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ABSTRACT Traditional neural networks usually concentrate on temporal data in system simulation, and lack

of capabilities to reason inner logic relations between different dimensions of data collected from embedded

sensors. This paper proposes a graph neural network-based modeling approach for IoT equipment (called

GNNM-IoT), which considers both temporal and inner logic relations of data, in which vertices denote

sensor data and edges denote relationships between vertices. The GNNM-IoT model’s relationships between

sensors with neural networks to produce nonlinear complex relationships.We have evaluated the GNNM-IoT

using air-conditioner data from a world leading IoT company, which demonstrates that it is effective and

outperforms ARIMA and LSTM methods.

INDEX TERMS Graph neural networks, deep learning, simulation, time series prediction, IoT.

I. INTRODUCTION

Modern Internet of Things (IoT) equipment can be complex.

Various sensors are usually embedded in the IoT equipment.

For example, a central air conditioner is deployed with a

number of pressure, temperature, voltage, and other sensors.

However, for many IoT applications, effective data are not

usually available, e.g., the fault data on central air condition-

ing equipment, and this hinders equipment fault diagnosis and

prediction.

The above issues motivate studies on approaches for sim-

ulating the equipment operation. Wu et al. applied neural

networks into optimizing simulation model performance [1].

Kim et al. presented a supervised learning method to learn

relationships between pilot assignment and user’s location

patterns [2]. Taki et al. [3] used artificial neural networks

to estimate greenhouse parameters. These classical neu-

ral networks simply use the approximation capability for

a complex function from a neural network, without much
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consideration of inner logic relations between IoT sensor

data [4].

In recent years, deep learning has been applied in different

fields including system simulation. Yeo and Melnyk [5] pro-

posed a deep learning algorithm for data-driven simulation

of noisy dynamical system to predict probability distribution

and simulate a stochastic process. Wang et al. [6] designed

a stacked auto-encoder to properly extract nonlinear and

non-stationary features in smart grids. The performance of

deep learning can be improved by expert knowledge, as exem-

plified by the well-known attention mechanism [7]. These

existing deep learning based approaches still did not model

inner logic relations of IoT sensors.

In summary, all these reviewed efforts are focusing on

abstracting features layer by layer in a neural network, with-

outmuch consideration of associations between features. As a

result, as the relations of units in the same layer are barely

disposed in these neural networks.

From another aspect, IoT equipment can be described with

an undirected graph, in which a vertex denotes sensor data

while an edge denotes relations between data. The graph
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neural networks (GNNs) [8], inherited from the graph,

are good tools for graph based tasks. The representational

power of GNNs has been studied theoretically [9], which

improves the reasoning on logic relations between different

objects [10]. Schlichtkrul et al. [11] introduced an unsuper-

vised model, named neural relational inference (NRI) model

for inferring the interactions of particles. These works moti-

vate us to use GNNs for modeling and simulating the IoT

equipment operation, in terms of predicting equipment states

based on the internal relationships between different embed-

ded sensors effectively.

This paper proposes a graph neural network approach

for modeling IoT systems (GNNM-IoT), which introduces

the encoder-decoder pattern, where the encoder learns the

potential relationships between sensor data, and the decoder

predicts the system states. The accuracy of the learned

relationships is assessed by the predicted data quality. The

evaluation shows that the GNNM-IoT is effective. It has

better performance than the Long-Short Term Memory

(LSTM) [12] and Auto-Regressive Integrated Moving Aver-

age (ARIMA) [13] on the air conditioner time series data.

The contributions of this paper include:

• Modeling relationships between embedded sensors in

IoT equipment using graph neural networks. The rela-

tionships between the sensors are denoted by the graph

edges, which aremodeled bymulti-layer full-connection

neural networks.

• Reconstructing the input data based on the Variational

Autoencoder [14]. An encoder is designed to learn the

relations between the vertices. Then a decoder is used

to reconstruct the input data based on the vertices at

first moment and the relational functions. Meanwhile,

we introduce the Gumbel-sampling to boost the perfor-

mance of GNNM-IoT.

