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Abstract
Most of the studies related to human mobility are focused on intra-country mobility.
However, there are many scenarios (e.g., spreading diseases, migration) in which
timely data on international commuters are vital. Mobile phones represent a unique
opportunity to monitor international mobility flows in a timely manner and with
proper spatial aggregation. This work proposes using roaming data generated by
mobile phones to model incoming and outgoing international mobility. We use the
gravity and radiation models to capture mobility flows before and during the
introduction of non-pharmaceutical interventions. However, traditional models have
some limitations: for instance, mobility restrictions are not explicitly captured and
may play a crucial role. To overtake such limitations, we propose the COVID Gravity
Model (CGM), namely an extension of the traditional gravity model that is tailored for
the pandemic scenario. This proposed approach overtakes, in terms of accuracy, the
traditional models by 126.9% for incoming mobility and by 63.9% when modeling
outgoing mobility flows.

Keywords: Human mobility; International mobility; Roaming data; COVID gravity
model

1 Introduction
In modern societies, understanding international human mobility is crucial under multi-
ple perspectives [1]. For instance, international mobility is strictly related to many of the
United Nations’ sustainable development goals (SDGs), such as the reduction of global
inequalities, the design and development of sustainable communities, the worldwide dif-
fusion of innovation, and others [1, 2].

The rapid diffusion of technologies such as mobile phones, devices with GPS receivers,
social media (i.e., geo-tagged posts) generate an enormous amount of data that we can
utilize to investigate human movements [3–11].

While human mobility has been widely investigated at country and city scales, there
are fewer studies regarding mobility across national borders. In such cases, official statis-
tics (e.g., air passenger data) have been widely used both to understand mobility trends
and types of mobility of international travelers [12–14], and in the context of the COVID-
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19 pandemic to investigate the effectiveness of non-pharmaceutical interventions (NPIs)
such as international travel restrictions, to model the spreading of the disease, to mea-
sure the social and economic impact of COVID-19, and to analyze the spreading of new
variants [15–22]. Also social-media data have been used as an alternative data source to
estimate international migration [23–27]. However, the previously mentioned works rely
on data sources with some intrinsic limitations. Social media suffer from self-selection
biases. For example, some social media may be widely used by people of a certain age
while not capturing other age bins. Official statistics are reliable and precise but report a
limited amount of international commuters, usually those traveling with a specific mode
of transport (e.g., air passengers). Moreover, statistics are generally published with signifi-
cant delays. When dealing with some social issues, such as migration and disease diffusion,
working with data sources that are not timely reported represents a considerable limita-
tion.

Hence, using mobile phone data to quantify international commuters may represent a
potential solution to the challenges mentioned above. Mobile phone data have been rarely
used to deal with international commuters [28–31]. Also, in such cases the analyses were
more related to the presence of mobile phones with SIMs registered in other countries
more than to the commuting behaviour itself. There are also some recent works that use
roaming data to predict imported COVID-19 cases [32, 33].

In this study, we use pseudo-anonymized and aggregated mobile phone data collected
from a large mobile operator in UK (with a 28% market share in 2020) to model incoming
and outgoing human mobility before and during the pandemic. More precisely, incoming
mobility corresponds to the number of new foreign mobile phone SIMs (i.e., SIMs that
were not connected to the network of the operator the day before) while outgoing mobility
is the number of mobile phone SIMs registered in the UK that travel abroad (see Fig. 1 for
an example).

It has been shown that the gravity and the radiation models can efficiently model mo-
bility in normal times [9]. However it is not clear to what extent such models can describe
international human mobility during COVID-19 pandemic. In this sense, we highlight

Figure 1 An example of international mobility flows going from EU countries to UK (left) and from UK to EU
(right). The plots refer to the 5th of March, a business day before the introduction of mobility restrictions and
other non-pharmaceutical interventions in European countries. As lighter is the red as lower is the flow. On
this specific day, commuters from Poland are the ones more actively traveling to UK
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some limitations of the gravity model and we propose an extended version named COVID
Gravity Model (CGM). In CGM, we modify the deterrence function in order to take into
consideration also the mobility restrictions imposed by the governments.

In summary, our contributions are as follows:
• We present the use of roaming data to model international mobility after assessing

their validity by measuring the synchronicity with air traffic statistics using
well-known techniques based on Pearson correlation.

• We evaluate the performance of gravity and radiation models to capture international
mobility prior March 2020 and under COVID-19 restrictions.

