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Abstract

A class of models for lateral geniculate nucleus (LGN) ON-cell behavior is proposed. The models

consist of a linear filter with divisive normalization by root mean square local contrast and include

an intrinsic noise density parameter. The properties of these models are shown to match observed

LGN behavior: (1) a linear response to low magnitude stimuli; (2) a linear response without

saturation (luxotonic behavior) for zero contrast stimuli (homogeneous fields) with increasing

magnitude; (3) response saturation for non-zero contrast stimuli with increasing magnitude. The

models possess an intrinsic scale for signal-to-noise ratio (SNR). The models show under- and

super-saturation, as well as saturation, for sinusoidal grating stimuli with increasing contrast and

predict that different SNR regimes will cause a single neuron to show different contrast response

curves. A companion paper (Cope, Blakeslee and McCourt, 2013) provides a detailed analysis of

the full nonlinear response for sinusoidal grating stimuli and circular spot stimuli.

1. Introduction

The purpose of this paper is to introduce a general class of nonlinear analytical models

which capture the full range of behavior that is experimentally observed for neurons in the

lateral geniculate nucleus, in particular, both luxotonic and saturated responses. This paper

formulates these models and derives their key properties. A companion paper (Cope,

Blakeslee and McCourt [1]) provides a detailed analysis of a five-parameter model of this

type, and selected results from that companion paper are included here for illustration.

The lateral geniculate nucleus (LGN) is a thalamic visual relay nucleus which receives input

from the retina and projects to the primary visual cortex. Receptive fields of LGN neurons

have roughly circular symmetry and exhibit center-surround antagonism, where the response

of the center region to light can be either excitatory (ON-center) or inhibitory (OFF-center)

[2,3]. Neurons in the LGN exhibit a number of canonical properties which analytical models

of their behavior should reflect. The first of these properties is the saturation of response
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with increasing stimulus contrast, i.e., contrast gain-control [4–12]. A behavior related to

response saturation is that some LGN (and cortical) neurons exhibit response super-

saturation [5, 13], where response actually decreases with increasing stimulus contrast. A

third property is that the response of LGN cells increases monotonically with increasing

luminance for homogeneous fields, that is, they exhibit luxotonic behavior over many orders

of magnitude [2,3,14–26].

This seeming contradiction, that LGN cells show both non-saturation (luxotonic behavior

for homogeneous fields) and saturation for other stimuli, motivates this paper. Furthermore,

when homogeneous stimuli of increasing magnitude cause the LGN response to increase

without saturation, that increasing LGN response is the input for simple cells in the primary

visual cortex, yet simple cells give a zero response to homogeneous stimuli. This fact

suggests that luxotonic behavior may give special insight into the interaction between LGN

cells and simple cells and thus further motivates the formulation of an LGN model that can

reproduce luxotonic behavior.

Finally, analytical models should embody the fact that whereas frequency-domain properties

of LGN responses (such as optimal spatial frequency, spatial frequency and orientation

bandwidth) are relatively invariant with grating contrast [27], space-domain properties (such

as the diameter of the circular spot stimulus eliciting maximal response) are not invariant,

but depend on spot contrast [15].

Section 2 formulates a general class of models, which consist of a linear filter with divisive

normalization by a root mean square local contrast and include an intrinsic noise density.

These models address the ON-center response. The general formulation derives properties of

this class of models which are independent of particular choices for the receptive field

function defining the linear filter and the gain control function (gain pool) defining the local

contrast weight. That is, this class of models is shown to be structurally stable. The

properties include an intrinsic scale for measuring signal-to-noise ratio (SNR), response

saturation, luxotonic behavior, and a mechanism for super-saturation. We do not know of

any other model for LGN neurons that claims to produce this range of observed LGN

behavior, that is, both saturating and luxotonic responses.

