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Modeling Item Responses When Different Sub:ects

Employ Different Solution Strategies

Abstract

A model is presented for item responses when different

examinees employ different strategies to arrive at their answers,

and when only those answers, not choice of strategy or subtask

results, can be observed. Using substantive theory to

differentiate the likelihoods of response vectors under a fixed

set of solution strategies, we model responses in terms of item

parameters associated with each strategy, proportions of the

population employing each, and the distributions of examinee

parameters within each. Posterior distributions can then be

obtained for each examinee, giving the probabilities that they

employed each of the strategies and their proficiency under each.

The ideas are illustrated with a conceptual example about response

strategies for spatial rotation items, and a numerical example

resolving a population of examinees into subpopulations of valid

responders and random guessers.

Key Words: Differential strategies
Item response theory
Linear logistic test model
Mixture models
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Introduction

The standard models of item response theory (IRT), such as

the 1-, 2-, and 3-parameter normal and logistic models,

characterize examinees in terms of their propensities to make

correct responses. Consequently, examinee parameter estimates

are strongly related to simple percent-correct scores (adjusted

for the average item difficulties, if not all examinees have been

presented the same items). Item parameters characterize the

regression of a correct response on this overall propensity toward

correctness.

These models lend themselves well to tests in which all

examinees employ the same strategy to solve the items.

Comparisons among estimates of examinees' ability parameters are

meaningful comparisons of their degrees of success in implementing

the strategy. Item parameters reflect the number or complexity of

the operations needed to solve a given item (Fischer, 1973).

The same models can prove less satisfactory when different

examinees employ different strategies. The validity of using

scores that convey little more than percent-correct to compare

examinees who have used different strategies must first be called

propensity toward correctness will not reveal how a particular

kind of item might be easy for examinees who follow one line of

attack, but difficult for those who follow another.

into question. And item parameters keyed only to a generalized

0 7
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Extensions of IRT to multiple strategies have several

potential uses. In psychology, such a model would provide a

rigorous analytic framework for testing alternative theories

about cognitive processing (e.g., Carter, Pazak, and Kail, 1983).

In education, estimates of how students solve problems could be

more valuable than how many they solve, for the purposes of

diagnosis, remediation, and curriculum revision (Messick, 1984).

And even when a standard IRT model would provide reasonable

summaries and meaningful comparisons for most examinees, an

extended model allowing for departures along predetermined lines

(e.g., malingering) would reduce estimation biases for the

parameters in the standard model.

In contrast to standard IRT models, and, for that matter, to

the "true score" models of classical test theory, a model that

accommodates alternative strategies must begin with explicit

statements about the processes by which examinees arrive at their

answers. For example, items may be characterized in terms of the

nature, number, and complexity of the operations required for

their solution under each strategy that is posited.

The recent psychometric literature contains a few

implementations of these ideas. Tatsuoka (1983) has studied

performance on mathematics items in terms of the application of

correct and incorrect rules, locating response vectors in a two-

dimensional space based on an ability parameter from a standard

IRT model and an index of lack of fit from that model. Paulson

08



Different Strategies

3

(1985), analyzing similar data but with fewer rules, uses latent

class models to relate the probability of correct responses on an

item to the features it exhibits and the rules that examinees

might be following. Yamamoto (1987) combines aspects of both of

these models, positing subpopulations of IRT respondents and of

non-scalable respondents associated with particular expected

response patterns. Samejima's (1983) and Embretson's (1985)

models for alternative strategies are expressed in terms of

subtasks whose results are observed, in addition to the overall

correctness or incorrectness of the item.

The present paper describes a family of multiple-strategy

IRT models that apply when each examinee belongs to one of a

number of exhaustive and mutually-exclusive classes that

correspond to an item-solving strategy, and the responses from

all examinees in a given class are in accordance with a standard

IRT model. It is further assumed that for each item, its

parameters under the IRT model for each strategy class can be

related to known features of the item through psychological or

pedagogical theory.

The next section of the paper gives a general description of

the model. It is followed by a conceptual example that

illustrates the key ideas. A two-stage estimation procedure is

then presented. The first stage estimates structural parameters:

basic parameters for test items, examinee population

distributions, and proportions of examinees following each

op
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strategy The second stage estimates posterior distributions for

individual examinees: the probability that they belong to each

strategy class and the conditional distribution of their ability

for each class. A numerical example resolves examinees into

classes of valid responders and random guessers. The final

section discusses some implications of the approach for

educational and psychological testing.

The Response Model

This section lays out the basic structure for a mixture of

constrained item response models. Discussion will be limited to

dichotomous items for notational convenience, but the extensions

to polytomous and continuous observations are straightforward.

We begin by briefly reviewing the general form of an IRT

model. The probability of response x. (1 if correct, 0 if not)

from persoa i to item j is given by an IRT model as

x.. 1-x.