• We highlight some limitations of the traditional gravity model in modeling mobility
during the pandemic, and we propose COVID Gravity Model to take into account the
restrictions of the analyzed countries in order to better capturing international human
mobility during the COVID-19 pandemic.

More specifically, in Sect. 2.1, we first describe the dataset with a particular focus on
the roaming activities (e.g., the activity of a foreign mobile phone connected to the local
network or of a company SIM card connected to a foreign operator). Then, we show the
process followed to extract international mobility patterns from mobile phone data.

In Sect. 2.2, we show how international mobility can be modeled using a gravity model
(Sect. 2.2.1) and a radiation model (Sect. 2.2.2). We then highlight some limitations of the
traditional gravity model and in Sect. 2.3 we propose the COVID Gravity Model (CGM)
as a potential solution.

In Sect. 3, first, we evaluate the synchronicity between mobile phone data and air traffic
data to assess the validity of roaming data (Sect. 3.1). Next, we show the performances
of the gravity and radiation models on roaming data (see Sect. 3.2), while in Sect. 3.3 we
report the performances of the COVID Gravity Model.

Finally, in Sect. 4 we discuss the implications and limitations of our study, and in Sect. 5
we draw some conclusions and propose some future directions.

2 Materials and methods
In this Section, we first present the dataset used in this study and how it was collected
(Sect. 2.1). We then introduce the gravity model and the radiation model as ways to cap-
ture human mobility (Sect. 2.2). We also discuss the methodology behind the COVID
Gravity Model (CGM) and why an extended gravity model is needed to better capture in-
ternational mobility during the COVID-19 pandemic (Sect. 2.3). Finally, we briefly discuss
the evaluation metrics adopted to evaluate the models (Sect. 2.4).

2.1 Dataset
Here, we describe the measurement infrastructure we leverage to collect network data
from one of the largest commercial mobile network operators (MNOs) in UK, with 27.2
million subscribers as of May 2021. In particular, we detail the dataset we have built and
the metrics we use to capture the international activity of smartphone devices.

2.1.1 Measurement infrastructure
In this study, we use a passive measurement approach to retrieve some anonymized in-
formation about the devices attached to the antennas of the mobile network operator that
provided the data. Each measurement carries the (1) anonymized user ID, (2) the SIM mo-
bile country code (MCC) and mobile network code (MNC), (3) the first eight digits of the
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device International Mobile Equipment Identity (IMEI), (4) the timestamp, and other in-
formation. We also collect a device’s unique ID assigned by the Global System for Mobile
Communications Association that describes some properties of the device like manufac-
turer, brand and model name, operating system, radio bands supported, etc. In this way,
we can distinguish between smartphones (likely used as primary devices by mobile users)
and Internet of Things devices. In this study, we use only the measurements related to
smartphones. Additional information on the measurement infrastructure can be found in
[34].

2.1.2 International patterns extraction
Mobile phones are an ubiquitous technology that has been rapidly adopted worldwide
[35]. Most of the people traveling within the same nation and internationally bring with
them at least a device that uses Radio Base Stations (RBSs) to interact with other devices
(e.g., send/receive calls/messages and connect to the internet). Whenever people traveling
with connected devices cross a border, their devices need to connect to the radio network
of another (local) operator to continue working correctly. For example, a person with a
mobile phone traveling from Italy to UK will have to connect to a UK telecommunication
operator network. The telecommunication operator will collect information about that
device, including the country where the connected SIM is registered. The latter can be
extracted using the MCC, a three-digit code that allows us to identify the origin of the
SIM [35]. While using the generated data we can quantify the incoming international mo-
bility, it is also possible to capture outgoing international mobility as telecommunication
operators are aware of their SIMs connected to other operators’ networks.

In this study, to quantify international mobility, we are interested in counting (1) the
number of foreign mobile phones connected to operators’ network per day as a proxy
of incoming international mobility, and (2) the number of SIMs of the telecommunication
operator in mobile phones connected to a foreign network as a proxy for outgoing interna-
tional mobility. Other devices (e.g., modems, tablets, wearable devices, etc.) are excluded
from this study. In this way, we can quantify both incoming and outgoing international
mobility almost in real-time (e.g., with one day of delay).

