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abstract

In order to capture observed asymmetric dependence in international financial
returns, we construct a multivariate regime-switching model of copulas. We
model dependence with one Gaussian and one canonical vine copula regime.
Canonical vines are constructed from bivariate conditional copulas and pro-
vide a very flexible way of characterizing dependence in multivariate settings.
We apply the model to returns from the G5 and Latin American regions, and
document three main findings. First, we discover that models with canoni-
cal vines generally dominate alternative dependence structures. Second, the
choice of copula is important for risk management, since it modifies the Value-
at-Risk (VaR) of international portfolios and produces a better out-of-sample
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performance. Third, ignoring asymmetric dependence and regime-switching
in portfolio selection leads to significant costs for an investor. ( JEL: C32, C35,
G10)

keywords: asymmetric dependence, canonical vine copula, international
returns, portfolio selection, regime-switching, risk management, Value at
Risk

International financial returns tend to exhibit asymmetric dependence.1 This asym-
metry means that in times of crisis, returns tend to be more dependent than they
are in good times. This phenomenon has important implications for the risk of an
international portfolio. In particular, it implies that due to increased dependence
in bad times, investors might lose the benefits of diversification when such ben-
efits are most valuable. Hence, international portfolios may be more risky than
they seem. The presence of such asymmetric dependence adds a cost to diversi-
fying with foreign stocks, and therefore provides a possible explanation for home
bias.

In this paper, we provide further evidence on asymmetric dependence in
international financial returns by estimating a regime-switching (RS) copula model
for the dependence of the stock indices of the G5 and of four Latin American
countries. Our contribution is three-fold. First, we use RS copulas, which allows us
to model the dependence in a much more flexible and realistic way than switching
models based on the Gaussian distribution, which have been previously proposed;
for example, Pelletier (2006). The use of copulas makes it possible to separate the
dependence model from the marginal distributions. Copulas also allow us to have
tail dependence, which means that, unlike with the Gaussian distribution, the
dependence does not vanish as we consider increasingly negative returns. Second,
we apply this model in a multivariate context, a step toward making this approach
feasible for realistic applications. Third, we use a canonical vine copula, a new
type of copula that was introduced in finance by Aas et al. (2009) and which allows
for very general types of dependence. Flexibly modeling dependence is very easy
with bivariate data, but much more difficult for higher dimensions, given that the
choice of copulas is usually thought to be reduced to the Gaussian or the Student
t. Both of these copulas are useful only for capturing linear dependence. The
Gaussian copula suffers from the drawback that it lacks tail dependence, and the
multivariate Student t copula is too restrictive in the sense that, while it can generate
different tail dependence for each pair of variables (since the tail dependence is
a function of the correlation and the degrees of freedom), it restricts the upper
and lower tail dependence for each pair to be the same. While the assumption of

1For evidence on asymmetry, see Longin and Solnik (1995), Longin and Solnik (2001), Ang and Chen
(2002), Ang and Bekaert (2002a), Das and Uppal (2004), and Patton (2004), among others.
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tail independence is acceptable for positive returns, it is clearly not for negative
returns. Canonical vine copulas allow us to overcome these limitations.

Our paper is related to extant research in at least two areas, asymmetric depen-
dence and RS models, to which we now turn. Regarding asymmetric dependence,
Longin and Solnik (1995) analyze correlations between stock markets over a period
of 30 years using the constant conditional correlation (CCC) model of Bollerslev
(1990). They find evidence that correlations are not constant and tend to increase
over their sample period. Moreover, they are typically higher during more volatile
periods and depend on some economic variables such as dividend yields and in-
terest rates. Longin and Solnik (2001) use extreme value theory and the method
of Ledford and Tawn (1997) to document that exceedance correlation, defined
as the correlation that exists between returns that are above a certain threshold,
are different for positive and negative returns. Ang and Chen (2002) develop a
test for asymmetric correlation that is based on comparing empirical and model-
based conditional correlations. Amongst the models they compare, RS models are
best at replicating this phenomenon. Ang and Bekaert (2002a) estimate a Gaussian
Markov-switching model for international returns and identify two regimes: a bear
regime with negative returns, high volatilities, and correlations; and a bull regime
with positive mean, low volatilities, and correlations. Patton (2004) finds significant
asymmetry both in the marginal distributions and in the dependence structure of
financial returns. He finds that knowledge of asymmetric dependence leads to sig-
nificant gains for an investor with no short-sales constraints. Our model also relates
to other approaches using copulas for financial time series. Patton (2006a, 2006b)
introduce a theory for the use of conditional copulas and use time-varying mod-
els of bivariate dependence coefficients to model foreign exchange series. Jon-
deau and Rockinger (2006) propose to model returns with univariate time-varying
skewness skewed Student t GARCH model and then to use a time-varying or
a switching Gaussian or Student t copula for the dependence between several
countries.

Regarding RS models, our paper follows a long tradition in economics. RS
models were introduced in econometrics by Hamilton (1989) and have since
been widely applied in finance. For instance, Ang and Bekaert (2002b), Guidolin
and Timmermann (2006a, 2006b) use RS models for interest rates. Ang and
Bekaert (2002a) and Guidolin and Timmermann (2008) use a RS model for in-
ternational financial returns. Pelletier (2006) uses RS in the context of correla-
tion when the marginals are modeled with GARCH, but he stays in the Gaus-
sian framework. His model lies between the CCC model of Bollerslev (1990) and
the dynamic conditional correlation (DCC) model of Engle (2002). Our model
can be seen as an extension of the Pelletier (2006) model to the non-Gaussian
case. We depart from the Gaussian assumption, as it is well known that re-
turns are not Gaussian, while retaining the intuitively appealing features of a
RS structure for dependence. Instead of relying on the Gaussian assumption
we use canonical vines that are flexible multivariate copulas. We also want
to separate asymmetry in the marginals from asymmetry in dependence. This
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cannot be done in a Gaussian switching model. Instead we rely on copulas
and use the flexibility they provide in modeling the marginals separately from
the dependence structure. We therefore allow the marginal distributions to be
different from the Gaussian by using the skewed Student t GARCH model of
Hansen (1994).

Very recently, researchers have started to combine copulas and RS models in
bivariate data. Rodriguez (2007) and Okimoto (2008) estimate RS copulas for pairs
of international stock indices. Okimoto (2008) focuses on the United States–U.K.
pair, whereas Rodriguez (2007) works with pairs of Latin American and Asian
countries. They follow the tradition of Ramchand and Susmel (1998) to impose a
structure where variances, means, and correlations switch together. Only Garcia
and Tsafack (2007) estimate a RS model in a four-variable system of domestic and
foreign stocks and bonds by using a clever mixture of bivariate copulas to model the
dependence between all possible pairs of variables. Unfortunately, their mixture
copula model can only capture limited dependence and it does not generalize well
to higher dimensions.

To summarize our approach, we estimate RS models with one symmetric
Gaussian copula regime and a Gaussian, a Student t, or a canonical vine copula
regime. We find that canonical vine models perform best in terms of the likelihood,
but also in terms of their ability to replicate the exceedance correlation and quantile
dependence present in the data. We then compute the Value at Risk (VaR) and
expected shortfall (ES) of an equally weighted portfolio for all models and compare
them to the all Gaussian model. We find that the VaR and ES of the canonical vine
models are substantially higher than for the Student t or Gaussian copula models,
which implies that using the latter models incorrectly can lead to underestimating
the risk of a portfolio. We then show with an out-of-sample exercise that our RS
model dominates alternative models, especially with portfolios that combine long
and short positions. Finally, we present the results of an Ang and Bekaert (2002a)
optimal portfolio exercise, which shows the cost of ignoring asymmetry and regime
switching.

The remainder of the paper is organized in the following manner. In
Section 1 we present the model. We discuss canonical vine copulas and com-
pare them to mixture copulas in terms of the dependence they can capture. Then
we present the Markov-switching model for dependence, as well as the marginal
models. Section 2 describes the two-step estimation procedure for the model, the
EM algorithm, and the standard errors calculation. Section 3 presents the data and
results. In Section 4 we evaluate the performance of the various models with VaR
and a portfolio selection exercise. Section 5 concludes.

1 THE MODEL

In this section, we first present the canonical vine copulas, that we use to describe
the asymmetric dependence regime, and then we compare them to asymmetric
alternatives. Then we introduce the RS copula. Finally we present the marginal
models.
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1.1 Canonical Vine Copula

We now describe the family of copulas that we use in this paper for the asymmetric
regime. Bedford and Cooke (2002) introduced canonical vine copulas in statistics.
These copulas were first used in finance by Aas et al. (2009) and Berg and Aas
(2007), whose presentation we follow here. These flexible multivariate copulas are
obtained by a hierarchical construction. The main idea is that a multivariate copula
can be decomposed into a cascade of bivariate copulas. It is well known that a joint
probability density function of n variables y1, . . . , yn can be decomposed without
loss of generality by iteratively conditioning, as follows:

f (y1, . . . , yn) = f (y1) · f (y2|y1) · f (y3|y1, y2) . . . f (yn|y1, . . . , yn−1).

Each one of the factors in this product can be decomposed further using conditional
copulas. For instance, the first conditional density can be decomposed as the copula
function c12 linking y1 and y2, multiplied by the density of y2:

f (y2|y1) = c12(F1(y1), F2(y2)) f2(y2),

where Fi (.) denotes the cumulative distribution function (cdf) of yi . In the same
way, one (among several) possible decomposition of the second conditional
density is

f (y3|y1, y2) = c23|1(F2|1(y2|y1), F3|1(y3|y1)) f (y3|y1),

where c23|1 denotes the conditional copula of y2 and y3, given y1. Further decom-
posing f (y3|y1) leads to

f (y3|y1, y2) = c23|1(F2|1(y2|y1), F3|1(y3|y1))c13(F1(y1), F3(y3)) f3(y3).

Finally, combining the last expressions, one obtains the joint density of the first
three variables in the system as a function of marginal densities and bivariate
conditional copulas:

f (y1, y2, y3) = c23|1(F2|1(y2|y1), F3|1(y3|y1)) c12(F1(y1), F2(y2))

c13(F1(y1), F3(y3)) f1(y1) f2(y2) f3(y3). (1)

The copula density can be written as

c(y1, y2, y3) = c23|1(F2|1(y2|y1), F3|1(y3|y1))c12(F1(y1), F2(y2))c13(F1(y1), F3(y3)).

Conditional distribution functions are computed using a formula of Joe (1996):

F (y|v) = ∂Cy,v j |v− j (F (y|v− j ), F (v j |v− j )
∂ F (v j |v− j )

,

where v− j denotes the vector v excluding the component v j . In the development
above, we have implicitly chosen to condition on y1. This choice is arbitrary, and
other ways of ordering the data when conditioning is also possible. The choice we



442 Journal of Financial Econometrics

1

2
3

4

5

12

13

14

15

12

13

15

14

23|1

24|1

25|1

23|1
24|1

25|1
34|12

35|12

34|12 35|12
45 123

Figure 1 Dependence structure of a canonical vine
This figure shows the structure of a canonical vine copula with five variables. In the first layer, the
dependence between variable 1 and all the other variables in the system is modeled with bivariate
copulas. The second layer consists in modeling the dependence of variables 2 with variables 3–5,
conditionally on variable 1. In the last layer, one uses a bivariate copula to model the dependence
between variables 4 and 5, conditionally on variables 1–3. In the case of this system with five
variables, the dependence is modeled with 10 bivariate copulas.

have made leads to a canonical vine, in which one variable plays a pivotal role, in
our example, y1. In the first stage of the copula, we model the bivariate copulas of
y1 with all other variables in the system. Then we condition on y1, and consider all
bivariate conditional copulas of y2 with all other variables in the system etc. For an
n-dimensional set of variables, this leads to the general n-dimensional canonical
vine copula:

c(y1, . . . , yn) =
n−1∏
j=1

n− j∏
i=1

c j, j+i |1,..., j−1(F (yj |y1, . . . , yj−1), F (yj+i |y1, . . . , yj−1)).

