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Abstract— Our goal is to design a traffic model for non
congested Internet backbone links, which is simple enough to
be used in network operation, while being as general as possible.
The proposed solution is to model the traffic at the flow level by
a Poisson shot-noise process. In our model, a flow is a generic
notion that must be able to capture the characteristics of any
kind of data stream. We analyze the accuracy of the model with
real traffic traces collected on the Sprint IP (Internet Protocol)
backbone network. Despite its simplicity, our model provides a
good approximation of the real traffic observed in the backbone
and of its variation. Finally, we discuss the application of our
model to network design and dimensioning.

Index Terms— Traffic modeling, Poisson shot noise, noncon-
gested IP backbone links, measurements.

I. I NTRODUCTION

Modeling the Internet traffic is an important issue. It is
unlikely that we will be able to understand the traffic char-
acteristics, predict network performance (e.g., for Quality of
Service (QoS) guarantees or Service Level Agreement (SLA)
definition), or design dimensioning tools without analytical
models. The successful evolution of the Internet is tightly
coupled to the ability to design simple and accurate models.

The objective of this work is to design a traffic model that
can be used by network administrators to assist in network
design and management. Such a model needs to be simple, i.e.,
it has to be fast to compute and to rely on simple parameters
that can easily be acquired by a router. Currently, network
operators have very basic information about the traffic. They
mostly use SNMP [10] that provides average throughput
information over 5 minutes intervals. An analytical model
could provide more accurate information on the traffic. It could
be used in various applications such as detection of anomalies
(e.g., denial of service attacks or link failures), prediction of
traffic growth, or assessment of the impact on network traffic
of a new customer or of a new application. Consequently, a
second desired property of the model is to be protocol and
application agnostic: it needs to be general enough to evaluate
link throughput independently of the application nature and of
the transport mechanism.

Packet level models for high speed links are difficult to cal-
ibrate, because of the high level of multiplexing of numerous
flows whose behavior is strongly influenced by the transport
protocol and by the application. In addition, monitoring the
traffic at the packet level becomes critical at OC-192 and above
link speeds.

Recently, a new trend has emerged, which consists in
modeling the Internet traffic at the flow level (see [5] and
the references therein). A flow here is a very generic notion.
It can be a TCP (Transmission Control Protocol) connection
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or a UDP (User Datagram Protocol) stream (described by
source and destination IP addresses, source and destination
port numbers, and the protocol number), or it can be a
destination address prefix (e.g., destination IP address in the
form a.b.0.0/16). Flows arrive at random times and share the
available bandwidth in the network according to certain rules.
From a simplicity standpoint, it is much easier to monitor flows
than to monitor packets in a router. Tools such as NetFlow
already provide flow information in Cisco routers1.

In this paper, we propose a model that relies on flow-
level information to compute the total (aggregate) rate of
data observed on an IP backbone link. We are interested in
capturing the dynamics of the traffic at short timescales (i.e.,
in the order of hundreds of milliseconds). For the purpose
of modeling, the traffic is viewed as the superposition (i.e.,
multiplexing) of a large number of flows that arrive at random
times and that stay active for random periods. As explained
earlier, a flow is a generic notion that must be able to capture
the characteristics of any kind of data stream.

In contrast to other works in the literature (e.g., [5], [7],
[18]), we choose to model a link that isnot congested
(congestion possibly appears elsewhere on the flow path). This
assumption is valid, and is in fact the rule, for backbone
links that are generally over-provisioned (i.e., the network
is designed so that a backbone link utilization stays below
50% in the absence of link failure [15]). It is driven by our
main objective to provide a link dimensioning tool usable in
backbone network management.

The contribution of this work is the design of a flow-based
Internet traffic model using simple mathematical tools (Poisson
shot-noise). Thanks to the notion ofshotswe introduce in the
purpose of modeling flow transmission rates, our model is
able to compute the total rate of data in the backbone using
flows’ characteristics (i.e., arrivals, sizes, durations). Once the
model is introduced, the paper focuses on its confrontation
to real data collected on the Sprint IP backbone network.
This confrontation illustrates the efficiency of the model in
computing the traffic in the backbone and its variation. We then
discuss the application of our model to network design and
management. In particular, we study the impact of the different
parameters of the model (flow arrival rate, flow size, flow
duration) on the characteristics of the traffic in the backbone.

In the next section, we survey the related literature and
position our contribution. Section III describes the traces we
use throughout the paper for the validation of our model.
In Section IV, we present our model and we analyze its
performance in Section V. Section VI explains how shots can
be determined, and Section VII discusses some issues related
to the practical use of our model. In Section VIII, the model

1http://www.cisco.com/warp/public/732/Tech/netflow
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is confronted to the real traces. We discuss the use of our
model to network dimensioning in Section IX. Conclusions
and perspectives on our future work are presented at the end.

II. RELATED WORK

Many authors ([11], [14], [21], [24]) have analyzed the
Internet traffic and have shown that it behaves in agreement
with long range dependent and asymptotically self-similar pro-
cesses. This finding made a revolutionary step departing from
more traditional short-range dependent Markovian models.

The other body of the literature (e.g. [5], [7], [18]) studies
fairness issues by modeling Internet traffic at the flow level.
The main objective is to show how the capacity of the
network is shared among the different flows, or equivalently,
to compute the response times of flows. Processor sharing
queues [20] are used to model congested links in the network.
In [5], an M/G/∞ model is proposed for the number of active
flows on a non-congested backbone link. It coincides with
a particular case of our model where all flows would have
exactly the same rate. In [7], a multi-class processor sharing
queue is used to compute the queue length and the packet loss
probability in an Active Queue Management buffer crossed by
TCP flows of different sizes. The average response time of
a TCP flow is obtained. Note that all the above flow-based
models make the assumption that flows arrive according to a
homogeneous Poisson process.

Our model is different from the above works in that (i)
it is designed for non congested links as those found in the
backbone, (ii) it uses any flavor of flow definition to model
the variation of the traffic, and (iii) it focuses on the variation
of the traffic, a performance measure of particular interest
for network engineering (i.e., provisioning, SLA definition,
anomaly detection, etc.).

III. M EASUREMENT TESTBED

We consider data collected from OC-12 (622 Mbps) links
on the Sprint IP backbone. The monitored links are over-
provisioned so that the link utilization does not exceed 50%
in the absence of link failures. The utilization is measured
over relatively long time intervals, for example the 5 minutes
period given by SNMP. In short, the infrastructure we use to
collect packet traces consists of passive monitoring systems
that tap optical links between access routers and backbone
routers (see [15] for details on the monitoring infrastructure).
Every packet on those links is timestamped and its first 44
bytes are recorded to disk.