2.2 Modeling international mobility
In this Section, we highlight how we can model international mobility patterns with roam-
ing traces. In the literature, there are mainly two ways to model mobility flows: the gravity
model [36], and the radiation model [37]. The main differences are that the gravity model
mimics Newton’s gravity law and assumes that the number of trips decreases as the dis-
tance between places increases. In this model, the population of the origin and the one
of the destination play the role of masses. The radiation model [37], similarly to the in-
tervening opportunities model [38], assumes that the number of trips is justified by the
opportunities offered by the origin and destination locations with people that will eventu-
ally travel to a location that can provide adequate opportunities within a certain distance.

2.2.1 Gravity model
In 1946 George K. Zipf proposed a model to estimate mobility flows, drawing an anal-
ogy with Newton’s law of universal gravitation [36]. The gravity model is based on the
assumption that the number of travelers between two locations increases with the popu-
lation living there while decreases with the distance between them [9]. Given its ability to
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generate spatial flows and traffic demand between locations, the gravity model has been
used in various contexts such as transport planning [39], spatial economics [40], and the
modeling of epidemic spreading patterns [41–43]. In particular, the gravity model estimate
mobility flows between the areas i, j according to the following function

Ti,j ∝ mi, mjf (rij), (1)

where the masses mi and mj are related to people in location i and j respectively, while
f (rij) is a function of the distance between i, j and it is commonly called friction factor
or deterrence function. There are two common ways to model the deterrence function,
namely (i) assuming an exponential decay:

f (rij) = exp–βrij (2)

or (ii) assuming a power decay of the flows with respect to the distance:

f (rij) = r–β

ij . (3)

The parameters of the function need to be fine-tuned. In this work, we have searched
the best parameters using the curve fit utilities of SciPy [44]. The main limitations of the
gravity models are (i) that it requires, at least, the estimation and calibration of beta, which
makes it sensitive to its changes; and (ii) that for doing this calibration, the system needs
empirical data of the actual movements which are not necessarily available for all cases.
As a result of the previous limitations, this approach is a strong simplification of the actual
flows, so the results may not reflect the real mobility.

2.2.2 Radiation model
To solve some of the limitations of the gravity model, the radiation model has been pro-
posed [37]. This model is an extension of the intervening opportunities model [38] in
which we assume that a traveler chose the destination of a trip by computing two actions.
First, all the possible destinations are assigned to a value representing the opportunities
for the traveler. This number k is chosen from a distribution p(k) representing the quality
of the opportunity. Then, all the opportunities are ranked according to the distance and
the traveler goes to the nearest location with an opportunity value higher than a threshold.
The threshold is randomly sampled by the same distribution p(k). Therefore, the number
of people commuting from i to j can be modeled with

Tij =
mimj

(mj + sij)(mi + mj + sij)
(4)

and, differently from the gravity model, there are no parameters to calibrate. The radiation
model has been reported to better captures long-term migration patterns and to have an
high degree of accuracy at the intra-country scale [37, 45]. The radiation model we adopted
is implemented in scikit-mobility library [46].

Although the radiation model has been applied efficiently in various settings, some re-
sults highlight that the spatial scale is not adequately considered by the model [47, 48].
In that sense, some studies go further and limit the application of the radiation model to
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urban or metropolitan areas [49], due to the parameter-free design of the model, which
limits the capability of capturing human mobility.

2.3 COVID gravity model
In this work, we claim that the gravity model may have some limitations when modeling
human mobility during the COVID-19 pandemic. In particular, the gravity model assumes
that flows of people are proportional to the population and the distance between origins
and destinations. However, during the COVID-19 pandemic we should also consider that
travel restrictions and travel bans play an important role. Indeed, if we suppose to have
an origin and two different destinations with the same population and the same distance,
by definition, the gravity model will output the same flow of people. However, the des-
tinations may have different restrictions in place (e.g., quarantines, travel bans) and thus
the flows may be significantly different. Therefore, we claim that capturing only distances
and populations is not enough and that the restrictions should be explicitly taken into
consideration.

In this Section, we adapted the gravity model to take into consideration also restriction
levels. This version of the gravity model is called COVID Gravity Model (CGM).

The information about restriction levels are provided by the Oxford Stringency Index
(SI) [50]. It is a composite measure based on nine response indicators including school
closures, workplace closures, and travel bans. Oxford SI is provided with different spatial
aggregations including the national one and it take values from 0 to 100 where lower num-
bers indicate lower restrictions. Oxford SI is computed every day starting from the 22nd
January 2020. As this study is focused on European countries, we investigate a period that
goes from the 5th of March to the 30th of May. Indeed, starting from March 5, European
countries start to adopt non-pharmaceutical interventions to contrast the diffusion of the
pandemic (e.g., school closure in Italy and self-isolation in Germany).