Figure 1 represents the dependence structure of a canonical vine copula graphically.
The advantages of a canonical vine copula are immediately apparent: whereas there
are only very few flexible multivariate copulas, there exists an almost unlimited
number of bivariate copulas. When specifying the canonical vine copula, we can
therefore choose each one of the building blocks involved from a very long list,
which allows a very large number of possible copulas. This reverses the traditional
problem of not having enough parametric multivariate copulas to a challenge of
having too many to choose from.

It is important to note that some parameters of the canonical vine copula cor-
respond to coefficients of conditional dependence, and are not directly comparable
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θij|(1,...,i−1) τij|(1,...,i−1) ρij|(1,...,i−1)

τij ρij

4 CdC−1 sin(τπ/2)

conditional
to

unconditional:
Σx|y = Σx − ΣxyΣ−1

y Σyx
2 arcsin(ρ)/π

Figure 2 Computation of unconditional Kendall’s τ

This figure shows how we compute unconditional Kendall’s τ , τi j from θi j |(1,...,i−1), the parameter of
the conditional copula. First, we compute τi j |(1,...,i−1), the Kendall’s τ of each bivariate conditional
copula implied by the estimated parameter; see Joe (1997) and Nelsen (1999). Second, we presume
the data came form a Gaussian copula and we compute ρi j |(1,...,i−1), the correlation that implies
the same Kendall’s τ , via the relation ρ = sin(τπ/2). Third, we apply the rules of conditional
variance–covariance to compute ρi j , the corresponding unconditional correlations that we obtain
by normalizing the unconditional variance–covariance matrix obtained via the formula �x|y =
�x − �xy�

−1
y �yx . Finally, we report τi j , the unconditional Kendall’s τ that corresponds to the

Gaussian unconditional correlation, with the relation τ = 2arcsin(ρ)/π .

with coefficients of, say, the Gaussian or the Student t copula. Nevertheless, it is
possible to express the Gaussian or the Student t copulas in terms of a canonical
vine. If all conditional copulas are Gaussian, then the canonical vine coincides with
the multivariate Gaussian copula. This is true up to a reparameterization: the corre-
lation matrix of the Gaussian copula contains unconditional correlations, whereas
some parameters of the canonical vine copula refer to conditional correlations. One
can easily go from one to another using the well-known rules of conditional corre-
lation. The corresponding unconditional correlations are obtained by normalizing
the unconditional variance–covariance matrix obtained via the formula:

�x|y = �x − �xy�
−1
y �yx .

In the Student t copula, the conditional correlations work in the same way as for the
Gaussian, but the degrees of freedom have to be incremented by one, every time
one conditions on an additional variable. In order to facilitate comparison across
regimes and across models, we express our results in terms of the unconditional
Kendall’s τ . We use the fact that Kendall’s τ is a known function of the copula.
Furthermore, there exist closed-form solutions for many families of copulas. With
this information in hand, we first compute the Kendall’s τ of each bivariate condi-
tional copula implied by the estimated parameter. Then we presume the data came
from a Gaussian copula and we compute the conditional copula correlation that
implies the same Kendall’s τ , via the relation ρ = sin(τπ/2). Consequently, we can
apply the rules of conditional variance–covariance and compute the corresponding
unconditional correlations. Finally, we report the unconditional Kendall’s τ that
corresponds to the unconditional correlation with the relation τ = 2 arcsin(ρ)/π .
Figure 2 illustrates this procedure. Of course, this procedure involves some approx-
imation.2 Alternatively, one could think of transforming the conditional Kendall’s

2In order to get an idea of the quality of the approximation, we computed Kendall’s τ on 10, 000 simulations
from the canonical vines in Table 4. The difference between the two approaches appears in the second
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τ to an unconditional one by applying the rules of conditional correlation directly
to Kendall’s τ . However, as shown in Korn (1984), even with a Gaussian joint dis-
tribution, where a pair of variables is independent conditionally on the remaining
variables, the conditional Kendall’s τ calculated by applying the same rules as for
the Pearson correlation is not necessarily equal to zero. This is due to the nonlinear
relationship between Pearson correlation and Kendall’s τ . We follow Aas et al.
(2009) in using the bivariate Gaussian, Student t, Clayton, Gumbel, and rotated
Gumbel as building blocks for the canonical vine copula.3 However, to the best of
our knowledge, we are the first to combine different copulas as building blocks of
a canonical vine.

1.2 Comparison with Mixture Copulas

In this section we compare the multivariate dependence implied by the canonical
vine copulas that we use with the mixture copulas used by Garcia and Tsafack
(2007).4 One advantage of canonical vine copulas over mixtures is that they can
entertain a much wider spectrum of dependence. It turns out that mixture copulas
are less general than they seem, since they implicitly limit the feasible degree of
dependence.

Consider the 4-variate mixture copula in Garcia and Tsafack (2007):

C(u1, u2, u3, u4, β) = p1C12(u1, u2)C34(u3, u4) + p2C13(u1, u3)C24(u2, u4)

+ (1 − p1 − p2)C14(u1, u4)C23(u2, u3),

where β = {p1, p2, {τi, j , i, j = 1, . . . , 4, i �= j}} collects the parameters. Due to the
structure of their problem, Garcia and Tsafack (2007) assume away dependence
between stocks in one country and bonds in the other, which they do by impos-
ing p1 + p2 = 1. This can be justified in their application since, for instance, the
unconditional correlation between Canadian bonds and U.S. equity is 0.17, while
dependence between Canadian equity and U.S. bonds is 0.01.5

In our application we don’t want to assume independence between any pair
of countries in the asymmetric regime. Denote by ρi j the Spearman correlation
between ui and u j implied by the mixture copula C and ρC

i j the Spearman correla-
tion implied by Ci j (ui , u j ), the i j th component of the mixture copula. The bivariate
marginal copulas implied by the mixture model are easily shown to be mixtures of
a bivariate copula with the independence copula.6 The Spearman correlation for

decimal and is usually around 0.01. Note that the simulation method, besides its high computational
cost, is also an approximation.

3We use the rotated version of the Gumbel copula in order to accommodate negative tail dependence in
our data.

4This comparison with mixture copulas was requested by a referee and the editor.
5This assumption is a little bit more questionable for France and Germany where the cross-dependence
is 0.30 and 0.26.

6By replacing the other arguments by 1, that is, C(u1, u2) = C(u1, u2, 1, 1), and, using the fact that C(1, u) =
u and C(1, 1) = 1, we obtain:
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all pairs can be computed using linearity:

ρ12 = p1ρ
C
12, ρ13 = p2ρ

C
13, ρ14 = (1 − p1 − p2)ρC

14,

ρ34 = p1ρ
C
34, ρ24 = p2ρ

C
24, ρ23 = (1 − p1 − p2)ρC

23.

The fact that Spearman correlations are in the range [−1, 1], and that p1 + p2 +
(1 − p1 − p2) = 1, imply that the sum of any three Spearman correlations formed
by taking one from each of the three columns above will be in the range [−1, 1].
This implies that there are eight constraints on bivariate Spearman correlation, for
instance7:

−1 ≤ ρ12 + ρ13 + ρ14 ≤ 1.

The bound can only be attained if all bivariate copulas imply perfect dependence,
ρi j = 1 for all j , since then

∑
j �=i ρi j = p1 + p2 + (1 − p1 − p2) = 1. The same restric-

tion holds for tail dependence, since, like with Spearman ρ, the tail dependence
of a mixture is the mixture of the tail dependence of all components.8 Therefore,
the mixture model has hidden restrictions in terms of the possible pairwise de-
pendence, both for Spearman ρ and for tail dependence. The first four constraints
limit the amount of dependence between any country and all the others, the other
four limit the sum of bivariate dependence in each subgroup of three countries.
For instance, in the equidependent case, if all probabilities are equal to 1/3 and all
copulas are perfectly dependent (ρC

i j = 1), then the pairwise Spearman correlation
is 1/3. This means that a mixture copula cannot capture higher dependence, or
can only capture higher dependence in some pairs at the cost of having lower de-
pendence for others. These restrictions will be increasingly binding as the number
of variables increases. On the other hand, canonical vines are not subject to such
constraints. For instance Joe, Li and Nikoloulopoulos (2008) show that canonical
vine copulas with Student t or BB7 copulas, as defined in Joe (1997), can attain a
very wide range of dependence.

C(u1, u2) = p1C12(u1, u2) + (1 − p1)u1u2,
C(u1, u3) = p2C13(u1, u3) + (1 − p2)u1u3,
C(u1, u4) = (1 − p1 − p2)C14(u1, u4) + (p1 + p2)u1u4,
C(u2, u3) = (1 − p1 − p2)C23(u2, u3) + (p1 + p2)u2u3,
C(u2, u4) = p2C24(u2, u4) + (1 − p2)u2u4,
C(u3, u4) = p1C34(u3, u4) + (1 − p1)u3u4.

7The other constraints are
−1 ≤ ρ21 + ρ23 + ρ24 ≤ 1,
−1 ≤ ρ31 + ρ32 + ρ34 ≤ 1,
−1 ≤ ρ41 + ρ42 + ρ43 ≤ 1,
−1 ≤ ρ34 + ρ13 + ρ14 ≤ 1,
−1 ≤ ρ34 + ρ23 + ρ24 ≤ 1,
−1 ≤ ρ24 + ρ32 + ρ34 ≤ 1,
−1 ≤ ρ23 + ρ42 + ρ43 ≤ 1.

8Garcia and Tsafack (2007) mention the constraints on tail dependence in the mixture copula in footnote
18 in Section 3.3.
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Of course, one can argue that this restriction is only a problem if it is binding.
It turns out for the Latin American countries, our estimates imply a sum of the
Spearman ρ of 1.6 for all pairs with Brazil, a clear violation of the bound of
1. We also verify the bound for tail dependence and our estimates imply that
the sum of tail dependence over all pairs involving Brazil is 1.42, again a clear
violation. In the case of the rotated Gumbel there is no closed form for the Spearman
correlation and we resort to simulation, while the tail dependence can be computed
analytically:

∑
i �= j 2 − 2γi j = 1.42. This means that if we used a mixture copula as

in Garcia and Tsafack (2007), we would be restricting the amount of dependence
to be significantly less than what our finding suggests. This will obviously have
adverse effects not only on the estimation and the adequacy of the model, but also
on the implications of the mixture model for portfolios or VaR.

Besides the problem of implicit restrictions on the amount of dependence in
the mixture copula, the vine specification is more general and has a straightforward
extension to higher dimensions. We use the canonical vine for four Latin American
countries as well as for the G5. It is not entirely clear how the mixture strategy in
Garcia and Tsafack (2007) could be generalized to five dimensions for the G5. In
the Appendix we discuss the five-dimensional mixture copula approach.

1.3 Regime-Switching Copula

In order to model the dependence in our data, we use a RS model. We follow
Pelletier (2006) and Garcia and Tsafack (2007) in allowing for two regimes, char-
acterized by differing levels or shapes of dependence. Our dependence model can
be thought of as a multivariate extension of the model in Rodriguez (2007) or as an
extension to more realistic dependence of the Pelletier (2006) model. We are closer
to Pelletier (2006) in the sense that we model the marginal distributions separately
from the dependence structure and therefore do not let them depend on the regime.
This is consistent with the modeling approach underlying the DCC model of Engle
(2002) and Engle and Sheppard (2001). Garcia and Tsafack (2007) is the only other
paper we are aware of that uses RS copulas for more than two series and they
make the same choice that we do. In the remainder of this section we present the
copula-switching model that allows different dependence structures over different
subsamples.