• Introducing the residual structure [15] to learn the dif-

ferences of sensor states at different moments, which is

beneficial for the graph neural network to concentrate on

state changes. This can further improve the accuracy of

GNNM-IoT.

The remainder of this paper is organized as follows:

Section 2 reviews the work. Section 3 presents the design

of the GNNM-IoT model, especially its network structure

and data processing. Section 4 evaluates the GNNM-IoT

model with practical data from air-conditioner for its perfor-

mance and compares it with the LSTM and ARIMA models.

Section 5 concludes the paper and discusses future work

to do.

II. RELATED WORK

A lot of efforts have been dedicated on using association

rule [16], [17] to discover association relationships between

data. However, these solutions only identify there exists a

certain relationship without mining how these relationships

guide the running of a system, and have very weak capabil-

ities of predicting system operational conditions. There are

works on using deep learning approaches to predict system

statuses, such as LSTM based IoT status prediction [18] or

DBN (Deep Belief Network) based approach [19]. However,

these works fail to address the inner logic relations of data,

which limits the complete simulation of IoT equipment.

System simulation consists of processes of system

modeling, simulation modeling and simulation experi-

ments [20]–[23]. There are three methodologies for sys-

tem simulation, including statistical methods [24], physical

modeling [25], and soft-computing based approaches [26].

They require a pre-knowledge of the dynamical system [27].

Jaeger & Haas [28] proposed an echo state network (ESN),

which randomly generated and predicted states and was used

in some dynamic systems [29], [30]. However, it is often the

case that we do not quite know the principles behind some

physical processes, or the system might be too complex to

use a classical simulation model [31].

Deep learning has the power of fitting both linear and

nonlinear functions [32]–[34], and it has been used for mod-

eling complex structure [35], and for data-driven reconstruc-

tion of dynamic systems [36]–[38]. Jin et al. [39] proposed

a Deep Reconstruction Model (DRM) that combined the

deep learning and Elman neural network for manifesting the

memory effect of nonlinear systems. Wu and Rahman [40]

studied the optimized machine learning framework for mod-

eling the water distribution network management by DBNs.

Taki et al. [3] applied artificial intelligence (MLP, RBF

and SVM models with k-fold cross-validation) to con-

trol climate conditions as well as energy consumption for

greenhouse simulation. Wang et al. [41] introduced a Stack

Auto-Encoder (SAE) to narrow down the width of state

variables for wind power forecasting. Yeo and Melnyk [5]

presented a RNN-based model without any assumption to

directly predict probability density for simulation of noisy

nonlinear dynamic systems.

The previous studies have confirmed the effectiveness of

neural networks for modeling nonlinear problems. However,

we still face some challenges in reasoning potential relation-

ships between data [42]. To address this, we apply GNNs to

improve the current neural networks’ reasoning capabilities.

III. GNNM-IoT MODEL DESIGN

Our goal is to model the relationships between sensor data

and simulate the running of the IoT equipment. The first

question is how to design the model. Our solution is to use an

encoder to learn the relationships between data. Undirected

graph could be one of the best tools for representing these

relationships. Therefore, we introduce graph neural networks

to learn the relationships between data to build a relational

model. The second question is how to evaluate the learn-

ing. Since we only have observational data, the relation-

ships between the data are hidden behind the observation.

Therefore, the accuracy of the learned relationships should be

evaluated by predicting the states of IoT equipment. We con-

nect a decoder to the encoder as a prediction model, which

is also realized as GNNs. In this way, the observed data

can be directly used to evaluate the relationships learned by
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the encoder. The more accurate the prediction is, the more

accurate the learned relationships are.

The existing neural networks (e.g. LSTM and DBN),

as black box solutions, lack of a structure to represent rela-

tions between data features, and just simply believe that a

neural networkwas able to learn everything by itself. Our pro-

posed GNNM-IoT uses GNNs to restrict the encoder network

structure, and guide neural networks to reach the minimum

loss value by the GNN network structure. This design leads

to a better performance than the existing neural networks.

