ξ for ξ ≠ 0;  
d) for 0 <y <H1 decreases (together with its 

derivatives with respect to y and of any order) as | ξ | → 
∞ faster than any degree | ξ |-1;  

e) K1=0 (|ξ|-1/2), K2=0(1), K3=0(|ξ|-1/2 ), K4=0(𝑒𝑒−|𝜉𝜉|𝐻𝐻1) 
, K5=0(𝑒𝑒−|𝜉𝜉|𝐻𝐻2) for y = 0, | ξ | → ∞.  

The derivatives Kjξ have a discontinuity of the first 
kind at ξ = 0. From this we obtain that for 0 <y ≤ H1 and 
finite, the function has the following properties: 

1) u1y∈C∞(R1x(0,H1)x(0,∞)); 
2)  u1y=0(1) as |x|→∞; 
3)  u1y=f4(x) 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  for y= H1,  t >0. 
The behavior of u1y when |x| → ∞ can be found more 

precisely if we know properties of fk(x). So that , if not 
only fk(x), but also xfk(x) is absolutely integrable 
function (in this case, fk

F(x) ∈ 𝐶𝐶 1(R), then u1y=0(|x|-1) for 
| x | → ∞. Note, however, that if we require a higher 
smoothness of fk

F(x), then the rate of decrease of u1y as | 
x | → ∞ does not increase (Kjξ are discontinuous 
functions for ξ = 0). 

The study of the properties of the operators Mn, 
defined by equality (23), for y = 0 is nontrivial and is not 
carried out here. The above statements about the 
behavior of u1y (x, y, t) are valid for finite t and become 
invalid as t → ∞. This fact can be demonstrated using a 
simple model example, which shows that the function S 
(ξ, t) is not bounded as t → ∞. Consider the function F(x, 
a) = (1- e iax)/a. If x takes finite values, then F(x, a) = 
0(1) as a → 0. However, as a → 0 and x = 0(a-1), the 
function F(x, a) has order 0 (a-1), that is, it is not bounded 
as a → 0.  

In order to study the behavior of u1y (x, y, t) at large t, 
it is convenient to represent the symbols Kj (ξ, y, t) in the 
form (j = 1, ..., 5)  

 ( ) ( )
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2 1
j1 j2

K ξ, y, t k ξ, y (
2  1  2  

k ξ, y { k ξ, y
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i t i t i t

i t
i t i t i t

e e e

e e e e

  


  

     

 

= − − +
− − −

+ + − +
−

 (25) 

the functions kjn (ξ, y) (j = 0,1,2) are easy to find by 
comparing (24), (25). 

The values of ξ for which π1 (ξ) = ω or π2 (ξ) = ω are 
singular for Kj (ξ, y, t). The equation π1 (ξ) = ω has two 
negative roots ξ1,ξ2 (ξ1<ξ2<0) and one positive ξ3> 0 root 
for sufficiently small ω and under the condition π ’(+ 0)> 
1. With increasing ω, the difference ξ2 - ξ1  decreases and 
at some ω0 it vanishes (the roots “merge”). It is clear that 
ω0 = π(ξ0), where ξ0 is such that π´(ξ0) = -1. The equation 
π2(ξ) = ω has for all ω> 0 a unique positive root ξ4.  

According to [10], we obtain the asymptotics of 
φy

(0)(x,y,t) is unbounded when t → ∞ in the domain  {x, 
y | | x | << t, 0 <y <H1} only if there is a natural number 
N0 such that:  

a) ω0 and N0 ω are not separated, so it is impossible 
to specify disjoint neighborhoods of these points 
independent of ɛ, t;  

b) fkN0 (x) ≠ 0 for at least one k (1≤k≤5).  
Thus, the resonance phenomenon is associated not 

only with the oscillation frequency of the wave source, 
but also with the set of harmonics (21) that describe 
these oscillations. In this case, the behavior of 
𝜑𝜑𝑦𝑦(0)(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) at large values is determined by the 
following relation : 
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here 
A = ( 2