Following Hamilton (1989), we assume that the n-variate process Yt depends on
a latent binary variable that indicates the economy’s current regime. In our model
the regime only affects the dependence structure. Therefore, we switch between
two density functions to describe the data. The density of the data, conditional on
being in regime j , is

f (Yt|Yt−1, st = j) = c( j)(F1(y1,t), . . . , Fn(yn,t); θ ( j)
c

) n∏
i=1

fi (yi,t ; θm,i ),

where Yt = (y1,t , . . . , yn,t), st is the latent variable for the regime, c( j)(.) is the copula
in regime j , with parameter θ

( j)
c , fi (.) is the density of the marginal distribution of
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yi , with parameter θm,i , and Fi is the corresponding distribution function. Notice
that j indexes the copula, but not the marginal densities.

As is standard in the literature, we assume that the unobserved latent state
variable follows a Markov chain with transition probability

P =
(

p11 1 − p11

1 − p22 p22

)
,

where the pi, j represent the probability of moving from state i at time t to state j
at time t + 1.

1.4 Marginal Model

In order to take into account the dynamics of the volatility, we model the marginal
distributions of each one of our returns using the univariate skewed Student t
GARCH model of Hansen (1994), which we fit to the demeaned returns. Specifi-
cally, our system is expressed as

yi,t = √
hi,t · εi,t , for i = 1, . . . , n,

hi,t = ωi + αi y2
i,t−1 + βi hi,t−1,

εi,t ∼ skewed Student t(νi , λi ),

where the skewed Student t density is given by

g(z|ν, λ) =
{

bc
(
1 + 1

ν−2

( bz+a
1−λ

)2)−(ν+1)/2 z < −a/b,
bc

(
1 + 1

ν−2

( bz+a
1+λ

)2)−(ν+1)/2 z ≥ −a/b.

The constants a , b, and c are defined as

a = 4λc
(

ν − 2
ν − 1

)
, b2 = 1 + 3λ2 − a2, c = �

(
ν+1

2

)
√

π(ν − 2)�
(

ν
2

) .

A negative λ corresponds to a left-skewed density, which means that there is more
probability of observing large negative than large positive returns. This is what
we expect, since it captures the large negative returns associated to market crashes
that are the cause of the skewness. We group all parameters of a given country in
a vector θm,i = (ωi , αi , βi , νi , λi ).

2 ESTIMATION

First we explain how we estimate the parameters in a two-step procedure that
separates the marginals from the dependence structure. Then we provide a brief
account of the EM algorithm that we use for the RS copula model, and finally we
show how we compute robust standard errors for all the parameters of the model.
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2.1 Two-Step Estimation

When estimating the model, we take advantage of the fact that the marginal den-
sities are not regime dependent, in order to separate the estimation into two steps.
The total loglikelihood depends on all the data Y = (Y′

1, . . . , Y′
T )′, and is given

by

L(Y; θm, θc) =
T∑

t=1

log f (Yt|Yt−1; θm, θc),

where Yt−1 = (Y1, . . . , Yt) denotes the history of the full process, θm and θc denote
the parameters of the marginals and of the RS copula, respectively. We can therefore
decompose this likelihood into one part, Lm that contains the marginal densities
and another part, Lc that contains the dependence structure:

L(Y; θm, θc) = Lm(Y; θm) + Lc(Y; θm, θc),

Lm(Y; θm) =
T∑

t=1

n∑
i=1

log fi
(
yi,t|yt−1

i ; θm,i
)
,

Lc(Y; θm, θc) =
T∑

t=1

log c
(
F1

(
y1,t|yt−1

1 ; θm,1
)
, . . . , Fn

(
yn,t|yt−1

n , θm,n
)
; θc

)
,

where yt−1
i = (yi,1, . . . , yi,t) denotes the history of the variable i . The likelihood of

the marginal models, Lm is a function of the parameter vector θm = (θm,1, . . . , θm,n),
that collects the parameters of each one of the n marginal densities fi . The cop-
ula likelihood depends directly on the vector θc = (θ (1)

c , θ
(2)
c , α). This vector col-

lects the copula parameters over both regimes as well as the parameters of the
Markov transition probability matrix and the initial probabilities, α. It also de-
pends indirectly on the parameters of the marginal densities, through the distribu-
tion function Fi , because Fi transforms observations into uniform [0, 1] variables
that are the input of the copula. The function c denotes the density of the RS
copula.

In our application of the model, we have to accommodate a large number of
parameters. Consider, for example, a Student t GARCH model and a two-RS model
of the G5 region’s stock returns, combined with a Gaussian copula in each regime.
This system results in 25 GARCH parameters (a constant, an ARCH, a GARCH
parameter in addition to the degrees of freedom and the skewness parameters
of the t for each of the five series), 10 pairwise copula correlation parameters for
each one of two regimes, and three parameters for the switching regime (an initial
probability and two transition probabilities), for a total of 48 parameters. Moreover,
there are strong nonlinearities in the copula that increase difficulty of estimation. In
this context, it is easy to see that a full one-step maximization of the likelihood is not
feasible. Fortunately, we can rely on a two-step procedure whose properties have
been studied by Newey and McFadden (1994) and that has previously been applied
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in a similar context.9 In a first step, we assume that conditionally on the past, the
different series are uncorrelated. This means that there is no contemporaneous
correlation:

θ̂m = argmax
θm

Lm(Y; θm).

This estimation is straightforward, as it does not depend on the RS and, in addition,
it can be simplified further by noting that we can actually estimate each GARCH
model separately:

θ̂m,i = argmax
θm,i

T∑
t=1

log fi
(
yi,t|yt−1

i ; θm,i
)
.

We then collect the coefficients in a vector: θ̂m = (θ̂m,i , . . . , θ̂m,n). In a second step we
take the parameter estimates of the marginal models as given in order to estimate
the parameters of the switching copula:

θ̂c = argmax
θc

Lc(Y; θ̂m, θc).

2.2 EM Algorithm

We now turn to the estimation of the RS copula model, that is conditional on having
consistently estimated the marginal models. Given the fact that the Markov chain
st is not observable, we need to use the filter of Hamilton (1989).10 Specifically, the
filtered system obeys

ξ̂t|t = ξ̂t|t−1 � ηt

1′(ξ̂t|t−1 � ηt)
, (2)

ξ̂t+1|t = P
′
ξ̂t|t , (3)

ηt =
⎛
⎝ c(1)

(
F1

(
y1,t|yt−1

1

)
, . . . , Fn

(
yn,t|yt−1

n

)
; θ (1)

c
)

c(2)
(
F1

(
y1,t|yt−1

1

)
, . . . , Fn

(
yn,t|yt−1

n

)
; θ (2)

c
)
⎞
⎠ , (4)

where ξ̂t|t is the (2 × 1) vector containing the probability of being in each regime
at time t, conditional on the observations up to time t; 1 is a (2 × 1) vector of
1s; and � denotes the Hadamard product. The (2 × 1) vector ξ̂t+1|t gives these
probabilities at time t + 1 conditional on observations up to time t. The vector ηt

contains the copula density at time t, conditional on being in each one of the two
regimes. Equation (2) corresponds to a Bayesian updating of the probability of

9This method is also used with the multivariate Gaussian distribution in the DCC model by Engle (2002)
and Engle and Sheppard (2001), in the RSDC model of Pelletier (2006), in conditional copula modeling
by Patton (2006a), and in RS copula estimation by Garcia and Tsafack (2007).

10This section is based on the presentation in Hamilton (1994), chap. 22, adapted to our copula switching
model and to the case of r = 2 regimes.
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being in either regime given present time observations (ηt). Equation (3) consists
in doing one forward iteration of the Markov chain. Iterating over both equations
from a given starting value ξ̂1|0 and parameter values θ

(1)
c and θ

(2)
c of the copula in

each of the two regimes and α of the Markov chain, one obtains the value of the
likelihood:

Lc(Y; θm, θc) =
T∑

t=1

log(1
′
(ξ̂t|t−1 � ηt)).

2.3 Standard Errors of the Estimates

In this section we show how we compute the standard errors of our estimates.
We use a two-step procedure that has been studied in a time-series copula context
by Patton (2006a), but that also underlies the estimation of the DCC model as
explained in Engle and Sheppard (2001). Both cases are applications of general
theorems of Newey and McFadden (1994), which can be invoked to show that
under standard regularity conditions, the following result holds:

√
T(θ̂ − θ0)

A∼N(0, A−1 B A
′−1),

where

A =
[ ∇θmθm Lm(Y; θm) 0

∇θmθc Lc(Y; θm, θc) ∇θcθc Lc(Y; θm, θc)

]

and

B = var

[
n∑

t=1

(
n−1/2∇′

θm
Lm(Yt ; θm), n−1/2∇′

θc
Lc(Yt ; θm, θc)

)]
.

If we apply the partitioned inverse formulas, it is apparent that the variance–
covariance matrix for each one of the GARCH models for the marginal distributions
is the usual Bollerslev and Wooldridge (1992) robust variance–covariance matrix.
The variance–covariance matrix for the RS copula is an expression that depends
on all the parameters. This covariance matrix can be consistently estimated by a
plug-in estimator, which is what we use to infer on the coefficients. Our two-step
estimator is obviously less efficient than a single-step estimation, but given the size
of the problem, it is the only realistically feasible estimation strategy.

In the estimation we first use the EM algorithm to get in the neighborhood
of the optimum and then we do a few iterations of a “brute force” numerical
maximization. Note that the M-step in this estimation is no longer available in
closed form, since we have to estimate the parameters of a copula for which there
is no parametric solution. Instead, even in the EM algorithm, we have to perform
a numerical maximization for every iteration of the algorithm, which somewhat
reduces the attractiveness of the EM-algorithm compared to direct numerical max-
imization. In the numerical optimization we have to reparameterize all coefficients
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Table 1 Summary statistics

Mean Standard deviation Skewness Kurtosis Min Max

Germany 0.14 3.27 −0.53 6.23 −17.73 15.17
France 0.18 2.83 −0.34 5.73 −12.26 13.07
U.K. 0.13 2.29 −0.52 5.61 −11.05 10.02
United States 0.17 2.38 −0.13 6.25 −12.13 12.61
Japan −0.01 3.07 0.26 3.66 −10.99 11.18
Brazil 0.15 5.30 −0.47 4.80 −22.02 22.25
Mexico 0.23 4.45 −0.34 6.17 −23.89 18.89
Argentina 0.13 5.26 0.13 5.62 −21.81 25.03
Chile 0.03 3.16 −0.19 4.31 −13.10 10.23

Descriptive statistics of weekly index returns for the five countries of the G5 and the four countries of
Latin America. All returns are expressed in U.S. dollars from January 3, 1995 to May 30, 2006, which
correspond to a sample of 596 observations

to lie on the real line. Correlation matrices in the multivariate Gaussian or t copula
are parameterized as in Pelletier (2006) in order to guarantee semidefinite posi-
tive matrices with ones on the diagonal. Whenever a parameter of some copula is
restricted to lie within the [a , +∞] interval, we instead estimate x and reparam-
eterize the original coefficient as a + exp(x); if the parameter lies in [−∞, b], we
use b − exp(x); and if a coefficient lies in [a , b], we use a exp(x)+b exp(−x)

exp(x)+exp(−x) . We also use
this rule for the transition probabilities of the Markov chain, with a = 0 and b = 1.
Standard errors of coefficients are obtained with the delta method.

3 DATA AND RESULTS

In this section we present the results of the estimation. First we present the results
for the marginal models, then we discuss the dependence results for the countries
of the G5 and of Latin America.

3.1 Marginal Models

We apply the Markov-switching copula model to the weekly returns of eq-
uity indices. Our sample comprises two groups of countries: the G5 (Germany,
France, the U.K., the United States, and Japan) and Latin America (Brazil, Mexico,
Argentina, and Chile). The equity indices are daily MSCI price series downloaded
from Datastream from 1995 to 2006, where all prices are in U.S. dollars.

