
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2013 

Modeling Learner Mood In Realtime Through Biosensors For Modeling Learner Mood In Realtime Through Biosensors For 

Intelligent Tutoring Improvements Intelligent Tutoring Improvements 

Keith Brawner 
University of Central Florida 

 Part of the Computer Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

Brawner, Keith, "Modeling Learner Mood In Realtime Through Biosensors For Intelligent Tutoring 

Improvements" (2013). Electronic Theses and Dissertations, 2004-2019. 2608. 

https://stars.library.ucf.edu/etd/2608 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F2608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2608?utm_source=stars.library.ucf.edu%2Fetd%2F2608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 

MODELING LEARNER MOOD IN REALTIME THROUGH BIOSENSORS FOR 
INTELLIGENT TUTORING IMPROVEMENTS 

 

 

by 

 

KEITH W. BRAWNER 
B. S. University of Central Florida, 2008 
M. S. University of Central Florida, 2010 

 
 
 

A dissertation offered in partial fulfillment of the requirements 
for a degree of Doctor of Philosophy 

in the Department of Electrical Engineering and Computer Science 
in the College of Engineering and Computer Science 

at the University of Central Florida 
Orlando, Florida 

 
Summer Term 

2013 
 

Major Professor: Avelino Gonzalez 
 

  



ii 
 

 

 

 

 

 

 

 

 

© Keith W Brawner, 2013 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

Computer-based instructors, just like their human counterparts, should monitor 

the emotional and cognitive states of their students in order to adapt instructional 

technique.  Doing so requires a model of student state to be available at run time, but this 

has historically been difficult.  Because people are different, generalized models have not 

been able to be validated.  As a person’s cognitive and affective state vary over time of 

day and seasonally, individualized models have had differing difficulties.  The 

simultaneous creation and execution of an individualized model, in real time, represents 

the last option for modeling such cognitive and affective states.   This dissertation 

presents and evaluates four differing techniques for the creation of cognitive and affective 

models that are created on-line and in real time for each individual user as alternatives to 

generalized models.  Each of these techniques involves making predictions and 

modifications to the model in real time, addressing the real time datastream problems of 

infinite length, detection of new concepts, and responding to how concepts change over 

time.  Additionally, with the knowledge that a user is physically present, this work 

investigates the contribution that the occasional direct user query can add to the overall 

quality of such models.   The research described in this dissertation finds that the creation 

of a reasonable quality affective model is possible with an infinitesimal amount of time 

and without “ground truth” knowledge of the user, which is shown across three different 

emotional states.   Creation of a cognitive model in the same fashion, however, was not 

possible via direct AI modeling, even with all of the “ground truth” information 

available, which is shown across four different cognitive states.  
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1. INTRODUCTION AND BACKGROUND 

Human-to-human tutoring on a one-to-one basis by an expert instructor is the most 

effective form of instruction found to date.  In the most famous study of human tutoring 

(Bloom 1984), an improvement of approximately two letter grades resulted from such 

one-on-one human tutoring.  Tutored learners outperformed 98% of classroom learners in 

extensive experiments, showing a clear difference between those with and those without 

tutoring. 

Developments in Artificial Intelligence (AI) over the past few decades suggest 

that computers could provide the equivalent of one-to-one, human-to-human instruction, 

with the associated educational advantages that it brings.  Such a field of study is known 

as Computer Based Training (CBT).  In the early days of CBT research, however, 

computers provided little more than the content provided in the early types of e-books.  

As the field advanced in lockstep with advances in AI, CBT morphed into an immensely 

more useful tool.  This was enabled by the new ability of computers to provide feedback 

to learners, judge their understanding, accurately model their learning, and measure their 

performance in addition to providing underlying knowledge and educational links 

between content.  This functionality has begun to closely approximate human tutoring.  

CBT has evolved with it into what is now called Intelligent Tutoring Systems (ITSs).  

This line of research has led to the speculation that intelligent tutoring by computers 

holds the promise of eventually becoming superior to human tutoring, and the preferred 
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method of instruction for many training needs (Scandura 2011).  This forms the basis of 

the research described in this dissertation. 

For intelligent tutoring to perform as successfully as expert human tutors, the 

actions of the human tutor should be closely studied and emulated.  Human tutoring in 

general, and instructional practices specifically, are dedicated to the skill-based, cognitive 

and affective outcomes of the learner  (Kraiger et al. 1993).  While humans are natively 

able to sense affect and cognition through experience with a lifetime of social 

interactions, it has been technical challenge for computer systems to detect and classify 

these states (Woolf 2009b).   

Some examples of cognitive states include attention, engagement, confusion 

drowsiness, and workload, while examples of affective states include anxiety, arousal, 

boredom, frustration, and stress.  It is reasonable to believe that a computer system that is 

sensitive to these changes in learner states can positively impact learning goals (D'Mello 

et al. 2007; Graesser et al. 2007; Lepper and Woolverton 2002).  It is also reasonable to 

believe that the instructional approach for a learner who is confused/aroused is different 

than the approach a learner who is inattentive/frustrated (Lester 2011).  While these are 

reasonable assumptions, the underlying detection and classification of these states is a 

prerequisite to autonomously supporting differing instructional approaches, and advances 

in this field have been slow. 

The reasons for these difficulties in affective and cognitive classifications are 

many and varied, as is presented in the second chapter of this dissertation.  Briefly, they 
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stem from the singular cause that learners are different from each other.  Generalized and 

individualized models of human affect have not seen successful transfer into educational 

practice.  Furthermore, the models that have been constructed and evaluated take longer 

to construct than the duration of a typical training session, meaning that the learner has 

physically left the room prior to the prediction of his/her state becoming available.  This 

renders these models impractical for use in applications where user state assessments are 

required in real time for instructional strategy selection. 

The research described in this dissertation extends the state of the art by creating 

an emotional model for a learner in real time.  It does this through an analysis of the state 

of the art of ITS research and affective modeling, before looking to artificial intelligence 

tools and methods that can mitigate these problems.  This dissertation is tested on a 

carefully collected dataset of cognitive and affective sensors that are appropriate for 

classroom settings.  Before continuing with this dissertation, it is appropriate to set the 

background for this research through a broadly-reaching look at human tutors, CBT, 

adaptive training, and ITSs.  The discussion then moves to focus on a comprehensive 

review of the cognitive and affective models of learners implemented to date.  We begin 

with a discussion of the background to the works reported here. 
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1.1. Background 

Although one-to-one human-to-human tutoring from expert tutoring has been shown to 

be the most effective manner of instruction (Bloom 1984), it is not practical for each 

learner to be singularly instructed by an educational professional.  This renders individual 

instruction unavailable for the vast majority of training needs.  The traditional classroom 

model of one-to-many human-to-human instruction is more efficient than one-to-one 

human-to-human tutoring, as one teacher is able to be shared by several learners.  As a 

hypothetical example, if the state of Florida implemented a one-to-one tutoring mandate 

for current class sizes, teacher costs would rise significantly (see Table 1 for current class 

size mandates).  Although education could be optimized through one-to-one, human-to-

human instruction, the efficiency gains of one-to-many instruction and shared resources 

would be lost.   

Table 1 - Florida class size limits imposed by Florida’s Article IX 

Grade Group Maximum Number of Students 
Allowed in a Core Class by Fall 2010 

K-3 18 

4-8 22 

9-12 25 

 

Computer software, unlike teacher-based instruction, has a “write once, use anywhere” 

nature (Curtin 1998).  While there are associated maintenance and hardware costs with 

computer instruction, the largest portion of monetary investment in an educational 

computer system is represented by the initial system and contained instruction; the largest 

portion of monetary investment in classroom instruction is teacher salary and training.  
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The incremental cost to provide this computer system-based instruction to additional 

learners is very low, especially when compared with the costs of providing additional 

human teachers.  This type of computer-based instruction is already dramatically more 

efficient than face-to-face instruction, by between 70% and 90%, depending on the metric 

used (Woolf 2010).  It logically follows that the creators of computer instruction should 

strive to emulate the effectiveness of one-to-one expert human instruction. 

A hypothesis on ITSs holds that individualized instruction, as effective as one-on-

one human instruction, can be given via computer.  This has the potential to be as 

effective as human instruction, and as efficient as CBT.  However, this has yet to be 

unequivocally shown via the literature.  While ITSs have been shown to be more 

effective than classroom-based alternatives (Verdú et al. 2008), they have yet to be as 

effective as one-to-one human instruction (Koedinger et al. 1997; Woolf 2009b).  These 

studies are evaluated through the analysis of ‘learning gain effect size’, so it is useful to 

include a discussion of how this is calculated, and the historically observed effects. 

1.2. Measuring Learning Gains 

The goal of instruction is to increase the amount of knowledge that a learner retains, or 

the amount of practice the learner is able to perform unassisted.  The most common way 

to measure this type of effectiveness is to use the ‘weigh the brain’ method of pre- and 

post-testing.  This method consists first of a pre-test, administered to the control and 

experimental groups.  The control group is then exposed to the instruction in the way that 

is typical for the content, representing the “business as usual” case.  The experimental 
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group, on the other hand, is given an instructional intervention.  Typical interventions 

may include items such as computer training vs. live training, differing time constraints, 

differing content, differing feedback, or differing training systems.  Afterwards, a post-

test is given to both groups to determine the relative levels of increase in their mastery of 

content knowledge.  Four important measures are developed from these data: the 

experimental/control means, and the experimental/control standard deviations.  The 

difference between the mean of the experimental and control groups is the learning gain 

effect size (            ).  A learning gain of ‘0’ represents that the two methods of 

instruction were statistically equivalent.  Typically, an intervention with a learning gain 

effect size of 0.25 is considered significant for the Department of Education 

(Clearinghouse 2008).  The study of effect sizes allows the experimenter to remove 

sensitivity effects of populations (Schulze 2004), and is the most common way to study 

the differences which are inherently present in training.   

One of the long-term conclusions of the study of learning effect size is that deep 

levels of content comprehension do not typically occur via classroom instruction 

(Bransford et al. 2000).  Different studies have identified different ‘worst ways to learn’ 

such as very large class sizes (Cuseo 2007), textbook reading (Zwaan and Singer 2003), 

and unguided experience (Kirschner et al. 2006).  However, a reader must be very careful 

in the conclusions drawn from educational research.  For example, despite smaller class 

sizes being known as better suited to learning, it is a common misconception that they 

guarantee additional gains in learning; smaller class sizes only allow for the possibility of 
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teachers taking advantage of additional opportunities for instruction and tailoring to the 

learners’ needs (Haddad 1978). 

Haddad found that smaller class sizes do allow for content to be tailored to 

individual learner needs, allowing the instructor to provide more elaborative examples, 

adapt content difficulty, transition to other content sooner, and additional tailoring of 

content, all of which are directly correlated with gains in learning.  It logically follows 

that this rule holds true to the smallest possible number: size one.  In fact, this has been 

observed across several studies.  Cohen’s meta-analysis of novice tutoring has been 

shown to have an effect size of 0.4, or one half of a letter grade (Cohen 1992), indicating 

that untrained but knowledgeable instructors providing one-on-one attention are able to 

produce significant gains in learning.  As discussed earlier, one-on-one human-to-human 

tutoring, from an expert tutor, holds the promise of two effect sizes (Bloom 1984), as 

shown in Figure 1. 
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Figure 1 – Achievement distribution for learners under conventional, mastery learning, and tutorial 

instruction.  Original figure (Bloom 1984). 

Table 2 – Types of human-to-human learning gains 

Type Learning Gain Citation 

Conventional 0 (Baseline) N/A 

Novice Human Tutor .4 (Cohen 1992) 

Mastery-Based Instruction 1.0 (Bloom 1984; Verdú et al. 2008) 

Expert Human Tutor 2.0 (Bloom 1984; Fletcher 2011) 

1.3. Early Computer-Based & Adaptive Training  

The terms computer-based training, computer adaptive training, and intelligent tutoring 

represent the evolution of the practice of using computers for training purposes.  

Traditional Computer-Based Training provides no feedback or interactive elements, and 

is the modern equivalent of reading an e-book. Computer adaptive training consists of 
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the methods for scaling content difficulty to the user, usually based upon the previously 

observed performance data. Computer adaptive training leaves the problems of 

motivation, attention, engagement, and such others up to the user, rather than managing 

them through the training system.  Intelligent tutoring currently encompasses all the 

above terms plus a wide variety of additional actions to be discussed in the human 

tutoring section 1.4.1. 