CGM considers, additionally to populations and distances, the Oxford SI of the origin
country and the Oxford SI of the destination.

Mathematically, we can model Ti,j of CGM as a negative binomial regression with mul-
tiple parameters to fit [51]:

Ti,j = exp
(
ε + α log(Pi) + β log(Pj) + γ log

(
f (rij)

)
+ δ1SIi + δ2SIj

)
. (5)

2.4 Evaluation metrics
The Sørensen–Dice index, also called Common Part of Commuters (CPC) [8, 9], is a
well-established measure to compute the similarity between real flows, yr , and generated
flows, yg :

CPC =
2
∑

i,j min(yg(li, lj), yr(li, lj))
∑

i,j yg(li, lj) +
∑

i,j yr(li, lj)
(6)

CPC is a positive number and contained in the closed interval (0, 1) with 1 indicating a
perfect match between the generated flows and the ground truth and 0 highlighting bad
performance. Note that when the generated total outflow is equal to the real total outflow
CPC is equivalent to the accuracy, i.e., the fraction of trips’ destinations correctly predicted
by the model. In this work, we use CPC to evaluate the goodness of gravity, radiation and
CGM.
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We also compute the Information Gain (IG). Given the real flow at a given time step over
n locations yr = {yr

1, yr
2, . . . , yr

n} and the generated flows for the same spatial and temporal
reference yg = {yg

1, yg
2, . . . , yg

n}, IG is defined as follows

IG
(
yr , yg) =

n∑

i=1

yr
i

N
log

yr
i

yg
i

, (7)

where N is the sum over all the elements in yr . IG is a non-negative error metric with lower
numbers indicating better performances. We use the Information Gain implemented in
scikit-mobility [46].

3 Results
In this Section, we first assess the synchrony of mobile phone data and air traffic statistics
to validate the collected data (Sect. 3.1). Afterwards, we discuss the results obtained in
terms of CPC using the gravity and the radiation models (see Sect. 3.2), and the ones
obtained using the COVID Gravity Model (see Sect. 3.3)

3.1 Assessing synchrony with air traffic
Here, we show that roaming data generated by mobile phone networks is a good proxy for
capturing and modeling international mobility. To this end, we measure the synchrony be-
tween the data of international air passengers and the one generated by mobile phone ac-
tivities. For the scope of this study, we assume that the number of passengers from air traf-
fic data is representative of incoming/outgoing international mobility in UK. UK’s Home
Office has recently opened a dataset containing statistics of air passengers’ arrivals since
the COVID-19 outbreak.1

In particular, the dataset details the daily number of air passengers who arrived in UK
from January 1st 2020 to July 31st 2020, obtained from the Advanced Passenger Informa-
tion (API). The API data primarily relates to passengers coming to UK via the commercial
aviation route. The data is aggregated by day and without considering the origin of the
flows. For this reason, to compare the synchronicity of the time series, we aggregate the
roaming data without considering the origin. In particular, for each country c ∈ C, we
indicate its relative flow to UK at time t as ct . Then, the aggregated flow at time t is

at =
∑

c∈C

ct .

Figure 2, on the right, presents the temporal series of daily air passengers’ arrivals (in black)
and the ones of aggregated roaming data (in blue) regarding the incoming mobility (i.e.,
people traveling to UK). On the left, we have the data generated by roaming activity for
outgoing international mobility (i.e., people traveling from UK).

Before assessing the synchronicity, we make a few observations around Fig. 2. First of
all, air passengers measure the daily arrivals while mobile phone data measures the pres-
ence of international devices (i.e., with a SIM card registered outside UK) roaming on the
network. Second, according to the data of the Border and Immigration Transactions, the

1http://bit.ly/AirTrafficStats

http://bit.ly/AirTrafficStats
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Figure 2 On the left, commuters traveling to UK measured with roaming data (blue) and air passengers from
air traffic data (red). On the right, commuters from UK to other countries. In both cases, we can spot the
effects of the COVID-19 pandemic (e.g., suggestions against all but essential travels, travel bans, lockdown and
other countermeasures that impacted international mobility)

majority of international travelers arriving in UK before April 2020 were traveling by air,
while for April and May 2020, the air passengers accounted for only 46% and 38% of inter-
national travelers going to UK.2 Finally, as expected, by looking at the trends, we can see
how international mobility was deeply affected, both in terms of incoming and outgoing
international mobility, by the limitations imposed as a result of the spread of COVID-19.
For instance, we can see how the three plots start to decrease as mobility restrictions were
introduced. This information provides two important insights on (i) why the number of
roaming devices is higher than the one of air passengers and (ii) why starting from the
lockdown announced on the 23rd of March the two lines related to incoming mobility
started to decrease differently.