In order to avoid introducing artificial dependence due to the difference in
closing times of stock exchanges around the globe, we work with Wednesday-to-
Wednesday returns. This gives us a sample of 596 weekly returns from January
3, 1995 to May 30, 2006. We first present some descriptive statistics in Table 1.
All series show very clear signs of non-normality with negative skewness except
for Japan and Argentina, which have small positive skewness. Further evidence
of non-normality is given by the fact that all series have a kurtosis that is well
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Table 2 Unconditional correlation: G5 and Latin America

Germany France U.K. United States Japan

Germany 1.00
France 0.86 1.00
U.K. 0.74 0.77 1.00
United States 0.67 0.65 0.64 1.00
Japan 0.41 0.43 0.38 0.36 1.00

Brazil Mexico Argentina Chile

Brazil 1.00
Mexico 0.64 1.00
Argentina 0.56 0.56 1.00
Chile 0.58 0.54 0.45 1.00

Unconditional Pearson correlation between the weekly index returns for the five countries of the G5
as well as the four countries of Latin America.

above 3. The weekly average returns range from −0.01% for Japan to 0.23% for
Mexico. The standard deviations of weekly returns are quite different for both
groups of countries. They are around 3% for the G5 and for Latin America, they
range from 3.16% for Chile to 5.30% for Brazil. Next we show the correlation matrix
of the raw data in Table 2. For the G5, the most highly correlated countries are,
unsurprisingly, the European countries: Germany–France with a correlation of 0.86,
followed by U.K.–France and Germany–U.K. The United States is also correlated
with the European countries. Japan is the least correlated to the other countries,
its highest correlation being 0.43, with France. The overall amount of correlation
amongst Latin American countries is much lower than amongst the G5 countries.
The highest correlations are Brazil–Mexico (0.64) and Brazil–Chile (0.58), followed
by Argentina–Brazil and Argentina–Mexico (both with 0.56).

The estimates of each of the univariate skewed Student t GARCH models are
presented in Table 3, first column to fourth column. We can see that the asymmetry
coefficient (λ) of the skewed Student t is negative and significant in all series of the
G5 with the exception of Japan. In Latin America, only Brazil has a significantly
negative λ. Our rationale for using a skewed marginal distribution is to ensure that
any asymmetry we find in the dependence structure truly reflects dependence and
cannot be attributed to poor modeling of the marginals. The negative λ we find
captures the fact that the tails of some of the marginal distributions are typically
longer on the left side. This means that large negative returns, as observed during
a stock market collapse, are more likely than very good positive returns of the
same magnitude. This corroborates the descriptive statistics of the unconditional
distributions of our return series.

The degrees-of-freedom parameters of most series is around 8, which corre-
sponds to tails of the conditional distribution that are somewhat fatter than those
of the normal distribution. As a rule of thumb, one can say that it is very difficult to
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Table 3 GARCH estimates, goodness of fit statistics and Ljung–Box of squared results

Ljung–Box

α β ν λ KS KS+ KS− Berk AD K 1 2 3 4 8 12

Germany 0.11 0.89∗∗ 8.25∗∗ −0.15∗ 0.73 0.74 0.38 0.31 0.99 0.72 0.38 0.50 0.36 0.48 0.81 0.93
(0.06) (0.06) (2.90) (0.06)

France 0.08∗ 0.90∗∗ 8.18∗∗ −0.12∗ 0.99 0.68 0.66 0.09 0.99 0.93 0.34 0.31 0.31 0.36 0.30 0.47
(0.04) (0.04) (2.73) (0.06)

U.K. 0.08 0.88∗∗ 8.23∗∗ −0.21∗∗ 0.86 0.56 0.48 0.02 0.99 0.62 0.78 0.95 0.98 0.99 0.99 1.00
(0.06) (0.10) (2.80) (0.06)

United States 0.14 0.85∗∗ 16.76 −0.21∗∗ 0.95 0.58 0.58 0.47 0.99 0.76 0.80 0.23 0.31 0.08 0.29 0.39
(0.07) (0.08) (10.87) (0.06)

Japan 0.05 0.93∗∗ 14.35∗ 0.05 0.99 0.72 0.69 0.93 0.99 0.96 0.72 0.92 0.95 0.98 0.99 1.00
(0.03) (0.03) (7.14) (0.07)

Brazil 0.12 0.85∗∗ 8.28∗∗ −0.29∗∗ 0.97 0.76 0.62 0.96 0.99 0.95 0.68 0.90 0.97 0.93 0.92 0.96
(0.07) (0.08) (2.47) (0.05)

Mexico 0.06 0.92∗∗ 7.14∗∗ −0.09 0.92 0.54 0.61 0.77 0.99 0.75 0.67 0.88 0.84 0.85 0.72 0.67
(0.04) (0.05) (1.81) (0.06)

Argentina 0.12 0.81∗∗ 6.32∗∗ −0.04 0.90 0.62 0.52 0.98 0.99 0.74 0.45 0.33 0.44 0.52 0.82 0.65
(0.09) (0.15) (1.41) (0.06)

Chile 0.07 0.89∗∗ 10.60∗∗ −0.05 0.90 0.52 0.74 0.17 0.99 0.86 0.85 0.98 0.79 0.90 0.92 0.40
(0.05) (0.08) (3.64) (0.06)

Second column to fifth column are parameter estimates of univariate skewed Student t GARCH(1,1) models of Hansen (1994), with the mean omitted. Standard
deviations of the parameters are in brackets. The symbols ∗∗ and ∗ mean that we reject the hypothesis that the parameter is equal to zero at the 1% and 5% level,
respectively. Sixth column to eleventh column report p-values of Goodness of Fit (GoF) statistics of the probability integral transformation (PIT) of the marginal
models. We present the p-values for the following tests. The Kolmogorov–Smirnov (KS) test evaluates the alternative hypothesis that the population cdf is different
from a Uniform [0, 1]. KS+, tests the alternative hypothesis that the population cdf is larger than a Uniform [0, 1], while KS−, tests the alternative hypothesis that
the population cdf is smaller than a uniform [0, 1]. Berk reports the p-value of a test proposed by Berkowitz (2001). The test consists in transforming the PIT of the
data into a normal variate with the inverse cdf of the normal, �−1, and to test uniformity and lack of correlation, which corresponds to zero mean, variance one,
and zero correlation against the alternative of and an AR(1) model with unrestricted mean and variance. AD is the Anderson–Darling test for uniformity. K is
Kuiper’s test for uniformity, which puts more weight on the tails of the distribution than the other tests. Twelfth column to seventeenth column report the p-values
of the Ljung–Box statistics for tests of lack of correlation of squared residuals from the skewed Student t GARCH(1,1) models for numbers of lags 1, 2, 3, 4, 8, 12.
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distinguish a t-distribution with more than 10 degrees of freedom from a Gaussian.
In the G5, the United States has the most Gaussian-looking returns of all with a
degrees-of-freedom parameter of almost 17. France has the fattest tails with about
8 degrees of freedom. Latin American countries have fatter tails with coefficients
ranging from 6.32 for Argentina to 10.60 for Chile.

A well-specified model for the marginals is crucial, because misspecification
can result in biased copula parameter estimates; see Fermanian and Scaillet (2005).
Therefore, we apply a battery of goodness of fit (GOF) tests, including three ver-
sions of the Kolmogorov–Smirnov test, and the Anderson–Darling and Kuiper tests
of uniformity of the PIT of the marginal models. We also perform the Berkowitz
test, which is a joint test of uniformity and lack of correlation of the PIT, based
on transforming the PIT to the normal and testing an AR(1) model against the
uncorrelated standard normal. The p-values of the tests are reported in fifth col-
umn to tenth column of Table 3. All models pass all the tests, except for the U.K.
in the Berkowitz test. In the same table, eleventh column to sixteenth column, we
also present the p-values of the Ljung–Box test of autocorrelation in the squared
residuals of the skewed Student t innovations of the GARCH models. The table
shows that each one of the marginal models is well specified, which is not the case
when considering Gaussian or Student t innovations in the GARCH specification.

3.2 Countries of the G5

We estimate three models for the G5 data. The results are presented in Table 4, panel
A. The first model (second column to fourth column) has a Gaussian copula in each
regime. The results indicate that we have a high and a low dependence regime. The
copula correlation coefficient in the more dependent regime is higher for all pairs
of countries, which means that the whole G5 together is more dependent when the
economy is in that regime. This regime is characterized by some very large corre-
lations. For instance, France and Germany have a correlation coefficient of .92, that
translates into a Kendall’s τ of 0.74, which is very high dependence. More gener-
ally, the highest correlations are between the European countries. We also estimate
a model with a Gaussian and a Student t regime (fifth column to seventh column).
The multivariate Student t regime corresponds to the lower dependence regime.
We estimate the degrees of freedom at 23.95, which is quite large and does not
correspond to a qualitatively very different picture from the all-Gaussian model. A
likelihood ratio would clearly reject the Student t model, as the likelihood increases
by no more than 1.44, with only one additional parameter. The difference between
the models is that, unlike the Gaussian, the Student t copula possesses tail depen-
dence, but it implies equal upper and lower tail dependence, which is clearly at
odds with the stylized facts. Finally, we show the results of a switching model with
a Gaussian and a canonical vine regime (eighth column to twelfth column). The
class of possible canonical vines is evidently extremely large. We follow Aas et al.
(2009) for the specification of the copula. First, we order the variables by decreas-
ing correlations, choosing the variable with the largest correlation as the first one
to condition on. This leads us to place Germany at the basis of the construction,
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Table 4 Estimation results

Panel A: G5
REGIME 1

Normal Normal Normal

Coef t-stat τ Coef t-stat τ Coef t-stat τ Uncond. τ

Ger, Fra 0.92 103.03 0.74 0.92 98.46 0.74 0.92 107.49 0.74 0.74
Ger, UK 0.80 41.79 0.59 0.80 40.06 0.59 0.80 36.86 0.59 0.59
Ger, US 0.71 18.45 0.50 0.71 17.89 0.50 0.71 18.68 0.50 0.50
Ger, Jap 0.48 11.70 0.32 0.48 11.74 0.32 0.48 12.04 0.32 0.32
Fra, UK 0.83 18.67 0.63 0.83 18.59 0.63 0.84 18.49 0.63 0.63
Fra, US 0.70 14.83 0.49 0.70 14.03 0.49 0.70 13.19 0.49 0.49
Fra, Jap 0.51 6.55 0.34 0.51 5.95 0.34 0.51 6.63 0.34 0.34
UK, US 0.66 11.95 0.46 0.66 11.68 0.46 0.66 11.44 0.46 0.46
UK, Jap 0.44 6.18 0.29 0.44 6.04 0.29 0.43 5.80 0.28 0.28
US, Jap 0.46 6.63 0.31 0.47 6.26 0.31 0.46 6.51 0.30 0.30

REGIME 2

Normal Student t Canonical vine

Coef t-stat τ Coef t-stat τ Coef t-stat τ Uncond. τ

Ger, Fra 0.58 6.37 0.39 0.59 5.83 0.40 RGumbel 1.75 9.76 0.43 0.43
Ger, UK 0.47 3.96 0.31 0.48 4.04 0.32 RGumbel 1.47 13.47 0.32 0.32
Ger, US 0.39 3.70 0.26 0.40 4.10 0.27 RGumbel 1.39 14.77 0.28 0.28
Ger, Jap 0.36 2.52 0.24 0.37 2.37 0.24 RGumbel 1.31 15.89 0.24 0.24
Fra, UK 0.46 3.86 0.30 0.48 4.19 0.32 Normal 0.26 1.92 0.17 0.32
Fra, US 0.34 3.18 0.22 0.36 3.38 0.23 Normal 0.15 1.13 0.10 0.24
Fra, Jap 0.28 1.83 0.18 0.29 1.91 0.19 Student t 0.13 0.70 0.08 0.21

