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Abstract

This paper proposes a history-based struc-

tured learning approach that jointly ex-

tracts entities and relations in a sentence.

We introduce a novel simple and flexible

table representation of entities and rela-

tions. We investigate several feature set-

tings, search orders, and learning meth-

ods with inexact search on the table. The

experimental results demonstrate that a

joint learning approach significantly out-

performs a pipeline approach by incorpo-

rating global features and by selecting ap-

propriate learning methods and search or-

ders.

1 Introduction

Extraction of entities and relations from texts has

been traditionally treated as a pipeline of two sep-

arate subtasks: entity recognition and relation ex-

traction. This separation makes the task easy to

deal with, but it ignores underlying dependencies

between and within subtasks. First, since entity

recognition is not affected by relation extraction,

errors in entity recognition are propagated to re-

lation extraction. Second, relation extraction is

often treated as a multi-class classification prob-

lem on pairs of entities, so dependencies between

pairs are ignored. Examples of these dependen-

cies are illustrated in Figure 1. For dependencies

between subtasks, a Live in relation requires PER

and LOC entities, and vice versa. For in-subtask

dependencies, the Live in relation between “Mrs.

Tsutayama” and “Japan” can be inferred from the

two other relations.

Figure 1 also shows that the task has a flexible

graph structure. This structure usually does not

cover all the words in a sentence differently from

other natural language processing (NLP) tasks

such as part-of-speech (POS) tagging and depen-

Mrs. Tsuruyama is from Kumamoto Prefecture in Japan .
PER LOC LOC

Live_in Located_in

Live_in

Figure 1: An entity and relation example (Roth

and Yih, 2004). Person (PER) and location (LOC)

entities are connected by Live in and Located in

relations.

dency parsing, so local constraints are considered

to be more important in the task.

Joint learning approaches (Yang and Cardie,

2013; Singh et al., 2013) incorporate these de-

pendencies and local constraints in their models;

however most approaches are time-consuming and

employ complex structures consisting of multi-

ple models. Li and Ji (2014) recently proposed

a history-based structured learning approach that

is simpler and more computationally efficient than

other approaches. While this approach is promis-

ing, it still has a complexity in search and restricts

the search order partly due to its semi-Markov rep-

resentation, and thus the potential of the history-

based learning is not fully investigated.

In this paper, we introduce an entity and relation

table to address the difficulty in representing the

task. We propose a joint extraction of entities and

relations using a history-based structured learning

on the table. This table representation simplifies

the task into a table-filling problem, and makes

the task flexible enough to incorporate several en-

hancements that have not been addressed in the

previous history-based approach, such as search

orders in decoding, global features from relations

to entities, and several learning methods with in-

exact search.

2 Method

In this section, we first introduce an entity and re-

lation table that is utilized to represent the whole
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entity and relation structures in a sentence. We

then overview our model on the table. We finally

explain the decoding, learning, search order, and

features in our model.

2.1 Entity and relation table

The task we address in this work is the extraction

of entities and their relations from a sentence. En-

tities are typed and may span multiple words. Re-

lations are typed and directed.

We use words to represent entities and relations.

We assume entities do not overlap. We employ

a BILOU (Begin, Inside, Last, Outside, Unit) en-

coding scheme that has been shown to outperform

the traditional BIO scheme (Ratinov and Roth,

2009), and we will show that this scheme induces

several label dependencies between words and be-

tween words and relations in §2.3.2. A label is

assigned to a word according to the relative posi-

tion to its corresponding entity and the type of the

entity. Relations are represented with their types

and directions. ⊥ denotes a non-relation pair, and

→ and← denote left-to-right and right-to-left re-

lations, respectively. Relations are defined on not

entities but words, since entities are not always

given when relations are extracted. Relations on

entities are mapped to relations on the last words

of the entities.

Based on this representation, we propose an en-

tity and relation table that jointly represents en-

tities and relations in a sentence. Figure 2 illus-

trates an entity and relation table corresponding to

an example in Figure 1. We use only the lower tri-

angular part because the table is symmetric, so the

number of cells is n(n + 1)/2 when there are n
words in a sentence. With this entity and relation

table representation, the joint extraction problem

can be mapped to a table-filling problem in that

labels are assigned to cells in the table.