 The origins of the idea using of computers for instruction are nearly as old as the 

concept of a computer itself.  Work in this area of Computer Assisted Instruction (CAI) 

begins with psychologist B. F. Skinner and his ‘linear programs’ (Skinner 1954).  A 

‘linear program’ would present content to the learner in a prescribed, static, order.  After 

a certain amount of content presentation time, which varied from system to system, the 

instructional program would come to an impasse that required learner action, with the 

intent of forcing the learner to think deeply about the problem.  After the learner action 

was complete (correctly or incorrectly), the program would present the correct answer to 

the learner and move on to the next series of content objects (Skinner 1954; Skinner 

1958).  

 Skinner argued for the idea that the actual response of the learner, if correctly 

instructed, would always be correct (Skinner 1954; Skinner 1958).  Given that learners’ 

answers were always correct, the program could proceed to the instruction of the next 

content.  It was Skinner’s belief that negative, or corrective, feedback was detrimental to 

the learning process.  In Skinner’s systems, all learners were presented the same content 
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regardless of background, views, motivation, emotional impact, skills, ability, etc., and 

the actual learner responses were ignored.  An experienced educational professional will 

note that this is not generally aligned with modern best practices, as is shown in later 

work (Heift 2004; Lyster and Ranta 1997; Schachter 1991). 

Research involving adapting the training to learner responses followed a short 

time afterwards (Crowder 1959).  In this approach, a different frame of instruction would 

be selected based upon the answer given in the previous frame.  This allows for the 

material to be customized to the learner’s needs, and came to be known as a branching 

program.  It represented the first instances of computer-based individual tailoring of 

instruction.  At the time, this type of research was centered on the teaching of well-

defined concepts and domains.  A natural extension of this research was the generation of 

content, rather than loading content from memory, for learner practice.  This was only 

possible with well-constrained problems and assessments.  These types of educational 

content creating systems became known as generative systems. 

In the 1960s, the generative system technique of content creation provided 

drastically reduced memory usage, allowing for more content to be presented to the 

learner.  Each time that a content element would be selected and loaded from a previous 

iteration of the system, it could be generated dynamically.  This method experienced 

reasonable success through the late 1960s and early 1970s. (Suppes 1966; Uhr 1969; 

Woods and Hartley 1971).  This, in turn, gave way to the early versions of Intelligent 

Tutoring Systems of the 1980s, as is shown in rough historical context in Figure 2. 
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Figure 2 –Computer Assisted Instruction To Intelligent Tutoring System Timeline (Nwana 1990) 

The idea of intelligent tutoring is not new.  The concept of replacing the function of 

teachers as content presenters with computer services is presented fairly early in the 

literature, dating back to 1973 (Hartley and Sleeman 1973).  An early idea about these 

types of systems was that they would be used in a different manner than face-to-face 

instruction, such as a study aid or supplemental homework assignment.  While computer 

teachers have many advantages (eg. can teach many different subjects, during all hours of 

the day, with little downtime or preparation, and in geographical areas where a teacher 

cannot serve), ITSs have traditionally been poorer in function than their human 

counterparts. This is an instructional tradeoff between the cost and availability 

advantages of computer instruction and the higher effectiveness of human instruction 

(VanLehn et al. 2005).  Just as a tradeoff is made in order to teach many learners in a 

classroom, rather than one-on-one, a tradeoff can be made to teach via computer, rather 

than via human. 

The latest advances in ITS deal with systems that are sensitive to the emotional 

and cognitive needs of the learner in order to implement instructional strategies 

accordingly (Banda and Robinson 2011; Blanchard et al. 2009; Dragon et al. 2008; Lester 

2011; Picard 2006; Robison et al. 2009; Woolf 2009a; Woolf et al. 2009; Woolf 2009b). 

The intelligent tutoring term represents computer instruction in the way that tutors 

instruct.  To develop an effective intelligent tutoring system, one must first look for 



12 
 

inspiration from the effective human tutors, then analyze the types of systems that 

support these needs, and finally work to fill the significant research gaps that exist in 

modeling learners in order to provide this level of feedback.  This dissertation seeks to 

exactly address the problems in modeling learners. 

1.4. Tutoring 

1.4.1. Human Tutoring 

Several strategies exist for providing education, including: 

 Experiential learning, example: fixing a flat (without prior experience) 

 Activity-based learning, example: reading a book on mathematics 

 Classroom-based learning, example: biology lecture 

 Tutored learning, example: one-on-one physics problem solving 

Education attempts to follow a logical cost-benefit curve, but while the absolute 

effectiveness of the above strategies are unknown, but the relative effectiveness of each 

of these strategies is known.  These strategies are listed in increasing order of 

effectiveness.  The primary reason for these educational decisions is cost, which also 

increases down the list.  More effective forms of instruction cost more. 

1.4.2. Different Types of Instructional Intervention 

Tutored learning occurs though a series of instructional decisions, making it helpful to 

discuss a few of the items of human-to-human instruction that have direct computer-

based instructional implementations.  The most common manner of teaching revolves 
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around the sounding, or presentation of information, and listening for echos, or the 

assessment of knowledge based on previously presented information.  Tutoring acts may 

expand this model in one or more ways, such as: 

 Short feedback: on-the-spot elucidation or reiteration of a particular aspect of 

previous instruction 

 Pump: An attempt to elicit information, such as, for example: “Why do you think 

apples fall?” 

 Prompt: A direct request for specific concept, such as, for example: “In what state 

is Random Access Memory (RAM) in when a computer is off?” 

 Elaboration: the expansion of a previous answer, such as, for example: “Yes, the 

obfuscation of underlying mortgage assets was part of the subprime mortgage 

crisis, but the influence of a boom/bust cycle, homeowner speculation, high-risk 

banking practices, mortgage fraud, and Governmental policy cannot be ignored.” 

 Correction: informing the learner of a better answer, such as, for example: “Not 

quite right.  Ted’s gift to his supervisor constitutes an ethical breach because it 

exceeds $10”. 

 Hint: an indication of the correct answer, such as, for example: “this activity 

occurs underwater” 

 Curriculum Script: The ordered segment of instruction, such as, for example: the 

Earth, then Sun, then Solar System, then other planets method of teaching 

astronomy 



14 
 

Each of these variations on the traditional teaching model represents a way in which the 

instructor may interact with the learner.  These tactics have rough equivalents in a 

computer system.  Each of these tactics is one or more ways to contribute to an overall 

strategy of instruction. 

1.4.3. Tutoring Strategies For Humans And Computers 

The most commonly held belief is that expert human tutors adopt several categories of 

strategic instruction in order to effectively teach (Holland and Gallagher 2006).  This 

classification of learning categories has guided ITS research into systems that operate 

primarily in one of these areas.  These categories of strategic instruction include:  

 Tutor-centric instruction 

 Learner-centric instruction 

 Interaction-centric instruction 

1.4.3.1. TUTOR-CENTRIC INSTRUCTION 

The tutor-centric category of instruction can be broken down into a number of strategies 

and tactics.  This can be performed through watching learner actions, monitoring, and 

modeling the knowledge of the learner as he/she interacts with the system.  Knowledge 

monitoring, in either human or computer tutoring, occurs through knowledge 

demonstration activities of the learner. This monitoring of knowledge can result in the 

accurate assessment of the learner knowledge and lead to the accurate tailoring of 

difficulty level to the individual (Ingleton 2000).  The second phase of tutor-centric 

research is focused on the idea that expert human tutor strategies can be emulated in 
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computer systems (Wikipedia 2012; Woolf 2009b).  The third phase of this strategy is to 

monitor and manipulate the learner’s affect and motivation to learn (James 1884; Lepper 

et al. 1993).  Furthermore, these can be combined in order to identify various types of 

tutor activities that result in learning gain (Hu et al. 2009), examples of which are 

detailed later in this section. 

1.4.3.2. LEARNER-CENTRIC INSTRUCTION 

D’Mello et. al (2010) contend that the learner-centric hypothesis “contains the idea that 

learners are active participants in the construction of their own knowledge, rather than 

being mere information receptacles”.  One of the components in the learner-centric 

research thrust is that the individual self-regulates his/her own learning.  Another 

component is that the learner’s self-efficacy and motivation are high, which gives the 

tutor full responsibility for the facilitation of knowledge transition from content 

repository to stored knowledge.  This hypothesis is measured through the traditional 

effect size measurement detailed earlier. 

To further explain learner-centric learning, a case study of physics instruction was 

conducted by Chi (1996).  In this study, the ‘model’ of instruction consisted of: 

1. The tutor asking an initiating question 

2. Learner providing a preliminary answer 

3. Tutor feedback on the answer (corrective feedback, didactic explanations, and 

suggestive feedback) 
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4. Tutor scaffolding, taking multiple turns (Graesser et al. 1995) (providing outlines, 

recommended documents, storyboards, task modeling, giving advice) 

5. Tutor assessment of understanding 

Although the tutor typically pursued a specific plan of action (ie. that the learner will 

eventually be able to diagram forces), the opportunities for the learning occur through the 

interactions.  As an example, Chi states: concepts numbered 1, 2, and 9 were learned 

through hinting, question exchange, and explicit instruction, respectively.  “Thus, the 

tutee learned not from the tutor's instructional skills such as diagnosing misconceived 

knowledge or giving didactic explanations, but rather, from interactions with the tutor…” 

(Chi 1996).  This is a prime example of learner-centric instruction. 

1.4.3.3. INTERACTION-CENTRIC INSTRUCTION 

The interaction-centric hypothesis draws from the idea that interactions between the 

learner and the instructor, or between the learner and other learners, are the important 

component of learning.  Research in this area additionally focuses on the social learning 

concept that states that learners frequently learn more from each other than from the 

instructor (Kapoor and Picard 2005a).  Social learning and collaborative learning are 

closely related, and have analogous comparisons to traditional classroom learning, such 

as the activities of asking a question in class and forming a study group (Soller 2001).  

Wiley and Bailey show that collaborative learning in the internet reading domain is more 

effective than the absence of it, providing evidence for collaborative interaction as a 

learning method (Wiley and Bailey 2006).  Other forms of interaction-centric learning 

date back to the earliest forms of learning, including the Socratic Method (asking 
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questions in order to stimulate critical thinking) and reciprocal teaching (student-to-

student dialogue-based instruction) (Palinscar and Brown 1984). 

Another example of researchers pioneering interaction-centric intelligent tutoring 

can be found in the ASSESSment system (Feng et al. 2010). The ASSESSment system 

presents a large-scale problem to the learner that must be decomposed into its parts.  Each 

of these problems has a series of well-defined steps that the learner must complete.  If the 

learner fails on any given part, then they may ask for a hint, with varying levels of 

hinting.  As the learner interacts and asks for hints, the system develops a repository of 

learner knowledge through the correct/incorrect answers, and information that required 

hints.  This process simultaneously allows the learner to practice the skills being 

developed and the system to accurately measure his/her knowledge.  The learner is able 

to advance learning on poorly mastered concepts, while still progressing through the 

problem-sequenced steps. 

The ASSESSment system models the learner through the series of exchanges 

between the student and system (Feng et al. 2010).  This is similar to adaptive, or 

intelligent, testing (Conejo et al. 2004).  Each of the interactions between the student and 

system is taken as evidence of current learner understanding.  This drives the selection of 

the next segment of information presented to the learner.  Therefore, as the learner 

interacts with the system, the system is continuously testing learner ability. 

Another example of interaction-centric learning can be found in a similar system, 

although developed without hints.  Computer Adaptive Tests (CATs) are administered by 
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a computer and ask questions of progressively increasing difficulty.  If the learner 

struggles or succeeds with the current test question, the questions become easier or more 

difficult, respectively.  In this way, the learner’s ability can be precisely calculated.  The 

interaction-centric ASSESSment system is an outgrowth of the field in this direction.  

CATs are currently used in the modern Graduate Records Exam (Van Der Linden and 

Glas 2000), but only after having been widely reported in the literature (Weiss and 

Kingsbury 1984). 