DoF 7.88 1.74
UK, US 0.37 2.36 0.24 0.38 2.36 0.25 Normal 0.22 1.63 0.14 0.27
UK, Jap 0.29 2.07 0.18 0.28 2.03 0.18 Normal 0.13 0.90 0.08 0.20
US, Jap 0.16 1.04 0.10 0.15 0.97 0.10 Normal −0.02 −0.13 −0.01 0.11
DoF 23.95 1.40

(Continued)
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Table 4 Continued

Transition probabilities Transition probabilities Transition probabilities

Coef t-stat Coef t-stat Coef t-stat

P11 0.982 96.0 0.983 104.9 0.984 114.4
P22 0.963 40.2 0.966 46.6 0.971 56.5
LogL 896.30 897.74 903.22

Panel B: Latin America
REGIME 1

Normal Student t Canonical vine

Coef t-stat τ Coef t-stat τ Coef t-stat τ Uncond. τ

Bra, Mex 0.79 7.66 0.58 0.61 7.74 0.41 RGumbel 1.67 13.60 0.40 0.40
Bra, Arg 0.73 2.26 0.52 0.66 14.53 0.46 RGumbel 1.77 14.35 0.43 0.43
Bra, Chi 0.70 3.76 0.50 0.50 5.36 0.33 RGumbel 1.51 18.78 0.34 0.34
Mex, Arg 0.77 5.96 0.56 0.65 8.40 0.45 Normal 0.41 3.75 0.27 0.44
Mex, Chi 0.68 4.33 0.48 0.47 6.48 0.31 Normal 0.25 2.67 0.16 0.31
Arg, Chi 0.59 1.27 0.40 0.49 6.39 0.32 Normal 0.13 0.92 0.08 0.33
DoF 10.75 2.70

REGIME 2

Normal Normal Normal

Coef t-stat τ Coef t-stat τ Coef t-stat τ Uncond. τ

Bra, Mex 0.43 0.57 0.28 0.64 4.74 0.44 0.68 5.72 0.48 0.48
Bra, Arg 0.41 0.61 0.27 0.37 2.74 0.24 0.40 2.63 0.26 0.26
Bra, Chi 0.43 4.48 0.28 0.70 3.96 0.49 0.69 3.12 0.49 0.49
Mex, Arg 0.35 0.49 0.23 0.36 8.24 0.24 0.34 5.83 0.22 0.22
Mex, Chi 0.33 2.15 0.22 0.58 5.12 0.39 0.57 3.97 0.39 0.39
Arg, Chi 0.30 2.16 0.20 0.34 3.72 0.22 0.35 3.35 0.23 0.23



C
H

O
L

L
E

T
E

E
T

A
L.|M

ultivariate
Regim

e-sw
itching

Copula
457

Transition probabilities Transition probabilities Transition probabilities

Coef t-stat Coef t-stat Coef t-stat

P11 0.737 1.51 0.978 67.2 0.976 54.5
P22 0.767 1.80 0.961 45.9 0.948 27.3

LogL 442.86 448.60 464.52

This table presents parameter estimates of the dependence structure in a RS model for the five countries of G5 in panel A, and for the four countries of Latin
America in panel B.
Panel A, G5. Model 1 (second column to fourth column): Regime one (high dependence) and Regime two (low dependence) are modeled using a Gaussian copula.
Model 2 (fifth column to seventh column): Regime one (high dependence) is a Gaussian copula while Regime 2 (low dependence) is a Student t copula. Model 3
(eighth column to twelfth column): Regime one (high dependence) is modeled using a Gaussian copula while for Regime 2 (low dependence) we use a Canonical
vine copula. The structure of the Canonical vine copula is the following: Germany–France, Germany–UK, Germany–US and Germany–Japan are modeled using
a bivariate rotated Gumbel copula for each pair. The dependence structure of France–UK as well as France–US, conditional on Germany is captured by a bivariate
Gaussian copulas, while France–Japan conditional on Germany is a Student t copula. The copula of UK–US and UK–Japan, conditional of Germany and France
are Gaussian. Finally, US–Japan conditional on Germany, France and UK is a Gaussian copula.
Panel B, Latin America. Model 1 (second column to fourth column): Regime one (high dependence) and Regime 2 (low dependence) are modeled using a Gaussian
copula. Model 2 (fifth column to seventh column): Regime 1 (high dependence) is a Student t copula while Regime 2 (low dependence) is a Gaussian copula.
Model 3 (eighth column to twelfth column): Regime 1 (high dependence) is modeled using a Canonical vine copula while for Regime two (low dependence) we
use a Gaussian copula. The structure of the Canonical vine copula is as follows: Brazil–Mexico, Brazil–Argentina and Brazil–Chile are modeled using a bivariate
rotated Gumbel copula for each pair. The dependence structure of Mexico–Argentina and Mexico–Chile conditional on Brazil is a bivariate Gaussian copula. The
copula of Argentina–Chile conditional on Brazil and Mexico is Gaussian.
We report t statistics for all parameters. A Kendall’s τ coefficient is obtained by using the following relation: τ = 2 arcsin(ρ)/π , where ρ is the estimated correlation
coefficient for the multivariate Gaussian and Student t copulas as well as for the bivariate Gaussian and Student t copulas in the canonical vine copula of model
three. For all the bivariate rotated Gumbel copulas in model three we use the following equation: τ = 1 − 1/θ , where θ is the parameter of the rotated Gumbel.
As some parameters estimated in the canonical vine copula of model 3 are conditional, we present the unconditional Kendall’s τ (Uncond. τ ). To compute the
unconditional Kendall’s τ , we transform each Kendall’s τ into the parameter of the bivariate normal Copula that implies the same rank correlation via the
relation ρ = sin(τπ/2). Now, we apply the rules of conditional variance–covariance to compute the corresponding unconditional correlations. Finally, we report
the unconditional Kendall’s τ given the unconditional normal copula’s parameter by τ = 2 arcsin(ρ)/π . P11 and P22 are the diagonal elements of the transition
probability matrix. The loglikelihood is reported in the last row.
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followed by France, the U.K., the United States and, finally, Japan. By so doing,
we intend that most of the dependence structure in the copula will be captured
in the lower stages of the canonical vine, leaving only very little dependence to
be modeled as we move to copulas that are conditional on more countries. We
then start estimating models. As established in previous literature on international
returns, for instance Ang and Bekaert (2002a), and also in a different context by
Patton (2004), returns exhibit asymmetric dependence and lower tail dependence.
Thus, we start estimating models with only asymmetric copulas (rotated Gumbel
or Clayton). We notice that the parameters of the second stage of the canonical
vine are close to their bounds, suggesting that these copulas are not appropriate.
In most cases, we find that the Gaussian or the Student t copula perform well for
the conditional copulas. We use likelihood criteria to decide between the Gaussian
and the Student t copula, along with the estimated parameters for the degrees of
freedom. When the degrees of freedom of the Student t are high, we use the Gaus-
sian. Our preferred model for the G5 has rotated Gumbel copulas for all the pairs
of variables in the first stage and then Gaussian copulas, except for France–Japan,
conditional to Germany, which is a Student t copula. Even though the canonical
vine we select contains only conditional symmetric copulas, most of which have no
tail dependence, the model implies tail dependence between all pairs of variables.
This is explored theoretically and by simulation in Joe et al. (2008). Although we
can, strictly speaking, not use the likelihood as a criterion for selecting models that
are not nested, we nonetheless note that the canonical vine model increases the
likelihood by about 6.5 points compared to the Student t model, with the same
number of parameters. Of course we can by no means claim that we have chosen
the best possible copula, since more theoretical work is needed about model se-
lection of vine copulas in general. But one way of checking that the chosen model
is reasonable is to see whether we can capture the quantile dependence or the
exceedance correlation that is present in the data. We also note that in the three
models all coefficients are statistically significant, except in the conditional copulas
of the canonical vine model. Even though some of the individual conditional cop-
ula parameters are not significant, we prefer to include these terms. If we estimate
the canonical vine model, where we restrict all the conditional copulas to be inde-
pendent, we obtain a loglikelihood of 887.57, which implies a likelihood ratio test
statistic of 31.3 for 7 degrees of freedom, which is indicative of a strong rejection of
the conditionally independent model. All models for the G5 are characterized by
very high persistence in both regimes. When we examine the plot of the smoothed
probabilities of being in the high-dependence regime, in the first row of Figure 3,
we can see that the economy is mostly in the low-dependence regime until 1997,
whereas the high-dependence regime is the dominant one from 1997 onward. One
factor explaining this might be the increased integration between financial mar-
kets in Europe, linked to the introduction of the Euro. More generally, it seems
that since the second part of the nineties, the returns from the G5 have all become
much more highly dependent. The smoothed probabilities differ very little from
one model to another and the dependence within each regime, as measured by the
unconditional Kendall’s τ , seems to change very little from one model to another.
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Figure 3 Smoothed probability of high-dependence regime: G5, and Latin America
This figure presents the smoothed probability of the high-dependence regime obtained from the EM algorithm for the G5 and Latin America. The first
column corresponds to model 1, the Gaussian–Gaussian copula switching model. The second column is model 2, which corresponds to the Normal–
Student t copula switching model for the G5, and the Student t–Normal for Latin America. The third column is the Normal–canonical vine copula
switching model for G5, and the canonical vine–Normal copula for Latin America.
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3.3 Latin American Countries

We also estimate three models for the group of Latin American countries. The
results are presented in Table 4, panel B. We estimate the same models as for
the G5. By contrast, in Latin America the high-dependence regime coincides with
the asymmetric one. In the all-Gaussian copula regime, all the correlation coeffi-
cients are higher in the first regime than in the second one. In the high-dependence
regime, the correlations range from 0.79 for Brazil–Mexico to 0.59 for Argentina–
Chile, while for the low-dependence regime they range from 0.30 to 0.43. We then
estimate a Student t Gaussian copula model. The Student t copula regime has
a fairly small degrees of freedom. Unlike with G5, a likelihood ratio test would
strongly reject the all-Gaussian copula model, as we increase the likelihood by 5.74
points by adding just one parameter. Finally, we show the results of a switching
model with a canonical vine and a Gaussian regime (eighth column to twelfth
column). As in the Student t copula model, the canonical vine copula is in the
high-dependence regime. In order to select the structure of the canonical vine cop-
ula, we have followed the same rules used for the G5. We start estimating models
with all rotated Gumbel or Clayton copulas, then we make modifications in the
structure by using different bivariate copulas, such as the Student t, Normal, and
Gumbel. The final canonical vine structure is in many ways similar to the G5,
since the first stage is characterized by rotated Gumbel copulas for all pairs, and
then we have only Gaussian copulas for all conditional copulas. Notice that the
canonical vine model increases the likelihood by almost 18 points compared to the
Student t model with one parameter less. The transition probability matrix shows
fairly high persistence in both regimes for the Student t and canonical vine copula
models. In the second row of Figure 3, we plot the smoothed probabilities implied
by the three models. Here, one can observe a striking difference between the all-
Gaussian model and the other two models. This is reflected also in the transition
probabilities of the all Gaussian model that implies much less persistence than the
other models. Another way to see this is by comparing the unconditional Kendall’s
τ parameters for the three models. While the Student t–Gaussian and Canonical
vine–Gaussian models identify regimes with similar dependence, the all-Gaussian
copula model has more extreme differences between the regimes. The RS models
with the Student t and the one with the canonical vine copulas seem to identify
a first regime, which is the predominant one. This regime features high depen-
dence relative to Argentina, especially in the case of Brazil and Mexico. These two
countries have a Kendall’s τ of 0.46, 0.45 in the Student t model; and 0.43, 0.44
in the canonical vine model, respectively. The second regime is characterized by
high dependence relative to Brazil, especially for Mexico and Chile. Now these
two countries have Kendall’s τ of 0.44 and 0.49 in model 2 (Student t); and 0.48
and 0.49 in model 3 (canonical vine), respectively. It seems that the all-Gaussian
copula model is compensating for the lack of tail dependence in each regime by ex-
aggerating the difference between regimes and switching very often between them
depending on the observations. For the Student t and the canonical vine copulas,
the smoothed probabilities and the dependence within each regime, as measured
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by the unconditional Kendall’s τ , seem to change very little from one model to an-
other. We observe that the model switches to the symmetric, lower-dependence
regime during two episodes that correspond to the devaluation in Brazil in
February 1999 and to the Argentina default in December 2001. In the case of Brazil,
this means that the dependence between Brazil and Mexico or Chile increases,
indicating contagion. In the case of the Argentina crisis, the model again switches
to the low-dependence regime, which implies that the dependence between all
countries and Argentina is lower, but the dependence between all the other coun-
tries increases. For instance, Brazil is affected most, but with a delay, resulting in a
lower contemporaneous dependence.