Section 3 provides illustrative examples of the response to sinusoidal grating stimuli, which

are chosen as a familiar class of stimuli for checking the behavior of the model. These

examples are drawn from the work of the companion paper [1], which studies a five-

parameter model of this class consisting of a difference-of-Gaussians receptive field

function [28, 29] and a Gaussian gain pool and the full nonlinear response to sinusoidal

grating and circular spot stimuli. An unexpected result follows from the model's intrinsic

scale for SNR, which provides a means of studying saturation behavior as SNR varies. It is

known that contrast response curves can show under-saturation, saturation, and super-

saturation, but the reason for this variation is unknown. One hypothesis is that the different

behaviors result from different types of neurons. Our model shows that a single LGN neuron

can show all three types of contrast response curve, the types being associated with different

SNR regimes. The implication is that the contrast response curve shown by a neuron is

determined by the stimulus magnitude (relative to the level of intrinsic noise in the neuron).
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Related modeling

The general form of a linear filter divided by a root mean square gain control is used in

various LGN models. The use of a difference of circular Gaussians for the receptive field

function defining the linear filter is a well established choice [8, 28–30]. Quadratic gain

control mechanisms vary in details and the differences are sometimes crucial. For example,

Mante et al. [30] omit an additive constant which appears in our formulation as the (strictly

positive) intrinsic noise density parameter. Its omission means that gain control for a

homogeneous stimulus would involve division by zero. Inclusion of such a parameter was

not crucial in [30] because that paper analyzed natural scenes, which are typically

nonhomogeneous (except perhaps for sky [31]), but its inclusion is absolutely necessary for

our purposes. Bonin et al. [8] use a root mean square gain control mechanism that involves,

as a partial step, averaging the stimulus over a grid of fifty difference-of-Gaussians filters

for the purpose of simulating gain control as originating at the retinal level. The models of

[30] and [8] do not consider luxotonic behavior. We present our class of models as the

simplest formulation that can reproduce both saturated and luxotonic responses. This class

of models has divisive normalization form, which Carandini and Heeger [32] have proposed

as a “canonical neural computation”. We note that their general definition of the divisive

normalization form includes an additive constant, similar to our intrinsic noise density

parameter νG (see Section 2), and that the definition of signal-to-noise ratio (SNR) in terms

of νG presented in this paper would hold for divisive normalization in general. The

occurrence of this definition of SNR within our models leads to the recognition that different

types of saturation phenomena are associated with corresponding SNR regimes. In fact, it

allows us to frame a new hypothesis to explain the occurrence of different types of

saturation in contrast response curves (see Section 3 and the discussion accompanying

Figure 5). The use of this definition for SNR may be similarly productive for other divisive

normalization models as well.

2. A general class of models for LGN ON-center cell response

This section formulates a general class of models for the response of a single LGN ON-

center cell to general stimulus patterns. This class of models is shown to possess the

following properties: (1) an intrinsic scale for defining a signal-to-noise ratio (SNR); (2) the

response reduces to the linear field response for small SNR; (3) response saturation with

respect to increasing SNR with the sole exception of homogeneous field stimuli; (4)

nonsaturation of the response to a homogeneous field stimulus (luxotonic behavior); (5) a

general mechanism for super-satuation. The general formulation of this section leaves the

choice of receptive field function and the gain control function arbitrary to emphasize that

the properties do not depend on special choices for these functions, that is, the general class

of models proposed here is structurally stable with respect to the properties. Section 3 gives

a specific formulation as a basis for discussion and examples.

General formulation

The total model response LGN[P] for the LGN ON-center cell to a stimulus pattern P(x⃑) has

units [spikes/sec] and is modeled as
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(1)

where νLGN > 0 is an output factor [spikes/sec] which compensates for normalizations that

occur in the model, R[P] is the linear field response, G[P] is the gain control response, the

ratio R[P]/G[P] is dimensionless, and P(x⃑) is the stimulus pattern, a nonnegative function

with units [spikes/ (sec · deg2)] which represents the stimulus pattern as encoded by retinal

ganglion cell activity. The reader should note, therefore, that the spatial patterns taken as

input to the model consist of “neural images” [33], that is, patterns of neural activity, and not

distributions of retinal light intensity. We make the customary assumption that the retinal

ganglion cell input to the LGN is proportional to the stimulus magnitude. The visual field is

the plane with coordinates (x1, x2), briefly, x⃑ and patterns are nonnegative bounded functions

on the plane.