1.4.3.4. STRATEGIC NOTE 

The three types of systemic instructional strategies presented are all related to the 

selection of appropriate actions to take.  Should the tutor model the necessary knowledge 

to select the next items to teach, respond directly to the learner, or allow the learner to 

acquire knowledge through interactions with the system or others?  Regardless of the 

choice of instructional application, each tutor-selected action is taken with respect to the 

learner, his/her learning goals and observable state.  In order to provide feedback, giving 

a pump/prompt/elaboration/correction/hint, or adjust the script of the curriculum, there 

must be an underlying learner assessment that consists of more than simple competency.  

While humans are able to create complex, multi-variable, models of a learner state 

without particular effort, it is a technically challenging task for computer-based system.  

We discuss this in the following chapters and sections. 
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1.5. Intelligent Tutoring 

The topic of this dissertation relates to the use of learner modeling within an intelligent 

tutoring system.  Both the use and the novelty of the work contained in this dissertation 

rely heavily on the advances in ITS research, as an affective learner model is not useful 

without the underpinning tutoring capability.  As such, a brief review of the concepts and 

functions of intelligent tutoring provides background to the direction of the current work.   

An intelligent tutor was described early as a “computer program that [is] designed 

to incorporate techniques from the AI community in order to provide tutors which know 

what they teach, who they teach, and how to teach it” (Pajares and Miller 1994).  

Naturally, the earliest ITSs, just like the earliest forms of AI, addressed well-defined 

problems with crisp, clear, rules that govern their behavior.  The below list of ITS 

systems and domains serve as an example of the systems which practice this behavior. 

Table 3 - A comprehensive list of ITSs cerca 1990, (Pajares and Miller 1994).  References available in 

original work. 

ITS Domain Reference (date) 

ACE/PSM NMR Spectra Interpretation Sleeman (1975) 

ATDSE Basic Subtraction Attisha & Yazdani (1983) 

ARITHMEKIT Basic Subtraction Brown (1983) 

ALGEBRALAND Algebraic Proofs Brown (1983) 

BIP-I/BIP-II Basic Programming Barr et al. (1976) 

BLOCKS Tutor Troubleshooting in a BLOCKS 
World 

Brown & Burton (1978b) 

BRIDGE Programming Burton (1982) 

BUGGY Basic Subtraction Brown & Burton (1978a) 

DEBUGGY Basic Subtraction Burton (1982) 

EDSMB Basic Multiplication Attisha & Yazdani (1984) 

EUROHELP UNIX Mail Breuker (1987) 

EXCHECK Basic Logic Blaine (1982) 

FGA Basic French Grammar Barchan et al. (1986) 
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ITS Domain Reference (date) 

FITS Basic Fractions Addition Nwana (1990) 

FLOW Tutor FLOW Computer Language Genter (1977) 

GEOMETRY Tutor Geometry Proofs Anderson et al. (1985a) 

GERMAN Tutor Basic German Weischedel et al. (1978) 

GUIDON I/II Basic Medical Diagnosis Clancey (1987) 

INTEGRATION 
Tutor 

Basic Integral Calculus Kimball (1982) 

LISP Tutor Lisp Programming Anderson and Reiser (1985) 

LMS Basic Algebra Sleeman and Smith (1981) 

MACSSYMA 
Advisor 

Use of MACSYMA Genesereth (1982) 

MALT Basic Machine Language 
Programming 

Koffman & Blount (1975) 

MEO-Tutor Basic Pascal Programming Woolf and McDonald 
(1984) 

METEOROLOGY 
ITS 

Basic Meteorology Brown et al. (1973) 

NEOMYCIN Medical Diagnosis Clancey & Letsinger (1981) 

PIXIE Basic Algebra Sleeman (1987) 

PROUST Pascal Programming Soloway & Johnson (1984) 

QUADRATIC Tutor Quadratic Equations O’Shea (1982) 
QUEST Basic Electrics White & Frederiksen (1985) 

SCENT-3 Advisor List Programming McCalla et al. (1988) 

SCHOLAR South American Geographical 
Facts 

Carbonell (1970) 

SIERRA Learning Basic Arithmetic 
Procedures 

VanLehn (1987) 

SOPHIE I/II/III Basic Electronic Troubleshooting Brown et al. (1982) 

SPADE Basic LOGO Programming Goldstein & Miller (1976) 

SPIRIT Probability Theory Barzilay (1985) 

STEAMER Marine Steam Propulsion Hollan et al. (1984) 

TALUS Basic Lisp Programming Murray (1987) 

THEVENIN Basic Electrical Circuits Joobbani & Talukdar (1985) 

TUTOR British Highway Code Davies et al. (1985) 

WEST Basic Arithmetic Skills Brown & Burton (1978b) 

WHY Basic Meteorology Collins & Stevens (1982) 

WUSOR Wiley and Bailey Goldstein (1982) 
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Table 3 shows the common use of intelligent tutoring technology in the late 1990s from 

its emergence in the early 1980s from the Computer Aided Instruction (CAI) systems, 

branching instructional systems, and generative systems, all discussed in earlier sections 

(section 1.3) of this dissertation.  Since 1990, it has become intractable to meaningfully 

survey every system containing ITS technology.  The predominant questions of the 1990s 

ITS research community were: 

1. “Is  intelligent  tutoring  just  old wine in  a new bottle, or is  it  a new 

vintage?” (Ok-choon et al. 1987).  This question asks whether the ITS field is 

simply an outgrowth of educational research into the digital domain, or 

whether new types of research/instruction are possible. 

2. “Is intelligent tutoring really possible?” (Ridgway 1988) This question asks 

whether a ITS system can ever fully implement the instructional capability of 

its human counterpart. 

As a field that now combines artificial intelligence with cognitive psychology, 

educational research, psychophysiology, instructional design, knowledge ontology, and 

other aspects of instruction, it is safe to say that the field has changed significantly since 

this question was originally posed.  This argues for rendering ITS as new vintage 

(Vandewaetere et al. 2011).  Additionally, not only is intelligent tutoring possible, but 

practical, as multiple systems have been used in numerous studies with beneficial 

findings.  One such example is a 15% increase in learning gains, which meets 

Department of Education standards (Clearinghouse 2008), in learning from the Pittsburgh 

Urban Mathematics Project Algebra Tutor, by 470 learners, in a relatively unforgiving 
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environment (Koedinger et al. 1997).  A 100% increase was observed in the same study 

on tasks which were directly targeted by the tutor.  While earlier research strove for 

learning gains of 0, or “as good as the classroom”, modern ITS systems produce an 

average of one effect size of learning gain, or about one letter grade (Verdú et al. 2008), 

and currently strive for more.  This is an important point to mention: where it is available, 

intelligent tutoring outperforms classroom-based learning, at significantly less 

operational cost.  

1.6. Reasons for an ITS 

The reasons for the creation of ITSs have not changed meaningfully since their 

inceptions.  The primary reasons are for: 

 The research of learning theories, processes, and interactions (Anderson 1987; 

Sottilare et al. 2011a) 

 The practical use of an efficient, possibly very effective, teaching system 

(Mitrovic et al. 2007; Sottilare et al. 2011b) 

1.6.1. Research-Purposed Intelligent Tutoring Systems 

Initially, the construction of a research testbed system was to provide experimental 

evidence to researchers on effective methods of instruction, in order to better inform 

classroom teachers.  An ITS is effective in this, as it allows the experimenter to explicitly 

control the actions of the teaching system.  This is different from other educational 

research, where deviations from the prescribed independent variable occur frequently 

(Slavin 2002).  These deviations can be simple, such as selection of learners for tutoring, 
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or they can be deliberate, such as tutoring only the learners who were willing to stay for 

extra time with the system (Mitrovic and Ohlsson 1999).  They can also be more complex 

such as individual tutor or system biases unknowingly correcting for different types of 

behavior.  Simply put, a human instructor cannot reliably follow one path of instructional 

strategy execution when he/she believes that it will negatively impact a learner.   A 

research-focused computer system can remove the implicit biases present in human 

instruction, making it useful for educational research. 

While the modern research-focused ITSs now concentrate on ITS educational 

research, these systems are historically successful.  Examples of these successes include 

classical systems such as Anderson’s system to study learning theory (Anderson 1987).  

Other successes include the development of more accurate theories of cognition (Burns 

and Capps 1988).  Research-focused systems are not designed for the purpose of 

achieving learning gains, and are usually designed by psychologists or educational 

researchers.  However, there is potential for use-focused systems, designed by engineers, 

for real-world use, to produce measured learning gains.  

1.6.2. Use-Focused Systems 

The other reason for creation of an ITS is their practical use.  ITSs have been shown to be 

successful in teaching through several metrics (Ridgway 1988).  Ridgway (1988) 

reported a four-to-one time advantage shown over human tutoring.  Additional metrics 

include instructor cost, resource allotment, classroom cost, time on subject, knowledge on 

subject, challenge presented to the learner, and others (Woolf 2009b).  However, the true 
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metric of success for an ITS is no different than that of any other software system: its use.  

The use of an ITS indicates that the final user perceives the system to have more value 

than the alternatives. 

1.6.3. Functions of an ITS 

From the earliest intelligent tutoring system to the latest, all have had to address the 

fundamental functions of teaching (Beck et al. 1996).  These component modules have 

mostly been agreed upon by the ITS research community (Barr and Feigenbaum 1982; 

Bonnet 1985; Wenger 1987).  Each of these components is discussed in brief detail in 

order to present where the research presented within this dissertation will fit within a 

broader research context.  They are, in brief: 

1. A training system for user interaction (simulation, sequence of video 

presentations, webpage, etc.), which can present content to them 

2. Learner performance assessment 

3. Learner trait and performance monitoring 

4. Determination/Application of appropriate instructional pedagogical strategies 

5. A communication component to share interactions and data with other systems 

1.6.3.1. COMMUNICATION 

The least scientifically interesting component of an ITS is the module that functions as 

communication medium to other systems (Nkambou 2010).  This is a required function, 

of course, but it is typically done in a simplistic manner.  The most common system to 

which an ITS communicates to is the Learning Management System (LMS).  The LMS 
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keeps a record of high-level learner performance across learning content in order to 

recommend additional content, or as a gateway to additional content (Bohl et al. 2002).  

One example of an LMS is a university’s undergraduate prerequisite matrix, which when 

coupled with the grades of an individual learner, serves this function.  Another example 

of a method of external ITS communication is through the internet to a generative system 

(Capuano et al. 2000). 

1.6.3.2. DOMAIN CONTENT 

Most obviously, any automated teaching system must contain the content that it is to 

teach.  Just as there are several approaches to learning, there are several types of content-

based instruction.  Many of these have their analogy to classical methods of instruction, 

but are instead performed within a computer system.  The typical forms of instruction 

are: 

 Book / Webpage  (Brusilovsky et al. 1998)  

 Presentation / Powerpoint (Hu et al. 2009)  

 Real World Experience / Virtual World Experience (Shute and Glaser 1991) 

o Note that this is among the worst ways to learn, research in this vein shows 

very little payoff in learning gain, and the dated citation is reflective of the 

trend away from this type of instruction, see (Kirschner et al. 2006) for more 

information 

 Demonstration / Guided Exploratory World (Lane et al. 2011) 

 Story / Scenario Examples (Rowe et al. 2010b)  
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The above listed types of systems are designed to tailor the content to the learner.  The 

architectures that support these activities are well designed.  They include an engine for 

the change of pedagogy, and possibly a method for the generation of new content (Patil 

and Abraham 2010).  They may adapt content from assessment of the learning style of 

the individual (Klašnja-Milićevića et al. 2011), or adapt feedback through asking 

metacognitive questions (Roll et al. 2011).  However, they have not historically 

performed the same functions of a human tutor sensing and responding to affect. 