4 EVALUATION OF THE MODELS

In order to evaluate the models, we first analyze their behavior in terms of ex-
ceedance correlation and quantile dependence, and then we discuss their implica-
tions for VaR and ES.

4.1 Exceedance Correlation and Quantile Dependence

One way to evaluate the quality of the model is to provide evidence of the ex-
ceedance correlation and quantile dependence implied by the model and compare
it with those estimated from the data. Instead of focusing only on tail dependence,
we investigate the behavior of the quantile dependence. Examining the behavior of
quantile dependence for different thresholds is more informative than concentrat-
ing on its asymptotic behavior. We simulate a series of Nb = 10, 000 observations
from each switching copula model. This yields observations that are uniform. In
order to compute the correlation, we use the inverse skewed Student t cdf to get
values for each return in the real line. The skewness parameter for each of the
series is the one estimated from the GARCH specification. With this simulated
data, we compute exceedance correlation for the following thresholds: from 0.1 to
0.9 by increments of 0.1. The computation of exceedance correlation is done using
the methodology of Longin and Solnik (2001). Figures 4 and 5 plot the pairwise
empirical exceedance correlations based on the standardized marginals (data) by
dots. In the same figures we also plot the exceedance correlation of the estimated
models of the G5 and of Latin America, respectively. The dashed lines represent the
all Gaussian copula model, the dot-dashed line is for the Student t copula model,
while the continuous line represents the canonical vine model. The plots reveal
the presence of asymmetry in the exceedance correlation of the data. Gaussian
and Student t copula models do not fit the asymmetric pattern that we observe
of the data. This is due to the fact that both models are based on symmetric cop-
ulas. However, the canonical vine model, which has some asymmetric bivariate
copulas, does much better at replicating the asymmetry of exceedance correlation
implied by the data. This is an indication that it is the underlying dependence
structure that is asymmetric. For example, for Germany–France, Germany–Japan,
Brazil–Argentina, and Brazil–Mexico, the data asymmetry is not captured by the
two first models, while the canonical vine model more closely resembles the data.
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Figure 4 Exceedance correlation, data and models, G5 countries
This figure shows the pairwise empirical exceedance correlations of the G5 for thresholds from 0.1
to 0.9 by increments of 0.1. The exceedance correlation of the standardized marginals is represented
by dots. The dashed line represents the all-Gaussian copula model, the dot-dashed line represents
the model with the Student-t copula, while the continuous line represents the canonical vine
model.

Generally speaking, the G5 displays less asymmetry in the exceedance correlation
than Latin America, although this asymmetry is not negligible, as the analysis of
the VaR in the next section confirms.

We now proceed to assess whether the estimated models can reproduce the
same patterns of quantile dependence as is in the data. Figures 6 and 7 show the
pairwise quantile dependence implied by the all-Gaussian and the canonical vine
copula model for Latin America. In both figures the continuous line represents
the quantile dependence of the PIT of the marginals of the GARCH models (the
data), while the dashed line is the one calculated from simulations of the model.
We also plot the 5% and 95% confidence intervals represented by lines connecting
dots. These confidence intervals are obtained from 500 bootstrap replications of
the data. We use the bootstrap method proposed by Caillault and Guégan (2005)
for the selection of the best threshold to estimate tail dependence. We are not using
it to select an optimal threshold but simply to have an idea of the variability of the
estimated quantile dependence. We also plot the average over the bootstrap sam-
ple by a dotted line, providing a smoother estimate of the quantile dependence
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Figure 5 Exceedance correlation, data and models: Latin American countries
This figure shows the pairwise empirical exceedance correlations of Latin America for thresholds
from 0.1 to 0.9 by increments of 0.1. The exceedance correlation of the standardized marginals is
represented by dots. The dashed line represents the all Gaussian copula model, the dot-dashed line
represents the model with the Student-t copula, while the continuous line represents the canonical
vine model.

than the in-sample estimate. The plots below the diagonal of each figure rep-
resent the lower-quantile dependence, while the ones above the diagonal are
the upper-quantile dependence. One notices the asymmetry between upper- and
lower-quantile dependence of the data (PIT). The lower-quantile dependence is
in general higher than the upper-quantile dependence, which is a stylized fact of
international returns. When we consider the models under study, and we compare
to the PIT, we find that the all-Gaussian copula models tend to underestimate
lower-quantile dependence and overestimate upper-quantile dependence. This is
due to the fact that the Normal copula is symmetric while the quantile dependence
in the data is not. For example, in the case of Brazil–Mexico, the lower tail depen-
dence implied by the all-Gaussian copula model is always below the one implied
by the data and sometimes even below the fifth percentile, while the upper tail
dependence is always above the one implied by the data. The canonical vine model
tends to fit observed behavior better. For the exceedance correlation, this is due to
the fact that some of the bivariate copula components of the canonical vine model
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Figure 6 Quantile dependence, Gaussian–Gaussian model, with bootstrap confidence intervals
based on the data: Latin American countries
This figure shows the pairwise quantile dependence implied by the PIT of the marginals and the all
Gaussian copula model for Latin America. The continuous line represents the quantile dependence
of the PIT of the marginals, while the dashed line is the one calculated from the simulations of
the all-Gaussian model. The 5% and 95% confidence intervals are drawn by lines connecting dots.
These confidence intervals are obtained from 500 bootstrap replications of the data. The average
over the bootstrap samples is represented by a dotted line. The graphs below the diagonal of each
figure represent the lower quantile dependence, while the ones above the diagonal are the upper
quantile dependence.

are not symmetric. The rotated Gumbel is asymmetric, implying more dependence
in the lower quantile than in the higher quantile. The canonical vine model some-
times overestimates the upper-quantile dependence, but to a much lesser degree
than the all-Gaussian copula model. We find qualitatively similar results for the
G5, even though the results are more pronounced for Latin America. There is an
asymmetry in the quantile dependence of the data that the canonical vine model
is better able to capture than the other models.

4.2 Value at Risk

VaR is one of the most commonly used risk measures for a portfolio. For a given
threshold α, VaR(α) is the α percentile point of the portfolio loss function, and
the expected shortfall ES(α) is the expected loss conditional on observing a return
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Figure 7 Quantile dependence, canonical vine–Gaussian model, with bootstrap confidence inter-
vals based on the data: Latin American countries
This figure shows the pairwise quantile dependence implied by the PIT of the marginals and the
canonical vine model for Latin America. The continuous line represents the quantile dependence
of the PIT of the marginals, while the dashed line is the one calculated from the simulations of the
canonical vine model. The 5% and 95% confidence intervals are drawn by lines connecting dots.
These confidence intervals are obtained from 500 bootstrap replications of the data. The average
over the bootstrap samples is represented by a dotted line. The graphs below the diagonal of each
figure represent the lower quantile dependence, while the ones above the diagonal are the upper
quantile dependence.

below the VaR. Formally, The VaR of a portfolio at the confidence level α is

VaR(α) = inf{l:Prob(L > l) ≤ 1 − α},
and ES is

ES(α) = E[L|L ≥ VaR(α)],

where L is the loss of the portfolio.

4.2.1 Unconditional VaR. We compare simulated values of unconditional VaR
and of ES of our RS copulas with some alternative models. For the G5 we consider
an unconditional Gaussian and an unconditional canonical vine copula. For Latin
America, beside these models we also compare to an unconditional mixture copula
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and to a RS model with a Gaussian and a mixture of rotated Gumbel copulas. We
simulate a long series of Nb = 298, 000 observations, which corresponds to 500
times our sample size of 596. We use the inverse normal cdf to obtain values for
each return in the real line.11 We then form an equally weighted portfolio of all
countries in each of our two groups. We use an equally weighted portfolio both
for simplicity and because this means that we assign equal weight to the bivariate
tails for each pair of countries. Thus we do not favor the tails of pairs of countries
that we model directly in the vine (like dependence with Brazil for Latin American
countries), for which one might expect that the model would do better. We do
the same for other country pairs. We compute VaR for thresholds of 90% to 99%
and plot the VaR of all models relative to the all-Gaussian switching model. The
results, displayed for Latin America in Figure 9, show that use of the all-Gaussian
RS model underestimates the VaR by up to 6% in the empirically relevant case of
a 99% VaR relative to the Gaussian canonical vine regime. All other RS models,
as well as the unconditional Gaussian copula deliver very similar results, while
the unconditional mixture of rotated Gumbel copulas gives much lower estimates,
which is likely due to its inability to capture the dependence between all pairs of
variables. Therefore, failing to model the tail dependence in a flexible way can lead
to seriously underestimating the VaR for a portfolio. The unconditional canonical
vine gives the most conservative results. We repeat this analysis with ES, and a
similar pattern emerges. Again at a level of 99%, the ES for the canonical vine
model is higher by 7% with respect to the all-Gaussian RS copula model. We find a
similar qualitative picture for the G5, although the results are not quite as dramatic,
except for the canonical vine that implies much higher levels of VaR and ES than
the other models. For the G5, in Figure 8, VaR at 99% is underestimated by 3%,
while ES is around 4.5% higher with the canonical vine copula model.

4.2.2 Out-of-Sample VaR. We compare the three Markov-switching models
that we propose to an unconditional Gaussian and an unconditional canonical
vine copula, which corresponds to the model of Aas et al. (2009). In the case of
Latin America, we also add the Garcia and Tsafack (2007) RS, as well as an un-
conditional mixture of rotated Gumbel copulas to capture lower tail dependence.
Both the canonical vine and the mixture capture unconditional asymmetry in the
joint distributions, unlike the Gaussian copula, which assumes symmetric depen-
dence. We did not attempt to estimate the models based on the mixture of rotated
Gumbel copulas for the G5, since we expect them to be quite restrictive, especially
for the unconditional case. In all cases we use the same skewed Student t GARCH
models. In that sense our comparison is limited strictly to the dependence models,
that are all formulated in terms of copulas, while the marginals are kept equally
realistic across models, with time-varying volatility and asymmetric Student t dis-
tributions. If we were to compare to constant volatility and Gaussian models, we

11This approach means that the VaR that we calculate is not directly comparable to the one obtained from
real data, but it still allows comparisons between models.
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Figure 8 Expected shortfall and value-at-risk with respect to the all-Gaussian regime-switching
copula model: G5 countries
This figure shows the VaR and ES of an equally weighted portfolio, assuming normal marginals,
for the Student-t and canonical vine model as a fraction of the all-Gaussian copula model for the
G5. The significance levels go from 0.9 to 0.99 by increments of 0.05. In order to calculate the VaR
and ES, for each model we simulate a long series of Nb = 298, 000 observations.
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Figure 9 Expected shortfall and value-at-risk with respect to the all-Gaussian regime-switching
copula model: Latin American countries
This figure shows the VaR and ES of an equally weighted portfolio, assuming normal marginals,
for the Student-t and canonical vine models as a fraction of the all-Gaussian copula model for Latin
America. The significance levels go from 0.9 to 0.99 by increments of 0.05. In order to calculate the
VaR and ES, for each model we simulate a long series of Nb = 298, 000 observations.

should expect bigger differences in VaR. Of course an advantage of using copulas
is precisely to allow departures from Gaussian marginals.