In this paper, we present data from 7 different internal
POP (Point-Of-Presence) links collected on September 5th and
November 8th 2001 in three different POPs of the backbone.
Table I provides a summary of the traces. The traces have
different link utilizations (ranging from 26 Mbps to 262
Mbps), resulting in different trace lengths.

We divide each trace into 30 minutes intervals. We tried
various intervals and we found that 30 minutes is a good com-
promise in term of (i) keeping the arrival process stationary,
and (ii) giving enough points for the analysis of our model. We

Date Length Avg. Link Utilization
Nov 8th, 2001 7h 243 Mbps
Nov 8th, 2001 10h 180 Mbps
Nov 8th, 2001 6h 262 Mbps
Nov 8th, 2001 39h 30m 26 Mbps
Sep 5th, 2001 10h 136 Mbps
Sep 5th, 2001 7h 187 Mbps
Sep 5th, 2001 16h 72 Mbps

TABLE I

SUMMARY OF OC-12LINK TRACES

discuss later in more details the consequence of this analysis
interval on our observations.

We apply the model to each interval and we validate its
efficiency in computing the traffic. We focus on the first two
moments of the total data rate, namely the mean and the
variance. Considering the variance in addition to the mean
allows a better characterization of backbone traffic. As we
will see, the variability of the traffic on some links of the
backbone can be as high as 30% compared to the mean.
The importance of the first two moments of the traffic in
dimensioning backbone links will be illustrated in Section IX.

For each 30 minutes interval, we measure the coefficient
of variation of the total rateρR (standard deviation divided
by the mean), and we compare it to the value given by the
model. Our model only requires information on flows, which
we derive from the traces (e.g., average arrival rate of flows).

In the measurements, we use two definitions of “flow”:
(i) Flow defined by5-tuple, which is a stream of packets hav-
ing the same source and destination IP addresses, same source
and destination port numbers, and same protocol number.
(ii) Flow defined byprefix, which is a stream of packets having
the same /24 destination address prefix (i.e., only the 24 most
significative bits of the destination IP address are taken into
account).

In both cases, the size of a flow is measured in bytes,
while the duration is equal to the time difference between
the first and the last packet of the flow. In order to identify
the end of a flow, we use a fixed timeout of 60 seconds: if
the timeout expires before recording any additional packet, the
flow is considered completed. A flow made of only one packet
is discarded (the duration would be zero), and that packet is
not counted for the purpose of the mean and the variance of
the measured total rate. Flows that belong to more than one
30 minutes interval are split over the intervals they overlap. We
found that this artificial splitting affects only a small number
of flows, as shown in Figure 1. The graph on the left-hand side
shows the cumulative number of flows that arrive during one
30 minutes interval. We use the second definition of flow (i.e.,
/24 prefix) for this graph, since the splitting of flows has more
impact with this definition than with the first one (durations
of flows are longer in average with the second definition).
The second graph is a zoom around 0 of the first one. The
arrival rate remains pretty constant throughout the 30 minutes
interval, except for the first 0.4 seconds, where we count only
around 15,000 extra flows that are the continuation of flows
started in the previous interval, out of a total of 680,000
flows. We consider therefore that the splitting of flows on
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Fig. 1. Cumulative number of flows during one 30 minutes interval

these intervals has a nonzero, yet marginal effect on the arrival
process, and in order to keep the model tractable, we do not
correct for these effects.

As we mentioned in the Introduction, our model can operate
with any definition of flow. The definitions we consider in this
paper are no more than two examples of particular interest,
corresponding to two different aggregation levels.

IV. T HE MODEL

In this section, we describe the model (Poisson shot-noise)
used for data flows arriving on a backbone link. It is based on
the following two assumptions.

Assumption 1:Flow arrivals follow a homogeneous Poisson
process of finite rateλ.

This assumption can be relaxed to more general processes
such as MAPs (Markov Arrival Processes) [1], or non homoge-
neous Poisson processes [6], but we will keep working with
it for simplicity of the analysis. Poisson might be the right
model if we consider recent findings by [2], [8] about the
process of flow arrivals in the backbone of the Internet, where
a large number of flows are multiplexed. It is shown in [8]
that the distribution of flow inter-arrival times is very well
approximated by a Weibull with a shape parameter smaller
than 1, and that as the traffic intensity increases, flow inter-
arrival times become independent, whereas the Weibull shape
parameter gets close to 1. Thus, the flow arrival process tends
to be in good agreement with a Poisson process. This limit
is explained by well known results on the superposition of
marked point processes. The Poisson property is also known
to apply to aggregates at the session level [14], [22], [24]. Note
that since our model does not depend on a particular definition
of flow, one can group packets into sessions that have Poisson
arrivals, and apply the model at the session level.

We computed the distribution and auto-correlation of the
flow inter-arrival times on the collected traces. Indeed, we
found that they are close to those of a homogeneous Poisson
process having the same rate. We show the results for one
30 minutes interval in Figure 2. The other 30 minutes intervals
provide similar results. This figure corresponds to the two
definitions of flow. The graphs on the left-hand side show the
quantile-quantile plot (qq-plot) of flow inter-arrival times, and
those on the right-hand side show their coefficient of auto-
correlation for different lags. The low level of correlation is
clear from the graphs. The distribution of flow inter-arrival
times still has a slightly heavier tail than exponential, that
can be well modeled by a Weibull with shape parameter 0.96
in both figures. This heavy tail is of small importance for
our model given the relatively small number of points that
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Fig. 2. Distribution and auto-correlation of inter-arrival times{Tn+1−Tn}

deviate from the diagonal. Although it is a deviation from
our modeling assumptions, neglecting this heavy tail strongly
simplifies the computations without impacting too much the
model accuracy.

Denote byTn, n ∈ Z, the arrival time of then-th flow, bySn

its size (e.g., in bits), and byDn its duration (e.g., in seconds).
A flow is called active at time t when Tn ≤ t ≤ Tn + Dn.
Define Xn(t − Tn) as the transmission rate of then-th flow
at time t (e.g., in bits/s), withXn(t − Tn) equal to zero for
t < Tn and fort > (Tn +Dn). In other words,Xn(t−Tn) is
zero if flow n is not active at timet. We call Xn(·) the flow
rate functionor shot. Xn(·) depends onSn, Dn and on the
dynamics governing the flow rate. For example, for TCP flows,
the dynamics of the flow rate is a function of the dynamics of
the window size, which in turn is a function of the round-trip
time of the TCP connection, and of the features of the packet
loss process [1], [9], [12], [23]. Note that

∫ Dn

0

Xn(u)du = Sn. (1)

Our second assumption onXn(·) is as follows.
Assumption 2:Flow rate functions are independent of each

other and identically distributed.
The assumption on the independence of flow rate functions

is based on the following facts: (i) The link we consider
is a backbone link kept under-utilized by engineering rules.
It does not therefore experience congestion, and so it does
not introduce dependence among the flow rate functions. (ii)
The flows sharing this link have a large number of different
sources and destinations, and use many different routes before
being multiplexed on the backbone link. The assumption of
identical distribution can be relaxed by introducing multiple
classes (based on transport protocol, flow size, or any other
metric). We keep however a single class in this paper, hence
{Xn(·)} are iid (independent and identically distributed). A
direct consequence of Assumption 2 is that sequences{Sn}
and{Dn} also form iid sequences, although for the samen,
Sn andDn are obviously correlated: the largerSn, the larger
Dn (in general). Finally, we assume thatE [Dn] is finite.