The linear field response R[P] with units [spikes/ (sec · deg2)] to a stimulus pattern P(x⃑) is

modeled as

(2)

The linear field function R(x⃑) has units [deg−2] and is assumed absolutely integrable. The

dimensionless balance is the volume associated with R and defines the balance parameter

βCS by:

(3)

The balance is required to be nonnegative, that is, βCS ≤ 1, to agree with observed LGN

properties. The majority of LGN cells are found to possess stronger center versus surround

responses, so that normally βCS < 1. Published estimates of βCS in LGN include the

following: Macaque [4] [average βCS = 0.65]; [34] [average βCS = 0.60 and 0.68 (M-cells);

0.54 and 0.52 (P-cells)]; [23] [average βCS = 0.82 (M-cells) and 0.60 (P-cells)]; Galago [35]

[average βCS = 0.87]; marmoset [36] [average βCS = 0.64]; [37] [average βCS = 0.57 (K-

cells)]; Aotus [38] [average βCS = 0.92 (M-cells) and 0.64 (P-cells)]; [39] [median βCS =

0.77 (K-cells), 0.75 (M-cells), and 0.75 (P-cells)]; cat [40] [average βCS = 0.95]; and mouse

[41] [average βCS = 0.60].

The gain control response G[P] with units [spikes/ (sec · deg2)] to a stimulus pattern P(x⃑) is

modeled as

(4)

where the local pattern mean μG[P] with units [spikes/ (sec · deg2)] is given by

(5)
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The gain control function G(x⃑) has units [deg−2] and is assumed to be nonnegative and

normalized to unit volume:

(6)

The final parameter, νG > 0, is a normalized intrinsic noise density with units [spikes/ (sec ·

deg2)]. It represents a measure of intrinsic noise in the neuron and is assumed constant. The

noise is added to the pattern within the gain control mechanism. Normalization of the gain

control function to unit volume implies that both νG (and the pattern P) have normalized

(scaled) values. The following identity,

(7)

where the second form follows because G(x⃑) has unit volume, allows the gain control

response to be expressed as:

(8)

The gain control response thus corresponds to the standard deviation of the stimulus pattern

with the gain control function as a weight and the addition of intrinsic noise. Notice the gain

control response is necessarily positive.

Saturation in the general model

LGN cells can show response saturation, that is, a stage at which increasing the stimulus

magnitude produces no further increase in response, and even super-saturation, a stage at

which increasing the stimulus magnitude reduces the response. Such behavior is highly

nonlinear, and we will now show that such response saturation is a general property of the

model presented above.

Notice that any stimulus pattern can be expressed as the product of a scaling factor and a

fixed dimensionless component:

(9)

where νMAG ≥ 0 is some measure of the magnitude of the stimulus pattern and has units

[spikes/ (sec · deg2)]. The specific definition of νMAG will depend on the class of stimuli, for

example, νMAG may be the maximum value of the pattern P, or it may be the maximum

value or mean value of some family of patterns which include P. Once νMAG is defined, p(x⃑)

becomes the dimensionless case of the pattern. The definitions above give
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(10)

The normalized total response corresponding to Eq. (1) can then be written as the quotient

of the normalized linear field response R[P]/νG and the normalized gain control response

G[P]/νG, that is, using the fact that the gain control response is necessarily positive:

(11)

This formula has three important implications. First, the parameter νG appears only in the

dimensionless ratio νMAG/νG, which will be designated the signal-to-noise ratio (SNR). In

this way, νG sets an inherent scale for the strength of the stimulus pattern as input to the

LGN cell. Second, for small values of the SNR νMAG/νG, the total response reduces to the

linear field response. Third, for VarG[p] ≠ 0, the limit

(12)

exists and implies that LGN[P] will approach a nonnegative limiting response as νMAG/νG

→ ∞, that is, that the response will saturate as a general effect of increasing the stimulus

magnitude, νMAG.

There is an important exception to the observation that responses will generally saturate as

stimulus magnitudes increase. For the homogeneous stimulus P(x⃑) = νP, the receptive field

response from Eq. (2) is νP (1 – βCS), where normally 1 – βCS > 0, and the variance from Eq.

(7) is zero, giving the total response

(13)

This response simply increases as νP/νG increases, and saturation does not occur. We note

that this exceptional behavior of the LGN response to a homogeneous stimulus has been

observed experimentally, where luxotonic behavior has been reported in LGN of the

following: Macaque [15,17,19,21–23,26]; squirrel monkey [14]; tree shrew [25]; cat

[2,3,16,20]; and squirrel [24].