There are many ways to assess the synchronicity of time series with peculiarities and lim-
itations. Among them, Pearson correlation can be used to measure how much two time
series co-vary over time. Pearson correlation is a measure that expresses linear relation-
ships between variables. It varies between –1 and 1 where the two extremes are perfect
correlations (negative and positive respectively) while 0 indicates no correlation. There
are two types of synchronicity we want to measure and assess: local synchronicity (ρl) and
global synchronicity (ρg ). The former allows us to understand whether or not the two series
evolve in the same way considering a sliding window of n days. The latter provides insights
on the behavioral similarity of the temporal series over the entire period considered.

Thus, in order to compute the global and local synchronicity of the timeseries we used
Pearson correlation. In the first case, we computed the correlation over the entire temporal
series while in the second case we used different temporal windows W . In particular, given
the series of international commuters’ volumes provided by air traffic Xair and by mobile
phones Xmob, we computed the global synchronicity as

ρg =
E[(Xair – μxair)(Xmob – μxmob)]

σXairσXmob

. (8)

2http://bit.ly/UK-Stats-Mob

http://bit.ly/UK-Stats-Mob
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Table 1 Results of the global and local synchronicity of the two temporal series. The global
synchronicity of the two series is extremely high, while the local synchronicity increases as we
enlarge the temporal window

μ Median W

ρg 0.926 –

ρl 0.169 0.331 5
0.246 0.328 10
0.377 0.379 15
0.424 0.467 20
0.460 0.576 25

Similarly, ρl is computed by applying a sliding window of size n to the two timeseries.
In particular,

ρl =
E[(Xt,t+n

air – μxt,t+n
air )(Xt,t+n

mob – μxt,t+n
mob )]

σXt,t+n
air

σXt,t+n
mob

, (9)

where Xt,t+n is the timeseries in the temporal interval (t, t + n).
The results of the experiments are listed in Table 1. As we can see, the global synchronic-

ity of the two series is 0.926, and it indicates almost a perfect synchronicity. Regarding the
local synchronicity, the quality depends on the size of the temporal window W . Indeed,
as we increase the temporal window, the synchronicity between the two time series in-
creases too. For instance, with W = 10 the median of ρl is 0.328 that increases to 0.576
with W = 25.

The validations carried out are only related to the incoming international mobility, i.e.,
people traveling to the UK. Roaming data can provide timely and precise insights also on
people traveling from the UK to other countries. In Fig. 2, on the left, it is possible to see
the temporal series related to outgoing international mobility between March 5th and May
31st 2020. Unfortunately, we have not validated the temporal series with other statistics
as the ones we found for outgoing international mobility involving the UK were monthly
aggregated, leading to a temporal series of only three elements.

3.2 Gravity and radiation models’ performances
In this Section, we evaluate the performances of the gravity model and the radiation model
both for the incoming and outgoing international mobility flows.

In Fig. 3, we can see how the gravity model with exponential decay achieves the best
performances with respect to the other models. A summary of the results is shown in
Table 2. The average CPC of the gravity model with exponential (G-Exp) decay is 0.685,
while with a power law (G-Pow) decay, the same model achieves a CPC of 0.448. The worst
performing model is the radiation model (R) that has an average CPC of 0.348. These
results are in line with the previously highlighted limitations of the radiation model and
its problems in capturing mobility beyond urban scale levels, at least when considering
incoming mobility [37].