|𝜋𝜋′′(𝜉𝜉0)|
)1/2  ,δ=ω0-N0ω,  μ = −2√𝑡𝑡δ-Ax/t1/2, 

ϰ = 2√𝑡𝑡δ,  𝑊𝑊0(ξ0, 𝑦𝑦) = ∑ 𝑓𝑓𝑗𝑗𝑁𝑁0
𝐹𝐹 (ξ0)𝑘𝑘𝑗𝑗0(ξ0, 𝑦𝑦),5

𝑗𝑗=1     

G(μ, ϰ) = ∫ 𝑒𝑒−𝑖𝑖(𝜉𝜉2+𝜇𝜇𝜉𝜉) 𝑑𝑑𝜉𝜉
𝜉𝜉(𝜉𝜉−𝜘𝜘)

∞
−∞ . 

In the particular case of δ = 0 we have : 

𝜑𝜑𝑦𝑦(0)(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = t1/2F((Ax/t1/2,y)+0(1)     (t→∞) 

where F (α, β) is a bounded function. 
Remark 3. Eqs. (24) - (26) show that the form of the 

leading term of the asymptotic solution of the original 
problem when ɛ → 0, δ → 0, t → ∞ does not depend on 
the specific implementation of the source of 
disturbances. Information on the mechanism of wave 
formation is contained in the constant W0 (ξ0,0), which 
determines the scale of the amplitude of asymptotics 
(26). 

Remark 4. The possibility of resonance is determined 
not only by the nature of the formation of waves, but 
also by the internal properties of the system (the ratios 
H2

’/H’1, ρ’2/ρ’1).  
Indeed, for π '(+ 0) <1 the equation π´ (ξ0) = - 1 has 

no roots, thus for all ω> 0, the solution to the linear 
problem is bounded at 0≤ t ≤∞. Resonance occurs only at 
π´ (+0)> 1. This condition can be described as : 

V’<v0√𝐻𝐻2′|𝑔𝑔′| ,v0={(λ-1)/(λ+H2/H1)}1/2. 

For example, if the top layer is absent (λ = + ∞), then 
v0 = 1. Thus, only for sufficiently low flow velocities 
(motion of the wave source, respectively), one can 
expect the occurrence of resonance. 

The constructed solution satisfies relations (2) - (10) 
with accuracy 0 (ɛ) everywhere except for the region 
defined by the conditions |x| / t << 1, | N0ω-ω0 | << 1, t 
>> 1. Inside this region, the linear approximation 
certainly loses its strength, and it is necessary to 
construct an additional expansion that describes the fine 
structure of the flow as t → ∞. 
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3 Conclusion 
As a result of this study, mathematical model of the 
internal waves in a two-layer fluid flow was developed. 
The main outcomes can be summarized as follows : 

a)  The Stokes procedure is applicable if at each step 
we analytically obtain functions 𝜑𝜑𝑗𝑗(𝑛𝑛),  𝜑𝜑𝑗𝑗𝑗𝑗(𝑛𝑛) in x, y and 
functions η(𝑛𝑛), η𝑗𝑗(𝑛𝑛) - in x. 

b)  In case the waves are generated from oscillating 
bottom or due to the disturbances superimposed on the 
flow, the Stokes method is applied. The form of the 
successive approximations is identical to the case with 
applied pressures. 

c)  The form of the leading term of the asymptotic 
solution of the original problem when ɛ → 0, δ → 0, t → 
∞ does not depend on the specific implementation of the 
source of disturbances. Information on the mechanism of 
wave formation is contained in the constant W0 (ξ0,0), 
which determines the scale of the amplitude of 
asymptotics. 

d)  The possibility of resonance is determined not 
only by the nature of the formation of waves, but also by 
the internal properties of the system (the ratios H2’/H’1, 
ρ’2/ρ’1).  

The developed model satisfies the initial-boundary 
value problems with accuracy 0 (ɛ) everywhere except 
for the region defined by the conditions |x| / t << 1, | 
N0ω-ω0 | << 1, t >> 1. Inside this region, the linear 
approximation certainly loses its strength, and it is 
necessary to construct an additional expansion that 
describes the fine structure of the flow as t → ∞. 
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