We computed the auto-correlation of sequences{Sn} and
{Dn} on our traces. We found indeed that these sequences
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Fig. 3. Correlation of sequences{Sn} and{Dn}

exhibit little correlation. The result is illustrated in Figures 3,
where we show the auto-correlation coefficients of the two se-
quences for one 30 minutes interval, using our two definitions
of flow. The auto-correlation drops quickly to zero after lag-0.

DefineR(t) as the total rate of data (e.g., in bits/s) on the
modeled link at timet. It is the result of the addition of the
rates of the different flows. We can then write

R(t) =
∑

n∈Z
Xn(t− Tn). (2)

This model is aPoisson shot-noise process[6], [13], where
the term “shot” is synonymous here of “flow rate function”.
In the particular case whereXn(t − Tn) = 1{t∈[Tn,Tn+Dn]},
that is, where shots are rectangles of height 1 and lengthDn,
the process (2) is the number of clients found at timet in
an M/G/∞ queue [19], if clients are identified with flows.
We will allow however for “shots” with a more general shape
than a rectangle of height 1, and we will see that this is indeed
essential to characterize the total data rate on backbone links.

Next, we look for the moments of the processR(t) in the
stationary regime. We always assume that we have reached
the stationary regime, which exists for finiteλ and E [Dn].
We state a result for the Laplace Stieltjes Transform (LST)
of R(t), that allows to compute all moments ofR(t), as well
as its first order distribution. For the particular shapes of the
shot presented in Figure 4, we will see that with only three
parameters (λ, E [Sn] andE

[
S2

n/Dn

]
), our model is able to

compute the average and the variation of the backbone traffic.

V. PERFORMANCE ANALYSIS

A. LST and moments of the total rate

We state in this section the expression of the LST ofR(t),
which we denote as̃R(w) = E

[
e−wR(t)

]
, Re(w) ≥ 0. We

also give the expressions of the average and variance ofR(t),
which we denote asE [R(t)] andVR, respectively.

Let N(t) be the number of active flows at timet. Assump-
tions 1 and 2 imply that the total data rateR(t) at time t
is the sum of a random numberN(t) of iid random variables
which are the rates of active flows. This leads to the following
expression ofR̃(w).

nX  (t−T  )n

X  (t−T  )n n

X  (t−T  )n n

X  (t−T  )n n

T + DTn n n

n

T T + Dn n n

n

T T + Dn n n

n

T T + Dn n n

n

(a) Rectangular shot (b = 0)

(c) Sublinear shot (b < 1) (d) Superlinear shot (b > 1) 

(b) Triangular shot (b = 1)
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Fig. 4. Simple models for shots

Theorem 1 ([4]): For w ∈ C and Re(w) ≥ 0, the LST of
the total rate is

R̃(w) = exp

(
λE

[∫ Dn

0

e−wXn(u)du

]
− λE [Dn]

)
.

By differentiating with respect tow and then settingw to
0, the LST in Theorem 1 can give us all the moments of the
total rate in the stationary regime. In particular, the two first
moments are as follows:

Corollary 1: The average of the total rate isE [R(t)] =
λE [Sn], its variance isVR = λE

[∫ Dn

0
X2

n(u)du
]
.

The mean and variance of the total rate are two important
performance measures an ISP needs to know in order to
properly dimension the links of its network. A backbone link
has to be provisioned so as to absorb the average of the total
rate as well as its variations. In contrast to the average, our
model tells us that the variance of the total rate is a function
of the durations of flows and their rate functions. This requires
some assumptions (or more information) on the dynamics of
flow rate. Next, we provide approximations of the variance of
R(t) for some particular flow rate functions.

B. Two particular shot shapes

Before moving to more general models, let us examine the
two particular cases shown in Figure 4a and 4b.

1) Rectangular shots:First, we consider the case where
the rate of a flow is constant and equal toSn/Dn (which
gives the rectangular shot of lengthDn and heightSn/Dn

of Figure 4a). Corollary 1 yields that the variance ofR(t) is
equal toVR = λE

[
S2

n/Dn

]
.

The rectangular assumption is the simplest one; the only
generalization from an M/G/∞ model is the height of the
“shot” which is now variable. With this assumption, we only
capture the variation of the total rate caused by the variation
of N(t) and by the variation of the ratioSn/Dn. It is easy
to show that among all possible shot shapes, rectangular shots
achieve the lowest varianceVR of the total rate [4, Theorem 3].

2) Triangular shots:Another assumption is to consider that
the rate of a flow linearly increases with time (Figure 4b). This
assumption is inspired from the dynamics of TCP transfers
that form a large majority of the flows in IP backbones [15].
In Section VI-B, we will see that triangular shots are indeed
representative of TCP flows under some conditions. For a flow
of sizeSn and of durationDn, the rate is assumed to increase
linearly from zero to2Sn/Dn, with a mean equal toSn/Dn.
At a time t betweenTn andTn + Dn, we can writeXn(t−
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Tn) = (2Sn/D2
n)(t−Tn). Corollary 1 yields that the variance

of R(t) is equal toVR = 4λ
3 E

[
S2

n/Dn

]
. Again, the variance is

a multiple ofE
[
S2

n/Dn

]
. As expected, the variance is larger

than in the rectangular case (by a multiplicative factor4/3).

VI. D ETERMINATION OF THE SHOT

Once we have the shot functionXn(·), it is thus easy to
compute the moments of the aggregate rateR(t). But what
shot functionXn(·) should we choose ? This key question is
addressed in this section.

There are two different approaches to computeXn(·). The
first one consists in deriving it directly from measurements,
and is developed in Subsection VI-A. The second one uses
information from the protocol governing the flow dynamics,
and is developed in Subsection VI-B.

A. Measurement-based derivation of shot shapes

The first method is based onmeasurements. It has the
advantage of being protocol and application “agnostic”, which
preserves the generality of the model. The method consists
in fitting a parametric model of the shotXn(·) = xθ(·),
wherexθ(·) is an a priori chosen function parameterized by
a parameter vectorθ, which must satisfy the constraint (1).
Vector θ is then computed to minimize some error functional
between the experimental value of the distribution (or some
moments ofR(t)), and the value computed by Theorem 1.
From now on, we restrict our attention to the variance ofR(t),
and we computexθ(·) so that

V̂R = λE

[∫ Dn

0

x2
θ(u)du

]
, (3)

where V̂R is the actual empirical variance of the measured
aggregate rate.