A mechanism for super-saturation in the general model

The existence of a nonsaturating stimulus provides a possible general mechanism for super-

saturation, a decrease in response as the stimulus magnitude increases. Consider a
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nonhomogeneous stimulus A. Assume that the magnitude of A has been scaled up

sufficiently that the corresponding response has saturated at some level A1. Assume B is a

homogeneous field stimulus that has been scaled sufficiently to give a response B1 > A1.

Now scale A further to insure that it has a magnitude larger than B. This new scaling does

not change the value A1 because that is the saturated value. Take a parameterized

combination of A and B in terms of c such that c = 0 gives A alone, that is, a large stimulus,

and c = 1 gives B alone, that is, a smaller stimulus. But the response at c = 0 is A1 and the

response at c = 1 is B1 > A1. Super-saturation has occurred.

3. Illustrative responses to sinusoidal grating stimuli

This section gives a specific formulation for an LGN ON-center neuron of the type

described in Section 2. The formulation is the five-parameter model studied in our

companion paper [1], and illustrative results here are taken directly from that paper. A

specific formulation is necessary to provide computational results. The results shown here

are for sinusoidal grating stimuli, which are chosen as the simplest and perhaps most

familiar stimuli to provide test cases for the model. Figure 1 shows cross-sections of

receptive field functions. Figures 2, 3, 4 illustrate the linear field, gain control, and total

responses of the model to sinusoidal grating stimuli. Figure 5 illustrates contrast response

curves generated by the model for sinusoidal grating stimuli and also illustrates luxotonic

behavior in the model. The figure is particularly interesting because it illustrates an

explanation provided by our models for experimentally observed variations in contrast

response curves. See the discussion in regard to the figure. Figure 6 shows a response

surface as a function of contrast and frequency for sinusoidal grating stimuli. The plot

illustrates that the optimal frequency for the nonlinear response can remain fixed at the

linear response value as contrast varies. The companion paper presents a detailed analysis of

the nonlinear response of the model and determines conditions under which an optimal

frequency exists and remains stable. The figure illustrates a stable case.

Specification of field functions

The linear field function is the customary difference of unit circular gaussians field function:

(14)

The parameters consist of a center sigma, σC > 0 [deg], a surround sigma, σS > 0 [deg], and

a balance parameter, 0 < βCS ≤ 1 [dimensionless], which are independent. The balance

parameter is consistent with the definition of balance in Eq. (3). Figure 1 shows cross-

sections of four linear field functions and a gain control function (multiplied by 10 to aid

visualization).

The gain control field function is a unit circular gaussian:

(15)
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Its single parameter is the gain sigma, σG > 0 [deg]. Figure 1 also shows a cross-section of

such a gain control field function.

Conditions on the linear field function typically include:

(a)

the field function R is positive at the origin (holds iff  < 1);

(b)

a zero-crossing radius r = ρ0 exists (holds iff exp );

(c) total volume associated with the field function R is nonnegative (holds iff βCS ≤

1).

In condition (b), the value r = ρ0 is unique. It is the radius of the excitatory center region of

the (ON-center) LGN cell (i.e., distance to the zero-crossing). We assume these conditions

and note that they are equivalent to the following relations, which describe the exact extent

of σC, σS, βCS-space in which the parameters can lie:

(16)

Sinusoidal grating stimuli

These stimuli have the general form

(17)

where the subscript P is used for pattern parameters. The main parameters for our discussion

are the measure of stimulus magnitude, νP [spikes/ (sec · deg2)], the spatial frequency, sP

[cycle/deg], and the dimensionless Michelson contrast cP of the sinusoidal grating. These

parameters satisfy νP ≥ 0, sP > 0, and −1 ≤ cP ≤ +1. For a given grating, the magnitude lies

between the bounds νP (1 ± |cP|). The direction of the grating, αP, is orthogonal to its

orientation, and is determined by . The LGN model

response will be independent of grating direction, αP, due to the circular symmetry of its

receptive field structure. Grating motion in a given direction is achieved by making grating

phase, ϕP, time-dependent. Electrophysiological experiments typically involve drifting

gratings across the LGN receptive field while recording spike activity, and the maximum

discharge rate per stimulus period can be recovered from the post-stimulus time histogram.