Figure 1 presents the GNNM-IoT model with an

Encoder-Decoder pattern, which inputs the preprocessed data

into a Multi-Layer Perception (MLP)-Encoder. The potential

relationships learned by the MLP-Encoder and the sampling

data from Gumbel-Sampling are input to the MLP-Decoder.

Then the MLP-Decoder reconstructs the output data. The

GNNM-IoT training depends on the design of a loss function,

which is used to calculate deviation between the truth and the

output data. The calculation is based on MSE (mean squared

error) and KL (Kullback-Leibler) divergence.

FIGURE 1. GNNM-IoT model overview.

A. SENSORS

Sensors are widely used in IoT equipment. The sensed data

are related to the historical state of the IoT equipment. Mean-

while, these data are also related to the system parameters

configuration. These data will be measured by the entropy

function as defined in (1), where c is the threshold. If H (x)

is lower than c, the corresponding x will not be used as the

input data.

H (x) = −
∑

x∈X

p(x) log(p(x)) (1)

H (x) > c (2)

B. MLP-ENCODER

We assume that sensors have relationships with each

other. Therefore, an IoT system can be represented by

a fully connected graph G = (N ,E) as shown in Fig. 2.

N = {n1, n2, n3, . . . nn} denotes n sensors, which represents

the states of the corresponding equipment components. The

MLP-Encoder is designed with objectives to learn the rela-

tional functions of directions in the graph.

FIGURE 2. Graph G representing sensors and their relationships.

The GNNM-IoT MLP-Encoder uses message passing [43]

method, which consists of two phases, message passing and

readout defined as Equation (3) and (4). This method updates

graph from state Si−1 to state Si. Each node ni is assigned to a

multi-layer fully-connected neural network. Each node ni in

Si−1 is connected to other nodes in Si, as shown in Fig. 3.

FIGURE 3. Layer assignment of the graph.

FIGURE 4. Node - neural network block - node.

Figure 4 presents a neural network block for represent-

ing complex relationships between nodes, where ni denotes
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ith node in the previous layer, nj denotes j
th node in the next

layer, eij denotes the edge between ni and nj.

Therefore, given a graph G = (N ,E), N denotes a

set of nodes, n ∈ N , E represents a set of e, e ∈ E ,

N = {n1, n2, n3, . . . nn}, E = {eij, i, j = 1, 2, . . . n}. We use

the message passing [43] to transmit the information from a

node to an edge (using Equation (3)), then the information is

input to the node in the next layer (using Equation (4)).

n → e : hl(i,j) = f le ([h
l
i, h

l
j, x(i,j)]) (3)

e → n : hl+1
j = f ln ([

∑

i∈Nj

hl(i,j), xj]) (4)

where hli denotes the embedding of ni, l represent the cur-

rent layer, hl(i,j) stands for the embedding of eij, f denotes a

function. Here the potential relationships are learned by three

mappings: the first mapping from n to e, the second mapping

form e to n, and the third mapping from n to e.

C. GUMBEL-SAMPLING

A normal distribution is applied to the Variational

auto-encoder (VAE) [14] to limit the distribution of the mean

vector and the variance vector. Similar to VAE, the GNNM-

IoT introduces the Gumbel re-parameter trick [44] to opti-

mize model performance, so that the potential relationships

are Gumbel distributions defined as Equation (5). Thus,

the purpose of the MLP-Encoder is to learn the parameters

of a Gumbel distribution, then to conduct sampling from the

Gumbel distribution. For example, we can get the normal

Gumbel distribution sampling data by sampling the discrete

stochastic variable xπ in the probability vector π with m

dimensions of Gumbel noise.

p(x) =
1

β
e−z−e

−z

, z =
x − µ

β
(5)

Gi is the stochastic variable of the Gumbel distributions

that are independently identically distributed. Gi can be gen-

erated from uniform distribution by the Gumbel distribution

inverse: Gi = − log(− log(Ui)),Ui ∼ U (0, 1).

As shown in Fig. 5, re-parameterization moves the sam-

pling steps away from the computation graph for gradient

backpropagation. Here, f , z, x, φ are the deterministic nodes,

and ε is the stochastic node. If z includes ε, it is impossible for

z to back propagate the gradient. So ε is moved out of z, which

is regarded as an input without the weight variable. Then

z becomes a deterministic node. The stochastic distribution

represented by ε can be added to the forward propagation but

ε is not changed by backpropagation. ε obeys the Gumbel

distribution in this paper.