2.2 Model

We tackle the table-filling problem by a history-

based structured learning approach that assigns la-

bels to cells one by one. This is mostly the same as

the traditional history-based model (Collins, 2002)

except for the table representation.

Let x be an input table, Y(x) be all possible

assignments to the table, and s(x,y) be a scoring

function that assesses the assignment of y ∈ Y(x)
to x. With these definitions, we define our model

to predict the most probable assignment as fol-

lows:

y∗ = arg max
y∈Y(x)

s(x,y) (1)

This scoring function is a decomposable function,

and each decomposed function assesses the as-

signment of a label to a cell in the table.

s(x,y) =

|x|
∑

i=1

s(x,y, 1, i) (2)

Here, i represents an index of a cell in the table,

which will be explained in §2.3.1. The decom-

posed function s(x,y, 1, i) corresponds to the i-th
cell. The decomposed function is represented as a

linear model, i.e., an inner product of features and

their corresponding weights.

s(x,y, 1, i) = w·f(x,y, 1, i) (3)

The scoring function are further divided into two

functions as follows:

s(x,y, 1, i) = slocal(x,y, i) + sglobal(x,y, 1, i)
(4)

Here, slocal(x,y, i) is a local scoring func-

tion that assesses the assignment to the i-th
cell without considering other assignments, and

sglobal(x,y, 1, i) is a global scoring function that

assesses the assignment in the context of 1st to

(i − 1)-th assignments. This global scoring func-

tion represents the dependencies between entities,

between relations, and between entities and rela-

tions. Similarly, features f are divided into local

features flocal and global features fglobal, and they

are defined on its target cell and surrounding con-

texts. The features will be explained in §2.5. The

weights w can also be divided, but they are tuned

jointly in learning as shown in §2.4.

2.3 Decoding

The scoring function s(x,y, 1, i) in Equation (2)

uses all the preceding assignments and does not

rely on the Markov assumption, so we cannot em-

ploy dynamic programming.

We instead employ a beam search to find the

best assignment with the highest score (Collins

and Roark, 2004). The beam search assigns la-

bels to cells one by one with keeping the top K
best assignments when moving from a cell to the

next cell, and it returns the best assignment when

labels are assigned to all the cells. The pseudo

code for decoding with the beam search is shown

in Figure 3.
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Mrs. Tsutayama is from Kumamoto Prefecture in Japan .

Mrs. B-PER

Tsutayama ⊥ L-PER

is ⊥ ⊥ O

from ⊥ ⊥ ⊥ O

Kumamoto ⊥ ⊥ ⊥ ⊥ B-LOC

Prefecture ⊥ Live in→ ⊥ ⊥ ⊥ L-LOC

in ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ O

Japan ⊥ Live in→ ⊥ ⊥ ⊥ Located in→ ⊥ U-LOC

. ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 2: The entity and relation table for the example in Figure 1.

INPUT: x: input table with no assignment,

K: beam size

OUTPUT: best assignment y∗ for x

1: b← [x]

2: for i = 1 to |x| do

3: T ← ∅
4: for k = 1 to |b| do

5: for a ∈A(i, b[k]) do

6: T ← T ∪ append(a, b[k])
7: end for

8: end for

9: b← top K tables from T using the scoring

function in Equation (2)

10: end for

11: return b[0]

Figure 3: Decoding with the beam search. A(i, t)
returns possible assignments for i-th cell of a table

t, and append(a, t) returns a table t updated with

an assignment a.

We explain how to map the table to a sequence

(line 2 in Figure 3), and how to calculate possible

assignments (line 6 in Figure 3) in the following

subsections.

2.3.1 Table-to-sequence mapping

Cells in an input table are originally indexed in

two dimensions. To apply our model in §2.2 to the

cells, we need to map the two-dimensional table

to a one-dimensional sequence. This is equivalent

to defining a search order in the table, so we will

use the terms “mapping” and “search order” inter-

changeably.