P(xii101.09j) [f(0.,A.)] 13[1-Wid3j)] lj (1)

where0.and A . are real (and possibly vector-valued) parameters

associated with person i and item j respectively, and f is a

known, twice-differentiable, function whose range is the unit

interval. Under the usual IRT assumption of local independence,

the conditional probability of the response pattern xi

(x.1,. in)
person i to n items is the product of n

expressions like (1):

10
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n

P(xilei,A) n p(x..10.1 43)
j-i. 1-3 J

It may possible to express item parameters as functions Of

some smaller number of more basic parameters a (a1,...,am) that

reflect the effects of M salient characteristics of items; i.e.,

A. - A.(a). An important example of this type is the Linear
J J

Logistic Test Model (LLTM; Fischer, 1973, Schieblechner, 1972).

Under the LLTM, the item response function is the one-parameter

logistic (Rasch) model, or

p[x..10.43.(a)) exp[x..(0.-A
j 1 j
))/[1.4-exp(0.-fl)),

3.3 3. j lj 1

and the model for item parameters is linear:

M
p. (a) Q. a Qt a .

m-1 Jm m J

.(a)

The elements of a are contributions to item difficulty associated

with the M characteristics of items, presumably related to the

number or nature of processes required to solve them. The

elements of the known vector Q. indicate the extent to which item

j exhibits each characteristic. Fischer (1973), for example,

models the difficulty of the items in a calculus test in terms of

the number of times an item requires the application of each of

seven differentiation rules. Q. is the number of times that rule

m must be employed in order to solve Item j.
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Consider now a set of items that may be answered by means of

K different strategies. It need not be the ease that all are

equally effective, nor even that all generally lead to correct

responses. Not all strategies need be available to all

examinees. We make the following assumptions.

1. 3ach examinee is applying the same one of these strategies

for all the ite...s in the set. (In the final section, we

discuss prospects fcir relaxing this assumption to allow for

strategy-switching).

2. The responses of an examinee are observed btr: the strategy

he or she has employed is not.

3. The responses of examinees following Strategy k conform to

an item response model of a known form.

4. Substantive theory posits relationships between observable

features of items and the probabilities of success enjoyed by

members of each strategy class. The relationships may be

known either fully or only partially (as when the Q matrices

in LLTM-type rodels are known but the basic parameters art

not).
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Let the k'th element in the K-dimensional vector Oi take the

value one if examinee i follows Strategy k, and zero if not.

Extending the notation introduced above, we may write the

conditionalprobabilitYofresponsepatternx-1 as

x.. 1-x. 0
i

i' '

p(x.I0 O. a) - 11(11(f
k
(0

ik'
p
jk

)] 1J[1-f
k
(o

ik'
p
jk

)1
1j) k

1
k j

where pjoPik(a) gives the item parameter(s) for Item j under

Strategy k.

It will be natural in certain applications to partition basic

parameters for items in accordance with strategy classes; that is,

a -, (al,...,aK). When there are K versions of the LLTM, for

example, differences among strategies are incorporated into the

model by K different vectors Q
jk'

k=1,...,K, that relate Item j to

each of the strategies:

p E Q. a .- Q' a
kjk 3km km jk

m

The item difficulty parameter for Item j under Strategy k, then,

is a weighted sum of elements in ak, the basic parameter vector

associated with Strategy k; the weights Qjkm indicate the degree

to which each of the features m, as relevent under Strategy k, are

present in Item j. This situation will be illustrated in the

following example.
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Example 1: Alternative strategies for spatial tasks

The items of certain tests intended to measure spatial

visualization abilities admit to solution by nonspatial analytic

strategies (French, 1965; Kyllonen, Lohman, and Snow, 1984;

Pelligrino, Mumaw, and Shute, 1985). Consider items in which

subjects are shown a drawing of a three-dimensional target

object, and asked whether a stimulus drawing could be the same

object after rotation in the plane of the picture. In addition

to rotation, one or more key features of the stimulus may differ

from the those of target. A subject may solve the item either by

rotating the target mentally the required degree and recognizing

the match (Strategy 1), or by employing analytiC reasoning to

detect feature matches without performing rotation (Strategy 2).

Consider further a hypothetical three-item test comprised of

such items. Each item will be characterized by (1) rotational

displacement, of 60, 120, or 180 degrees, and by (2) the number of

features that must be matched. Table 1 gives the features of the

items in the hypothetical test.

Insert Table 1 about here

Each subject i will be characterized by two vectors. In the

first, Oi (011,01.2), Oik takes the value 1 if Subject i employs
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Strategy k and 0 if not. In the second, Oi (0i1,0i2), Oik

characterizes the proficiency of Subject i if he employs Strategy

k. Only one of the elements of Oi is involved in producing

Subject i's responses, but we do not know which one.