As we have two equations (1) and (3), we need therefore
two parameters:θ = (a, b). A simple function is a power
function xθ(u) = aub, with b ≥ 0, as illustrated in Figure 4.
It includes, as particular cases, the rectangular (b = 0) and the
triangular (b = 1) shots.

Solving (1) yields thata = (b + 1)Sn/Db+1
n , and plugging

this value in (3) we get

V̂R = λ
(b + 1)2

2b + 1
E

[
S2

n

Dn

]
.

We deduce an estimate ofb, based on the measurement of
VR (and clearly ofλ andE

[
S2

n/Dn

]
). We find b = κ − 1 +√

κ2 − κ, with κ = V̂R/(λE
[
S2

n/Dn

]
) (note thatκ ≥ 1).

Of course, the introduction of a larger number of parameters
allows to fit xθ(·) to more moments than simplyVR. We will
use this expression ofb in Section VIII.

B. Protocol-based derivation of shot shapes

In some cases, we can make use ofprotocol informationto
derive the shape of shots, instead of measurements as in the
previous method. The typical example is TCP, whose dynamics
shapes the flows and can be captured by analytical models
(see [1], [18], [23] for an example of models for long-lived

TCP flows). An advantage of this method is that it allows the
simultaneous use of different shots for flows having different
dynamics. Its drawback is the difficulty to model flows that
do not have a well defined dynamics (e.g., uncontrolled UDP
flows, flows defined by their address prefixes).

We illustrate this method by modeling the shot of a long-
lived TCP flow. Even though long-lived TCP flows are cur-
rently not the majority among flows in the Internet, they
are known to carry an important part of Internet traffic [15].
Moreover, this type of flows is expected to grow considerably
with the arrival of data-greedy applications as Grid and Peer-
to-Peer. We present results for the variance of backbone traffic
VR, which is given by Corollary 1.

We consider a fluid model for TCP inspired from [1] – other
models, such as [12], could also be used. The transmission rate
Xn(t) is governed by the Additive-Increase Multiplicative-
Decrease (AIMD) mechanism of TCP: between congestion
events (we also call them loss events, since they are usually
the times at which a packet loss is detected by the sender),
the rate of TCP increases linearly with a slopeAn, which is
inversely proportional to the square of the average round-trip
time of the connection [1].An is assumed to be time-constant,
but is a random variable depending on(Sn, Dn). When a loss
event appears, the rate of TCP is divided by two. LetT l denote
the time at which thel-th loss event occurred, and letτl be the
time elapsed between thel-th and the(l + 1)-th loss events,
τl = T l+1 − T l. As in [1], we assume that the sequence of
inter-loss times{τl} is a stationary, ergodic renewal process,
which is independent ofDn andAn.

As the duration of thenth flow is limited toDn, we consider
the extension of the TCP flow to allt ∈ R, and denoteYn(t)
its rate. We have thusXn(t) = Yn(t)1{0≤t≤Dn}, where1{A}
is the indicator thatA has occurred. To computeVR we only
needXn(t) for 0 ≤ t ≤ Dn, where it coincides withYn(t).

We assume that the AIMD mechanism is the only one to
govern the dynamics ofYn(t), which is then stationary because
of the assumptions above [1]. It thus obeys the following
equation for allt ∈ [T l, T l+1):

Yn(t) = Yn(T l)/2 + An(t− T l), (4)

whereYn(T l) is the rate of thenth TCP flow just before the
l-th loss event (i.e.Yn(T l) = limt→T l,t<T l

Yn(t)).
Using this fluid model, we find an expression that upper

bounds the variance of Internet backbone traffic in the steady
stateVR, and that can be safely used instead of the variance for
network provisioning. This expression is stated in Theorem 2,
where τ̂ (k) = E

[
τk
l

]
/Ek [τl] denotes thek-th moment (k ∈

N) of the inter-loss times, normalized by the mean time
between loss events. Theorem 2 shows that the varianceVR is
upper bounded byλE

[
S2

n/Dn

]
multiplied by a coefficient that

only depends on the second and third normalized moments of
times between loss eventsτ̂ (2) andτ̂ (3). The knowledge of the
transmission rate slopeAn (which is a function of the round-
trip time) is not needed in the result. This upper bound on
the varianceVR in case of long-lived TCP flows has then the
sameexpression as the one obtained with “power-b” shaped
shots in Subsection VI-A, which confirms the importance of
power-b shots in capturing the dynamics of backbone traffic.
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Theorem 2:Assume that the sequence of inter-loss times
is a stationary ergodic renewal process. The variance of the
aggregate traffic satisfies

VR ≤ λ
2 + 4τ̂ (2) + τ̂ (3)

3
(
1 + 0.5τ̂ (2)

)2 E
[

S2
n

Dn

]
. (5)

Proof: Pick any timet ∈ R, and letl be the index of the
last congestion event that occurred beforet: T l ≤ t < T l+1.
Denote byEd

[
Y k

n (t)
]

= E
[
Y k

n (t) Dn = d
]

thek-th moment
of the transmission rate of then-th TCP flow, given thatDn =
d. The Palm inversion formula [1], [3] yields that

Ed

[
Y k

n (t)
]

=
E0

d

[∫ T l+1

T l
Y k

n (u)du
]

τ (1)
, (6)

where τ (k) = E
[
τk
l

]
is the (non-normalized)k-th moment

of the times elapsed between loss events, and where the
superscript 0 means that the expectation is taken conditionally
to T l ≤ t < T l+1. Inserting (4) in the numerator of the right-
hand side of (6), we find that, fork = 1,

Ed [Yn(t)] =
E0

d

[
Yn(T l)

]
τ (1) + Ed [An] τ (2)

2τ (1)
. (7)

and, fork = 2,

Ed

[
Y 2

n (t)
]

=

1
4
E0

d

�
Y 2

n (T l)
�
τ (1) + 1

2
E0

d

�
Yn(T l)

�Ed [An] τ (2) + 1
3
Ed

�
A2

n

�
τ (3)

τ (1)
.

(8)

SinceE0
d

[
Yn(T l+1)

]
= E0

d

[
Yn(T l)

]
= Ed

[
Yn(T l)

]
, set-

ting t = T l+1 in (4) and taking expectations, we find that

E0
d

[
Yn(T l)

]
= 2Ed [An] τ (1). (9)

Similarly, elevating both sides of (4) to the square and taking
expectations, and using (9), we find that

E0
d

[
Y 2

n (T l)
]

=
4
3

(
2

(
Ed [An] τ (1)

)2

+ Ed

[
A2

n

]
τ (2)

)
.