Since it is infeasible to try all possible map-

pings, we define six promising static mappings

(search orders) as shown in Figure 4. Note that the

“left” and “right” directions in the captions cor-

respond to not word orders, but tables. We de-

1 3 6

A B C

A 1

B 2 3

C 4 5 6

A B C

52

4

(a) Up to
down, left to
right

1 2 4

A B C

A 1

B 3 2

C 6 5 4

A B C

53

6

(b) Up to
down, right
to left

4 2 1

A B C

A 4

B 5 2

C 6 3 1

A B C

35

6

(c) Right to
left, up to
down

6 3 1

A B C

A 6

B 5 3

C 4 2 1

A B C

25

4

(d) Right to
left, down to
up

1 2 3

A B C

A 1

B 4 2

C 6 5 3

A B C

54

6

(e) Close-
first, left to
right

3 2 1

A B C

A 3

B 5 2

C 6 4 1

A B C

45

6

(f) Close-
first, right to
left

Figure 4: Static search orders.

fine two mappings (Figures 4(a) and 4(b)) with the

highest priority on the “up to down” order, which

checks a sentence forwardly (from the beginning

of a sentence). Similarly, we also define two map-

pings (Figures 4(c) and 4(d)) with the highest pri-

ority on the “right to left” order, which check a

sentence backwardly (from the end of a sentence).

From another point of view, entities are detected

before relations in Figures 4(b) and 4(c) whereas

the order in a sentence is prioritized in Figures 4(a)

1860



Condition Possible labels on wi

Relation(s) on wi−1 B-*, O, U-*

Relation(s) on wi L-*, U-*

Table 1: Label dependencies from relations to en-

tities. * indicates any type.

Label on wi Relations from/to wi

B-*, I-*, O ⊥
L-*, U-* *

Label on wi+1 Relations from/to wi

I-*, L-* ⊥
B-*, U-*, O *

Table 2: Label dependencies from entities to rela-

tions.

and 4(d). We further define two close-first map-

pings (Figures 4(e) and 4(f)) since entities are

easier to find than relations and close relations are

easier to find than distant relations.

We also investigate dynamic mappings (search

orders) with an easy-first policy (Goldberg and El-

hadad, 2010). Dynamic mappings are different

from the static mappings above, since we reorder

the cells before each decoding1. We evaluate the

cells using the local scoring function, and assign

indices to the cells so that the cells with higher

scores have higher priorities. In addition to this

naı̈ve easy-first policy, we define two other dy-

namic mappings that restricts the reordering by

combining the easy-first policy with one of the fol-

lowing two policies: entity-first (all entities are de-

tected before relations) and close-first (closer cells

are detected before distant cells) policies.

2.3.2 Label dependencies

To avoid illegal assignments to a table, we have

to restrict the possible assignments to the cells ac-

cording to the preceding assignments. This restric-

tion can also reduce the computational costs.

We consider all the dependencies between cells

to allow the assignments of labels to the cells in

an arbitrary order. Our representation of entities

and relations in §2.1 induces the dependencies be-

tween entities and between entities and relations.

Tables 1-3 summarize these dependencies on the i-
th word wi in a sentence. We can further utilize de-

pendencies between entity types and relation types

if some entity types are involved in a limited num-

1It is also possible to reorder the cells during decoding,
but it greatly increases the computational costs.

Label on wi−2 Possible labels on wi

B-TYPE B-*, I-TYPE, L-TYPE, O, U-*

I-TYPE B-*, I-TYPE, L-TYPE, O, U-*

L-TYPE B-*, I-*, L-*, O, U-*

O B-*, I-*, L-*, O, U-*

U-TYPE B-*, I-*, L-*, O, U-*

O/S B-*, I-*, L-*, O, U-*

Label on wi−1 Possible labels on wi

B-TYPE I-TYPE, L-TYPE

I-TYPE I-TYPE, L-TYPE

L-TYPE B-*, O, U-*

O B-*, O, U-*

U-TYPE B-*, O, U-*

O/S B-*, O, U-*

Label on wi+1 Possible labels on wi

B-TYPE L-*, O, U-*

I-TYPE B-TYPE, I-TYPE

L-TYPE B-TYPE, I-TYPE

O L-*, O, U-*

U-TYPE L-*, O, U-*

O/S L-*, O, U-*

Label on wi+2 Possible labels on wi

B-TYPE B-*, I-*, L-*, O, U-*

I-TYPE B-TYPE, I-TYPE, L-*, O, U-*

L-TYPE B-TYPE, I-TYPE, L-*, O, U-*

O B-*, I-*, L-*, O, U-*

U-TYPE B-*, I-*, L-*, O, U-*

O/S B-*, I-*, L-*, O, U-*

Table 3: Label dependencies between entities.