The corresponding maximum response of the model,

(18)

as well as the related quantities (R[P]νG)max and (G[P]νG)min, are found explicitly in our

companion paper [1] and are used in reporting results here. Altogether, the key parameters

for sinusoidal grating stimuli are stimulus magnitude νP, spatial frequency sP, contrast cP,

and SNR = νP/νG.
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Illustration of linear field response

Figure 2 shows plots of the linear field response versus spatial frequency at fixed contrast.

The response is shown for a single linear field function, that is, a single set of parameters σC,

σS, βCS. The response shows strong band-pass behavior and scales linearly with the SNR, as

shown for the sample values νP/νG = 1, 2, 4, 8. For the linear response, the optimal

frequency does not change with SNR.

Illustration of gain control response

Figure 3 shows plots of the gain control response versus spatial frequency at fixed contrast.

The response is shown for a single gain control function, that is, a single value for the

parameter σG, and for the same four SNR values as Figure 2. Notice the gain control value

varies from the fixed value one at zero frequency (that is, no gain control) to values

proportional to the SNR at high frequency (that is, full gain control). Notice the optimal

frequency of the linear response lies well inside the plateau of full gain control at all SNR

levels. We realize that, in the real visual system, gain control must decrease with increasing

spatial frequency, due to optical demodulation and the finite dimensions of the pooling sub-

units, but including this feature is not critical for our present purposes.

Illustration of total response

Figure 4 shows plots of the total response when the responses of Figures 2 and 3 are

combined, that is, a strong bandpass linear response with gain control applied. Notice that

the response at zero frequency is unbounded (illustrating luxotonic response), that response

saturation is occurring at other frequencies, and that the optimal frequency of this nonlinear

response remains essentially unchanged, namely, the same value as the optimal frequency

for the linear response. This unchanged optimal frequency is a consequence of the fact that

the optimal frequency lies well inside the plateau of full gain control.

Illustration of under-saturation, saturation, and super-saturation with contrast

Figure 5 shows saturation effects in contrast response curves plotted for the total response at

the same four SNR values used in the preceding figures. In other words, the model implies

that a single LGN neuron, as defined by the particular receptive field and gain control

parameters of the preceding figures, can generate different types of contrast response curves.

The type of curve depends on the SNR level. Notice that it is possible to recognize and study

this behavior because the model has an intrinsic definition of SNR. An alternate hypothesis

for the occurrence of different types of contrast response curves is that they are generated by

different types of neurons. Our model presents the experimentally testable hypothesis that

such under-saturation, saturation, super-saturation in contrast response curves is a

consequence of the SNR regime, not a consequence of the LGN cell itself.

Illustration of combined contrast and frequency response

Figure 6 shows a plot of the total response versus contrast and spatial frequency. The SNR

value is νP/νG = 4, corresponding to the straightforward contrast saturation case of Figure 5.

The surface shows such various effects as luxotonic behavior at zero frequency, contrast

saturation, and the stability of the optimal spatial frequency with respect to contrast.

Cope et al. Page 9

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4. Summary

This paper presents a general class of models for LGN ON-center behavior. These models

are intended to reproduce experimentally observed saturation behavior associated with LGN

neurons and thus are necessarily nonlinear. Relevant points include:

(1) The models allow arbitrary patterns as input stimuli. That is, the models can be

applied to arbitrary stimuli, such as sinusoidal gratings, circular spots, cross-

oriented gratings, or more general patterns. In particular, there is no restriction

on the magnitude of the stimulus. Consequently, saturation effects can be

derived as the limiting response to indefinitely increasing stimulus magnitudes.

(2) The models consist of a linear filter with divisive normalization by a gain

control mechanism, namely, a root mean square local contrast with an intrinsic

noise density parameter νG.

(3) In these models, the intrinsic noise density νG is taken to be a fixed value

reflecting an aspect of the LGN neuron. As shown in Section 2, only the ratio

νMAG/νG, where νMAG is a measure of stimulus magnitude, appears in the

response. This ratio provides an intrinsic scale for the signal-to-noise ratio

(SNR). The SNR provides a means of systematically studying saturation levels

and corresponding effects.

(4) The models act as linear filters for low magnitude stimuli, that is, for small

SNR, in agreement with experimentally observed behavior for LGN ON-center

neurons.

(5) The models show two seemingly contradictory responses:

(a) saturation (a limiting value for response to increasing SNR) for

nonhomogeneous stimuli;

(b) non-saturation (an indefinitely increasing response to increasing

SNR) for homogeneous stimuli.