(10)
Inserting (9) in (7), we obtain

Ed [Yn(t)] = Ed [An] τ (1)(1 + 0.5τ̂ (2)). (11)

Now, taking expectations on both sides of (1) and remember-
ing that Xn(t) = Yn(t) for 0 ≤ t ≤ d, we obtainEd [Sn] =
Ed

[∫ Dn

0
Xn(u)du

]
=

∫ d

0
Ed [Yn(u)] du = dEd [Yn(t)], be-

causeYn(t) is stationary. Therefore, we can write (11) as

Ed [An] = Ed [Sn] /(dτ (1)(1 + 0.5τ̂ (2))). (12)

Likewise, inserting (10) and (9) in (8), we obtain

Ed

[
Y 2

n (t)
]

=
1
3

(
2E2

d [An]
(
τ (1)

)2

+ Ed

[
A2

n

]
τ (2)

+3E2
d [An] τ (2) + Ed

[
A2

n

]
τ (3)/τ (1)

)
. (13)

Let us now compute the upper bound onVR by conditioning
on An = a. Denoting Ead [·] the operator of conditional

expectation givenAn = a andDn = d, we obtain from (12)
and (13) that

Ead

[
Y 2

n (t)
]

=
2 + 4τ̂ (2) + τ̂ (3)

3
(
1 + 0.5τ̂ (2)

)2

E2
ad [Sn]
d2

.

Consequently, Corollary 1 and the stationarity ofYn(t) imply
that

VR = λ

Z
Ead

�Z Dn

0

X2
n(u)du

�
dPAn,Dn(a, d)

= λ

Z �Z d

0

Ead

�
Y 2

n (u)
�
du

�
dPAn,Dn(a, d)

= λ

Z
dEad

�
Y 2

n (u)
�
dPAn,Dn(a, d)

= λ
2 + 4τ̂ (2) + τ̂ (3)

3 (1 + 0.5τ̂ (2))
2

Z E2
ad [Sn]

d
dPAn,Dn(a, d)

≤ λ
2 + 4τ̂ (2) + τ̂ (3)

3 (1 + 0.5τ̂ (2))
2

Z Ead

�
S2

n

�
d

dPAn,Dn(a, d)

= λ
2 + 4τ̂ (2) + τ̂ (3)

3 (1 + 0.5τ̂ (2))
2 E

�
S2

n

Dn

�
wherePAn,Dn

is the joint probability measure ofAn andDn.
¤

This theorem enables us to link the powerb used in the
parametric shot model of Section VI-A with the burstiness
of the congestion events. It is interesting to look at some
particular sequences of congestion events, to see to which
value ofb they correspond.
(i) When times between congestion events are equal (τ̂ (i) = 1),
the variance of backbone trafficVR is upper bounded by
(28/27)λE

[
S2

n/Dn

]
. This is slightly larger than what we

obtain with rectangularshots.
(ii) When congestion events follow a homogenous Poisson
process (̂τ (i) = i!), the variance of backbone traffic is upper
bounded by(4/3)λE

[
S2

n/Dn

]
, exactly the same variance we

obtain with triangular shots.
(iii) Burstier congestion processes result in larger values ofb.

VII. PRACTICAL USE OF THE MODEL

A. Moments ofR(t) and averaging interval

In reality, the total measured ratêR(t) at a certain timet
is computed by averaging and sampling the volume of data
(e.g., number of bytes) that cross the backbone link during a
short time intervalδ aroundt:

R̂(t) =
1
δ

∫ (k+1)δ

kδ

R(s)ds,

with t ∈ [kδ, (k + 1)δ), k ∈ Z. δ denotes the length of
the averaging and sampling period. The measured rateR̂(t)
appears thus as a piecewise constant function, with segments
of lengthδ. It amounts to convolve the instantaneous rateR(t)
by a linear filter of impulse response1{0≤t<δ} before taking
the samples. Except for the first one, the moments ofR̂(t)
depend onδ: the longer the averaging interval, the smoother
the total rate (at least for non self-similar traffic). We can
compute that the variance of̂R(t) (the measured variance) is

V̂R =
2
δ

∫ δ

0

(1− τ/δ)CR(τ)dτ, (14)
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with CR(τ) = E [R(t− τ)R(t)] − E [
R2(t)

]
being the auto-

covariance function of the total rateR(t). We give the expres-
sion of CR(τ) in Theorem 2 in [4].

SinceCR(τ) ≤ VR, the above expression of̂VR is always
smaller thanVR. The scaling factor betweenVR and V̂R

requires the knowledge ofCR(τ). Clearly, if CR(τ) does not
decrease too rapidly in[0, δ], both variances will remain close
to each other. Consequently, we do not take into account the
averaging of the data rate in the model, but we rather keepδ
small so thatCR(τ) remains close toCR(0) = VR in [0, δ].
VR can then be safely used as an approximation ofV̂R, which
models the variance of the measured samples of the total rate.
Taking large values ofδ amounts to smooth the traffic and
hence to make the measured varianceV̂R sensibly smaller than
VR. Note that one can always computêVR by plugging the
expression ofCR(τ) given by Theorem 2 in [4].

Before using our model, an ISP has to choose a valueδ of
the averaging interval. It can be the longest busy period (i.e.,
period where the utilization of the link is 100%) allowed by
the ISP. It is also the interval below which the ISP does not
care about the congestion of the network, possibly because
this short-term congestion is absorbed by the buffers at the
inputs of links. If the chosen valueδ is small enough so that
the auto-covariance functionCR(τ) slowly decreases in[0, δ],
VR can be used by the ISP as an approximation of traffic
variability (for network dimensioning issues), otherwiseV̂R

has to be computed and used (using (14) and Theorem 2
in [4]). In what follows, we will choose as averaging interval
the (average) round-trip time of flows (200 ms), since we know
that most of the flows take more than one round-trip time to
end. Our choice is also motivated by the fact that TCP flows
update their transmission rates approximately once per round-
trip time. Recall that the averaging interval is a parameter that
can be set by the ISP to any other value than the round-trip
time, depending on the maximum burstiness it tolerates at the
inputs of the links of its backbone.

B. Complexity of the model

Our model requires few parameters to characterize the
backbone traffic. The first two moments of the traffic can
be computed with only three parameters:λ, E [Sn], and
E

[
S2

n/Dn

]
.

In this paper, we compute the parameters of the model
off-line. We infer their values from statistics on the pro-
cesses{Sn} and {Dn}. The computation is simple and it
only requires an averaging over the different samples of the
processes. An implementation of the model would require an
online computation of these parameters with, for example, an
Exponentially Weighted Moving Algorithm, such as the one
used by TCP to estimate the average round-trip time.

