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Abstract 

In this paper we present a speaker recognition algorithm that 

models explicitly intra-speaker inter-session variability. Such 

variability may be caused by changing speaker characteristics 

(mood, fatigue, etc.), channel variability or noise variability. 

We define a session-space in which each session (either train 

or test session) is a vector. We then calculate a rotation of the 

session-space for which the estimated intra-speaker subspace 

is isolated and can be modeled explicitly. We evaluated our 

technique on the NIST-2004 speaker recognition evaluation 

corpus, and compared it to a GMM baseline system. Results 

indicate significant reduction in error rate.   

1. Introduction 

The Gaussian mixtures model (GMM) algorithm [1-3] has 

been the state-of-the-art automatic speaker recognition 

algorithm for many years. The GMM algorithm first fits a 

parametric model to the target training data and then 

calculates the log-likelihood of a test utterance given a target 

speaker assuming frame independence. In [6] it was claimed 

that the GMM based algorithm has a severe drawback because 

it assumes there is no intra-session dependency. However, 

considerable intra-session dependency does exist. This 

dependency may be attributed to channel, noise, and changing 

speaker characteristics (mood, fatigue, etc.). It is reasonable to 

assume that these factors are constant during a single session 

but change between sessions. The focus of this work is to 

model explicitly this intra-speaker variability. 

In [4, 5] a new speaker recognition technique named TUP 

was presented. The idea is to train GMMs not only for target 

speakers but also for the test sessions, hence the name TUP 

(test utterance parameterization). The likelihood of a test 

sessions is calculated using only the GMM of the target 

speaker and the GMM of the test session. 

In [6] a novel model for generation of test sessions was 

presented in which each speaker is modeled by a prior 

distribution over all possible GMMs instead of being modeled 

by a single GMM. This model is based on an assumption that 

at the beginning of a spoken session, a GMM is selected from 

the speaker's prior distribution, and the frames for the session 

are generated independently using the selected GMM. This 

new generative model is not naturally incorporated under the 

classical GMM framework but is naturally incorporated under 

the TUP framework. In [6], a simple prior distribution over 

the GMM space was proposed, and both training and testing 

algorithms were presented.  In [13], intra-speaker variability 

was modeled using factor analysis. 

In this paper we extend the work in [6] by assuming more 

realistic assumptions on the process of GMM generation that 

lead to two alternative prior distributions over the GMM 

space. We present algorithms to train these distributions and 

to compute the likelihood of a test utterance given a target 

speaker. More specifically, we factor the GMM space into 

two subspaces. One subspace is of low dimension and 

includes the estimated intra-speaker inter-session variability. 

The second subspace is of high dimension and is modeled by 

a simple distribution. 

The organization of this paper is as follows: we overview the 

TUP framework in section 2. We present the generative model 

and the corresponding training and testing algorithms in 

section 3. Section 4 describes the experimental setup and the 

results. Section 5 analyzes the complexity of the test 

algorithm. Finally, section 6 presents conclusions and 

proposed future work. 

2. Test utterance parameterization (TUP) 

The basic idea of the TUP framework [4, 5] is to view a 

GMM not as a classifier but only as a representation for 

speech sessions. Therefore, estimating a GMM is actually a 

feature extraction process and should be done for both train 

and test sessions. The TUP framework is summarized by the 

following procedure: 

 

1. Estimate GMM Q for target speaker. 

2. Estimate GMM P for test session. 

3. Compute score S=S(P, Q). 

4. Normalize score (T-norm, Z-norm, H-norm etc.) using P, 

Q, and possibly other GMMs (universal background 

model – UBM, cohort speakers, etc.).  

In [4, 5] it was shown that there exists a function S in the 

form of S(P,Q) that approximates the log-likelihood of a test 

utterance given a GMM fitted to a target speaker. The 

motivation for using the TUP framework in [4, 5] was the task 

of speaker retrieval in large audio archives. For this task the 

TUP framework achieved a considerable speedup.  In [6] the 

motivation for using the TUP framework was to be able to 

exploit a new model for generation of speech by speakers, and 

it was found that the TUP framework is flexible and is 

suitable for implementing complex generative models. 

3. Session-GMM generative model 

In [6] a model for the generation of test sessions was 

presented. We present an outline of the model in subsection 

3.1 and present our new results in the following subsections. 

  

 3.1   The Generative model 

 

The classic GMM algorithm assumes that every speaker can 



be modeled by a single GMM. The generative model implied 

by the GMM algorithm is that every frame is emitted by that 

single GMM independently from other frames. Consequently, 

if 2 utterances are spoken by the same speaker and are long 

enough, they should have identical empirical distributions 

(when length approaches infinity). Unfortunately, this is not 

the case. In reality there exist session-dependent factors that 

cause the distribution of different sessions of the same speaker 

to deviate from each other. A generative model that models 

explicitly such variability is the following: 

 

Generate session: 

1. Generate GMM P for current session according to a 

speaker dependent prior distribution over the GMM 

space. 