The other critical component of the domain information is the learner assessment 

model (Sottilare 2010) that measures learner performance in various tasks.  The 

traditional way to perform these measurements is with a system of rules that identify 

correct or incorrect interactions with the system, desirable and undesirable behavior, 

actions, or answers.  One type of method for performing this action is through expert 

modeling (Nwana 1990).  Although some systems have used a more complex method of 

assessment, the use of alternative methods is limited through the time and difficulty of 

construction coupled with an unknown gain in learning (Conati 2010).  Other methods, 

such as Latent Semantic Analysis (LSA) on free-response-typed answer systems have 

additionally met with limited success (He et al. 2009).  As a practical matter, a system of 

rules authored by experts, or by an expert and programmer together, in their domain of 

expertise is still the standard practice. 
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1.6.3.3. INSTRUCTIONAL STRATEGY SELECTION 

A model of pedagogy is similar to a college major in Education.  While this component 

does not have knowledge of what to teach, to whom it is being taught, or which mistakes 

are being made, it does have knowledge and processes about how to teach.  This process 

is can be directly coupled to the content, as in the case of constraint-based tutoring 

(Mitrovic et al. 2007).  However, modern ITS research is coming to the conclusion that it 

is better to have a separate model of instructional strategy, as in the case of AutoTutor 

(Olney et al. 2010), Logic ITA (Lesta and Yacef 2002), and the Generalized Intelligent 

Framework for Tutoring (Sottilare et al. 2012a).  The processes involved here can be as 

simple as a classification into auditory or visual learners getting visual or auditory 

content, or other more complex classifications such as information process, perception, 

reception, or understanding learners who learn best through reflection, demonstration, 

presentation, and sequencing, respectively (Klašnja-Milićevića et al. 2011). 

Commonly applied pedagogical strategies are derived from research on 

techniques and tactics employed by expert human tutors in a one-on-one learning 

environment, which were found to improve performance outcomes by roughly 1.0 effect 

size (Boulay and Luckin 2001; Person and Graesser 2003; VanLehn 2011). To this effect, 

instructional components are tailored prior to interaction to better suit a user’s ability 

within a given domain, and guidance and adaptation are facilitated in real-time based on 

monitored system interactions. These functions expand beyond pedagogical approaches 

implemented in previously developed ITSs that solely use feedback in response to error 

(Anderson et al. 1987; Mason and Bruning 2001).  With this information, an ITS can 



28 
 

focus on the knowledge components associated with a diagnosed deficiency.  However, a 

model of pedagogy is tied to the inputs it receives from the model of the learner; the 

output recommendations are only as good as the models that are informing the pedagogy. 

1.6.3.4. LEARNER MODEL 

The learner model, which is the area of ITSs of most interest to this dissertation, has the 

purpose of tracking variables that can assist in teaching the learner.  The most simplistic 

learner models track only his/her performance.  However, in an ongoing push towards 

highly adaptable and individualized training (Army 2011; Woolf 2010), there is a 

demonstrated desire to assess the cognitive and affective states of the individuals in order 

to tailor training.  The purpose of this model is to inform an instructional strategy engine 

about the learner, for the purpose of making an instructional decision.  (Beck et al. 1996) 

said it best with the following statement: “Since the purpose of the learner model is to 

provide data for the pedagogical module of the system, all of the information gathered 

should be able to be used by the tutor.” 

The core aspect of student modeling is to provide the student “with the right 

content at the right time in the right way” (Fischer 2001). These models can be 

constructed from the learners themselves (Hothi and Hall 1998), or via a computer 

system (Shute and Psotka 1994).  Rather than allow the learners to construct their own 

model, it is more common to use a computer-constructed learner model from observable 

data.  
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There are several traditional user items of interest to modeling. The below list 

provides a sample of the types of user models that have been applied, with various levels 

of success.  This list indicates that learner modeling research in ITSs is currently active, 

and provides the groundwork for the affectively- and cognitively-based work to be 

presented in Chapter 2 - Affective Learner Models: 

 Learner models based on performance data: 

o “Buggy”, or “Perturbation” models (Brown and VanLehn 1980; Holt et al. 

1994) 

o Model-tracing (Neches et al. 1987) 

o Overlay model of understanding (Rickel 1989) 

o Classification-based systems (Charniak 1991) 

o Fuzzy set mistake modeling (Katz et al. 1992) 

o Constraint-based modeling (Ohlsson 1994) 

o Example Tracing, or psuedo-tutors (Hockenberry 2005) 

 Learner models based on other data: 

o Affect (D'Mello et al. 2007) 

o Cognition (Corbett 2001; Jaques et al. 2011) 

o Demographic information (Arroyo et al. 2006) 

o Motivation (Tvarožek and BIeliková 2009) 

o Cognitive preferences (Navarro et al. 2006) 

o Learning Style (Cha et al. 2006) 

o Gaming behavior (Cocea et al. 2009) 
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o Trust (Hassell 2005) 

o Mood (Carole and Hyokyeong) 

o Experienced emotions (Sidney et al. 2005) 

The most common learner models are those based on performance information. This is 

for the simple reason that it is the element of the learner model that the ITS seeks to 

optimize. The standard of one effect size of ITS improvement in learning has been 

achieved through the modeling of performance, but further gain has been infrequently 

seen (VanLehn 2011). It is now becoming clear that new forms of modeling are required 

in order to achieve the second standard deviation of improvement currently observed in 

human tutoring, and has been highlighted as a challenge in intelligent tutoring (Brawner 

et al. 2011; Woolf 2009b). 

1.6.4. Current Challenges in Intelligent Tutoring 

The ITS research field is multi-facetted and multi-disciplinary field.  It ranges from 

computer science/engineering to cognitive psychology, to learning science, to educational 

practice.  Each of these consists of multiple subfields, such as the computer science areas 

of ontological management, affective computing, artificial intelligence, and computer 

networks.  It can be difficult to fully grasp the complexities of the interactions.  As such, 

in 2009, a federally-funded report was commissioned by the leaders of the various related 

fields to provide a full picture and direct the future research in this area (Woolf 2010). 

This report was published as a short, 80-page book that considers the needs of 

educational advances for the next 20 years.  It was published with an emphasis towards 
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global educational development as part of discussions with the Global Resources for 

Online Education (GROE) project.  To date, this represents the most comprehensive, 

forward-looking, long-term, collaborative plan of study that has been published. 

In the initial report, the educational challenges are decomposed into several key 

areas of interest to learning: personalizing education, assessing learning, supporting 

social learning, diminishing boundaries, developing alternative teaching strategies, 

enhancing the role of stakeholders, and addressing policy changes.  These areas of 

interest to learning are then distilled to a number of educational technology challenges.  

The technical, rather than political, challenges in this area said to be user modeling, 

mobile tools, networking tools, serious games, intelligent environments, educational data 

mining, and rich interfaces.  This research looks at the educational grand challenge of 

education personalization through the research perspectives of educational data mining 

for affective user models. 
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2. AFFECTIVE LEARNER MODELING 

2.1. Introduction 

The purpose of a learner model is to inform instructional strategies.  Learner models may 

be based on a variety of data sources, such as performance, personality, or trait data.  The 

current learner modeling techniques focus on performance and ignore the emotional and 

cognitive state of the learner, while human tutors dedicate significant attention to these 

items (Kim and Baylor 2006).  It is logical to believe that a computer tutor should also 

pay attention to affective state, and the research discussed in this chapter presents various 

techniques to do so. 

This chapter shows the current state of the art of affective learner modeling, with 

a focus on the current knowledge base.  Within the last three years, the research 

community has discovered that generalized affective models have limited accuracy 

(Robison et al. 2010), and transfer poorly (Sabourin et al. 2011).  Individualized models 

of affect, while more accurate than their generalized counterparts, are also difficult to 

transfer to instructional settings (Cooper et al. 2010).  Although dramatic increases in 

accuracy may not necessarily aid in instruction, dynamic modeling methods can increase 

in model accuracy (AlZoubi et al. 2009).  The analysis of the results of this research 

presents a research gap which is addressed in Chapter 3. 
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2.2. Affect and Learning 

Human tutors perform complicated tasks well beyond the scope of content-addition, to 

areas such as guiding questions, examples, and splices (Person and Graesser 2003).  

Expert human tutors perform several types of actions, but primarily focus on assessing 

the emotional and cognitive states of the student in order to improve learning (Kim and 

Baylor 2006). Studies have shown that human tutors are devoted to the motivation of 

learners as much to as their cognitive and informational goals (Lepper and Hodell 1989; 

Woolf 2009b). 

Because of the role of affect in the learning process, extensive work has been 

done to measure the cognitive and emotional states of the students.  This has been done 

by incorporating biological sensors to monitor both behavioral and physiological markers 

for the purpose of automating learning systems (Ahlstrom and Friedman-Bern 2006; 

Berka et al. 2007; D’Mello et al. 2007 ; McQuiggan et al. 2007).  Because of the link 

between physiology and psychology (Coles 1989), affective and cognitive states leave 

traces of their existence within physiological measurements.  These physiological 

artifacts of affective responses, as a component of emotional and cognitive states during 

learning, are addressed in depth in Section 4.2. 

2.3. Learner Models 

Woolf describes user modeling, in the previously mentioned roadmap, as a process that 

identifies and represents learner competencies and learning achievements, including 

content skills, knowledge about learning, metacognitive awareness, and affective 
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characteristics (Woolf 2010).  The basic notion that drives the creation of learner models 

is that additional learner-specific information can be leveraged for clues or 

recommendations for appropriate actions to take.  However, there is no clear research on 

the best type of model to construct, or the desired level of detail contained within it.  

Examples of learner model creation methods include production rules, buggy models, 

example tracing, Bayesian networks, expert overlays of learner performance, and other 

AI methods to be discussed in this chapter.  The research interest in learner models has 

been primarily performance-based, and includes models of tasks, subtasks, behaviors, 

skills, or interactions with the tutoring system.  While the impact of a specific method of 

model construction is still under investigation, it is agreed that the creation of these 

models can be a time-intensive process, as shown later in this section. 

One of the earliest systems to model the performance of a learner is a rule-based 

system (Anderson 1987).  Production rules, one of the early forms of AI decision making, 

composing such systems, match an input to an output.  This output of a rule may perform 

as an input to another rule.  In rule-based systems, the rules can grow in complexity and 

number as more rules are created.  This allows for the creation of highly specified detail 

within a model, but rule-based systems are traditionally labor-intensive to construct.  

Small to medium rule-based systems are heavily used, but larger ones tend to be 

ineffective and time consuming to construct, as shown in the Table 4 summary after 

discussion of other types of systems. 
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 A “buggy” or “perturbation” model is able to assess performance based upon a 

group of student actions, which represent an underlying cause.  An underlying type of 

model for this field assumes that there is a “royal road” or one path for the learner to take 

in order to obtain the desired result (correct answer, completed course, etc.).  The actions 

that learner takes may differ from this road, because of a misconception, lack of 

underlying knowledge, or accident.  The mission of a buggy model is to assess this 

deviation to determine the underlying cause.  The creation of buggy models is also time 

consuming, as it requires a model for all possible mistakes that a learner can make. 

Constraint-based models are a combination of the buggy idea of modeling all 

possible causes of error and the production rule idea of creating general rules to violate.  

These models have not historically required less time to create, as shown in Table 4, but 

allow for varying levels of detail.  This method of knowledge monitoring has seen 

widespread use (Mitrovic and Ohlsson 1999; Mitrovic et al. 2006; Ohlsson 1994). 

Another form of modeling human performance transfers the knowledge encoding 

activity from being expert-based to engineer-based.  An engineer is able to create an AI-

enabled solution, such as a Bayesian network, which can examine data from performance 

to automatically create a model.  While this form of authoring requires relatively little 

time, it is only able to function at a high level, or with vaguely defined concepts (Arroyo 

et al. 2006). 

Overlay models are a different form of knowledge monitoring.  This form of 

knowledge modeling intends to have an expert overlay, which the learner has 
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demonstrated a subset.  As the student interacts with the system, levels of this expert 

model are checked off until a reasonable number of them have been observed and the 

student is considered an expert.  The PLATO West (Burton and Brown 1976) and 

SHERLOCK (Katz et al. 1992) systems are examples of ITSs which have opted for this 

technique. 

Table 4 - Types of learner models of performance, levels of detail, development time, and learning 

effects (Folsom-Kovarik 2012) 

Learner Model Model Detail Lowest Reported 

Development Time to 

Learning Time Ratio 

Highest Reported 

Effect on Learning 

Production Rules 
and model tracing 

High: all 
subtasks 

200:1 1.2 (compared to 
classroom) 

Perturbation and 
buggy models 

High: some or all 
subtasks 

No reports Not significant 

Example Tracing Moderate: some 
subtasks, not all; 
sometimes tasks 

18:1 0.75, compared to 
paper homework 

Constraint-Based 
models 

Moderate: some 
or all subtasks or 
tasks, or a mix 

220:1 1.3, compared to 
briefing and handout 

Bayesian networks 
and other classifiers 

Low: tasks or 
skills 

No reports 0.7 compared to 
learning the tasks 
with no hints 

Overlay models Low: tasks or 
skills; or some 
subtasks 

No reports 1.02 compared to on-
the-job training 

2.4. Data Mining 

It is always highly desirable to automate time-consuming solutions.  The use of AI, 

machine learning, statistics, and a large volume of transactional data stored across 

databases is one such way to attempt automation.  The above methods are able to create 

links and establish relationships between events in a process called discovery (Fayyad et 
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al. 1996), and is commonly used among internet applications (Madria et al. 1999; 

Srivastava et al. 2000; Zaïane et al. 1998).  Given that the process of model creation can 

be time consuming, data mining presents an attractive solution.  In this section, we 

describe how data mining has been used to build learner models. 