We leave the problem of the online estimation of the
parameters of our model for future research. Our main ob-
jective in this paper is to validate the model and to show its
usefulness for provisioning and managing IP networks. Given
that our model requires few parameters, we believe that it is
simpler (in term of computation cost and implementability in
an operational environment) than a packet level model that

provides the same information about the traffic. The latter
could however provide additional, more detailed information.

VIII. E XPERIMENTAL VALIDATION

In this section we validate our model using the traces
collected on the Sprint IP backbone, and presented in Sec-
tion III. We compare the real coefficient of variation of the
total rate ρ̂R =

√
V̂R/E [R], with the results obtained from

our modelρR =
√

λE
[∫ Dn

0
X2

n(u)du
]
/(λE [Sn]), when the

inputs of the model (i.e., flow arrival rateλ and the expectation
of S2

n/Dn) are directly derived from the traces. Samples of
the total rate are computed using averaging intervals of 200
ms. This is comparable with the average round-trip time we
measure on these links (Section VII-A).

Even if experimental data are in good agreement with
Assumptions 1 and 2, the measurement process introduces two
differences with the model of Section V. We already addressed
these two differences.
(i) The first difference is the averaging and sampling of the
measured rate at a periodicity of 200 ms, which will lead to an
experimental value of variancêVR smaller than the variance
of the instantaneous rateVR, as explained in Section VII-A.
We have indeed observed on experimental data that the longer
the averaging interval, the smaller̂VR. Therefore, we expect
to find a few occurrences of an empirical valueV̂R smaller
than the lower bound onVR obtained with rectangular shots.
(ii) The second difference is the splitting of flows located on
the boundaries of the 30 minutes intervals. As we explained in
Section III, the number of these flows is very small compared
to the total number of flows that arrive in the intervals, and
the splitting has therefore a negligible impact.

These two sources of errors are unavoidable: the first
one because traffic is packet-based and not fluid, so that
the measurements must be averaged over intervals of some
minimal length, and the second one because we need to divide
the trace into intervals short enough to keep the arrival process
stationary and to reduce the volume of data to manipulate.

A. Results

In this section we do not present results on the first moment
of the total rate, since it is computed by our model and by
measurements in exactly the same way. We only present results
concerning the coefficient of variation of the traffic. All figures
presented in this section are plotted using the log-log scale.

In Figure 5 we compare the coefficient of variation com-
puted via measurements (ρ̂R) with that given by our model
(ρR) with parabolic shots (b = 2). These results refer to the
first definition of flow using the 5-tuple. Each point in the
figure corresponds to a 30 minutes interval. A cross indicates
that the average rate during that interval is below 50 Mbps; a
triangle is used for those intervals with an average rate between
50 and 125 Mbps; the dots are used for rates above 125 Mbps.
The x-axis shows the measured coefficient of variation of the
total rate, while the y-axis shows the coefficient of variation
given by the model. A point on the diagonal crossing the
figure represents a perfect match between the model and the
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Fig. 5. Coefficient of variation of the total rate with parabolic shots and
flows defined by the 5-tuple

measurements. The two dashed lines identify the bounds for
an error in the estimate of 20%. We notice a good match
between the model and the measurements. Rectangular and
Triangular shots (results not included for lack of space) often
under-estimate the real coefficient of variation since they do
not capture all the dynamics of flow rates.

The above figure shows three clusters of points, that can be
easily distinguished. The interpretation is simple and is related
to the fact that we are collecting traces on many diverse links,
with three main different utilization levels (Section III). As
we will explain in Section IX-.1, backbone traffic becomes
smoother when the arrival rate of flowsλ increases. An
increase in the arrival rate of flows is the main responsible for
the increase in the utilization among the links, since it is safe to
assume that the average file size is the same on all links of the
backbone (Corollary 1). Links with higher utilization (above
125 Mbps) exhibit very low variation, and, thus contribute to
the first cluster of points at the bottom-left corner of the figure.
Those links with a medium utilization (between 50 and 125
Mbps) are represented by the cluster in the middle. Finally, the
links with the lowest utilization (below 50 Mbps) exhibit the
highest traffic variability (around 30%), and yield the cluster
of points on the right-hand side of the figure.

In Section VI-A, we explained how the optimal powerb can
be computed from a trace so that the variance of the total rate
given by our modelVR matches that given by measurements
V̂R. For the different 30 minutes traces, we compute this
optimal power and we plot its histogram in Figure 6. The
average value ofb over all the traces is equal to1.98, which
means that parabolic shots are in average the most suited to
model traffic when flows are defined by the 5-tuple (from
variation point of view). We are currently working on the
interpretation of the difference in the value ofb among the
traces. A possible reason could be the difference in file sizes:
small files require a large value ofb due to the slow start phase
of TCP, and large files require a small value ofb due to the
slow window increase in TCP congestion avoidance mode.

Figure 7 provides the coefficient of variation for the second
definition of flow based on destination address prefixes. We
plot the case with rectangular shots (b = 0). The use of
rectangular shots seems to be able to capture the variability of
the traffic aggregate at the level of destination address prefixes.
This is probably due to the fact that such a level of aggregation

Fig. 6. Powerb of flow rate functions with flows defined by the 5-tuple
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Fig. 7. Coefficient of variation of the total rate with rectangular shots and
flows defined by destination address prefix

“dilutes” the impact of specific transport protocol mechanisms
on the total rate. We also note that some points are above the
diagonal, meaning the measured variance is smaller than the
variance predicted by the model with rectangular shots, in an
apparent disagreement with [4, Theorem 3]. This is due to the
non-zero averaging interval, as explained in Section VII-A.

This result shows that our model can estimate the total rate
and its variance independently of the protocol or application
characteristics. The ability of defining a flow through the
destination prefix greatly reduces the complexity of a possible
implementation. Indeed, on our traces, the number of flows of
which a router would need to keep track is reduced on average
by one order of magnitude when using a /24 destination
prefix. A straightforward extension to this flow definition
would be the use of “routable” prefixes (i.e., prefixes present
in the forwarding table of the router) to define flows. Such an
extension would result in an additional decrease of the burden
for the router given the level of flow aggregation (with /8 and
/16 prefixes, for example) that could be achieved.

IX. A PPLICATION OF THE MODEL TO NETWORK

DIMENSIONING AND MANAGEMENT

We discuss in this section some applications of our model
to network dimensioning and management. The list is not
exhaustive, but it is enough to highlight the role that such a
model may have in the engineering of IP backbone networks.

Suppose that an ISP collects statistics on flow sizes, flow
durations, and flow arrivals (for example with tools such as
Cisco NetFlow). With this sole information, the ISP is able
to compute the moments of the total rate. This way, the ISP
would have more detailed information than that provided by
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SNMP (one of the problems of SNMP is that it does not
capture traffic variation at short time scales).