D. MLP-DECODER

The GNNM-IoT MLP-Decoder predicts system states based

on the previous system states and the relational functions

learned by the MLP-Encoder using Equations (6) and (7).

In the actual environment, if the time interval is short,

a single-step prediction would be useless for users. Therefore,

FIGURE 5. Re-parameterization.

amulti-step prediction is applied to accumulate the prediction

error for backpropagation and to update the parameters in the

GNNM-IoT model in training phase.

n → e : h̃t(i,j) =
∑

k

zij,k f̃
k
e ([x

t
i , x

t
j ]) (6)

e → n : µt+1
j = x tj + f̃n(

∑

i6=j)

h̃t(i,j)) (7)

where z denotes the latent ground truth graph, zij,k denotes

k th element in the vector zij, x
t
i denotes the state of xi in time

t , f̃ ke denotes the mapping function between the nodes’ state

in time t and the edge h̃t(i,j), f̃n transfers the edges h̃t(i,j) into

the nodes µt+1
j . x tj is to make the MLP-Decoder learn the

differences between the previous and the next system states.

FIGURE 6. Single-step prediction.

Fig. 6 presents the single-step prediction, [e11, e12, e21, e22]

are the relational functions learned by the MLP-Encoder. The

initial state of each sensor is n0. The target of MLP-Decoder

is to predict the next state ni using a single-step prediction.

A long time prediction is completed by stacking multiple
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FIGURE 7. Multi-step prediction.

single-step predictions, so that the previous prediction result

is the input for next step prediction, as shown in Fig. 7.

The multi-step prediction can predict the system state

series. When the MLP-Decoder predicts the system states to

follow based on the first moment system states in every sam-

ple, the multi-step prediction accumulates prediction errors,

which is the basement of loss function. Then the error is

used to update weights in the GNNM-IoT model by gradient

backpropagation.

E. LOSS FUNCTION

The GNNM-IoT model defines the loss function as Equa-

tion (8) based on KL divergence of the relational functions

and the MSE between the prediction and ground truth, where

c denotes the proportion of KL divergence, e denotes the

relations learning by the encoder, x denotes the input data,

and y denotes the prediction result.

Loss = cKL(e) + (1 − c)‖x − y‖2 (8)

IV. EVALUATION

The GNNM-IoT implements the MLP-Encoder and

MLP-Decoder with fully-connected networks and applies

the Adam algorithm [45] as the optimization algorithm. The

experiment uses Ubuntu 16.04 and PyTorch 0.3 [46] as the

software platform and a GTX1070 GPU for training neural

networks.

A. AIR-CONDITIONER SIMULATION

We are working with a world leading IoT company to conduct

the analysis and prediction of their central air conditioning

systems using our developed GNNM-IoT model.

The experiment first removes those data whose entropy

is lower than the given threshold. The input data are then

cleaned, filled and normalized by data preprocessing. The

experiment chooses 55 data dimensions from the original

182 dimensions.

The experiment describes data matrix as (t,55), in which

t denotes the time length. Due to the features of GNN

and the sampling frequency of sensors (twice a minute),

there is a requirement for data prediction of half an hour

in advance. Therefore, we transfer the data matrix into the

matrix (m,55,60), in which m is the number of samples. Then

the data are given to the GNNM-IoT, ARIMA and LSTM for

training and predicting future states.

Figure 8 illustrates the results with the comparison between

the LSTM and GNNM-IoT loss curves. This shows that

the LSTM loss reaches the lowest value of 0.04787 after

70000 iterations, whereas the GNNM-IoT loss reaches the

lowest value of 0.00605 after 500 iterations. The accuracy

of the GNNM-IoT is seven times higher than that of LSTM,

whereas the iterations by the GNNM-IoT are only 1/400 by

the LSTM. In addition, the GNNM-IoT convergent speed is

faster than that of LSTM. And the GNNM-IoT loss curve

has two obvious jumps during the iterations. Then we use

the MSE loss as the standard to estimate the accuracy of

the model because the MSE loss is computed based on the

similarity between the prediction data and the ground truth

data.