2.5. Mining Data for Learner Models 

Automatic creation of learner models through data mining has been applied to 

performance-based models with reasonable success (Conati 2010).  This has been done in 

areas where there is relatively little transactional data, rather than in affective domains 

where there is large volumes of data, because of millisecond resolution data collection.  

Unfortunately, although there is more data, this does not necessarily indicate more 

meaning, as it does not come with a label, such as ‘happy’ or ‘bored’.  Analyzing large 

bodies of data to establish patterns was only performed in domains where there was 

relatively high payoff.  The research has primarily focused on performance models, as 

correct/incorrect actions are easily identifiable.  Extensively looking at both transaction 

and physiological data had been cost-prohibitive until the advent of modern processors, 

and research in this area was sparse.  Although some work in this area was perform in the 

late 1990s, the field of educational data mining began to take root in the mid 2000s 

(Romero and Ventura 2007). 

Concepts in educational data mining revolve around educators, learners, or 

administrators.  In learner educational data mining, the relevant topics are the prediction, 

clustering, relationship mining, data distillation, and model discovery (Baker 2010).  
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Among the topics of prediction, there is learner knowledge, learner actions, and affect.  

Learner knowledge can be explicitly tested through content presentation or exercises, and 

it is significantly easier to assess as it relates directly to the learning process.  Learner 

actions are also frequently directly related to the learning process, and can be predicted 

via traditional methods as an individual learner is likely to do what other, similar, learners 

have done. 

The prediction and classification of affect has given researchers difficulty, as the 

data behind affective models has been very specific to the learner being assessed, and it is 

difficult to obtain a ‘ground truth’ of emotional state compared to content 

comprehension, and it is difficult to establish the meaning of a given set of 

measurements.  Progress in the field of educational data mining for student learners has 

been slow, with regards to affect, and the required algorithms have been cost-prohibitive 

to implement.  As such, while the field has been historically overlooked, it is fertile 

ground for this advance.  This is the specific subject of the research presented in this 

dissertation. 

2.6. Affective Tutoring 

Human tutors respond to the needs of the learner by sensing his/her affective state.  A 

ITS system that performs the same function can be known as an affective ITS.  The 

notion of a computer system that performs similarly in this respect is relatively recent. 

This idea dates back to 2002, beginning with probabilistic models of emotion through the 

interaction with learning systems (Conati 2002).  In the initial works on the subject, the 
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use of Bayesian networks was introduced, along with the ideas of extensive post-

processing, and limited transfer.  Conati sought to model the emotions of the learners 

who were playing the game “Prime Climb”, a game for teaching various aspects of 

mathematics, such as factoring. 

 The concept behind this kind of modeling was that emotional representation was a 

measurement of hidden variables of the learner’s cognitive state.  This cognitive state 

caused observable actions, which were detectable via bodily sensors.  In theory, a hidden 

model of emotions can be derived from these data measurements.  This early study 

(Conati 2002), although the first in educational affective computing, encountered 

implementation and validation problems that still confound the field of affective tutoring.  

Although the models created in this study were reasonably successful, the validation of 

emotional modeling work was not performed. 

 Conati’s educational affective computing work was expanded into the creation of 

more accurate predictive models.  One example of gains in the area is the multi-modal 

detection algorithms of Kapoor and Picard (2005).  The hope is that the classification of 

emotion can lead the system to make instructional decisions that benefit the learner.  

These decisions may be in the form of hinting, prompting, pumping, providing remedial 

content (see section 1.4 for more information), or even the manipulation of a virtual 

character within a teaching environment to provide additional guidance or conversation 

(Nkambou 2006).  For the system to intervene in real time, the implementable models of 
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emotion must be constructed well enough to make decisions about their 

recommendations in real time. 

The developments and tribulations encountered in the creation of a system that 

can predict affect are discussed throughout this section.  They are logically divided by the 

authors that conducted the research.  The largest and most specifically relevant efforts are 

discussed.  Each of these studies points towards the failure of either generalized models, 

later used individualized models, static models, or offline-created models.  This section 

ends with the most highly individualized and adaptive models that have been constructed 

in order to more fully prepare the reader for the technical challenges of this dissertation 

discussed in Chapter 3. 

2.7. AutoTutor 

It is impossible to perform a comprehensive survey of affect-sensitive tutoring systems 

without first considering the foundations upon which they have been constructed.  The 

previous sections of this dissertation assert that Intelligent Tutoring Systems are a 

relatively well-established domain of computer science and psychology research.  

However, although the idea of an intelligent tutor dates back to the 1970s with Hartley 

and Sleeman’s work (1973), the truly relevant work began nearly three decades later, 

with AutoTutor (Wiemer-Hastings et al. 1998). 

AutoTutor, in its initial version, was a system intended to teach a wide variety of 

subjects.  This concept is reflected through some of the earlier research improvements, 

and primarily through the extensive evaluation of human tutors plus the separation of 
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content from teaching strategies.  AutoTutor was initially able to execute dialog moves 

similar to those that were observed in humans: short feedback, pumps, prompts, 

elaborations, corrections, and hints (see section 1.4 for more information).  The separable 

components of the underlying system consisted of the curriculum script, language 

extraction, speech act classification, latent semantic analysis, topic selection, dialog move 

generation, and a talking head (Graesser et al. 1999). 

Since that time, many studies have been performed within the framework that 

AutoTutor provides, including the variation of teaching tactics (Graesser et al. 2001), the 

modeling of learner performance (Jackson et al. 2003), the development of lesson 

authoring tools (Jackson et al. 2003), as well as similar tasks that represent the maturation 

of a software product from a research prototype.  The most relevant things about 

AutoTutor to this dissertation are the lessons that AutoTutor research has taught about the 

creation of a learner model and selection of dialog moves (e.g., instructional strategies) 

from data regarding the learners’ affective and cognitive states. 

Graesser first began to examine affect shortly after AutoTutor was created, with a 

workshop geared towards affective responses (Person et al. 1999).  However, early 

questions in dialogue-centric research were: “how emotionally loaded should responses 

be?”, and “when should the system provide purely motivational cues?”.  The sensing of 

learner affect, rather than affective agent responses, would not become a research topic 

for six additional years (Craig et al. 2004).  The AutoTutor project, during this period of 
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research, observed a effect size of 0.8 (Graesser et al. 2003).  This observation is 

comparable with other tutoring systems in the same time period (Koedinger et al. 1997). 

At the time of this study, it was believed that there were four emotional quadrants 

(Kort et al. 2001) across two axes: affect and knowledge, as shown in Figure 3.  The 

theory is that learners take a learning path from quadrant IV to II to III to I, representing 

the learning path from first exposure to the material to its eventual understanding by the 

learner.  At the time of Kort et al.’s study, the automatic coding of emotional states by 

computers or artificial intelligence algorithms was not feasible, due to the computational 

complexity involve.  As a consequence, the 34 subjects who used dialogue interactions 

with AutoTutor were manually labeled for emotional state by expert coders.  This was 

done in order to attempt to construct a model of the emotional states that were productive 

for learning.  The results of this effort are shown in Table 5, which draws the conclusion 

that ‘Confused’ and ‘Flow’ states lead to learning, but ‘Boredom’ does not. 
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Figure 3 – Affective Knowledge Zones For Affective ITS Development (Kort et al. 2001) 

Table 5 - learning gain correlation with manually-tagged emotional states, from (Craig et al. 2004), 

asterisks denote significance 

Measure Mean Standard Deviation Learning gains 
correlation 

Boredom 0.18 0.2 -0.39* 

Confusion 0.07 0.11 0.33* 

Eureka 0.0003 0.02 0.03 

Flow 0.45 0.28 0.29* 

Frustration 0.03 0.09 -0.06 

 

Several years later, the authors of AutoTutor constructed a system to automatically 

classify the affective states of the persons using it (Graesser et al. 2005).  Several 

improvements to AutoTutor were made at this time, resulting in a combination of 

architectural components, such as the natural language functions.  Additionally, a 

bystander Turing Test was conducted, and it was determined that a human could not tell 

the difference between a human-made or computer-made dialogue move.  However, the 
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most notable improvement was the addition of four different categories of sensors to 

automatically detect emotion: facial expression, body posture, keyboard pressure, and 

mouse pressure.  These sensors were previously part of other experiments in the 

burgeoning field of affective computing (Sidney et al. 2005). 

Ultimately, this improved AutoTutor system was used in a manner that will be 

seen several times in this dissertation chapter.  The system was used to teach, with 

recordings of the sensors taken to build predictive models of emotion.  Presumably, these 

models would be used as part of a future system for the purpose of driving instructional 

strategies.    However, the results in this regard were disappointing, as the authors were 

not able to produce an accurate model of emotion (Graesser et al. 2007).  The authors 

state that the “next step is to build an emotion-sensitive AutoTutor that will promote both 

learning gains and more engagement in the learner.”  To the best of our knowledge this 

has never been performed, indicating the failure to transfer the offline-created population 

models of affect. 

Work with AutoTutor did not stop, and is still an active area of research, with 

more than twenty involved researchers.  AutoTutor has become a well-published project, 

with subjects in various domains, types of instructional strategies, knowledge 

construction, authoring tools, and human-to-human tutoring work leverage.  The issue of 

affect, however, has never been addressed satisfactorily because of a complex series of 

problems mentioned throughout this chapter.  It includes the policy that learner sensor 

hookups were to be generally discouraged, as well as the poor transfer of affective 
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models to a new population.  More specifically, although a fundamentally simple set of 

sensors for affect detection was discovered, the AutoTutor affect classification system 

was never able to predict emotions in real time and this remains a barrier to the continued 

work in the area. 

2.8. Crystal Island Experiments 

The AutoTutor group has attempted to address the problem of intelligent tutoring systems 

through the study of human tutors and dialogue interactions.  Blanchard’s work 

(Blanchard et al. 2007), has attempted to model affect through the use of expensive, 

sensitive, highly-tuned sensors, and artificial intelligence.  Crystal Island attempts to 

model affect from a very different angle, through the use of digital characters in grade 

school classrooms.  Middle-school students interact with the “Crystal Island” 

experimental testbed, a virtual environment with instructional elements and pedagogical 

characters for the purpose of teaching microbiological concepts.  The Crystal Island work 

begins with the study of motivational statements and full-body affective responses of an 

avatar, initially named COSMO (Lester et al. 1999). 

By 2007, Lester et al. had collected enough learner response data on domain-

specific interactions to start examining the prediction of frustration.  This is a logical 

extension of affective models; if the user keeps telling the system that he is frustrated, 

then this should be a predicable occasion and can be mitigated.  Measures of temporal 

interactions, location features, intentional features, and physiological response from 

blood volume pulse and galvanic skin response were collected and classified using 
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machine learning algorithms (McQuiggan et al. 2007).  The result was an offline-created 

model shown in Table 6 that appears valid but was not validated.  Overall, Table 6 shows 

the predictive accuracy of a handful of AI methods.  These findings, rather than being 

validated, were used as inputs to other studies. 

Table 6 - Results for UNC study of frustration prediction (McQuiggan et al. 2007) 

 Unigram 
with 
Flattening 
Constant 

Unigram 
with 
Good 
Turing 

Bigram 
with 
Flattening 
Constant 

Bigram 
with 
Good 
Turing 

Naïve 
Bayes 

SVM Decision 
Tree 

Accuracy 68.5% 73.4% 73.6% 73.5% 75.7% 82.2% 88.8% 

Precision 60.1% 60.3% 61.6% 60.8% 76.3% 82.2% 88.7% 

Recall 52.6% 59.6% 60.3% 59.9% 75.7% 81.9% 88.9% 

 

The testbed for these experiments was the study of Crystal Island.  As the user plays the 

game, various researchers on the island become sick, exhibit symptoms, and provide 

advice for the completion of scenarios.  The user is free to interact with items in the 

environment, including chemistry lab sets, viewing posters, collecting samples of 

material, and other biological investigative behaviors.  The users are asked about their 

emotional state in seven minute intervals, and can provide text response supplementing 

the state (Robison et al. 2010).  