Suppose that for subjects employing a rotational strategy,

probability of success is given by the one-parameter logistic

(Rasch) item response model:

p(x..10. ,fl. ,yd 1) exp[x..(0. -fl. )]/[1-1-exp(O. -fl. )]
13 11 31 1 13 11 31 11 31

Here Oil is the proficiency of Subject i at solving tasks by

means of the rotational strategy, and flii is the difficulty of

Item j under the rotational strategy.

It is usually found that the time required to solve mental

rotation tasks is linearly related to rotational displacement. To

an approximation, so are log-odds of success (Tapley and Bryden,

1977). We assume that under the rotational strategy, item

parameters take the following form:

fl3. Q3.
all

a
1 11 11 12

,

where Qin encodes the rotational displacement of Item j--1 for 60

degrees, 2 for 120 degrees, and 3 for 180 degrees--and all is the

incremental increase in difficulty for each increment in rotation;

and a12 is a constant term, for which a coefficient
Qj12-1 is

implied f '-r all items. If alrl and a12--2, the item parameters
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jl
that are in effect under Strategy 1 are as shown in the

second column of Table 2.

Insert Table 2 about here

7311=71...

A Rasch model will also be assumed for subjects employing

Strategy 2, the analytic strategy, but here the item parameters

depend on the number of features that must be matched:

/3J - Qj a 4.
a222 2l 21 22 '

where Q.
J21

is the number of salient features, a21 is the

incremental contribution to item difficulty of an additional

feature, a
22

is a constant term, and Q
j22

-1 implicitly for all

items. If a21-1.5 and a22--2.5, we obtain the item parameters

that are in effect under Strategy 2. They appear in the third

column of Table 2.

Note that the items have been constructed so that items that

are relatively hard under one strategy are easy under the other.

Strategy choice cannot be inferred from observed response patterns

unless patterns are more likely under some strategies and less

likely under others.

The response pattern 011, for example, has a correct answer

to an item that is easy under the Strategy 2 but hard under

Strategy 1, and an incorrect answer to an item that is hard under
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Strategy 2 but easy under Strategy 1. Figure 1 plots the

likelihood function for the response vector 011 under both

strategies; that is, p[x(011)10k,Ok=1] for k-1,2 as a function of

0
1

and 0
2

respectively. The maximum of the likelihood under

Strategy 2 is about eight times as high as the maximum attained

under Strategy 1.

7ra======.1=rs=a=========t

Insert Figure 1 about here

MESSIZSZELM.- ..7.7Z.7,.....Zil==1.961:1351C*11.3.72.111==302.17

We can make probabilistic statements about individual

subjects if we know the proportions of people who choose each

strategy, or rk = p(Ok=1), and the distributions of proficiency

of those using each strategy class, or gk(0) a p(Okl0k-1).

Suppose that (i) 01 and 02 both follow standard normal

distributions among the subjects that have chosen to follow them,

and (ii) three times as many subjects follow Strategy 1 as follow

Strategy 2--i.e., al = 3/4 and r2 = 1/4. This joint prior

distribution is pictured in Figure 2.

Insert Figure 2 about here

Routine application of Bayes theorem then yields the joint

posterior density function for 0 and Okl0k-1 for k-1,...,K:

p(Ok=0,0k-11x,r,a) a p[xl0k-1,0,flk(a)] rk gk(0) ,

`It

5 7

(3)
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P[x195k=1,043k(a)] = II exP(xii[0-flik(a)])/(1+[0-flik(a))) .

i

The reciprocal of the constant of proportionality required to

normalize (3) is the marginalization of the right side, or

E rk f p[xl0k-1,043k(a)] gk(0) dO .

k

The posterior distribution induced by (011) is shown in Figure 3.

Marginalizing with respect to 0
k

amounts to summing the area under

the curve for Strategy k, and gives the posterior probability that

Ok=1--that is, that the subject has employed Strategy k. The

resulting values for this response pattern are P(01-1Ix-011)-.28

and P(02-1Ix-011)=.72. The prior probabilities favoring Strategy

1 have been revised substantially in favor of Strategy 2. The

conditional posterior for 0
1
given 0

1
-1 has a mean and standard

deviation of about .32 and .80. Corresponding values for the

distribution of 0
2

given 0
2
-1 are .50 and .81.

Insert Figure 3 about here

Parameter Estimation

This section discusses estimation procedures for mixtures of

IRT models. A two-stage procedure is described. The first stage

18
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integrates over 0 and 0 distributions to obtain a so-called

marginal likelihood function for the structural parameters of the

problem--the basic parameters for items, the proportions of

subjects employing each strategy, and the parameters of the 0

distributions of subjects employing each strategies. Maximum

likelihood estimates are obtained by maximizing this likelihood

function. If preferred, Bayes modal estimates can be obtained by

similar numerical procedures by multiplying the likelihood by

prior distributions for the structural parameters. The second

stage takes the resulting point estimates of structural parameters

as known, and calculates aspects of the posterior distribution of

an individual examinee--e.g., p(Ok-11x) and p(9kl0k-1,x).