TABLE 1. Predictive accuracy statistics of the LSTM and the GNNM-IoT
measured with MSE.

Table 1 shows the prediction accuracy of the LSTM and

GNNM-IoTmeasured withMSE based on the historical data.

Comparing with the LSTM, the GNNM-IoT MSE is only

12% of the LSTM MSE loss during the training phase. The

GNNM-IoT MSE is far less than that of LSTM during the

validation phase.

We predict a longer time series and add the ARIMA as

the third model for a comparison. The results are shown

in Fig. 9 and 10.

The yellow, green and purple curves denote the prediction

data in Figure 9. The blue curve denotes the ground truth

data. The LSTM and the GNNM-IoT use the same data

and training mode. In Figure 9, The 60 points represent a

30minutes period, as the sampling frequency of the sensors is

twice a minute. We use single-step prediction to reconstruct

the input data. When the models predict 30 minutes’ data,
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FIGURE 8. LSTM loss curve (left) and GNNM-IoT loss curve (right). (a) LSTM MSE loss. (b) GNNM-IoT MSE loss.

FIGURE 9. 30 minutes prediction using ARIMA, LSTM and GNNM-IoT. (a) dimension1. (b) dimension3. (c) dimension7. (d) dimension9.

the second point is predicted based on the first prediction

point, until it reaches the final point. The results in Fig. 9

shows that the GNNM-IoT has the best performance in

terms of prediction accuracy. We can see that from the start

of 20 points, the GNNM-IoT keeps the trends of data whereas

the ARIMA and LSTM cannot.
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FIGURE 10. Multi-dimension prediction. (a) LSTM. (b) GNNM-IoT.

The red curve denotes the prediction data in Fig. 10. The

blue curve denotes the ground truth data. We can see that

the GNNM-IoT can fit every dimensions’ data well, which

means that the GNNM-IoT has a satisfactory prediction per-

formance. The LSTM demonstrates bad performance for the

dimensions with fluctuation, but performs well for the dimen-

sions with a smooth curve.

The experiments above have shown that the GNNM-IoT

has obvious advantages in predicting future system states

compared with other methods. The GNNM-IoT model

described above is implemented by a one-step prediction.

However, it also can be implemented by a multi-step predic-

tion. For this reason, the following experiments are conducted

to assess the multi-step prediction with the same data and

the same GNNM-IoT model but with different prediction

steps, namely 5 steps (points), 10 steps (points) and 15 steps

(points). All predictions are for 60 points (30 minutes) repeat-

ing the experiment 12, 6 or 4 times respectively. It can predict

the long term trend of system states based on the decoder,

while the prediction module in the decoder is the same MLP

used for mapping the base states and the future states.

In the following experiment, the base predictions are

5 steps, 10 steps and 15 steps, respectively. This means that

5 steps need to be repeated 12 times, 10 steps be repeated

6 times and 15 steps be repeated 4 times to predict 60 points.

Then we make comparisons between 5 steps, 10 steps and

15 steps for choosing the best prediction steps. The loss

descent curves are shown in Fig. 11, 12 and 13, where the

results demonstrate the model performance with different

prediction steps.We calculate theMSE of different prediction

steps, which means that the MSE of 5 steps prediction has an

average error of 5 points, and the same applies to the 10 and

15 steps experiments.

We can see that the training loss curves of 5 steps (Fig. 11)

and 10 steps (Fig. 12) are convergent, while the training

of 15 steps (Fig. 13) prediction is divergent with concussion.

Figure 11 and 12 show that there exist two sudden drops,

FIGURE 11. MSE loss descent curve of 5 steps.

FIGURE 12. MSE loss descent curve of 10 steps.

which means that these models have a rapid descent during

training. In addition, the total iterations are fewer than other

methods but the time consumption is longer than other meth-

ods in a single iteration.