An interesting investigation regards the goodness of such models in modeling interna-
tional mobility before and during the pandemic. In this sense, we also compute the average
CPC for two different periods. The first one is related to the first ten days under analysis:
March 5th to March 15th. This period is reported as P1 in Table 2. The second period (P2)
started when international flows decreased as COVID-19 pandemic rapidly spreads across
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Figure 3 CPC related to incoming mobility of the radiation model (in yellow), of the gravity model with an
exponential decay (in red), and of the gravity model with a power-law decay (in blue). The model performing
better is the gravity model with exponential decay, and this is valid both before and during the introduction
of non-pharmaceutical interventions due to the COVID-19 pandemic. In particular, the gravity model with
exponential decay reaches an average CPC of 0.762 before the introduction of non-pharmaceutical
interventions, 0.666 during the introduction of non-pharmaceutical interventions, and 0.685 over the entire
period under analysis

Table 2 The results in terms of CPC of the gravity model with exponential decay (G-Exp.), the gravity
model with power law decay (G-Pow.), and the radiation model (R). We report the average CPC over
the entire period under analysis (μ), the maximum and minimum CPC reached, and the average CPC
of the first period (i.e., before the introduction of non-pharmaceutical interventions due to COVID-19
pandemic) and the second period (i.e., during the introduction of non-pharmaceutical interventions
due to COVID-19 pandemic). The model that better captures incoming international mobility is
G-Exp (0.685) followed by G-Pow (0.448) and R (0.348). We also report the average IG for each model
(μ IG). Number closer to 0 indicate better performances. Thus, the best performances are achieved
by G-Exp. (6.183), followed by G-Pow (9.254) and, finally, the worst performances are reached by R
(17.815)

μ CPC max CPC min CPC μ CPC—P1 μ CPC—P2 μ IG

G-Exp. 0.705 0.761 0.663 0.753 0.697 6.183
G-Pow. 0.501 0.554 0.431 0.523 0.497 9.254
R 0.348 0.379 0.329 0.372 0.342 17.815

Europe. In particular, this period goes from March 16th to the end of June. Also, in these
periods, the model outperforming the others is G-Exp. However, while the performances
of G-Pow and R remain stable across the periods (e.g., the average CPC decrease of 2% and
3% respectively), the average CPC of G-Exp decreased by about 10% in the second period.

In Table 2, we also report the IG of the models. IG is a non-negative number that can be
interpreted as an error with values close to 0 that indicate better performances. As we can
see, G-Exp has the lower IG followed by G-Pow. R reaches the worst performances also in
terms of IG.

We carry out the experiments also for outgoing international mobility as shown in Fig. 4
and Table 3. The results are extremely different from the ones obtained for the incoming
international mobility. In particular, while for the first period P1 going from March 5th to
March 15th the three models are reliable and provide similar performances, in the second
period, when the outgoing mobility dramatically decreased as emerged from Fig. 2, the
performances of the radiation model improve and reach an average CPC of 0.815. On the
other hand, the two versions of the gravity models have a drastic drop in the performances
moving from an average CPC of 0.547 (G-Exp) and 0.561 (G-Pow) to 0.183 and 0.254,
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Figure 4 CPC of the three models on the outgoing mobility. Radiation model (yellow), gravity with
exponential decay (red) and gravity with power law decay (blue) have similar performances in the first period
while the best model during the introduction of non-pharmaceutical interventions is the radiation model
(average CPC 0.815)

Table 3 CPC of the three models when dealing with outgoing mobility. Differently from the
incoming mobility, the outgoing mobility before the introduction of non-pharmaceutical
interventions can be modeled with all the three approaches with similar performances. However, in
the second period, the performances of the radiation model raise up to a CPC of 0.815 while both
the gravity models’ performances decrease to 0.183 and 0.254. Concerning IG, the best performances
are reached by R (4.732) followed by G-Pow (11.386) and G-Exp (12.549)

μ CPC max CPC min CPC μ CPC—P1 μ CPC—P2 μ IG

G-Exp. 0.551 0.792 0.224 0.325 0.588 12.549
G-Pow. 0.557 0.802 0.224 0.352 0.591 11.386
R 0.783 0.848 0.531 0.591 0.815 4.732

respectively. In terms of IG, the best performances are achieved by R (4.732) followed by
G-Pow (11.386) and G-Exp (12.549).

The differences between the obtained results when considering incoming and outgoing
international mobility are likely influenced by the fact that while the incoming mobility
shows a clear and constant trend over the considered period (see Fig. 1), the outgoing
mobility is considerably more irregular and thus more challenging to model.

3.3 COVID gravity model performances
The two versions of the CGM outperform, in terms of CPC, the traditional gravity model
independently by the deterrence function. Results are shown in Fig. 5.

A detailed overview of the average relative improvements is shown in Table 4. Given a
value ŷ and another value y, the relative improvement of ŷ over y is computed as

rel(ŷ, y) =
ŷ – y

y
.

In this case, we compute the relative improvement for each CPC of CGM over the CPCs
of the other models and we report the average relative improvement in Table 4.