TYPE represents an entity type, and O/S means

the word is outside of a sentence.

ber of relation types or vice versa. We note that

the dependencies between entity types and rela-

tion types include not only words participating in

relations but also their surrounding words. For ex-

ample, the label on wi−1 can restrict the types of

relations involving wi. We employ these type de-

pendencies in the evaluation, but we omit these de-

pendencies here since these dependencies are de-

pendent on the tasks.

2.4 Learning

The goal of learning is to minimize errors between

predicted assignments y∗ and gold assignments

ygold by tuning the weights w in the scoring func-

tion in Equation 3. We employ a margin-based

structured learning approach to tune the weights

w. The pseudo code is shown in Figure 5. This ap-

proach enhances the traditional structured percep-
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INPUT: training sets D = {(xi,yi)}
N
i=1,

T: iterations

OUTPUT: weights w

1: w← 0

2: for t = 1 to T do

3: for x,y ∈ D do

4: y∗← best assignment for x using decod-

ing in Figure 3 with s′ in Equation (5)

5: if y∗ ̸= ygold then

6: m← arg maxi{s
′(x,ygold, 1, i)−

s′(x,y∗, 1, i)}
7: w← update(w, f(x,ygold, 1,m),

f(x,y∗, 1,m))
8: end if

9: end for

10: end for

11: return w

Figure 5: Margin-based structured learn-

ing approach with a max-violation update.

update(w, f(x,ygold, 1,m), f(x,y∗, 1,m))
depends on employed learning methods.

tron (Collins, 2002) in the following ways. Firstly,

we incorporate a margin ∆ into the scoring func-

tion as follows so that wrong assignments with

small differences from gold assignments are pe-

nalized (lines 4 and 6 in Figure 5) (Freund and

Schapire, 1999).

s′(x,y) = s(x,y) + ∆(y,ygold) (5)

Similarly to the scoring function s, the margin ∆
is defined as a decomposable function using 0-1

loss as follows:

∆(y,ygold) =

|x|
∑

i=1

∆(yi, y
gold
i ),

∆(yi, y
gold
i ) =

{

0 if yi = ygold
i

1 otherwise
(6)

Secondly, we update the weights w based on a

max-violation update rule following Huang et al.

(2012) (lines 6-7 in Figure 5). Finally, we em-

ploy not only perceptron (Collins, 2002) but also

AROW (Mejer and Crammer, 2010; Crammer et

al., 2013), AdaGrad (Duchi et al., 2011), and

DCD-SSVM (Chang and Yih, 2013) for learning

methods (line 7 in Figure 5.) We employ parame-

ter averaging except for DCD-SSVM. AROW and

AdaGrad store additional information for covari-

ance and feature counts respectively, and DCD-

SSVM keeps a working set and performs addi-

tional updates in each iteration. Due to space limi-

tations, we refer to the papers for the details of the

learning methods.

2.5 Features

Here, we explain the local features flocal and the

global features fglobal introduced in §2.2.

2.5.1 Local features

Our focus is not to exploit useful local features

for entities and relations, so we incorporate several

features from existing work to realize a reasonable

baseline. Table 4 summarizes the local features.

Local features for entities (or words) are similar

to the features used by Florian et al. (2003), but

some features are generalized and extended, and

gazetteer features are excluded. For relations (or

pairs of words), we employ and extend features in

Miwa et al. (2009).

2.5.2 Global features

We design global features to represent dependen-

cies among entities and relations. Table 5 summa-

rizes the global features2. These global features

are activated when all the information is available

during decoding.

We incorporate label dependency features like

traditional sequential labeling for entities. Al-

though our model can include other non-local fea-

tures between entities (Ratinov and Roth, 2009),

we do not include them expecting that global fea-

tures on entities and relations can cover them. We

design three types of global features for relations.

These features are activated when all the partic-

ipating relations are not ⊥ (non-relations). Fea-

tures except for the “Crossing” category are simi-

lar to global relation features in Li and Ji (2014).