Stage 1: Estimates of Structural Parameters

Equation 2 gives the conditional probability of the response

vector x given 0 and 0, or p(xI0,0,a). Consider a population in

which strategies are employed in proportions irk and within-

strategy proficiencies have densities gk(Okink) among the

examinees using them. The marginal probability of x for an

examinee selected at random from this population is

p(xiaor,n) - E irk f p(xlok,ok-La) gk(9kInk) dek . (4)
k

For brevity, let denote the extended vector of all structural

parameters, namely (ce,w,n). The loglikelihood for induced by

19
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the observation of the response vectors X (x ...,xN) of N

subjects is a constant plus the sum of the logs of terms like (4)

for each subject:

N

A = E log p(xile)
i=1

E E Oik log f p[xilek,Ok-1,fik(a)] gk(Okink) dOk
i k

+ E E Pik log Irk . (5)

k

Let S be the vector of first derivatives, and H the matrix of

second derivatives, of ) with respect to e. Under regularity
A

conditions, the maximum likelihood estimates e solve the

likelihood equation S =O, and a large-sample approximation of the

matrix of estimation errors is given by the negative inverse of H

A

evaluated at e.

A standard numerical approach to solving likelihood

equations is to use some variation of Newton's method. Newton-

Raphson iterations, for example, improve a provisional estimate

0
e by adding ,he correction term -H-1 S I O. Fletcher-Powell

iterations avoid computing and inverting H by using an

approximation of H
-1 that is built up from changes in S from one

cycle to the next.

These solutions have the advantage of rapid convergence if

starting values are reasonable--often fewer than 10 iterations

`2 0
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are necessary. S and H can be difficult to work out, however,

and all parameters must be usually be dealt with sicAlltaneously

because the off-diagonal elements in H needn't be zero. For these

reasons, a computationally simpler but slower-converging solution

based on Dempster, Laird, and Rubin's (1977) EM algorithm will no:7

be described as well. The approximation uses discrete

representations for the gks, so the relatively simple "finite

mixtures" case obtains (Dempster, Laird, and Rubin, 1977)

Suppose that for each k, subject proficiency under Strategy k

can take only the L(k) values eki,...,
ekL(k).

The density gk is

thus characterized by these points of support and by the weights

associated with each, gk(ek2kk). Define the subject variable Oi

(/)1.11"..°1'iKL(K))' a vector of length Ek L(k) where the element

Oik2 is 1 if the proficiency of Subject i under Strategy k is ek2

andOifnot.ThereareatotalofKlsin.01 , one for each

strategy--though again, only only of them is involved in producing

x.1 --the one associated with the strategy that Subject i happens to

employ. Summations replace integrations in the loglikelihood,

which can now be written as

A ... E E

i k
Oik E 01..

1(
. log p[xilOkek,Ok-1,flk(a)]
X

+ 2 2
k

/6ik 2 /Pik2 gk(elakik)
i ,e

+ E E Oik log wk .

i k
(6)
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If val es of (iVand 0 were observed along with values of x, ML
.--.,

estimation cg Ofrom (6) would 1.71er. The basic parameter a
,

c
appears only\tajhe first term on th right side of (6), so that

maximizing with respect to a need addrescthat term only. When a

N
consists of distinct subvectors for each strategy, even these

subvectors lead to distinct maximization prob I ems of lower order.\

The subpopulation parameters n appear in only he second ".:erm,

)separating them 3.n ML estimation; they too lea 1,to even smaller

separate su'oproblems if n consists of distinct subvectoriforeach ,"-----

strategy. The population proportions x appear in only the last

term. Unless they are further constrained, their ML estimates are

simply observed proportions. The values of 8 may be either

specified a priori (as in Mislevy, 1986) or estimated from the

data (as in de Leeuw and Verhelst, 1986). In the latter case,

their likelihood equations have contributions.from both the first

and second terms, but the equations for the points of support

under Strategy k involve data from only those subje-.ts using

Strategy k. Their cross second derivatives with points

corresponding to other strategies are zero, although their cross

derivatives with elements of a and n that are involved with the

same strategy need not be.

The M-step of an EM solution requires solving a maximization

problem of exactly this type, with one exception: the unobserved

valuesofeach95.and.01 are replaced by their conditional

0
expections given xi and provisional estimates of say . The
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E-step calculates these conditional expectations as follows.