The information on flows can be collected on the link we
want to monitor. It can also be collected at the edges of the
backbone. Combined with the routing information in the edge
routers, this will give information on flows on each link of the
backbone. Our model can then be used to compute the traffic
on the links of the backbone, by only monitoring the edges.

The detailed information provided by our model on the
traffic helps to dimension backbone links. Given the character-
istics of flows composing the traffic, the links of the backbone
network can be dimensioned so as to avoid congestion. Note
that for a highly variable traffic, dimensioning the links of the
backbone based only on the average utilization is not enough
to avoid congestion. Traffic variability should be considered,
which is allowed by our model. Rate variation at short time
scales are very useful in the definition of the buffer size and
in the evaluation of the maximum queuing delay. In the case
we collect information on flows at the edges, our model can
help in routing flows in the backbone, with the objective to
optimize the utilization of the available resources.

Computing the traffic in the backbone using information
on flows is not the only application of our model to network
dimensioning and management. A key problem the operator
faces is the planning of the upgrades of the backbone links,
in order to maintain the absence of congestion. What is the
impact on the link utilization caused by a change in the
distribution of flow sizes, due for example to the arrival of
a new application or the addition of a new big cluster of
servers resulting in large transfer sizes? What is the impact
on the link utilization caused by a change in flow durations,
due for example to an increase in the number of users in the
congested access networks, resulting in longer flow durations?
What is the impact caused by a simultaneous change in flow
sizes and durations, due for example to an upgrade of the
access networks, resulting in shorter flow durations but larger
file transfers? What is the impact on the traffic of a change
in the shot shapeXn(·), which may follow a change in the
application or in the transport protocol? The model presented
in this paper can be used to answer these important questions.

We illustrate this application by the following two examples.
The first example shows the impact of a change in the flow
arrival rateλ on the traffic, and hence on the dimensioning of
the backbone. The second example shows the impact of the
sizes and the durations of flows.

1) Impact of the flow arrival rate:Consider the case when
the joint distribution of flow sizes and flow durations is
stationary over long time intervals, and does not depend on the
flow arrival rate2. Suppose that the ISP sets the bandwidth of
its links toE [R(t)]+A(ε)

√
VR, whereA(ε) is theε-quantile of

the centered and normalized total rateR(t), i.e., the value such
P

{
R(t) >

(
E [R(t)] + A(ε)

√
VR

)}
= ε, 0 < ε < 1. ε is the

congestion probability. The moments ofR(t) in this expression
of the bandwidth are given by our model (Corollary 1). For

2In the other case, a model has to be developed for the rest of the Internet,
to evaluate the impact of a change in the arrival rate of flows on the joint
distribution of flows sizes and flow durations. We will address this problem
in a future research.

a large averaging interval,VR needs to be corrected using
(14). The functionA(ε) can be computed using the Gaussian
approximation3, which gives for exampleA(0.05) = 1.96.
When the arrival rate of flows increases, the bandwidth of
the backbone links has to be increased as well, since the
first and second moments ofR(t) increase withλ. However,
while the first moment ofR(t) increases asλ, the standard
deviation of R(t) increases as

√
λ. This indicates that the

coefficient of variation ofR(t) decreases as1/
√

λ. Concretely,
this means that the traffic in the backbone becomes smoother
and smoother when more and more flows are multiplexed. The
consequence of this smoothing is that the ISP does not need to
scale the bandwidth of its links linearly withλ. (S)He can gain
in bandwidth by accounting for the smoothing of the traffic.

2) Impact of flow sizes and flow durations:We study in
this section the impact of the sizes of flows{Sn} and their
durations{Dn} on the first two moments of the traffic, and
hence on the dimensioning of the backbone.

The average rate of the backbone traffic depends only on
E [Sn] (Corollary 1). The study of the variance of the traffic
is more complicated since the varianceVR depends on the
shot shape, and on the joint distribution of{Sn} and {Dn}
(Corollary 1). We focus on the “power-b” shots of the form
X(u) = aub, b ≥ 0. As shown in Section VI-A, the variance
of the traffic in presence of such shots only depends on
E

[
S2

n/Dn

]
(with a multiplicative factor function of the flow

arrival rateλ and the powerb). Section VI-B shows that this
relationship also holds in case of long-lived TCP flows. For the
same average flow size and the same average flow duration, the
backbone traffic may have different variation if we consider
different joint distributions of{Sn} and {Dn}. To simplify
the analysis of the variance, we consider the two extreme
cases: (i)Sn and Dn are independent, and (ii)Sn and Dn

are strongly positively correlated. These two cases provide
respectively upper and lower bounds on the variance of the
backbone traffic.
(i) When Sn and Dn are independent, the variance of the
traffic VR is proportional toE

[
S2

n

]
E [1/Dn]. This value can

be considered as an upper bound on the variance of the traffic
in case of negative correlation betweenS2

n and 1/Dn. We
will assume that such a negative correlation holds, which
seems a reasonable assumption since the larger the size of
a flow, the longer in average its duration. We note here that
VR is proportional to the variance ofSn. VR can be very
large when the sizes of flows are heavy-tailed. Two sets of
flow sizes having different variances result in different traffic
variability, even if their averages are the same. The tail ofDn

does not have an impact on the variance, sinceDn is in the
denominator, but for the very same reason, small values ofDn

can leadVR to be very large.
We check the correlation betweenS2

n and1/Dn using our
traces. The above upper bound is correct if these two random
variables are always negatively correlated. For each 30 minutes
trace, and using both definitions of flow (/24 prefix and 5-
tuple), we compute the coefficient of correlation betweenS2

n

3Since the total rate is the resut of multiplexing ofN(t) flows of
independent rates, the Central Limit Theorem tells us that the distribution
of R(t) tends to Gaussian at high load, which is typical of backbone links.
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Fig. 8. The coefficient of correlation betweenS2
n and 1/Dn for 5-tuple

(top) and /24 destination address prefix (bottom) definitions of flow, and for
each 30 minutes long trace

and1/Dn. The results are plotted in Figure 8. All the traces
present negative correlation coefficient, which validates our
assumption. We notice in the figure the small value of the
correlation coefficient, which is mostly due to the high level
of multiplexing in the backbone. The variance of the traffic is
then close to that given by the above upper bound.
(ii) The second case, which provides a lower bound on
the variance of the traffic, corresponds to a strong positive
correlation betweenSn and Dn. We suppose that these two
variables are proportional to each other via a positive constant
r, i.e., Sn = rDn, ∀n. Note that the correlation coefficient of
Sn andDn is here equal to its maximum value 1.