A study of 115 college learners (three classes) who used this system was 

conducted (Robison et al. 2010).  The learner-reported measures of emotion were taken 

into account in an effort to predict emotional state transitions.  These state transitions 

represent user transitions in the emotional state space, ie. from ‘bored’ to ‘frustrated’ or 

from ‘confusion’ to ‘delight’.  A 10-fold cross-validation Weka analysis using Bayesian 
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networks, linear regression, decision trees, and support vector machines revealed a 

predictive accuracy of 72% against the baseline of 68%.  A report of only 5% 

improvement above baseline after leveraging the most complex artificial intelligence 

methods available shows effectiveness of generalized affective state transition models.  

There are few trends which are applicable across all individuals, and they are not reliable.  

This is another example of a model which has unknown implementation value, as it was 

not validated in an operational environment. 

Sabourin et al. continued this line of research through the investigation of 

generalized affective models (Sabourin et al. 2011).  This study contained data from 260 

learners from two schools, and included an additional machine learning feature not 

previously seen.  This method is the injection of experimenter domain knowledge in an 

attempt to eliminate statistical options and aid in algorithm performance, called a 

Dynamic Bayesian Network.  The use of experimenter knowledge during model creation 

is extremely rare, as it assures that the model is not able to transfer to another domain, 

and is the only time such a method is discussed in this dissertation chapter.  This study is 

one of only two validation studies, and necessitates a discussion of the results. 

In short, as shown in Table 7, the models created by Sabourin et al. dramatically 

underperformed baseline measurements.  The authors conclude with the statement that 

although “models were evaluated in a subject-independent manner, they were not 

successfully able to extend to a future population. This finding is particularly interesting 

given the strong similarities between the two populations.”  (Sabourin et al. 2011).  The 
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addition of participants, use of advanced AI methods, and even a priori experimenter 

knowledge about the domain were not enough to create a generalized model of affect 

(Sabourin et al. 2011).  It is possible that this is a case of model ‘over fitting’.  However, 

models that have been overly fit typically have artificially large predictive accuracy 

compared to baseline, which has not been observed. 

Table 7 - The failure of AI methods to perform better than baseline upon unseen data (Sabourin et 

al. 2011) 

 Emotion Accuracy Valence Accuracy 

Baseline 24.6% 56.7% 

Bayes Net 17.9% 45.6% 

Dynamic Bayes Net 25.9% 52.9% 

 

There is evidence to suggest that Sabourin and Lester are moving away from 

work in the area of affective modeling (Rowe et al. 2010a; Rowe et al. 2010b; Sabourin 

et al. 2012a; Sabourin et al. 2012b).  This is one of the two studies that cast the most light 

on the problem of affective modeling.  This study performs an attempt at validation, the 

study of an attempted generalized model, the study of state prediction (rather than 

classification), and the actionable data available for system use. 

2.9. Educational Psychology 

The above studies with AutoTutor and Crystal Island should not be interpreted to 

conclude that all post-hoc analysis’s of data are a poor idea.  Many useful pieces of 

information can be extracted during post processing.   For example, group reaction to 

marketing data or clinical research for stress management can be captured and analyzed 

for the impact of various marketing messages or stressors, respectively (Hernandez et al. 
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2011; Picard 2011).  In the educational domain, this task is akin to a cross-cutting cultural 

study of the impact of educational games (Conati 2002).  An example of a useful 

generalized finding from the post-hoc analysis of physiological data is that a well 

designed intelligent tutoring system can be as engaging as a well designed game (Rodrigo 

et al. 2007). 

 In another cross-cutting study of learner frustration detection in an online 

computer science course, Rodrigo and Baker (2009) generated linear regression models 

from Weka cross-validation.  As would be expected from the previously mentioned 

studies, the model shows weak correlation and prediction accuracy, which are marginal 

improvements over baseline.  However, the authors found that it was possible to predict 

learner frustration from the observation of the interactions, but that the created 

generalized models do not accurately predict future interactions.  They can show what 

has happened via interpretation of labels, but are unable to predict what will happen in 

the future.  Interestingly, they find that individualized models perform robustly when they 

are taken as part of long-term interactions within the same system, but do not include any 

measure of physiological data.  Once an individualized long-term model is constructed 

from interaction data, it remains valid, within that system, for an extended period of time.  

The authors suggest that in future work they will use more frequent detection reports of 

keystroke and mouse movement data in order to construct models with more predictive 

accuracy (Rodrigo and Baker 2009). 
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 Not to be discouraged, the authors’ later folded their study into a follow-on study 

to see how affective state transitions have an effect on the overall learning in the system.  

The finding was that the affective states of boredom and confusion were the most 

commonly observed states.  Baker et al. matched these findings with the findings of the 

AutoTutor studies to conclude that the educational “downward spiral” consists of a 

boredom state followed by an inescapable frustration state (Baker et al. 2010).  However, 

in their conclusion section they reflect that the group models of emotion are dependent on 

the system used, and the population which uses it.  The authors suspect that there are 

scenarios for which this type of modeling is possible, but have since changed research 

interests, and not followed this line of research (Baker et al. 2012a; Gowda et al. 2012; 

Muldner et al. 2011; Soriano et al. 2012; Wixon et al. 2012).  These findings indicate that 

an individualized model may be applicable, and transferable to a new system, but this 

remains a research gap that is addressed in this dissertation. 

2.10. Affective Sensor Development 

Investigation on affective sensors started from the grounded basis of educational 

psychology (Vygotsky 1978).  A prevalent idea in the ITS literature is that there is a Zone 

of Proximal Development where the user is challenged enough to learn, but not so 

challenged as to become frustrated or stressed, as shown in Figure 4.  Murray and Arroyo 

began their research by asserting that this zone can be detected through system-specific 

interactions (Murray and Arroyo 2002).  The authors use these interactions to gauge the 

overall skill level of the learner.  Given that this is a performance model of a learner, 
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rather than an affective one, it generalizes well across various domains (Cooper et al. 

2011; Murray and Arroyo 2002; Murray and Arroyo 2003).  

 

Figure 4 - Zone of Proximal Development (Murray and Arroyo 2002) 

Murray and Arroyo’s work dovetails nicely with the simultaneous research efforts within 

other groups.  If the cognitive state can be accurately assessed, then an intervention can 

be generated to cope with the problem of learning, as shown in Figure 5.  Indeed, the 

authors were reporting 80-90% accurate classification of state via Bayesian networks 

(Arroyo and Woolf 2005).  This was combined with a suite of sensors including webcam-

provided Facial Action Coding System data (a method for interpretation of affective 

facial data), posture sensing devices, skin conductance, and a pressure sensitive mouse.  

This was performed in the hope that the generation of a pedagogical intervention engine 

would be able to use these created learning models to drive decision making. 



52 
 

 

Figure 5 - The theorized effects of pedagogical interaction within an affect-sensitive ITS (Woolf et al. 

2007) 

The above reviews have conveyed that the problem of affect detection within intelligent 

tutoring remains a difficult problem.  Dragon et al.’s study shows evidence that the 

physiological detection of affect was troublesome (Dragon et al. 2008).  This study was 

conducted study with 34 learners using the Wyang Outpost intelligent tutoring system for 

mathematics with the sensor suite described below and an emphasis towards head, hand, 

and chair position.  The findings of this study were that the measurement of affective 

state is possible, and that the suite of sensors can be used to measure it. 
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Figure 6 - Sensors used across several studies - (Arroyo et al. 2009) 

This sensor suite consists of a webcam that is able to recognize emotive facial 

expressions such as concentrating or interested with software called MindReader.  A 

GSR wristband is used to capture variance in arousal levels.  Pressure-sensitive seat 

cushions were used in combination with an accelerometer to measure learner posture and 

activity.  Finally, a pressure sensitive mouse was also used to infer the general frustration 

level of the user.  The data from all of these sensors are combined differently in offline 

analysis to determine the best methods of multi-modal support.  This sensor suite is used 

across a variety of studies, either in whole or in part (Arroyo et al. 2009; D Mello and 

Graesser 2007; Dennerlein et al. 2003; El Kaliouby and Robinson 2004) 

This research motivated Arroyo et al.’s oft-cited study and paper utilizing 

emotional sensors in a school setting (Arroyo et al. 2009).  In Arroyo et al.’s study, the 

authors were given permission to use hardware-based sensors inside of a classroom 

environment for experimentation.  Rather than using Weka, a popular AI toolkit, they 

used only linear regression models, varying the availability of the sensors in order to 
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determine the sensors that were most able to predict affect.  Unsurprisingly, they found 

that all of the sensors contribute towards the total picture of the learner, and that 60% of 

the variance can be explained via the models that they have produced.  This is another 

study that was able to reasonably detect affective state in offline processing across a 

population. 

It has been nearly three years since this study, and it begs the question of “what 

has happened since?”.  The closest clue that can be found is in 2011 by the same authors 

(Cooper et al. 2011). In this paper, they once again claim it is possible to create affective 

models from these data, and show cross-validated 90% accuracy compared against 60% 

baseline accuracy.  With these results, the authors carried forward to a validation study in 

the same classroom, with the same subject, one semester later.  However, the results of 

Table 8 indicate that none of the classifiers are able to outperform baseline measurements 

of emotion in the second semester (Cooper et al. 2010).   
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Table 8 - Evaluation of sensor framework from Fall to Spring semesters, with no validated accuracy 

above baseline (Cooper et al. 2010) 

Model Accuracy (%) Sensitivity (%) Specificity (%) 

Fall Spring Fall Spring Fall Spring 

confBaseline 65.06 62.58 72.22 76.13 55.56 44.14 

confTutorA 70.49 65.49 47.07 46.04 90.43 84.88 

confTutorM 68.64 67.53 52.31 52.26 82.41 80.68 

confSeat 65.70 67.13 54.63 60.17 79.26 70.32 

intBaseline 42.42 78.30 0 0 81.82 100.00 

intMouse 83.56 63.34 29.73 5.09 90.54 81.60 

intCamera 69.44 57.65 52.08 12.11 64.58 68.53 

excBaseline 46.31 74.31 0 0 96.15 100.00 

excTutor 73.62 62.99 36.54 12.45 87.88 77.28 

excCamera 66.33 51.53 38.67 28.39 72.00 52.24 

excCameraSeat 70.67 43.34 32.00 15.97 83.00 54.07 

 

The linear regression classification shown in Table 8 shows the creation of eight different 

models and three baseline metrics for the detection of the cognitive states of confidence 

(conf), interested (int) and excited (exc).  Given that these models were being tested on a 

population different from the one in that they were collected and trained on, it is expected 

that performance will degrade somewhat.  While performance is expected to degrade, it is 

still expected that the results will be superior to a baseline classifier, and the authors 

estimated this drop to be “between 2% and 15%” (Cooper et al. 2010).  Values marked in 

bold highlight the results that are significantly better than baseline, and the reader can see 

that none of the eight models used in the Spring perform on the metric of accuracy.  

Given that the model is not accurate, it is not meaningful that it is more specific, or 

sensitive, although half of the models fail on this metric as well.  The Fall dataset used 
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“just under 100 students”, while the Spring dataset used “over 500 students”, indicating 

the widest availability of data presented in this dissertation. 

The finding that none of the linear regression models constructed across this time 

horizon are able to classify better than baseline is surprising unless one looks at the 

underlying psychological situation.  Individuals are very different from each other (Miller 

et al. 1987).  The Fall data used leave-one-out cross-validation, which uses all learners 

except one to build a model.  The Spring dataset was used for validation, and simply used 

the best models produced from the Fall dataset.  The individual differences present in the 

Fall data allow one person to be unique enough from the other 99 to throw off the 

classification accuracy.  The differences present in the Spring dataset indicate that the 

500 following people are significantly different from the previous 100.  While this study 

is able to determine that meaningful generalized models can be constructed, it is not able 

to conclude that individual models can be transferred to another training session. 