Denote by likl the following term in the marginal likelihood

associated with Subject i, Strategy k, and proficiency value 8k1

within Strategy k:

lila - p[xilOk-AkI,Ok-1,fik(a)] gk(ekInk) rk

The required conditional expectations are obtained as

and

Oikl "` E(Oiklixi,
o

)

....

0 /E 0
li

/'likl,

Oi0k - E(Oiklxi,
o

)

0 o
/ E E 1lila

ik'/'
k'/'

(7)

(8)

17

The EM formulation makes it clear how each subject

contributes to the estimation of the parameters in all strategy

classes, even though it is assumed that only one of them was

relevant to the production of his responses. His data contribute

to estimation for each strategy class is in the proportion to the
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probability that that strategy was the one he employed, given his

observed response pattern.

In addition to its simplicity, the EM solution has the

advantage of being able to proceed from even very poor starting

values. The slowness with which it converges can be a serious

drawback, however. Its rate of convergence depends on how well x

determines examinees' 0 and 0 values. Accelerating procedures

such as those described by Ramsay (1975) and Louis (1982) can be

used to hasten convergence.

Stage 2: Posteriors for Individual Examinees

When the population parameters are accurately estimated,

the posterior density of the parameters of examinee i is

approximately

A A A A

p(Oik...0,ikllxi3O a p[xil0k-1,0,flk(a)] nk gk(01%)

where the reciprocal of the normalizing constant is obtained by

first integrating the expression on the right over 8 within each

k, then summing over k. The posterior probability that Subject i

used Strategy k is approximated by

A A

Pokik-ilxvo - f p(Oik-0,0iklixi3O de .
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The examinee's posterior mean and variance for a given strategy

class, given that that was the strategy employed, are approximated

by

and

A A

Bik f 8 p(Oik-00:1k-11xi3O d0 /

A A2
j
r

(0-0
2
p(0.

Lk
0 (A. d0 / P(16 11x. 0ik

)
' Lk ik

If the discrete approximation has been employed, (7) and (8)

apply.

Example 2: A Mixture of Valid Responders and Random Guessers

Given appropriate instructions, examinees will omit

multiple-choice test items when they don't know the answers

rather than guess at random. The Rasch model may provide a good

fit to such data if omits are treated as incorrect. If a small

percentage of examinees responds at random to all items, however,

their responses will bias the estimation of the item parameters

that pertain to the majority of the examinees.

We may posit a two-class model, under which an examinee

responds either in accordance with the Rasch model or guesses

totally at random. For examinees in the latter class,

probabilities of correct response are constant, e.g., at the

reciprocal of the number of response alternatives to each item.



Different Strategies

20

Using the procedures described in the preceding sections, it is

possible to free estimates of the item parameters that pertain to

the valid responders from biases due to random guessers, even

though it is not known with certainty whc the guessers are.

A mixture model for the (marginal) probability of response

pattern x in this situation is

2

P(x.10 - Z POcil0k-1,0 Irk ,

k-1

where Strategy Class 1 is the Rasch model and Class 2 is random

guessing. The composition of C is now described. It includes

first the strategy proportions xl and ForFor the Rasch class, the

basic parameters al are item difficulty parameters bi for

j-1,...,n. Suppose the distribution g
1
of proficiencies of

subjects following the Rasch model is discrete, with L points of

support 8 - (81,...,80 and associated weights w - (6,1,...,61).

The (marginal) probability of response pattern x wider Strategy 1

is

11(x1¢1-1,a1,8,0 - E col U exp[xj(81-bi))/(14-exp(81-bi)] .

2 j

Under the random guessing strategy, the basic parameters a
2
are

theprobabilitiesc.of responding correctly to each item j. All

subjects following this strategy are assumed to have the same

probabilities of correct response, so no distribution g2 enters

26
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the picture. For such subjects, the probability of response

pattern x is simply

x. 1-x.

.

13(xl°2'-l'a2) n cj
3 (1 -c 3

An artificial dataset was created for four items under this

model in accordance with the following specifications. Of 1200

simulees in all, 1000 followed the Rasch model and 200 were random

guessers, implying n1 =.833 and n2=.167. The Rasch item

parameters were al = (b1,...,b4) = (-.511,-.105,.182,.405). A

discrete density with six points of support was used to create the

data for the Rasch class. The points and their corresponding

proportions were as follows:

Point Proportion

-1.204 .08

-.357 .17

.095 .25

.262 .25

.470 .17

.642 .08

The rates of correct response for the random guessers on the four

items were a2 = (c1,...,c4) - (.30, .35, .20, .15). The

probability of each of the sixteen possible response patterns was

calculated within each class, multiplied by the number of simulees

in that class, summed over classes, and rounded to the nearest

integer. The resulting data are shown in Table 3.
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====================

Insert Table 3 about here

A standard Rasch model was first fit to the data using the

two-step marginal maximum likelihood procedures described by de

Leeuw and Verhelst (1986). Conditional maximum likelihood (CML)

estimates were first obtained for item parameters. Setting their

scale by centering them around zero like the true item parameters

for the Rasch class, the resulting values were (-.324, -.053,

.127, .252). Note that these values are biased toward their

center; the presence of random guessers blurs the distinctions

among the differences in item difficulties. A three-point

discrete distribution--the greatest number of points leading to an

identified model for a four-item test--was next estimated for

subjects. The expected counts of response patterns under this

model are also shown in Table 3. A chi-square of 7.16 with 8

degrees of freedom results, indicating an acceptable fit for a

sample of the size we have employed.