We further incorporate global features for both en-

tities and relations. These features are activated

when the relation label is not ⊥. These features

can act as a bridge between entities and relations.

3 Evaluation

In this section, we first introduce the corpus and

evaluation metrics that we employed for evalua-

tion. We then show the performance on the train-

ing data set with explaining the parameters used

2We tried other “Entity+Relation” features to represent a
relation and both its participating entities, but they slightly
degraded the performance in our preliminary experiments.
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Target Category Features

Word Lexical Character n-grams (n=2,3,4)

(Entity) Attributes by parsers (base form, POS)

Word types (all-capitalized, initial-capitalized, all-digits, all-puncts, all-

digits-or-puncts)

Contextual Word n-grams (n=1,2,3) within a context window size of 2

Word pair Entity Entity lexical features of each word

(Relation) Contextual Word n-grams (n=1,2,3) within a context window size of 2

Shortest

path

Walk features (word-dependency-word or dependency-word-

dependency) on the shortest paths in parsers’ outputs

n-grams (n=2,3) of words and dependencies on the paths

n-grams (n=1,2) of token modifier-modifiee pairs on the paths

The length of the paths

Table 4: Local features.

Target Category Details

Entity Bigram Bigrams of labels

Combinations of two labels and their corresponding POS tags

Combinations of two labels and their corresponding words

Trigram Trigrams of labels

Combinations of three labels and each of their corresponding POS tags

Combinations of three labels and each of their corresponding words

Entity Combinations of a label and its corresponding entity

Relation Entity-

sharing

Combinations of two relation labels that share a word (i.e., relations in

same columns or same rows in a table)

Combinations of two relation labels and the shared word

Relation shortest path features between non-shared words, augmented by

a combination of relation labels and the shared word

Cyclic Combinations of three relation labels that make a cycle

Crossing Combinations of two relation labels that cross each other

Entity + Entity- Relation label and the label of its participating entity

Relation relation Relation label and the label and word of its participating entity

Table 5: Global features.

for the test set evaluation, and show the perfor-

mance on the test data set.

3.1 Evaluation settings

We used an entity and relation recognition corpus

by Roth and Yih (2004)3. The corpus defines four

named entity types Location, Organization, Per-

son, and Other and five relation types Kill, Live In,

Located In, OrgBased In and Work For.

All the entities were words in the original cor-

pus because all the spaces in entities were replaced

with slashes. Previous systems (Roth and Yih,

2007; Kate and Mooney, 2010) used these word

3conll04.corp at http://cogcomp.cs.illinois.
edu/page/resource_view/43

boundaries as they were, treated the boundaries as

given, and focused the entity classification prob-

lem alone. Differently from such systems, we re-

covered these spaces by replacing these slashes

with spaces to evaluate the entity boundary detec-

tion performance on this corpus. Due to this re-

placement and the inclusion of the boundary de-

tection problem, our task is more challenging than

the original task, and our results are not compara-

ble with those by the previous systems.

The corpus contains 1,441 sentences that con-

tain at least one relation. Instead of 5-fold cross

validation on the entire corpus by the previous sys-

tems, we split the data set into training (1,153 sen-

tences) and blind test (288 sentences) data sets and
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developed the system on the training data set. We

tuned the hyper-parameters using a 5-fold cross

validation on the training data set, and evaluated

the performance on the test set.

We prepared a pipeline approach as a baseline.

We first trained an entity recognition model using

the local and global features, and then trained a

relation extraction model using the local features

and global features without global “Relation” fea-

tures in Table 5. We did not employ the global

“Relation” features in this baseline since it is com-

mon to treat relation extraction as a multi-class

classification problem.

We extracted features using the results from two

syntactic parsers Enju (Miyao and Tsujii, 2008)

and LRDEP (Sagae and Tsujii, 2007). We em-

ployed feature hashing (Weinberger et al., 2009)

and limited the feature space to 224. The num-

bers of features greatly varied for categories and

targets. They also caused biased predictions that

prefer entities to relations in our preliminary ex-

periments. We thus chose to re-scale the features

as follows. We normalized local features for each

feature category and then for each target. We also

normalized global features for each feature cate-

gory, but we did not normalize them for each target

since normalization was impossible during decod-

ing. We instead scaled the global features, and the

scaling factor was tuned by using the same 5-fold

cross validation above.