In all the scenarios, CGM presents a positive relative improvement with respect to the
CPC of the traditional gravity models. Moreover, when modeling the outgoing mobility
flows, the model achieving the best performance was the radiation model. By explicitly



Luca et al. EPJ Data Science           (2022) 11:22 Page 12 of 17

Figure 5 On the left, CPC for outgoing mobility of the gravity model with exponential decay (red) and the
two versions of CGM (with exponential law in blue and with power law in green). On the right, the CPC for
incoming mobility of the two CGMs and the radiation model (yellow). In both the cases, GCM outperforms
the traditional gravity model and, in general, is the model with the higher average CPC

Table 4 The relative improvements of the two versions of CGM with respect to the radiation and
gravity models

Radiation Gravity Pow. Gravity Exp.

Incoming CGM Exp. 126.91% 57.13% 11.50%
CGM Pow. 118.87% 51.56% 7.55%

Outgoing CGM Exp. 6.54% 60.89% 63.90%
CGM Pow. 0.73% 51.01% 53.76%

modeling the mobility restrictions, CGM achieves similar (slightly higher) performances.
More in general, CGM with an exponential decay function is the best way to model both
incoming and outgoing international mobility flows during the COVID-19 pandemic. Its
average CPC for incoming mobility is 0.78 while for the outgoing mobility is 0.83. In both
the cases, CGM with a power law decay function achieves similar performances with a
CPC of 0.75 for incoming mobility and 0.78 for outgoing mobility flows. With respect to
the radiation model, when modeling the incoming flows the performances of CGM are
more than double in terms of accuracy (126% and 118% more than the radiation model,
using an exponential and a power law decay function respectively). On the other hand,
when modeling the outgoing mobility CGM performances are similar to the radiation one.
In particular, a CGM with a power law decay function outperforms the radiation model
by a 0.73% average relative improvement, while with an exponential function the relative
improvement grows up to 6.54% on average. Finally, we have similar relative improvements
for the gravity model with a power law decay both in the incoming and outgoing mobility
modeling tasks.

The results obtained can be useful in many scenarios and highlight some important sug-
gestions. First of all, in pandemic times, modeling just the mobility flows is not enough and
explicitly modeling the severity of non-pharmaceutical interventions and other policies of
the origin and destination countries is fundamental. This is shown by the significant rela-
tive improvements obtained with CGM. For instance, by using CGM and explicitly mod-
eling restrictions, policy makers can take more precise decisions based on a more accurate
model. At the same time, given the strong relation between mobility and disease diffusion,
CGM can help in better understanding how a disease circulates internationally.
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4 Discussion and limitations
In this Section, we discuss some implications and the limitations of the data source and
models used in this study.

Regarding the data source, we use roaming data generated by mobile phones as a proxy
of international mobility. This data source presents some peculiar advantages. In partic-
ular, it offers timely insights on mobility flows as data can be easily processed every day.
Moreover, the spatial granularity of the data can be significantly fine-grained (e.g., an-
tenna level), and thus policy makers can gather precious insights for taking decisions. For
example, having timely and spatially fine-grained data is helpful when we want to analyze
the spreading of new COVID-19 variants internationally. Moreover, roaming data may al-
low to investigate how international travelers move within a foreign country (e.g., antenna
level position) and this is an important advantage that only roaming data can offer.

On the other hand, however, mobile phone data are generally associated with some lim-
itations like the possibility of accessing the data and some other biases e.g., owners of the
SIM cards, not possible to correctly monitor people younger than 18 years old and others
[31].

The usage of roaming data has also some additional limitations. In this study, when we
deal with roaming data, we are simply counting how many mobile phone SIM cards regis-
tered in another countries are in the UK in a specific day. Therefore, we are also counting
people that may live in the UK but, for any reason, have a foreign SIM card. Moreover,
when a SIM is roaming data in a foreign country, it is likely to connect to the antennas
of multiple different providers. For example, given two telecommunication operators A
and B, a mobile phone may use services offered by A for a couple of days, then connect
to B without leaving the country and finally connect again to A’s services. In this study,
the mobile phone will be counted as an incoming commuter for two times in two different
days even if they never left the country. Data may be also biased by people traveling with
more than one SIM card that, in this study, are eventually counted multiple times.

Even if roaming data may contain some measurements errors, we validated the tempo-
ral correlation of the extracted time series with the ones of international flight statistics
obtaining significantly high correlations indicating the potential goodness of the data.