A mixture model of the generating form was then fit to the

data, with two exceptions. First, the multiplicative form of the

Rasch model was employed during calculations. Since maximum

likelihood estimates are invariant under transformations, the

estimates of the structural parameters obtained under the

multiplicative form need merely be transformed back to the usual

28
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additive form shown above. Second, a three-point discrete

distribution was again employed for the Rasch class, with the

lowest point fixed at zero in the multiplicative scale. This

co.Lresponds to 81 -.0 in the additive scale, implying incorrect

responses to all items with probability one. (As it turns out,

the estimated weight associated with this point will be zero.)

The total number of parameters to be estimated, then, was 13:

o 2 free points in the Rasch distribution: 82 and 83.

o 2 free values for weights at the three points in the Rasch

distribution: w
1,

w2, and w3, where E w
/

1.

o 4 item parameters for the Rasch class: al(b1,...,b4).

o 4 item parameters for the guessing class: a2(c1,...,c4).

o 1 relative proportion for class representation: 1.2.

In light of the fact that only 15 degrees of freedom are

available from the data, in the form of 16 response patterns whose

counts that must sum to 1200, an unaccelerated EM solution

converged painfully slowly. Fletcher-Powell iterations were

employed instead, and they converged rapidly. The Rasch-only

estimates described above were used as starting values for the

Rasch class item parameters and population distribution. For the

c's, a common value midway among the true values was used. For

w
2'

starting values of .10, .15, and .20 were used in three

different runs. All runs converged to the same solution:

29
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al -. (-.501,-.091,.193,.398);

A (-03, -.534, .354):

w ( <10 -10, .319, .681);

a
2

(.287, .230, .179, .139);

r
2

.164.

Although the c's are slightly underestimated, the structure of

the data has been reconstructed quite well. The expected counts

of response patterns are also shown in Table 3. As they should,

they yield a nearly perfect fit: a chi-square of .008 on 3 degrees

of freedom. The improvement in chi-square is dramatic if not

significant--it would be for larger samples or longer tests--but

the removal of the bias in the Rasch item parameter estimates is

the point of the exercise.

Table 4 shows conditional likelihoods of each response

pattern given that an examinee is a guesser, a member of the

Rasch class with 0--.534, and a member of the Rasch class with

0.354. The estimated proportions of the population in these

categories are .164, .267, and .569 respectively. Multiplying

these population probabilities times a pattern's corresponding

likelihood terms, then normalizing, gives the posterior

probabilities that also appear in the table. Posterior

probabilities are given for membership in the guessing class, and

for 0.0.534 and 0=.354 given membership in the Rasch class.
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Insert Table 4 about here

Recall from the description of the EM solution that the data

from an examinee is effectively distributed among strategy

classes to estimate the item parameters within that class. This

means that the responses of all examinees play a role in both

estimating both b's and c's--but with weights in proportion to the

posterior probabilities shown in Table 4. From responses to only

four items, we never have overwhelming evidence that a particular

examinee is a guesser. Only those with all incorrect responses

can be judged more likely than not to have guessed. Had only

those respondents been treated as guessers--and that would be the

Bayesian modal estimate of strategy class--estimated c's would all

have been zero. But employing a proportion of data from all

patterns, even those with all items correct, yields estimated c's

that essentially recover the generating values.

As a consequence of using the Rasch model for Strategy 1,

the conditional posterior distributions given that a subject

belongs to this class, or p(01x,0,1=1), are identical for all

response patterns x with the same total score. The probability

that an examinee belongs to the Rasch class vary considerably

within patterns with the same score, however. For any given

response pattern, the posterior probability of being in the Rasch

31
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r patternsclass can be inferred from Table 4 as 1 - P(q2lIx). Fo

with exactly one correct response, these probabilities ar

Items 1-4 in turn, .869, .800, .687, and .519.

Discussion

Theories about the processes by which examinees attempt t

solve test items play no role in standard applications of test

theory, including conventional item response theory.. Only a dat

matrix of correct and incorrect responses is addressed, and items

and examinees are parameterized strictly on the basis of

propensities toward correct response. When all that is desired is

a simple comparison of examinees in terms of a general propensity

of this nature, IRT models suffice and in fact offer many

advantages over classical true -sco' test theory.