2. Generate a sequence of frames by independent generation 

of feature vectors according to GMM P. 

A session-GMM is the GMM distribution used to generate 

the frames of a single session.  Each speaker is modeled as a 

prior distribution over session-GMMs. We define G as a 

GMM in the GMM-space, and derive the likelihood of an 

observed session X given speaker S as: 
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In order to develop simple and tractable training and 

scoring algorithms equation (1) is approximated by assuming 

that the distribution Pr(X|G) is much sharper than distribution 

Pr(G|S). Therefore, defining P as (equation (2)): 
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the likelihood of a test session X given speaker S can be 

approximated by: 

 

                        ( ) ( )SPSX PrPr ≅                               (3) 

 

3.2. The prior distribution Pr(session-GMM | speaker) 

 

We verified empirically [6] that the covariance matrices and 

the weights of the GMMs can be shared among speakers and 

sessions. Therefore, the speaker dependent prior distribution 

over the GMM space Pr(P|S) needs only to model the means 

of GMM P. We embed GMM P into a high dimensional 

Euclidean space by concatenating the means of GMM P into a 

single high dimensional vector µ. We assume that the 

distribution of µ is multivariate Gaussian. For every speaker 

the mean of the distribution of µ can be easily estimated from 

the training data of the speaker.  

The covariance of the distribution is an nxn matrix Σ. A 

typical size of n is 50,000. In order to estimate Σ robustly we 
assume all speakers share a global Σ. In order to train Σ we 

take pairs of same speaker sessions from a development 

corpus. For each pair we train two GMMs and calculate the 
difference of the corresponding means of the GMMs: 

21 µµδ −= .The mean of the random vectorδ equals 0  and 

the covariance of δ  equals 2Σ. Therefore we can estimate Σ 

from a collection of difference vectors {δ } calculated over 

pairs of same-speaker sessions pooled from different speakers. 
Obviously, a full covariance matrix cannot be estimated 

robustly from the training sessions. One feasible possibility of 

assuming a diagonal covariance matrix was explored in [6]. 

However, there is empirical evidence that the elements of µ 

are highly correlated. We suggest two alternative algorithms 

to estimate the covariance matrix Σ robustly.  

The first algorithm is based on an assumption that Σ=Q-1 

Σ'Q where Q is a rotation matrix and Σ' is an nxn matrix 

which is diagonal excluding its full upper left mxm block. The 

upper left mxm block of Σ' is supposed to represent the intra-

speaker inter-session variability. m is chosen to be the 

dimension of the intra-speaker inter-session subspace spanned 

by the training data. Therefore we choose Q to transform the 

basis of the original GMM space into a new basis in which 

the first m vectors span the estimated subspace of intra-

speaker inter-session variability. The algorithm for computing 

Q is detailed in the following subsection. Σ' can be robustly 

estimated because it is mostly diagonal and the upper left mxm 

full block is guaranteed to be non-singular due to the 

definitions of Q and m. The elements of the diagonal beneath 

the upper-left block are set to a small value ε. We found out 

that the algorithm is not sensitive to the actual value of ε. The 

algorithm is outlined in figure (1).  

 

 

 
Figure 1: Computing a rotation matrix Q for which the 

covariance matrix is singular in the upper mxm block and the 

diagonal elements beneath are set to ε. 

 

The second algorithm is a modification of the previous 

one but exploits pre-knowledge about the structure of the 

GMM space. The random variable µ being modeled is 

actually a concatenation of low dimensional (26 dimensional) 

vector means representing Cepstral and delta-Cepstral 

coefficients. We verified empirically the hypothesis that most 

of the significant correlations between elements of µ are 

between elements of the same index in the low dimensional 

(26) space. Therefore we factor the GMM space into 26 

disjoint subspaces and apply the algorithm described above 

separately to each subspace. 

 

3.3. Computing rotation matrix Q 

 

We use QR factorization based on Givens rotations, which is 

known to be stable [10]. Moreover, it may be implemented 

δ1 δ2 δm Σ 

Q 
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ε 
ε 



efficiently both in terms of time and memory [11]. Using this 

technique rotation matrix Q can be found in O(nk2) time, 

stored in O(nm) memory, and can be applied on a vector in 

O(nm) time, where n is size of the GMM, k is the number of 

training vectors δ , and  m is the dimension of the space 

spanned by the training vectors δ , possibly reduced by 

a dimension reduction technique such as PCA. 

4. Experimental results 

4.1   The SPIDRE and the NIST-2004 datasets 

 

Experiments were done on the NIST-2004 speaker evaluation 

data set using the core condition [9]. Detailed description of 

the experimental setup can be found in [6] .The SPIDRE 

corpus [8] was used for training the UBM, and for estimating 

the speaker-independent covariance matrices of the GMM 

prior distribution models and as a development set.  