We distinguish between an equally weighted short and long portfolio (two
portfolios for each group of countries), portfolios with a short (long) position in one
country and equal weighted long (short) positions in all the others (eight portfolios
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for Latin America, 10 for the G5). The portfolios are such that the weights add up
to zero, which means that short positions have to be compensated by equivalent
long positions.12 Then we add zero net investment portfolios that are long (short)
two countries and short (long) all others (six portfolios for Latin America and
20 for the G5).13 We compare the performance of all models in an out-of-sample
exercise of 120 periods, from June 6, 2006 to September 23, 2008. The exercise is
done as follows. Every four periods (every month), we reestimate all marginal and
dependence models using an expanding window and we use the parameter values
for a series of four one-step-ahead forecasts of VaR. In the unconditional models
the forecast is constant over the four-period window, while in the RS models, we
use the one-step-ahead forecast probabilities of being in each regime. In Table 5
we report the fraction of times the Kupiec test fails to reject the null hypothesis
that the VaR has correct coverage, for each region and each group of portfolios.
We perform this test for four levels of VaR: 10%, 5%, 2.5%, and 1%. The results are
presented in Table 5.

Overall, the results show that even on a short out-of-sample period, the canon-
ical vine RS significantly dominates the other models. In most cases the RS models
offer a significant improvement over their unconditional counterparts, even the
asymmetric ones. Finally, the unconditional mixture copula performs poorly, as a
result of its inability to cope with the amount of dependence present in the data.
In the case of the G5, the results show that even though the RS model implies a
slow transition from one regime to the other in-sample, there are still gains rel-
ative to unconditional models. This is so even though the out-of-sample forecast
probabilities imply that except for short exceptions, we remain in the more depen-
dent Gaussian regime.

We now analyze the results in more details. At the 1% threshold, we cannot
reject any model, which is due to the fact that with an out-of-sample period of 120
observations, the power of the test is quite low and it is therefore impossible to
distinguish between the various models. In the case of Latin America, all models
pass the Kupiec test for the equal-weighted long and short portfolios, except the
mixture of rotated Gumbels, which fails at 2.5% and 10%. For the G5, no model
passes the tests successfully for all levels of VaR. The worst model is the Gaussian
copula with violations at the 2.5% and 10% levels, while all other models fail at
2.5%, with the exception of the canonical vine that fails at 10%, but fares better
further out in the tail. The three RS models perform equally well and miss at the
2.5% level.

We next analyze the performance of portfolios with one short or one long asset.
For Latin America, of all unconditional models, the mixture of Gumbel copulas
model does much worse than the others. It fails completely at 10% and at 5%, as
well as at 2.5%. The canonical vine model and the Gaussian copula do equally
well, with only a slight failure at 10%. All RS models do much better than the

12The portfolio weights are [-1, 1/3, 1/3, 1/3] for Latin America and [-1, 1/4, 1/4, 1/4, 1/4] for the G5.
13The portfolio weights are [-1/2, -1/2, 1/2, 1/2] for Latin America and [-1/2, -1/2, 1/3, 1/3, 1/3] for the

G5.
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unconditional models, but the mixture copula RS does slightly worse at 10%. For
the G5, the canonical vine copula does slightly better than the Gaussian copula at
10%, but both models do quite badly with only 60% of failures to reject the VaR. In
contrast, there seem to be very important gains from RS. The RS Gaussian and the
Gaussian Student t RS copula perform equally well, while the RS canonical vine
delivers a slight improvement at 5%.

Finally, for the portfolios that go short or long two countries, in Latin America,
the unconditional Gaussian and canonical vine perform in the same way, while
the mixture copula does a poor job with only 33% of failures to reject the 5% and
2.5% VaR. There seems to be no gain from RS Gaussian and Gaussian with mixture
copulas relative to the unconditional Gaussian and canonical vine. The Gaussian
Student t RS copula improves over that at 10%, and the RS canonical vine offers an
additional improvement for the 2.5% VaR. For the G5, the unconditional Gaussian
does worst, while the unconditional canonical vine model of Aas et al. (2009)
improves at 10% and 5% at the expense of a slight deterioration at 2.5%. RS models
offer a clear improvement over unconditional models at 10% and 2.5%. In this case
the all-Gaussian model is slightly better than the Gaussian Student t model at 10%.
The canonical vine model does better than the all-Gaussian at 2.5%, at the cost of
a slight worsening of performance at 10%.

4.3 Economic Costs of Ignoring Regimes

We perform a simulation exercise, similar to the one in Ang and Bekaert (2002a)
in which we compare the outcomes of portfolio selection under different models
to the case of RS between Gaussian and canonical vine copulas, which we assume
to be the true data generating process (DGP). We consider investors with constant
relative-risk aversion (CRRA) utility and coefficients of relative-risk aversion of
γ = 1, 3, 5, 10. The case γ = 1 corresponds to log utility, otherwise utility is a power
function of terminal wealth WT :

U(WT ) =
{

W1−γ

T if γ > 1,

log(WT ) if γ = 1.
(5)

Like Ang and Bekaert (2002a), we assume that investors know in which regime
they are. Portfolios are computed using dynamic programing as in Ang and Bekaert
(2002a), by recursive optimization backward in time for horizons of 1–52 weeks,
which corresponds to one year. Whereas Ang and Bekaert (2002a) use quadrature
to compute expected utility of terminal wealth under various DGPs, we follow
Patton (2004) in using simulation instead.14

We evaluate the gains as the “cents per dollar” compensation required by an
investor who uses the wrong model and, as a consequence, suboptimal portfolio
weights. This is the method used by Ang and Bekaert (2002a) and Ang and Chen

14We run 100,000 simulations for each regime of the RS model and each alternative model, for each period.
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Table 5 Out-of-sample value-at-risk

Latin America G5

G Mix CV G-G G-t G-Mix G-CV G CV G-G G-t G-CV

Panel A: Long (short) all
10% 100 0 100 100 100 100 100 50 50 100 100 100
5% 100 100 100 100 100 100 100 100 100 100 100 100
2.5% 100 0 100 100 100 100 100 50 100 50 50 50
1% 100 100 100 100 100 100 100 100 100 100 100 100

Panel B: Long (short) one asset − Short (long) the others
10% 88 13 88 100 100 88 100 50 60 80 80 80
5% 100 38 100 100 100 100 100 80 80 90 90 100
2.5% 100 50 100 100 100 100 100 60 60 100 100 100
1% 100 100 100 100 100 100 100 100 100 100 100 100

Panel C: Long (short) two assets − Short (long) the others
10% 67 50 67 67 83 67 83 50 55 80 75 75
5% 83 33 83 83 83 83 83 85 90 90 90 90
2.5% 83 33 83 83 83 83 100 85 80 85 85 95
1% 100 100 100 100 100 100 100 100 100 100 100 100

Total 92 52 92 94 95 92 97 77 80 90 89 91

This table shows the percentage of times that the Kupiec test does not reject the null hypothesis of correct
coverage of VaR for three groups of portfolios. Panel A shows the results for the first group of equally
weighted short and long portfolios (2 portfolios for each group of countries). Panel B shows the results of
the second group containing portfolios with a short (long) position in one country and equal-weighted
long (short) positions in all the others (eight portfolios for Latin America, 10 for the G5). The portfolios
are such that the weights add up to zero, which means that short positions have to be compensated
by equivalent long positions. Panel C contains the results for the third group, which contains zero net
investment portfolios that are long (short) two countries and short (long) all others (six portfolios for
Latin America and 20 for the G5). The VaR is evaluated for the unconditional Gaussian copula (G),
the unconditional canonical vin e copula (CV), an RS model of Gaussian copulas (G-G), a RS model of
Gaussian and t copulas (G-t) and an RS model of Gaussian and canonical vine (G-CV). In the case of Latin
America, we also add the Garcia and Tsafack (2007) RS (G-mix), as well as an unconditional mixture of
rotated Gumbel copulas (Mix). The VaR is evaluated at four different thresholds: 10%, 5%, 2.5%, and 1%.

(2002) in a Gaussian RS model. The fee is calculated as

100 ×
((

Q∗
st

Qst

)1/(1−γ )

− 1

)
,

where Q∗
st

is the indirect CRRA utility of using the RS model with optimal weights,
conditional on being in regime st , while Qst is the indirect CRRA utility under
RS of using the incorrect model with suboptimal weights, conditional on being in
regime st .

In order to know how costly it is to ignore RS, we consider two cases, one in
which the investor assumes that the DGP is a Gaussian copula, the other in which he
assumes that the data were generated by a static mixture of Gaussian and canonical
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Table 6 Cost of ignoring asymmetry and regime-switching

Latin America G5

Gaussian G-CV mixture Gaussian G-CV mixture

sT = 1 sT = 2 sT = 1 sT = 2 sT = 1 sT = 2 sT = 1 sT = 2

γ = 1 T = 1 0.01 0.04 0.00 0.03 0.04 0.05 0.04 0.05
γ = 5 T = 1 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01

T = 4 0.01 0.03 0.00 0.02 0.04 0.04 0.03 0.04
T = 8 0.02 0.05 0.01 0.04 0.07 0.08 0.07 0.08
T = 26 0.07 0.13 0.04 0.09 0.24 0.25 0.22 0.24
T = 52 0.16 0.23 0.09 0.15 0.49 0.51 0.45 0.47

γ = 10 T = 1 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
T = 4 0.00 0.01 0.00 0.01 0.02 0.02 0.02 0.02
T = 8 0.01 0.03 0.00 0.02 0.04 0.04 0.03 0.04
T = 26 0.03 0.07 0.02 0.05 0.12 0.13 0.11 0.12
T = 52 0.08 0.11 0.05 0.08 0.25 0.25 0.23 0.24

This table presents “cents per dollar” costs of using a Gaussian copula or a mixture of Gaussian and
canonical vine copulas when the true DGP is a RS model between Gaussian and canonical vine copulas.
The exercise is done under the assumption that the agent knows in which regime he is.

vine copulas. In both cases, the portfolio weights do not depend on the state of
the world, since the investor is not aware of the existence of different regimes.
In both cases we assume that the marginals have constant variance, but follow
a skewed Student t distribution. The first benchmark (Gaussian case in Table 6)
shows the cost of ignoring asymmetry and time variation in the dependence (as
given by the time variation of the probability of being in any given regime), while
the second benchmark (Gaussian canonical vine mixture case in Table 6) shows the
cost of ignoring the RS but taking into account the unconditional asymmetry, as
the comparison is done with respect to a realistic asymmetric model.

We consider that the investor has access to free lending and borrowing, which
corresponds to zero interest rate, and his long and short positions can be arbitrarily
large. In order to avoid possible numerical problems in the optimization, in practice
we restrict the positions to be within the [−100, 100] range, but we never reach the
bounds. The results of this exercise appear in Table 6.

Overall, the cost of ignoring regimes seems to be increasing with time horizon
T for both states of the world and for both alternative DGPs. Both for Latin America
and for the G5 the cost of ignoring regimes is in general higher in regime 2 than
in regime 1. This is due to the fact that the dependence structure for both groups
of countries in regime 1 is closer to their unconditional counterparts than they are
in regime 2. This can also be seen from the ergodic probabilities implied by the
estimated transition probabilities.15 The cost of ignoring the switching is lower in

15The ergodic probability of regime 1 is 0.647 for the G5, and 0.687 for Latin America.
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Figure 10 Portfolio weights in Latin America as a function of risk aversion
This figure shows the portfolio weights in regime 1 (left) and regime 2 (right) in Latin America as
a function of risk aversion.

the more likely regime, that is, the one with higher ergodic probability. Moreover,
this difference between regimes is larger in Latin America than in the G5, since
the difference between the ergodic probabilities of both regimes is higher in Latin
America. The fees for the investor using the unconditional Gaussian are generally
higher than the fees for the investor using the unconditionally asymmetric model.
This is in line with intuition, since an investor who believes in the mixture model
can take full advantage of the unconditional asymmetry and will do better than
the Gaussian copula investor who ignores asymmetry altogether.