As part of future work, it may also be of interest to collect more fine-grained air traffic
data and use a data fusion mechanism to leverage the advantages of all the available data
sources. At the moment, data fusion mechanisms for human mobility have been used only
on city- and regional-scale [52–54] but may provide some advantages also for capturing
international mobility. At this stage, we did not use any data fusion technique due to the
fact that the available air traffic statistics have two significant limitations. First of all, UK’s
border control provides only the data for people arriving in the UK and there is no infor-
mation about the people leaving the UK. Second, the data are not aggregated at country
level (i.e., we do not know the origin of the travelers). For these two reasons, adopting
data fusion techniques in this study would not provide any valuable information as we are
working with data with different aggregations, thus representing two (slightly) different
phenomena.

Concerning the models, in this work we show that the traditional models are not using
enough information to model human mobility. Existing solutions are the gravity model
and the radiation model and fully rely on distance and population. In this study, we claim
that focusing on population and distance is not enough. In particular, in the case of the
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gravity model, we can not fit the parameters to estimate the impact of populations and dis-
tances on the flows. For instance, the flows observed in the training set may be significantly
biased according to the restrictions imposed by the origin country and the destination
country (e.g., quarantine requirements, international travel restrictions). The estimation
of parameters may be significantly affected by such biases and underestimated. The radia-
tion model may partially overcome this limitation as it is parameter-free. However, clearly
specify which are the (mobility) restrictions imposed in the various countries may be used
to boost the performances. In the proposed solution, we use the Oxford Stringency Index
as a proxy of the pandemic situation in origin and destination countries and also as a proxy
of international travel restrictions. We have seen that by explicitly modeling the restric-
tions, the performances of the so-called COVID Gravity Model increase both for incoming
and outgoing international mobility flows. Having a more realistic model of international
travelers is fundamental to provide decision makers with more realistic simulations and
estimations. Policy makers may use such insights for taking actions to contrast the diffu-
sion of the disease or to implement policies for improving the well-being of international
migrants. Also, the combination of CGM and the fine-grained spatial aggregations, we
may have with mobile phone data, may also be used to better investigate many problems
including the spreading of new variants of COVID-19, preferences and habits of inter-
national travelers and others. For instance, if we want to study how COVID-19 spread
internationally (e.g., [20, 55]), the availability of fine-grained mobile phone data may lead
to more realistic estimations of international mobility flows, and thus more realistic simu-
lations. Also, while the data sources adopted in most of the studies only allow to estimate
the number of people traveling from a country to another, with mobile phone data it is also
possible to investigate how international travelers move within a country with a variety of
fine-grained spatial resolutions (e.g., antenna level). This may help in better understand-
ing how a disease is diffused over a territory and to target more specific geographical areas
with countermeasures.

We acknowledge there are other more sophisticated models based on deep learning
techniques as explained in a recent survey [8]. Examples of works that model mobility
using deep learning are Deep Gravity [56], SI-GCN (Spatial Interaction Graph Convo-
lutional Network) [57] and GMEL (Geocontextual Multitask Embedding Learner) [58].
However, given the quantity of data needed to accurately train these models, we decided
not to use them in this study where we have only an egocentric network for UK move-
ments.

5 Conclusions
While human mobility is an active research area both at national and local scales, there are
fewer studies regarding international mobility patterns and their challenges (e.g., migra-
tion and disease diffusion). Tackling such challenges requires timely data with a proper
spatial aggregation that roaming activities can provide. In this paper, we have proposed
to use roaming network data to capture international mobility. Then, we use the gravity
and radiation models to model international mobility. The incoming mobility is modeled
better by a gravity model with an exponential decay both before and during the non-
pharmaceutical interventions introduced for contrasting the spread of the COVID-19
pandemic. Instead, the outgoing mobility is captured equally well by the various models
before the mobility restrictions were introduced. On the other side, after the second week
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of March, the radiation model is the one that captures mobility better. However, by ex-
plicitly modeling the COVID-19 restrictions for the origin and destination countries, the
COVID Gravity Model (CGM) outperforms all the other models both for the incoming
(improvement up to 126.9%) and outgoing (improvement up to 63.9%) mobility scenarios.
These findings may have significant impact on how we should model international mo-
bility in times of crises and can help policy makers in taking more accurate decisions. As
part of future works, we will evaluate CGM also at a national and sub-national scales.
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