The quantityr can be seen as the individual throughput
of flows. There are many scenarios in which the throughput
of a flow can be independent of its size. This is generally
the case when the duration of the flow is long compared to
its transient phase. In case of TCP,r can be the throughput
imposed by the receiver advertised window.r can also be
the throughput imposed by the available bandwidth in the
network (i.e., Internet access via a slow modem line), or by
the congestion control mechanisms of TCP. We refer to [25]
for a discussion on the different possible meanings ofr.

It is easy to see that a strong positive correlation between
Sn andDn provides indeed a lower bound on the variance of
the trafficVR. Applying Hölder’s inequality to the product of
the two random variablesSn/

√
Dn and

√
Dn, we have that

E2 [Sn] = E2

�
Sn√
Dn

√
Dn

�
≤ E

"�
Sn√
Dn

�2
#
E
h√

Dn
2
i

= E
�

S2
n

Dn

�
E [Dn] ,

from which we obtain the following lower bound on
E

[
S2

n/Dn

]
(and therefore onVR):

E
[

S2
n

Dn

]
≥ E2 [Sn]
E [Dn]

.

The bound is reached whenSn = rDn for some r > 0
(in which caseSn and Dn have a maximal correlation), and
is equal toE

[
S2

n/Dn

]
= rE [Sn] . Contrary to the case

whereSn andDn were independent, the varianceVR is now
only sensitive to the average flow size and to the individual
throughput of flowsr. We directly compute that it is equal to
(b+1)2/(2b+1)rE [R(t)] for power-b shots. This means that

whenSn = rDn, the variance changes only if eitherr or the
average trafficE [R(t)] does. For example, whenr increases
(due for example to an upgrade of user access lines or to
a change in network protocols), the coefficient of variation
of the total rate increases as

√
r, even though the average

utilization is the same (the traffic in the backbone becomes
more variable). The increase in the coefficient of variation
is less important than the increase inr due to the statistical
multiplexing of flows in the backbone. The ISP can then use
this result to anticipate the increase in traffic variability, and
to appropriately upgrade the links of its backbone.

To illustrate the impact that the correlation betweenSn and
Dn can have on the variance of the trafficVR, we consider
the following example, whereSn andDn are generated from
Pareto distributions, but with same average values as those
obtained from the traces. Denote byS (resp.D) the average
size (resp. the average duration) of flows obtained from
measurements. Our idea is to control the correlation between
Sn and Dn, while keepingE [Sn] = S and E [Dn] = D.
This control is not possible without the following artificial
construction of flow sizes and durations.

A Pareto random variableV has a Cumulative Distribution
FunctionP {V ≤ v} = 1−(v/a)−β [17]. a > 0 is the starting
point of the variable andβ > 1 its shape parameter. The mean
of a Pareto random variable is equal toE [V ] = aβ/(β − 1).
The variance of a Pareto random variable increases when its
shape parameterβ decreases, and becomes infinite whenβ ≤
2. The Pareto random variable is said to be heavy-tailed, since
its tail decreases polynomially rather than exponentially. This
variable is often used to model the heavy-tailed nature of the
distributions of flow sizes and flow durations in the Internet
(see [2], [11], [24] for examples).

First, we assume that the marginal distribution ofSn is
Pareto, with shape parameterβS and of averageS. We
consider two values forβS : 1.5 and 2.5. We defineDn as

Dn = w
D

S
Sn + (1− w)Vn, (15)

whereVn is a Pareto random variable, with shape parameter
βD and of averageD, independent ofSn, and wherew ∈
[0, 1]. We give two values toβD: 1.5 and 2.5. The coefficient
w is used to vary the correlation betweenSn andDn; when
w = 0, both variables are independent Pareto variables; when
w = 1, both variables are maximally correlated. Note that the
average value ofDn generated according to (15) is equal to
D. If βD andβS are larger than 2, we can compute that

w =
COV [Dn, Sn]S

V AR[Sn]D
. (16)

Second, we giveSn the values we measure on our traces,
while generatingDn according to (15).Vn is still a Pareto
random variable, with shape parameterβD and of averageD,
independent ofSn.

We plot the varianceVR as a function ofw for different
values ofβS , βD, S and D. We consider rectangular shots
(b = 0), which yieldsVR = λE

[
S2

n/Dn

]
. The plots are shown

in Figure 9. The value of the flow arrival rateλ is computed
from the traces. Figure 9 shows the plots obtained when both
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Fig. 9. Variance of the traffic vs. weightw representing the correlation
betweenSn and Dn. Top: 5-tuple definition of flow. Bottom: /24 prefix
definition of flow

Sn andVn are generated from Pareto distributions, as well as
the plots obtained when onlyVn is generated from a Pareto
distribution, whileSn is given real flow size values. We remark
that the varianceVR (proportional toE

[
S2

n/Dn

]
) decreases

when Sn and Dn become correlated. Forw ' 1 (strong
correlation),VR is insensitive to the marginal distributions
of Sn and Dn, and only sensitive to their averages. For
w ¿ 1 (weak correlation),VR is sensitive to the marginal
distributions ofSn and Dn. The heavier the tail ofSn, the
larger the variance of the traffic. Our traces indicate that on a
backbone link,w is usually small (weak correlation between
Sn and Dn), given the high level of multiplexing of flows
in the backbone. For the traces considered in Figure 9, the
coefficientw computed according to (16) (using the real sizes
and real durations of flows) is equal to 0.019 and 0.034,
respectively. We also remark in Figure 9 thatVR increases
when βD decreases, for the simple reason that with a small
value of βD, the realization ofDn will sometimes take very
small values. The correlation betweenSn andDn is then an
important factor impacting the varianceVR. Depending on
their correlation, the marginal distributions ofSn andDn have
thus a very different influence on traffic variability, and hence
on network dimensioning.

X. CONCLUSIONS

We proposed a traffic model for uncongested backbone links
that is simple enough to be used in network operation and
engineering. The model relies on Poisson shot-noise. With
only 3 parameters (λ, arrival rate of flows,E [Sn], average
size of a flow, andE

[
S2

n/Dn

]
, average value of the ratio

of the square of a flow size and its duration), the model is
able to find good approximations for the average traffic on a
backbone link and for its variations at short timescales. The
model is designed to be general so that it can be easily used

without any constraint on the definition of flows, nor on the
application or the transport protocol.

We are working on various extensions of our work. We state
in [4] a result for the auto-covariance function of the total
rate. Using this result, we are investigating the correlation of
Internet traffic and its relation with the flow arrival process,
the shot shape, and the distributions of flow sizes and flow
durations. We are also studying the gain of introducing classes
of flows with a different shot for each class. This will solve
the problem when the flow rate functions do not have the
same distribution. Finally, we are evaluating the worthiness of
considering more complex flow arrival processes than Poisson.
The challenge is to improve our evaluation of the traffic
without much increasing the complexity of the model.
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