In our opinion, developed through numerous conversations with field researchers, 

research paper readings, and E-mail exchanges, the problem of affective modeling 

reached a dead end for this research team.  There is simply not enough data to create 

individualized models.  Furthermore, these individualized models are as unlikely to 

transfer as the generalized models from AutoTutor or Crystal Island.   The generalized 

model has been shown to be invalid, and the models created in real time are too difficult 

to construct.  As such, the problem has turned into one that was hard, was unlikely to 

work initially, and was not funded.  Nevertheless, this second major validation study 
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reports findings similar to the Crystal Island experiments (Sabourin et al. 2011), that is 

that generalized emotional models do not transfer well to field use.  

2.11. Realtime Mental State Classification 

Research in the area of computer adaption to real time physiological signals has 

additionally been performed in the area of game adaption to learning.  Citing some of the 

earlier work with educational games seeking affect sensitivity (Conati 2002), Blanchard 

et al. argue for the inappropriateness of the traditional approach of learner query 

(Blanchard et al. 2007).  The simplest and most effective way to garner affect 

classifications is simply to ask the user.  However, Blanchard is correct in his analysis 

that asking the user provides sparse data, cannot react to fast-paced training (such as 

educational games), and suffers from user bias, which has been historically positively-

oriented and culturally-biased (Healey 2011). 

Blanchard et al. (2007) believed that the use of a combination of sensors would 

obtain the user’s emotional state without bias, and successfully account for individual 

differences within the data.  In much the same ways as the dataset used in this 

dissertation work, a combination of everything that the authors could beg, borrow, or 

steal was used for the measurement of physiological state, including skin temperature, 

respiration, heart rate, blood volume pressure, galvanic skin response, surface 

electromyography (EMG), and electroencephalography (EEG).  They criticize other 

researchers for the use of post-hoc analysis, and highlighted the need for a real time or 
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“predictive model” approach that is able to quickly classify a given set of inputs for use 

in real time pedagogical adaption. 

With all these data channels across multiple users and multiple time periods, one 

would think that the construction of a usable individualized model would have been 

possible.  Blanchard et al. underestimated the large individual differences present in 

physiological data, and include several graphs in their paper to highlight the difficulty 

(see Figure 7 for an example of one such graph).  In concluding, they argue for 

multimodal detection while casting doubt on the availability of a classification model of 

emotion.  In the authors’ words: 

“[individual physiological differences] raise doubts about the relevance of using a 

predictive model approach for adaptation. Indeed, with such a level of inter and  

intra individual variability, what could be the significance of deductions obtained 

from data collected at different times, on different learners, in different conditions 

when the physiological reference frame is different?” 

 

Figure 7 - Large variations in individuals shown in (Blanchard et al. 2007) 
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This did not, however, stop the authors from tackling the problem in slightly differing 

ways, as they published three papers on this topic in 2010 (Chaouachi et al. 2010; 

Chaouachi and Frasson 2010; Frasson and Chalfoun 2010).  The first of these papers 

shows that the cognitive engagement index is positively correlated with the states of 

interest to learning.  It suffers, however, from the same problem as many of these works; 

the post-hoc analysis of data with the presumption that the model will transfer to unseen 

subjects within differing timeframes.  This presumption is carried forward in the second 

of these papers, into the domain of performance assessment.  Again post-analysis 

discovers that the constructed EEG metrics correlate positively with emotional state, as 

measured via engagement and arousal.  These emotional states are positively correlated 

with task performance, and the construction of individualized models is “not only 

possible but highly recommended” (Chaouachi and Frasson 2010).  The third of these 

papers indicates that the determination of affect is difficult, moves for the inclusion of 

additional sensors, suggests firmer techniques for individualized model baselining and 

induction, and suggests the idea of subliminal learning.  Subliminal learning includes the 

use of unseen cues on the content being taught so the learner is able to more easily learn 

content. 

Once again, a research team who was intent on the construction of affective 

learner models for the purpose of developing affect-specific tutoring strategies is 

presented above.  It is especially odd to note that skin temperature, respiration, heart rate, 

blood volume pressure, galvanic skin response, surface electromyography (EMG), and 

electroencephalography (EEG) could not provide a consistent assessment of emotional 
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state.  Greeted with moderate initial success at the development of group models, they 

moved to individualized models.  When the individualized models could not stand up to 

validation tests, they wrote papers suggesting more individualized approaches and more 

thorough baseline evaluations.  Finally, as evidenced by work at a recent conference 

(Chalfoun and Frasson 2012), the problem is abandoned in favor of the use of EEG 

systems for cognitive priming and subliminal learning.  This leaves the problem of usable 

real time affective models to other researchers, and is the specific subject of the research 

presented in this dissertation. 

2.12. Individualized Mental Models 

Certain types of signals naturally lend themselves toward individualized approaches.  The 

best example is the EEG signal.  The brain of each human is highly individualized 

(Medina 2008), and consequently, the EEG brain models must also be highly 

individualized.  Traditional studies in the realm of EEG have hinged upon the 

development of highly individualistic models.  The most obvious example of this is 

application of intensive periods of brain scans prior to brain surgery (Medina 2008).  A 

standard approach to the problem of individualism can be seen in the affective EEG 

models described below. 

In AlZoubi et al.’s research (AlZoubi et al. 2008) into EEG models, participants 

were taught to play Pong, an early computer game.  The participants were told to think of 

moving their left and right arms, while connected to an EEG measurement system.  After 

this, a model of left and right arm movement was constructed for each participant.  The 
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participant then had to think of left and right arm movement in order to control a virtual 

cursor.  The interesting findings were that models were highly individualized, that the 

best offline classification system was never the best online classification system.  

Furthermore, they found that offline classification models experienced sharp decrease in 

reliability when transitioned to practical use (AlZoubi et al. 2008).  These findings are 

consistent with the findings presented by other researchers earlier in this dissertation. 

Other work has shown that a small amount of caffeine can be enough to 

differentiate a previously created model from the current observation (Su et al. 2010).  

Thus, even if a transferable, person-specific, intraday, affective model could be created, it 

could still be rendered invalid for a training session through a caffeinated beverage such 

as a cup of coffee.  As little caffeine as contained in a glass of tea is enough to perturb 

models of performance (Durlach 1998).  This effect is also observed across other types of 

physiological data such as GSR (Hollenstein et al. 2012), EEG (Pollock et al. 1981), heart 

rate variability (Rauh et al. 2006), blood pressure (Nurminen et al. 1999), and others 

(Clarke and Macrae 1988). 

Among the concepts presented at the Intelligent Tutoring Systems 2012 

conference, was “if a cup of coffee breaks your model, it is not a very good model” 

during a talk on real time classification (Brawner et al. 2012).  On a practical level, the 

amount of caffeine, sleep, or other physiological trend cannot be explicitly controlled 

prior to interaction with an ITS.  Unfortunately, because of this problem, it is not likely 
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that an individualized model of affect is more usable in real world situations than the 

generalized ones presented earlier.   

Further work in this area by AlZoubi et. al (2009) indicates that affective signal 

classification is possible from the EEG sensor array (AlZoubi et al. 2009).  This approach 

has shown modest success, however, as they cite significant difficulties arising from user 

fatigue, electrode drift, changes in electrode impedance, and user cognitive state 

modulation (ie. attention, motivation, vigilance, or others).  AlZoubi et al. argues that the 

problem inherent in these physiological signals is their non-linear nature, and that the 

failure of other models is because of the underlying linear assumptions.  They indicate 

that the models are erroneously learned when it is assumed that the underlying concept is 

stationary, when in fact it is drifting across the sampling space (Hulten et al. 2001).  As 

such, they hypothesize that nonlinear algorithms could be implemented to work 

satisfactorily.  AlZoubi et al. empirically show this success through an injection of 

adaptive algorithmic techniques into the standard Weka techniques shown above, with 

greatly increased performance, as shown in Table 9 (AlZoubi et al. 2009). 

 

 

 

 

 



63 
 

Table 9 - Performance of adaptive algorithms against their static counterparts (AlZoubi et al. 2009) 

Method Static Adaptive 

Classifier/windowSize AvgErrorRate STD AvgErrorRate STD 

Knn/250 0.710 0,140 0.207 0.134 

Knn/450 0.714 0.143 0.247 0.145 

Knn/900 0.622 0.158 0.288 0.155 

NaiveBayes/250 0.694 0.132 0.464 0.153 

NaiveBayes/450 0.660 0.124 0.492 0.141 

NaiveBayes/900 0.616 0.131 0.507 0.142 

SVM/250 0.716 0.129 0.437 0.147 

SVM/450 0.704 0.138 0.493 0.159 

SVM/900 0.707 0.144 0.542 0.156 

 

While this type of approach can be seen to boost the performance of the offline models, it 

is not appropriate for online use, because the algorithmic approach used here loops over 

all previous data windows for each injection of a new data window.  In terms of 

computational complexity, this is O(Nn), taking an exponentially longer time to develop a 

prediction with each additional data point.  Any approach that can be implemented in real 

time must be of O(k) magnitude, using a time-resolvable finite number of operations per 

each new data segment, as discussed later in Chapters 4 and 5.  An observed unique 

feature of this type of approach, however, is that the general error decreases over time 

with adaption, while it increases over time with the traditional static affective models 

(AlZoubi et al. 2009).  This is a highly desirable type of trait, indicating that the adaptive 

model improves with additional data, while the static model erodes. 

 With such an adaptive approach, AlZoubi et al. turned to the problem of day-to-

day differences in multichannel physiology (Alzoubi et al. 2011).  They conclude with a 

laboratory study with induced emotions that it would be possible for such an approach to 
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be implemented in the field.  However, they paint the picture of the problems that still 

remain: 

 how to use these algorithms on sparsely labeled data (real world) 

 validating the algorithms in a person-independent manner 

 alternative methods for classifier development and change detection 

The problems present a solid research roadmap of unsolved problems in the field.  This 

dissertation proposes methods of modeling these data that mitigate the difficulties 

currently faced. 

2.13. Conclusion 

We respect the research and tenacity of each of the aforementioned researchers.  Each of 

them, directly or through association, has looked for individual or generalized models of 

learner affect that could be transferable and implementable within an intelligent tutoring 

system.  Through the concerted effort, there have been two notable studies where 

researchers were able to put systems that appeared to function into practice (Cooper et al. 

2010; Sabourin et al. 2011). 

Unfortunately, each of these systems was shown not to perform well under the 

pressures of the real world.  There are not enough individual data available to create 

individualized models (Cooper et al. 2010).  Even if there were enough data available, 

complications related to individualized monitoring and daily differences would invalidate 

them (Alzoubi et al. 2011).  Generalized emotional models barely perform better than 
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baseline, even when all of the offline AI methods in Weka are used in their construction 

(Robison et al. 2010).  Even worse, they have been shown not to transfer well to the real 

world (Sabourin et al. 2011).  This evidence points to a significant gap within the field. 

Just as individual differences in height, intelligence, values, and personality are 

observed, the impact of emotional stimulus manifests itself differently among 

participants.  Particularly in the realm of physiological sensors, there are differences wide 

enough to invalidate generalized predictive models.  However, there are many difficulties 

even among predictive models that are individually tailored. 

There are multiple conferences in the field dedicated to the use of physiological 

data correlated to various experiences among individuals or groups.  However, problems 

related to individual differences drive the solution of individual analysis.  This typically 

involves an approach where a researcher post-analyzes the data to look for correlations 

with subject-experienced events. While the post-facto treatment of the data has been of 

great aid to psychology researchers, an engineered system needs to use the data stream to 

respond to the needs of its users in real time (Dolan and Behrens 2012). To perform this 

task, these data streams would have to be parsed, interpreted, and classified into a state in 

real time. 

Given that there is not likely to be a valid, generalized, model for predicting 

emotion across a population, adapting models for specific individuals would appear to be 

an alternative solution. However, people are fundamentally different, even with respect to 

the simplest readings. For instance, the highly individual nature of Galvanic Skin 
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Response (GSR) makes it virtually impossible to compare baselines across different 

people (Bersak et al. 2001).  This makes the adoption of a baseline difficult.  

Additionally, even if an individual model were to exist, it would likely be invalid during 

the next training session. The reasons for this are legion, and include mood change across 

days, electrode drift, changes in default impedance of varying sensors, modulation across 

mental states such as boredom and attention (Alzoubi et al. 2011). Fundamentally, even if 

a model were adapted to a specific individual, that individual would appear very different 

to the modeled system upon the start of the next training session. 