Situations for which standard IRT models prove less

satisfactory involve a desire either to better understand the

cognitive processes that underlie item response, or to employ

theories about such processes to provide more precise or more

valid measurement. Extensions of item response theory in this

direction are exemplified by the Linear Logistic Test Model

(Schieblechner, 1972; Fischer, 1973), Embretson's (1985)

multicomponent models, Samejima'a (1983) model for multiple

strategies, and Tatsuoka's (1983) "rule space" analyses.

The approach offered in this paper concerns situations in

which different persons may choose different strategies from a

e, for

32



Different Strategies

27

number of known alternatives, but overall proficiencies provide

meaningful comparisons among persons employing the same strategy.

We suppose that strategy choice is not directly observed but can

be inferred (with uncertainty) from response patterns on

theoretical bases. Assuming that substantive theory allow us to

differentiate our expectations about response patterns under

different strategies, and that a subject applies the same strategy

on all items, it is possible to estimate the parameters of IRT

models for each strategy. It is further possible to calculate the

probabilities that a given subject has employed each of the

alternative strategies, and estimate his proficiency under each

given that that was the one he used.

Assuming that a subject uses the same strategy on all items

is obviously undesirable for many important problems. In a

technical sense, the approach can be extended to allow for

strategy-switching by defining additional strategy classes that

are in effect combinations of different strategies for different

items. Based on Just and Carpenter's (1985) finding that subjects

sometimes apply whichever strategy is easier for a given problem,

we might define three strategy classes for items like those in our

Example 1:

o Always apply the rotational strategy;

o Always apply the analytic strategy;

o Apply whichever strategy is better suited to an item.

(10
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If items were constructed to run from easy to hard under the

rotational strategy and hard to easy under the analytic, subjects

using the third "mixed" strategy would find them easy, then

harder, then easier again.

There are limitations to how far these ideas can be pressed

in applications with binary data. Our second example showed that

the misspecified Rasch model fit a four-item test acceptably well

with a sample of 1200 subjects; in one way or another, more

information would be needed to attain a sharper distinction

between strategy classes and, correspondingly, more power to

differentiate among competing models for the data. One source of

information is more binary items. Fifty items rather than four,

including some that are very hard under the Rasch strategy, would

do. A different source of information available in other settings

would be to draw from richer observational possibilities.

Examples would include response latencies as well as correctness,

eye-fixation patterns, and choices of incorrect alternatives that

are differentially likely under different strategies.

Differentiating the likelihood of response patterns under

different strategies is the key to successful applications of the

approach. Its use would be recommended when identifying strategy

classes is of primary importance to the selection or placement

decision that must be made nn6 overall proficiency is of

secondary importance. The items in the test must then be

constructed to maximize strategy differences, e.g., using items
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that are hard under one strategy but easy under another. Most

tests in current use with standard test theory are not constructed

with this purpose in mind; indeed, they are constructed so as to

minimize differentiation among strategies, since it lowers the

reliability of overall-propensity scores. When strategy class

decisions are of interest, a conventional tests is not likely to

provide useful information. (Although a battery of conventional

tests might; differences in score profiles are analogous to

differential likelihoods of item response patterns, but at a

higher level of aggregation.)

In addition to the applications used in the preceding

examples, a number of other current topics in educational and

psychological research are amenable to expression in terms of

mixtures of IRT models. We conclude by mentioning three.

Hierarchical development. Wilson's (1984, 1985) "saltus"

model (Latin for "leap") extends the Rasch model to developmental

patterns in which capabilities increase in discrete stages, by

including stage parameters as well as abilities for persons, and

stage parameters as well as difficulties for items. Examples

would include Piaget's (1960) innate developmental stages and

Gagne's (1962) learned acquisition of rules. Suppose that K

stages are ordered in terms of increasing and cumulative

competence. In our notation, 0 would indicate the stage

membership of a subject. In the highest stage, item responses

follow a Rasch model with parameters b.,. Rasch models fit lower
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stages as well, but the item parameters are offset by amounts that

depend on which stage the item can first be solved. Our basic

parameters a would correspond to the item parameters for the

highest stage and the offset parameters for particular item types

at particular lower stages. Figure 4 gives a simple illustration

in which items associated with higher stages have an additional

increment of difficulty for subjects at lower stages. In

applications such as Siegler's (1981) balance beam tasks, subjects

at selected lower stages tend to answer certain types of higher-

stage items correctly for the wrong reasons. In these cases, the

offset works to give easier item difficulty parameters to those

items in those stages.