The validation loss descent curves of different steps are

shown in Fig. 14, 15 and 16. We can see that the MSE

curves of the validation data set are slightly instable in the
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FIGURE 13. MSE loss descent curve of 15 steps.

FIGURE 14. validation loss descent curve of 5 steps.

FIGURE 15. validation loss descent curve of 10 steps.

training stage. The fluctuations of validation loss descent

curves tend to become less and convergent in the late period.

However, the validation curve of 15 steps model consis-

tently fluctuates and does not converge. That means that

the long-term prediction performance is not good of the

15 steps prediction. The reason is that for the current model

setting, the MLP, mapping the function relationships, doesn’t

effectively learn the long-term intrinsic mapping. As a result,

the model performance based on 15 steps is poor, which

eventually leads to the situation where the curve does not

converge.

Figure 17 shows the comparison using GNNM-IoT with

1 step, 5 steps, 10 steps and 15 steps and four dimensions

FIGURE 16. validation loss descent curve of 15 steps.

data (1, 3, 7, and 9). We can see that the overall prediction

with 1 step is more accurate and can effectively reflect the

state trends. The prediction with 5 steps, 10 steps and 15 steps

cannot learn trends well. Figure 17 shows that the real data

has a sudden rise in the late stage, while the results with 5,

10, and 15 steps are transited to a high point smoothly with

no sudden changes and details of data changes are lost.

Table 2 further verifies the above analysis with the MSE

data, where the prediction of 1 step has a better performance

than those predictions of 5, 10 and 15 steps.

TABLE 2. MSE in 30 minutes prediction with 1 step, 5 steps, 10 steps
and 15 steps.

B. DISCUSSION

The fluctuation of real data is fast. From the predictions

results with 1, 5, 10, and 15 steps, we can find that the

1 step based model has the best results and can reflect data

changes. Multi-step predictions do not perform well in our

experimental conditions. Therefore, the prediction step is

usually decided based on data characteristics. If data changes

quickly, then the prediction step needs to be chosen smaller.

The above evaluations show that GNNM-IoT has a good

performance compared with that of the ARIMA and LSTM.

This states that GNNM-IoT is good at modeling inner logic

relations between system components. The ARIMA model

only obtains the data features but the principle of a system.

In addition, the long-term prediction performance (longer

than 30 minutes) may be bad due to the designed decoder

with a single step prediction in this experiment.

Our goal is to model the relationships between data. The

encoder is used to learn these relationships, which is the core

of GNNM-IoT. The decoder is used to evaluate the accuracy
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FIGURE 17. 30 minutes prediction using GNNM-IoT with 1 step, 5 steps, 10 steps and 15 steps. (a) dimension1. (b) dimension3.
(c) dimension7. (d) dimension9.

of the learned relationships by the encoder, which can be

understood as predicting the data of the next moment by

using the data relationships of the previous moment. And

how to assess the correctness or accuracy of the relationships?

Since all we have are the observational data, the relationships

between the data are unknown, so the accuracy of the learned

relationships are verified in a predictive way. If the prediction

is accurate, then the learned relationships are correct. These

evaluations show that GNNM-IoT is effective to model the

inner relationships.

V. CONCLUSION AND FUTURE WORK

System simulation of industrial IoT equipment needs to con-

sider temporal information, but more importantly it needs to

provide the ability of reasoning inner logic relations between

dimensions of data. This paper proposes a Graph Neural

Network based modeling approach for IoT equipment, called

GNNM-IoT, which models relationships between sensors for

obtaining relationships by neural networks. We have evalu-

ated the performance of GNNM-IoTwith air-conditioner data

from aworld leading IoT company, and comparedwith that of

ARIMA and LSTM. It shows that our GNNM-IoT produces

a higher performance than the other two approaches.

In the experiment involving the GNNM-IoT model,

we find that it consumes quite some computing resources

when it builds the data relations. With the sensor number

increases, resources consumption becomes higher. The future

work is to prune the relations based on expert knowledge to

further reduce data dimensions in order to boost the process-

ing speed. The second direction is to abstract an advanced

vertex from the vertexes with close relationships by intro-

ducing a pooling module, in order to further reduce resource

consumption.
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