 

4.2   The baseline GMM system 

 

The baseline GMM system in this paper was inspired by the 

GMM-UBM system described in [1-3]. A detailed description 

of the baseline system can be found in [4-5]. The baseline 

system is based on an ETSI-MFCC [7] + derivatives and an 

energy based voice activity detector. In the verification stage, 

the log likelihood of each conversation side given a target 

speaker is divided by the length of the conversation and 

normalized by the UBM score.  

 

4.3   Normalization techniques 

 

The resulting scores are normalized (independently) by the 

following techniques: non-parametric Z-norm, T-norm [12], 

and TZ-norm. Non-parametric Z-norm is similar to Z-norm 

[2] but uses a histogram to estimate scores distribution instead 

of fitting a normal distribution. TZ-norm is a combined 

version of both T-norm and non-parametric Z-norm: a score is 

first normalized using T-norm and then by non-parametric Z-

norm. 

 

4.4   Results  

 

In tables (1, 2) we present results for our two algorithms 

compared to the baseline GMM. The systems reported in table 

(1) use non-parametric Z-norm, while the systems reported in 

table (2) use TZ-norm. For each system we report the equal 

error rate (EER) and the standard min–DCF as defined in [9]. 

The corresponding DET curves are presented in figures (2, 3). 
 

 EER 

(%) 

min-DCF 

Baseline GMM 15.1 0.053 

Session-GMM: single rotation 13.5 0.047 

Session-GMM: block diagonal 12.6 0.044 

Error reduction 16.6% 17.0% 
 

Table 1: Results of the session-GMM generative model 

compared to the baseline GMM – using non-parametric Z-

norm. 

 

 EER 

(%) 

min-DCF 

Baseline GMM 12.4 0.048 

Session-GMM: single rotation 12.2 0.047 

Session-GMM: block diagonal 10.8 0.042 

Error reduction 12.9% 12.5% 

Table 2: Results of the session-GMM generative model 

compared to the baseline GMM - using TZ-norm. 

 

 

10.2 0.5 1 2 5 10 20 40
2

5

10

20

40

60

Speaker Recognition Performance

M
is

s
 p

ro
b
a
b
ili
ty

 (
%

)

False acceptance probability (%)

baseline GMM
single rotation
block diagonal

Figure 2: Comparison of the performance of the session-

GMM based algorithms compared to the baseline GMM using 

non-parametric Z-norm. 
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Figure 3: Comparison of the performance of the session-

GMM based algorithms compared to the baseline GMM on 

the NIST-2004 evaluation, using TZ-norm. 

 

From analyzing the results we notice that when using TZ-

norm, we get a smaller improvement from the session-GMM 

algorithms compared to when using non-parametric Z-norm. 

In figure (4) we show the sensitivity of the performance of the 

classic GMM algorithm to the various normalization 

techniques. We conclude from these results that TZ-norm is 

better than both non-parametric Z-norm and T-norm. In figure 

(5) we show the sensitivity of the second session-GMM 

algorithm (using a block-diagonal covariance matrix). 

Surprisingly, we see that T-norm is not a good normalization 

technique for the session-GMM algorithm. This observation 

explains why we get only 12.9% reduction in EER when 



using TZ-norm compared to 16.6% reduction when using 

non-parametric Z-norm. 
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Figure 4: Comparison of the performance of the baseline 

GMM using Z-norm, T-norm and TZ-norm. 
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Figure 5: Comparison of the performance of the session-

GMM algorithm (block-diagonal covariance matrix) using Z-

norm, T-norm and TZ-norm. 

5. Time complexity 

The time complexity of computing the rotation matrix is 

analyzed in subsection 3.3.  

In order to train a speaker first we train a GMM for the 

speaker and then rotate it. The time complexity of the rotation 

algorithm is O(gdm) (g – number of Gaussians in GMM, d – 

dimension of feature space, m – dimension of intra-speaker 

inter-session variability space). 

In order to test a test-session first a GMM is trained for the 

speaker and then rotated using Givens rotations. The time 

complexity of the rotation algorithm is again O(gdm). For 

every target speaker a score is computed in gd calculations 

compared to 5dT calculations for the GMM algorithm (T – 

length (in frames) of test data). For T>g/5 and many target 

speakers our algorithm is faster than the GMM algorithm. For 

a typical g=2048, our technique would be faster than the 

GMM algorithm for sessions longer that 4 seconds. 

6. Conclusions 

We have proposed an algorithm for estimating robustly intra-

speaker inter-session variability. The results indicate that with 

appropriate score normalizations, the proposed algorithm 

outperforms the classic GMM approach. On the NIST-2004 

speaker evaluation recognition EER was reduced by 12.9% 

and the min-DCF was reduced by 12.5%. We hypothesize that 

a suitable normalization technique may further improve 

performance. 

Our future plan is to estimate the intra-speaker inter-

session variability from a larger corpus with channel 

variability. 
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