We used the F1 score on relations with entities

as our primary evaluation measure and used it for

tuning parameters. In this measure, a relation with

two entities is considered correct when the offsets

and types of the entities and the type of the relation

are all correct. We also evaluated the F1 scores for

entities and relations individually on the test data

set by checking their corresponding cells. An en-

tity is correct when the offset and type are correct,

and a relation is correct when the type is correct

and the last words of two entities are correct.

3.2 Performance on Training Data Set

It is infeasible to investigate all the combinations

of the parameters, so we greedily searched for a

default parameter setting by using the evaluated

results on the training data set. The default pa-

rameter setting was the best setting except for the

beam size. We show learning curves on the train-

ing data set in Figure 6 when we varied each pa-

rameter from the default parameter setting. We

employed 5-fold cross validation. The default pa-

rameter setting used DCD-SSVM as the learning

method, entity-first, easy-first as the search order,

local and global features, and 8 as the beam size.

This section discusses how these parameters affect

the performance on the training data set and ex-

plains how the parameter setting was selected for

the test set.

Figure 6(a) compares the learning methods in-

troduced in §2.4. DCD-SSVM and AdaGrad per-

formed slightly better than perceptron, which has

often been employed in history-based structured

learning. AROW did not show comparable per-

formance to the others. We ran 100 iterations to

find the number of iterations that saturates learn-

ing curves. The large number of iterations took

time and the performance of DCD-SSVM almost

converged after 30 iterations, so we employed 50

iterations for other evaluation on the training data

set. AdaGrad got its highest performance more

quickly than other learning methods and AROW

converged slower than other methods, so we em-

ployed 10 for AdaGrad, 90 for AROW, and 50 it-

erations for other settings on the test data set.

The performance was improved by widening

the beam as in Figure 6(b), but the improvement

was gradually diminished as the beam size in-

creased. Since the wider beam requires more train-

ing and test time, we chose 8 for the beam size.

Figure 6(c) shows the effects of joint learning

as well as features explained in §2.5. We show the

performance of the pipeline approach (Pipeline)

introduced in §3.1, and the performance with lo-

cal features alone (Local), local and global fea-

tures without global “Relation” features in Table 5

(Local+global (−relation)) and all local and global

features (Local+global). We note that Pipeline

shows the learning curve of relation extraction in

the pipeline approach. Features in “Local+global

(−relation)” are the same as the features in the

pipeline approach, and the result shows that the

joint learning approach performed slightly better

than the pipeline approach. The incorporation

of global “Entity” and “Entity+Relation” features

improved the performance as is common with the

existing pipeline approaches, and relation-related

features further improved the performance.

Static search orders in §2.3.1 also affected the

performance as shown in Figure 6(d), although

search orders are not investigated in the joint en-

tity and relation extraction. Surprisingly, the gap
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(a) Learning methods (b) Beam sizes

(c) Features and pipeline / joint approaches (d) Static search orders

(e) Dynamic search orders

Figure 6: Learning curves of entity and relation extraction on the training data set using 5-fold cross

validation.

between the performances with the best order and

worst order was about 0.04 in an F1 score, which

is statistically significant, and the performance can

be worse than the pipeline approach in Figure 6(c).

This means improvement by joint learning can be

easily cancelled out if we do not carefully con-

sider search order. It is also surprising that the sec-

ond worst order (Figure 4(b)) is the most intuitive

“left-to-right” order, which is closest to the order

in Li and Ji (2014) among the six search orders.

Figure 6(e) shows the performance with dy-

namic search orders. Unfortunately, the easy-first

policy did not work well on this entity and relation

task, but, with the two enhancements, dynamic or-

ders performed as well as the best static order in

Figure 6(d). This shows that entities should be de-
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tected earlier than relations on this data set.

3.3 Performance on Test Data Set

Table 6 summarizes the performance on the test

data set. We employed the default parameter set-

ting explained in §3.2, and compared parameters

by changing the parameters shown in the first col-

umn. We performed a statistical test using the ap-

proximate randomization method (Noreen, 1989)

on our primary measure (“Entity+Relation”). The

results are almost consistent with the results on the

training data set with a few exceptions.