These responses are experimentally observed in LGN neurons, where (b) is

known as luxotonic behavior. We do not know of any other model for LGN

neurons that claims to produce this range of observed LGN behavior, that is,

both saturating and non-saturating responses.

(6) The models provide a simple explanation for super-saturated behavior (an

eventually decreasing response to increasing stimulus magnitude) in LGN ON-

center neurons. This explanation is experimentally testable.

(7) The models imply that:

(a) LGN ON-center neurons can show under-saturation, saturation, and

super-saturation in contrast response curves;

(b) a single neuron can show all three types of contrast response curves;

and
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(c) the type of contrast response curve depends on the SNR regime of

the stimulus.

This implication is experimentally testable. We do not know of any other model

for LGN neurons that predicts different types of contrast response curves for a

single neuron nor of any model that implies the different types are the result of

the SNR regime of the stimulus.

(8) The models form a general class in the sense that the properties above (with the

possible exception of (7), which is based on results from the specific five-

parameter case of Section 3 and the companion paper) are independent of

particular choices for the receptive field function defining the linear filter and

the gain pool function defining the gain control mechanism. That is, the class of

models introduced here is structurally stable in the sense that their properties

continue to hold even if different researchers make different choices for the

receptive field or gain pool functions.
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Fig. 1.
Cross-sections of linear field functions R (x1, 0) vs. x1/ρ0 and gain control function 10G (x1,

0) vs. x1/ρ0, where ρ0 is the LGN excitatory center radius (Section 3). Parameter values: (1)

, , , , 0.836 (strong band-pass); (2) , , ,

, 0.488 (moderate band-pass); (3) , , , , 0.081 (weak

band-pass); (4) , , , , 0.019 (low-pass); and  (gain

control).
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Fig. 2.
Sinusoidal grating linear field response maximum (R[P]/νG)max vs. normalized spatial

frequency log10(πρ0sP) for the strong band-pass case of Fig. 1 and levels SNR = 1 (short

dashing), SNR = 2 (medium dashing), SNR = 4 (long dashing), SNR = 8 (solid), at

maximum grating contrast, cP = 1. The linear response is scaled by the SNR value, in

particular, there is no change in the optimal spatial frequency πρ0sP = 0.614 (vertical dashed

line) as SNR varies.
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Fig. 3.
Sinusoidal grating gain control response minimum (G[P]/νG)min vs. normalized spatial

frequency log10(πρ0sP) for gain control parameter , contrast cP = 1, and SNR = 1, 2,

4, 8, matching Fig. 2. The gain control response turns from “off” at low frequencies to “on”

at higher frequencies. The plateau level is proportional to SNR but is essentially independent

of , which determines where the plateau begins. The vertical dashed line marks the linear

response optimal spatial frequency πρ0sP = 0.614 (Fig. 2).
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Fig. 4.

Sinusoidal grating total response maximum  vs. normalized spatial

frequency log10(πρ0sP) for the four linear responses of Fig. 2 (strong band-pass case of Fig.

1 at levels SNR = 1 (short dashing), SNR = 2 (medium dashing), SNR = 4 (long dashing),

SNR = 8 (solid). The vertical solid line is a nominal boundary where gain control becomes

effective at higher frequencies. The vertical dashed line is the linear optimal spatial

frequency πρ0sP = 0.614. In all cases, gain control is fully effective at the optimal spatial

frequency, which remains stable as SNR varies.
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Fig. 5.

Sinusoidal grating total response maximum  vs. contrast cP for the strong

band-pass case of Fig. 1 with spatial frequency at the optimal value (πρ0sP = 0.614) and gain

parameter . The curves correspond to SNR = 1, 2, 4, 8 and the saturated response

limit SNR = ∞. Notice contrast saturation at SNR = 4 and super-saturation at SNR = 8. The

model predicts super-saturation in the sinusoidal grating response as a general effect with

increasing SNR.
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Fig. 6.

Sinusoidal grating total response maximum  for the strong band-pass case of

Fig. 1 with gain parameter  and SNR = 4 vs. contrast cP and normalized spatial

frequency log10(πρ0sP). The contrast saturation curve in Fig. 5 is a cross-section of this plot

at the vertical plane marking the optimal spatial frequency (πρ0sP = 0.614). Notice the

optimal frequency is independent of contrast.
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