Moreover, as the risk aversion coefficient γ increases, the cost decreases, as
investors become more conservative. This can be seen in Figures 10 and 11, which
show the portfolio weights in both regimes, respectively in Latin America and
the G5. The investment strategies become clearly more conservative, and the total
invested decreases noticeably with higher risk aversion coefficient γ . This means
that with higher risk aversion, investors resort less to short selling and leveraging.
Another important feature of it is that in both sets of countries the investor takes
less extreme positions (long or short) in the asymmetric regime (regime 2 for the
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Figure 11 Portfolio weights in the G5 as a function of risk aversion
This figure shows the portfolio weights in regime 1 (left) and regime 2 (right) in the G5 as a function
of risk aversion.

G5 and regime 1 for Latin America). Moreover, the net position is always higher
in the lower dependence regime (regime 2 for both sets of countries).

5 CONCLUSION

We provide further evidence on asymmetric dependence in international financial
returns by estimating a RS copula model for the dependence of the stock indices
in the G5 and four Latin American countries. We use RS copulas, which allows us
to model dependence in a much more flexible and realistic way than previously
suggested switching models based on the Gaussian copula. Moreover, we apply
this approach in a multivariate context, thereby taking a step toward making this
framework feasible for realistic portfolio applications. In order to model depen-
dence we use a canonical vine copula, which was recently introduced in finance
by Aas et al. (2009) and which accommodates general types of dependence. It is
based on decomposing a multivariate copula into a product of bivariate iteratively
conditioned copulas, each of which can be chosen from a long list, producing a
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large, flexible class of models. Our approach has both econometric and financial
aspects, which we summarize.

Regarding econometric implementation, our class of empirical models in-
cludes one symmetric Gaussian copula regime combined with either a Gaussian,
a Student t, or a canonical copula regime. We find that the canonical vine model
dominates, on the basis of the likelihood. The canonical vine models we estimate
contain asymmetric copulas in the first level and symmetric copulas (Gaussian
or Student t) for the conditional level. We evaluate the models in terms of their
ability to replicate the pairwise exceedance correlation and quantile dependence
of the data. The canonical vine models are better able to replicate the exceedance
correlation in the data. They also dominate in terms of replicating the upper and
lower pairwise quantile dependence of the data.

Regarding financial implications, we compute the VaR and ES of an equally
weighted portfolio for all our models and we compare them to some symmetric
and asymmetric alternatives. We find that the models have different implications
in terms of VaR and ES. Next we perform an out-of-sample exercise, which demon-
strates that the RS model of canonical vine and Gaussian copulas performs better
than competing models, including an unconditional Gaussian, canonical vine, and
mixture copulas, but also an RS model of Gaussian and mixture of Gumbel copulas.
This is especially true for portfolios with a mix of long and short positions. Finally,
we investigate the implications of the RS canonical vine model for portfolio selec-
tion and find that ignoring RS leads to costs of up to 0.50 cents per dollar invested.
Therefore, in addition to a superior econometric fit, our RS copula approach may
yield enhanced performance for financial risk management and portfolio selection
with relatively large portfolios.

APPENDIX

A.1 Copulas

A.1.1 Gaussian copula. The distribution function of the Gaussian copula is

CN(u1, . . . , un; �) = ��(�−1(u1), . . . , �−1(un)),

where �−1 denotes the inverse cdf of the standard normal and ��(x1, . . . , xn; �)
denotes the standard multivariate normal cumulative distribution:

��(x1, . . . , xn) =
∫ x1

−∞
. . .

∫ xn

−∞

1
(2π )n/2|�|1/2 exp

(
−1

2
v′�−1v

)
dv,

where v = (v1, . . . , vn) and � is a correlation matrix, that is symmetric, semidefinite
positive with ones on the diagonal and off-diagonal terms between −1 and 1. The
corresponding density is

cN(u1, . . . , un; �) = |�|−1/2 exp
[
−1

2
(x′�−1x − x′x)

]
,
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where x = (�−1(u1), . . . , �−1(un)). The bivariate version that we use in the canonical
vine copulas is

cρ(u1, u2) = 1√
1 − ρ2

exp
[−[�−1(u1)2 + �−1(u2)2 − 2ρ�−1(u1)�−1(u2)]

2(1 − ρ2)

+ �−1(u1)2 + �−1(u2)2

2

]
,

where ρ is a correlation coefficient that lies between −1 and 1.
The Gaussian copula has zero upper and lower tail dependence, λU = λL = 0,

except in the case of perfect correlation, ρ = 1.

A.1.2 Multivariate Student t copula. The distribution function of the Student
t copula is

CT (u1, . . . , un; �, ν) = T�,ν
(
T−1

ν (u1), . . . , T−1
ν (un)

)
,

where T−1
ν (v) is the inverse cdf of the standard univariate Student t with ν degrees

of freedom and T�,ν is given by

T�,ν(x1, . . . , xn; ) =
∫ x1

−∞
. . .

∫ xn

−∞

�
(

ν+n
2

)
�

(
ν
2

) √
(πν)n|�|

(
1 + v′�−1v

ν

) −ν+n
2

dv,

where v = (v1, . . . , vn) and � is a correlation matrix, that is symmetric, semidefinite
positive with ones on the diagonal and off-diagonal terms between −1 and 1. The
corresponding density is

cT (u1, . . . , un; �, ν) = �
(

ν+n
2

)
�

(
ν
2

) √
(πν)n|�|

1∏n
i=1 fν

(
T−1

ν (ui )
) (

1 + x′�−1x
ν

) −ν+n
2

,

where x = (T−1
ν (u1), . . . , T−1

ν (un)) and fν(.) is the density of the Student t distribu-
tion with ν degrees of freedom, ρ ∈ (−1, 1) and ν > 2. The bivariate version that
we use in the canonical vine copulas is

cT (u1, u2; ρ , ν) = �

(
ν + 2

2

) (
1 + T−1

ν (u1)2+T−1
ν (u2)2−2ρT−1

ν (u1)T−1
ν (u2)

ν(1−ρ2)

)−( ν+2
2 )

fν
(
T−1

ν (u1)
)

fν
(
T−1

ν (u2)
)
ν��

(
ν
2

)√
1 − ρ2

.

The Student t copula has the same lower and upper tail dependence for every pair

of variables: λU = λL = 2tν+1(−√
ν + 1

√
1−ρ

1+ρ
).

A.1.3 Bivariate Gumbel and rotated Gumbel copula. The Gumbel copula
has the following distribution:

CG(u1, u2, θ ) = exp(−((− log u1)θ + (− log u2)θ )1/θ ),
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and the following density:

cG(u1, u2, θ ) = CG(u1, u2, θ )(log u1. log u2)θ−1

u1u2((− log u1)θ + (− log u2)θ )2−1/θ

×(((− log u1)θ + (− log u2)θ )1/θ + θ − 1),

where θ ∈ [1, ∞).
We use the rotated version of the Gumbel defined as CRG(u1, u2, θ ) = u1 + u2 −

1 + CRG(1 − u1, 1 − u2, θ ) and cRG(u1, u2, θ ) = cG(1 − u1, 1 − u2, θ ). For the rotated
version of the Gumbel, λL = 2 − 21/θ , λU = 0.

A.1.4 Bivariate Clayton copula. The Clayton copula has the following distri-
bution:

CC (u1, u2; θ ) = (u−θ
1 + u−θ

2 − 1)−1/θ ,

and the following density:

cC (u1, u2; θ ) = (1 + θ )(u1u2)−θ−1(u−θ
1 + u−θ

2 − 1)−2−1/θ ,

where θ ∈ [−1, ∞)\0.
The Clayton copula has lower, but not upper, tail dependence: λL = 2−1/θ ,

λU = 0.

A.2 Bivariate Dependence in a Five-Dimensional Mixture Copula

The generalization of the mixture copula in Garcia and Tsafack (2007) to the five-
dimensional case leads to the following expression:

C(u1, u2, u3, u4, u5, β) = p1u1C (1)(u2, u3, u4, u5)

+ p2u2C (2)(u1, u3, u4, u5)

+ p3u3C (3)(u1, u2, u4, u5)

+ p4u4C (4)(u1, u2, u3, u5)

+ (1 − p1 − p2 − p3 − p4)u5C (5)(u1, u2, u3, u4),

where C (i) are four-variate mixture copulas like the one in Garcia and Tsafack (2007).
As this specification is much too general, we will work with a more specialized
one, in which each four-variate copula C (i) has been replaced by only one term
(this means that two probabilities have been set to zero), leading to the following:

C(u1, u2, u3, u4, u5, β) = p1u1C23(u2, u3)C45(u4, u5)

+ p2u2C15(u1, u5)C34(u3, u4)

+ p3u3C14(u1, u4)C25(u2, u5)

+ p4u4C12(u1, u2)C35(u3, u5)

+ (1 − p1 − p2 − p3 − p4)u5C13(u1, u3)C24(u2, u4).
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This specification is only one of a number of possible ones, since the copulas
that appear in each component can be reshuffled; for instance, one could use
p1u1C24(u2, u4)C35(u3, u5) as the first component and modify the model accord-
ingly. The bivariate copulas would look the same as for the 4-variate case and the
Spearman correlations would be

ρ23 = p1ρ
C
23, ρ15 = p2ρ

C
15, ρ14 = p3ρ

C
14, ρ12 = p4ρ

C
12, ρ13 = p5ρ

C
13

ρ45 = p1ρ
C
45, ρ34 = p2ρ

C
34, ρ25 = p3ρ

C
25, ρ35 = p4ρ

C
35, ρ24 = p5ρ

C
24.

There are now 32 (25) adding-up constraints involving five terms and, in this case,
the constraints are even tighter; for instance,

ρ12 + ρ13 + ρ14 + ρ15 + ρ23 ≤ 1.

A.3 Decomposition of Likelihood

This subsection of Appendix shows that the likelihood can be decomposed into a
part for the marginals and a part for the RS copula. The density of the data at time
t conditional on being in each of the two regimes is

η
f
t =

(
f (Yt|Yt−1, st = 1)

f (Yt|Yt−1, st = 2)

)
.

However, the marginal densities do not depend on the regimes, so we can rewrite
this as

η
f
t = ηt ·

n∏
i=1

fi (yi,t ; θm,i ),

where

ηt =
(

c(1)
(
F1

(
y1,t|yt−1

1

)
, . . . , Fn

(
yn,t|yt−1

n

)
; θ (1)

c
)

c(2)
(
F1

(
y1,t|yt−1

1

)
, . . . , Fn

(
yn,t|yt−1

n

)
; θ (2)

c
)
)

.

Given the fact that the Markov chain st is not observable, we need to use the
Hamilton filter:

ξ̂t|t = ξ̂t|t−1 � η
f
t

1′(ξ̂t|t−1 � η
f
t
) ,

ξ̂t+1|t = P
′
ξ̂t|t .

Notice that

ξ̂t|t = (ξ̂t|t−1 � ηt) · ∏n
i=1 fi (yi,t ; θm,i )

(1′(ξ̂t|t−1 � ηt)) · ∏n
i=1 fi (yi,t ; θm,i )

= ξ̂t|t−1 � ηt

1′(ξ̂t|t−1 � ηt)
.
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The likelihood is given as:

L(Y; θm, θc) =
T∑

t=1

log
(
1

′(
ξ̂t|t−1 � η

f
t
))

,

L(Y; θm, θc) =
T∑

t=1

log

(
(1

′
(ξ̂t|t−1 � ηt)) ·

n∏
i=1

fi (yi,t ; θm,i )

)
,

L(Y; θm, θc) =
T∑

t=1

log(1
′
(ξ̂t|t−1 � ηt)) +

T∑
t=1

log

(
n∏

i=1

fi (yi,t ; θm,i )

)
,

which leads to the announced decomposition:

L(Y; θm, θc) = Lc(Y; θm, θc) + Lm(Y; θm).
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