Differently from the results on the training data

set, AdaGrad and AROW performed significantly

worse than perceptron and DCD-SSVM and they

performed slightly worse than the pipeline ap-

proach. This result shows that DCD-SSVM per-

forms well with inexact search and the selection of

learning methods can significantly affect the entity

and relation extraction performance.

The joint learning approach showed a signifi-

cant improvement over the pipeline approach with

relation-related global features, although the joint

learning approach alone did not show a signif-

icant improvement over the pipeline approach.

Unfortunately, no joint learning approach outper-

formed the pipeline approach in entity recognition.

This may be partly because hyper-parameters were

tuned to the primary measure. The results on the

pipeline approach also indicate that the better per-

formance on entity recognition does not necessar-

ily improve the relation extraction performance.

Search orders also affected the performance,

and the worst order (right to left, down to up) and

best order (close-first, left to right) were signifi-

cantly different. The performance of the worst or-

der was worse than that of the pipeline approach,

although the difference was not significant. These

results show that it is necessary to carefully select

the search order for the joint entity and relation

extraction task.

3.4 Comparison with Other Systems

To compare our model with the other sys-

tems (Roth and Yih, 2007; Kate and Mooney,

2010), we evaluated the performance of our model

when the entity boundaries were given. Differ-

ently from our setting in §3.1, we used the gold

entity boundaries encoded in the BILOU scheme

and assigned entity labels to the boundaries. We

performed 5-fold cross validation on the data set

following Roth and Yih (2007) although the split

was different from theirs since their splits were not

available. We employed the default parameter set-

ting in §3.2 for this comparison.

Table 7 shows the evaluation results. Although

we cannot directly compare the results, our model

performs better than the other models. Compared

to Table 6, Table 7 also shows that the inclusion

of entity boundary detection degrades the perfor-

mance about 0.09 in F-score.

4 Related Work

Search order in structured learning has been stud-

ied in several NLP tasks. Left-to-right and right-

to-left orderings have been often investigated in

sequential labeling tasks (Kudo and Matsumoto,

2001). Easy-first policy was firstly introduced

by Goldberg and Elhadad (2010) for dependency

parsing, and it was successfully employed in sev-

eral tasks, such as joint POS tagging and depen-

dency parsing (Ma et al., 2012) and co-reference

resolution (Stoyanov and Eisner, 2012). Search

order, however, has not been focused in relation

extraction tasks.

Named entity recognition (Florian et al., 2003;

Nadeau and Sekine, 2007) and relation extrac-

tion (Zelenko et al., 2003; Miwa et al., 2009)

have often been treated as separate tasks, but

there are some previous studies that treat enti-

ties and relations jointly in learning. Most stud-

ies built joint learning models upon individual

models for subtasks, such as Integer Linear Pro-

gramming (ILP) (Roth and Yih, 2007; Yang and

Cardie, 2013) and Card-Pyramid Parsing (Kate

and Mooney, 2010). Our approach does not re-

quire such individual models, and it also can de-

tect entity boundaries that these approaches except

for Yang and Cardie (2013) did not treat. Other

studies (Yu and Lam, 2010; Singh et al., 2013)

built global probabilistic graphical models. They

need to compute distributions over variables, but

our approach does not. Li and Ji (2014) proposed

an approach to jointly find entities and relations.

They incorporated a semi-Markov chain in repre-

senting entities and they defined two actions dur-

ing search, but our approach does not employ such

representation and actions, and thus it is more sim-

ple and flexible to investigate search orders.

5 Conclusions

In this paper, we proposed a history-based struc-

tured learning approach that jointly detects enti-
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Parameter Entity Relation Entity+Relation

Perceptron 0.809 / 0.809 / 0.809 0.760 / 0.547 / 0.636 0.731 / 0.527 / 0.612⋆

AdaGrad 0.801 / 0.790 / 0.795 0.732 / 0.486 / 0.584 0.716 / 0.476 / 0.572

AROW 0.810 / 0.802 / 0.806 0.797 / 0.468 / 0.590 0.758 / 0.445 / 0.561

DCD-SSVM† 0.812 / 0.802 / 0.807 0.783 / 0.524 / 0.628 0.760 / 0.509 / 0.610⋆

Pipeline 0.823 / 0.814 / 0.818 0.672 / 0.542 / 0.600 0.647 / 0.522 / 0.577

Local 0.819 / 0.812 / 0.815 0.844 / 0.399 / 0.542 0.812 / 0.384 / 0.522

Local + global (−relation) 0.809 / 0.799 / 0.804 0.784 / 0.481 / 0.596 0.747 / 0.458 / 0.568