Insert Figure 4 about here

Mental models for problem solving. In the introduction to

their experimental study on mental models for electricity,

Gentner and Gentner (1983) state

Analogical comparisons with simple or familiar systems often
occur in people's descriptions of complex systems, sometimes
as explicit analogical models, and sometimes as implicit
analogies, in which the person seems to borrow structure from
the base domain without knowing it. Phrases like "current
being routed along a conductor" and "stopping the flow" of
electricity are examples (p. 99).

Mental models are important as a pedagogical device and as a

guide to problem-solving. Inferring which models a person is
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using, based on a knowledge of how conceivable analogues help or

hinder the solution of certain types of problems, provides a

guide to subsequent training. In Gentner and Gentner's

experiment, the problems concerned simple electrical circuits with

series and parallel combinations of resistors and batteries.

Popular analuzjes for electricity are flowing waters (Strategy 1)

and "teeming crowds" of people entering a stadium through a few

narrow turnstiles (Strategy 2). The water flow analogy

facilitates battery problems, but does not help with resistor

problems; indeed, it suggests an incorrect solution for the

current in circuits with parallel resistors. The teeming crowd

analogy facilitates problems on the combination of resistors, but

is not informative about combinations of batteries. If a Rasch

model holds for items within strategies, Gentner and Gentner's

hypotheses correspond to constraints on the order of item

difficulties with the two strategics. If each item type were

replicatated enough times, it would be possible to make inferences

about which model a particular examinee was using, in order to

plan subsequent instruction.

Changes in intelligence over age. An important topic in the

field of human development is whether, and how, intelligence

changes as people age (Birren, Cunningham, and Yamamoto, 1983).

Macrae (n.d.) identifies a weakness of most studies that employ

psychometric tests to measure aging effects: total scores fail to

reflect important differences in the strategies different subjects

Q
tt
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bring to bear on the items they are presented. Total score

differences among age and educational-background groups on Raven's

matrices test were not significant in the study she reports. But

analyses of subjects' introspective reports on how they solved

items revealed that those with academically oriented background

were much more likely to have used the preferred "algorithmic

strategy over a "holistic" strategy than those with vocationally

oriented backgrounds. Since the use of algorithmic strategies was

found to increase probabilities of success differentially on

distinct item types, this study would be amenable to IRT mixture

modeling. Inferences could then be drawn about problem-solving

approaches without resorting to more expensive and possibly

unreliable introspective evidence.
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Table 1

Item Features

=aamplaa=a-ms=ammas.,======ssaimammomummomms====mrasalrmarmum

Item rotational displacement salient features

1 60 degrees

2 120 degrees

3 180 degrees

3

2

1

========.3.===....i.C.242===============t=72MIWAMEW.,

Item

Table 2

Item Difficulty Parameters

..... =====

Strategy 1 Strategy 2

1 -1.0 2.0
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Table 3

Observed and Fitted Response Pattern Counts for Example 2

1=7110L371=====
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x
observed

frequencies
expected frequencies
(Rasch model only)

expected frequencies
(2-class model)

0000 143 143.00 143.08
0001 94 98.66 93.95
0010 83 87.12 83.11
0011 101 90.55 101.09
0100 73 72.75 72.78
0101 78 76.62 77.75
0110 65 66.77 65.26
0111 106 93.20 105.98
1000 64 55.46 63.91
1001 54 57.65 54.16
1010 47 50.91 46.75
1011 71 71.06 70.94
1100 39 42.51 39.30
1101 54 59.34 54.07
1110 45 52.40 44.80
1111 83 83.00 83.07
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Table 4

elihoods and Posterior Probabilities
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x L(x102) L(xfe2,41) L(x182,0i) P(021x) P(821x,01) P(831x,01)

0000 .388 .150 .027 .534 .719 .281
0001 .063 .131 .058 .131 .513 .487
0010 .085 .107 .047 .200 .513 .487
0011 .014 .093 .100 .027 .303 .697
0100 .116 .080 .036 .313 .513 .487
0101 .019 .070 .076 .047 .303 .697
0110 .025 .057 .062 .076 .303 .6;7
0111 .004 .050 .131 .008 .151 .849
1000 .156 .053 .024 .481 .513 .487
1001 .025 .047 .050 .092 .303 .697
1010 .034 .038 .041 .143 .303 .697
1011 .005 .033 .087 .015 .151 .849
1100 .047 .029 .031 .234 .303 .697
1101 .008 .025 .065 .027 .151 .849
1110 .010 .020 .053 .045 .151 .849
1111 .002 .018 .113 .004 .068 .932

Note: 0
1
denotes membership in the class of Rasch responders;

0 denotes membership in the class of random guessers;
e2 denotes membership in the class of Rasch responders,
2
with 8--.534;

e3 denotes membership in the class of Rasch responders,
with O -.354.
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Figure 4

Saltus example: 3 stages, common offset
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