Local + global† 0.812 / 0.802 / 0.807 0.783 / 0.524 / 0.628 0.760 / 0.509 / 0.610⋆

(a) Up to down, left to right 0.824 / 0.801 / 0.813 0.821 / 0.433 / 0.567 0.787 / 0.415 / 0.543

(b) Up to down, right to left 0.828 / 0.808 / 0.818 0.850 / 0.461 / 0.597 0.822 / 0.445 / 0.578

(c) Right to left, up to down 0.823 / 0.799 / 0.811 0.826 / 0.448 / 0.581 0.789 / 0.427 / 0.554

(d) Right to left, down to up 0.811 / 0.784 / 0.797 0.774 / 0.445 / 0.565 0.739 / 0.425 / 0.540

(e) Close-first, left to right 0.821 / 0.806 / 0.813 0.807 / 0.522 / 0.634 0.780 / 0.504 / 0.612⋆

(f) Close-first, right to left 0.817 / 0.801 / 0.809 0.832 / 0.491 / 0.618 0.797 / 0.471 / 0.592

Easy-first 0.811 / 0.790 / 0.801 0.862 / 0.415 / 0.560 0.831 / 0.399 / 0.540

Entity-first, easy-first† 0.812 / 0.802 / 0.807 0.783 / 0.524 / 0.628 0.760 / 0.509 / 0.610⋆

Close-first, easy-first 0.816 / 0.803 / 0.810 0.796 / 0.486 / 0.603 0.767 / 0.468 / 0.581

Table 6: Performance of entity and relation extraction on the test data set (precision / recall / F1 score).

The † denotes the default parameter setting in §3.2 and ⋆ represents a significant improvement over the

underlined “Pipeline” baseline (p<0.05). Labels (a)-(f) correspond to those in Figure 4.

Kate and Mooney (2010) Roth and Yih (2007) Entity-first, easy-first

Person 0.921 / 0.942 / 0.932 0.891 / 0.895 / 0.890 0.931 / 0.948 / 0.939

Location 0.908 / 0.942 / 0.924 0.897 / 0.887 / 0.891 0.922 / 0.939 / 0.930

Organization 0.905 / 0.887 / 0.895 0.895 / 0.720 / 0.792 0.903 / 0.896 / 0.899

All entities - - 0.924 / 0.924 / 0.924

Located In 0.675 / 0.567 / 0.583 0.539 / 0.557 / 0.513 0.821 / 0.549 / 0.654

Work For 0.735 / 0.683 / 0.707 0.720 / 0.423 / 0.531 0.886 / 0.642 / 0.743

OrgBased In 0.662 / 0.641 / 0.647 0.798 / 0.416 / 0.543 0.768 / 0.572 / 0.654

Live In 0.664 / 0.601 / 0.629 0.591 / 0.490 / 0.530 0.819 / 0.532 / 0.644

Kill 0.916 / 0.641 / 0.752 0.775 / 0.815 / 0.790 0.933 / 0.797 / 0.858

All relations - - 0.837 / 0.599 / 0.698

Table 7: Results of entity classification and relation extraction on the data set using the 5-fold cross

validation (precision / recall / F1 score).

ties and relations. We introduced a novel entity

and relation table that jointly represents entities

and relations, and showed how the entity and re-

lation extraction task can be mapped to a simple

table-filling problem. We also investigated search

orders and learning methods that have been fixed

in previous research. Experimental results showed

that the joint learning approach outperforms the

pipeline approach and the appropriate selection of

learning methods and search orders is crucial to

produce a high performance on this task.

As future work, we plan to apply this approach

to other relation extraction tasks and explore more

suitable search orders for relation extraction tasks.

We also plan to investigate the potential of this ta-

ble representation in other tasks such as semantic

parsing and co-reference resolution.
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