Note that there are large problems with judging a system based upon its accuracy.  

The least of these is that the accuracy of model prediction has no clear effect on learning 

effect size.  Both large and small effect sizes may be observed from an increase in 

accuracy (Koren 2008).  This disconnect further stresses that models should be built for 

their use rather than their predictive accuracy, as the end goal of an ITS is based around 

instructional use, rather than user assessment use, although accurate user assessment 

does aid in instruction.  This highlights the need for real time adaptive approaches that 

can sacrifice accuracy in exchange for ubiquitous availability during learning sessions. 

The emergence of adaptive affect classification, which has only recently begun, is 

a valid starting point for this dissertation.  The authors of this dissertation have shown 

that adaptive algorithms (AlZoubi et al. 2009) dramatically outperform their static 

counterparts (Cooper et al. 2010; Sabourin et al. 2011).  Additionally, the dynamic 

algorithms decrease in error over time, which is a highly desirable trait of any machine 
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learning method.  While they have shown that these individualized models are possible 

(Alzoubi et al. 2011), they have not attempted implementation with real time constraints, 

which is what this dissertation addresses.  Real time constraints call for different types of 

physiological data filtering, sparse labeling, and real time constrained methods. 

The world is not an ideal place where the perfect solution to a problem always 

works perfectly.  Engineers are trained in the concept of trade space in order to optimize 

towards multiple simultaneous goals.  Engineers make compromises on solutions in order 

for the entire system to benefit.  In the realm of affective models, there are several 

variables to trade from: 

 Availability/Time – when the model is created 

 Robustness – how well the model transfers to an unknown population 

 Accuracy – how well the model classifies on a current population 

 Sensitivity/Specificity – reaction to false positives/negatives 

The sensitivity and specificity of potential solutions have been the engineering tradeoffs 

in all of the solutions shown in this dissertation.  The other research discussed in this 

chapter has exclusively favored accuracy, in the hope that highly accurate models using 

offline data can transfer to the classroom.  However, these robust models have been 

elusive, and we are not aware of a robust affective classification model at the time of this 

writing.  Furthermore, the time to create a model has been largely ignored by affective 

models created offline.  The other researchers who have created these models have not 

indicated the CPU time taken to create them, considering it to be irrelevant to the 
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majority of the work.  The AI approaches used have primarily been in the form of 

Bayesian approaches which are time-variant, taking progressively longer to classify with 

each additional data point, making them impossible to run in real time. 

We assert in this dissertation that the research community is making the wrong 

tradeoff.  The key attribute of an affective learner model should be availability, or when 

the model is able to classify.  Specifically, the model should be able to recommend 

instructional interventions at any time they can be gainfully used.  Given that these 

instructional interventions are available in real time, the model needs to also be available 

in real time.  While it would be ideal for an offline-created model to be transferred to an 

online mode, this simply has not happened.  The chosen approach, by necessity, needs to 

be an online created model constructed for the individual after they have first started 

using the system in a learning session.  This approach is a tradeoff, and given this 

tradeoff, the sensitivity/specificity of the model is likely to be low, with little or no robust 

transfer to other learners, and lower overall accuracy.  These tradeoffs are made with the 

hope that the model will be useful, which is where all other methods to date have failed. 

To summarize this chapter: 

 Generalized models of affect have limited accuracy (Robison et al. 2010) 

 Generalized models do not transfer well (Sabourin et al. 2011) 

 Individualized models, while more accurate, also fail to transfer (Cooper et al. 

2010) 
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 Adaptive algorithms for affective classification dramatically outperform static 

alternatives (AlZoubi et al. 2009) 

 Increases in overall accuracy may not aid instruction (Koren 2008) 

 Classification availability is more important than accuracy 

 A classification now is better than a better classification later, as later is 

too late to implement pedagogy 

 An approach using adaptive algorithms to individualized models in real time 

provides classification availability, and address problems faced in affective 

model construction 
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3. PROBLEM DEFINITION 

The previous chapters have shown a clear need for good affective models in the use of an 

ITS.  Many other researchers have attempted to study this problem from various aspects 

and they have built the theoretical underpinnings of the current work.  The use of 

affective learner models is still among the most promising technologies for the tailoring 

of individual training.  In the first chapter of this dissertation, it was shown that one-to-

one human-to-human tutoring has historically been the most effective way of instruction, 

and that human tutors manage learner emotional and cognitive state through affective 

interactions.  Intelligent computer tutoring should emulate a strategy that has proven to be 

effective, and must develop effective real time emotional classification in order to do so. 

 Specifically, we propose to create a system to solve this problem in real time 

through the combination of the works of several others.  The first part of the solution is to 

show that online methods of model creation are comparable to their offline counterparts.  

The second part of this solution is to make sense of the data through unsupervised, 

adaptive, machine learning algorithms such as Growing Neural Gas (Holmstrom 2002) 

and Adaptive Resonance Theory (Carpenter and Grossberg 1995), showing that these 

methods will transfer when supervised information is not available.  The third part is to 

determine the impact of semi-supervised ground-truth labels, and how frequently they 

should be obtained to construct real time models with comparable accuracy to the offline 

models. 
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3.1. Hypothesis 

The hypothesis of this research is that useful cognitive and affective learner models can 

be constructed in real time.  These models are learner-specific, as each learner is an 

individual.  Furthermore, we hypothesize that these highly individualistic models of 

cognition and affect, created in real time, can achieve accuracy on par, although possibly 

slightly diminished, with the offline models created for the same learner.  This 

contributes significantly to the fields of affective computing and intelligent tutoring 

systems in the following ways: 

 Diminishes the significant problem of individual differences 

 Provides an affective model that is independent of cultural bias 

 Increases the availability of cognitive/affective models of the learner 

 Merges together the works performed in the various, somewhat disparate, fields 

of affective computing, simulation, training, intelligent tutoring, educational data 

mining, data stream/digital signal processing, and artificial intelligence. 

The previous chapters frame our effort of the author to solve part of an important 

problem in a novel manner. Highly individualized models of cognition/affect have never 

before been constructed in real time.  Intelligent tutoring systems are desired to be 

adaptive to the need of their learners through assessment of their mood, from sensor data, 

from the same learner in real time, with classification aided through self-assessments. 

This dissertation addresses this problem in a manner that no other research has, through 

making data availability the primary engineering tradeoff. It is expected that this research 
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will involve the selection of various types of artificial intelligence classification, the 

initial evaluation of these algorithms for online, real time, semi-supervised learning, and 

the validation of this approach on another physiological datastream of differing 

population, and the adaption of these algorithms to the problem at hand.  Publication in 

this field has already been frequent.  This speaks to the novelty and interest of the work 

and the educational merit of this type of practical engineering solution.  
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4. DATA OF INTEREST FOR AFFECTIVE AND COGNITIVE 

MODELING  

The previous chapters have discussed intelligent tutoring systems, the important role of 

affect and cognition in the tutoring process, and the challenges faced in the creation of 

useful models of these processes.  Chapter 5 will the discuss machine learning methods 

used for the processing of realtime data and Chapter 6 will discuss the results of this 

processing.  However, it is important to discuss the data used to build these models, the 

types of sensors used to collect them, the experiments that produced them, and the initial 

baselines for fair comparison of machine learning algorithms.  Chapter 4 has been set 

aside for this purpose. 

4.1. Introduction 

The above sections have described open research gaps that exist for models derived from 

sensor data, with a particular emphasis on the gap of real time creation and simultaneous 

evaluation.  However, in order to create an affective or cognitive model, one must first 

have data available to analyze.  This issue can be deceptively difficult, as the availability 

of a context-appropriate dataset is limited.  An ideal data set includes several features, 

such as previous analysis, domain-independent collection on states of interest, on a 

population of interest, with relevant sensors for inclusion.  These features are identified in 

the below list, and discussed next. 
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 Relevant states to learning 

 Ability to be transferred beyond the system of creation 

 Created on a relevant population 

 Created using cost-appropriate sensors 

 Contained labeled data 

 Have previously established models 

The first feature of an ideal dataset is that the collected state information should 

hold research grounding in the field of education.  At a minimum, the collected state 

information should have learning relevance.  An example of a dataset that should not be 

included is the Pose, Illumination, and Expression database (Gross et al. 2010).  This 

database shows actors with various expressions under various lighting conditions.  While 

the expressions of actors could potentially represent underlying cognitive or emotional 

states, these are not explicitly labeled in the database.  Datasets where it is not possible to 

deduce emotional or cognitive states should be discarded.  

The second feature of an ideal dataset is that the data be collected in a context 

where it can be transferred to another population.  There have been several studies with 

emotional collection which are only transferable to a similar system.  One example 

includes Baker’s dataset, which draws emotional inference based on the actions that the 

student takes within a learning environment (Baker et al. 2012b).  Another example of 

data which are not appropriate for inclusion is ‘gaming the system’ predictive models, 

which predicts whether the student is meticulously studying based on their interaction 
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with system-dependent screen elements (Baker et al. 2004). Even assuming that a 

researcher could achieve 100% accuracy, this model would only be relevant to the ITS 

which records these system-dependent actions, as other ITS systems will have differing 

interaction events as a natural part of teaching different subjects.  This type of model is 

referred to as an interaction-based model, which may be contrasted with a models based 

upon collection of sensor data.  Sensor-based models have transferability, as a sensor can 

supplement a system, while interaction-based ones are dependent on the system of 

interaction.  Sensor-based models are of interest to the research described in this 

dissertation, as it hopes to address the needs of many ITSs.  

The third feature of an ideal dataset is that it should be collected on a population 

of interest.  Populations of interest explicitly include people who are learners, ideally 

while they are learning, at the various levels of potential ITS application (K-12, college, 

or adult).  It should not include, for instance, data collected during gaming activities 

(Sykes and Brown 2003), or from a marketing research study  (Laparra-Hernández et al. 

2009). 

The fourth feature of an ideal dataset is that it uses sensors that are appropriate for 

classroom use.  While the algorithmic results of this dissertation are available for any 

domain that would benefit from rapidly constructed models, the purpose is to improve 

intelligent tutoring.  As such, it is desirable to select the sensors that are feasible to use in 

the classroom.  An example of a dataset that is not appropriate for inclusion is one that 
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uses, exclusively, a $50,000 EEG headset requiring 30 minutes of setup (Stevens et al. 

2008). 

The fifth feature of an ideal dataset is that it has labeled states of interest.  It is not 

possible to evaluate the effectiveness of model creation without a metric for success.  

Labels are used in this research to evaluate unsupervised, semi-supervised, and 

supervised model creation alike.  While it is possible to create models from unlabelled 

data, it is not possible to judge their value.  Additionally, without labels, the next 

discussed feature is rendered impossible.  

Finally, it is preferable for a researcher to compare against benchmarks which 

have been set by others.  This allows the other researchers to optimize their methods, 

eliminates any potentially induced biases, and strengthens the conclusions.  As such, the 

sixth and final feature of an ideal dataset is that it has already been analyzed by another 

reseacher or research team.  This gives the work described in this dissertation a 

comparison benchmark. 

Two datasets are used in this research.  To the best of the author’s knowledge, there is 

only one dataset in existence that meets all of the above qualifications, and was collected 

partially for this purpose.  However, the first three chapters of this dissertation contend 

that online model creation can generalize to different populations, individuals, times, and 

areas of research.  This claim calls for the inclusion of a minimum of two datasets that 

includes these items.  A second dataset is included as part of this work to show transfer.  

The upcoming portions of this chapter will describe the reasons for various items of 
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inclusion, and a side-by-side description of the features of each dataset.  It is useful to 

include a preview description of each study here.  

 The first dataset was collected as part of an experiment to evaluate low-cost 

sensors.  College-aged military learners experienced a breadth of learning-relevant 

emotions while watching videos or playing video games.  They were measured by a suite 

of sensors.  Cognitive states, such as distraction, are labeled with a high-cost sensor.  

Affective states, such as frustration, are labeled with a self-reporting tool.  Models 

developed under this effort are designed to replace the high-cost sensors measures.  This 

dataset, and the experiment from which it was produced, is referred to as Dataset #1, or 

as the Low-Cost Sensors Dataset.  The experiment which created it is described in greater 

detail in section 4.4.  The features of this dataset are described in summary in Table 10. 

 The second dataset was collected as part of an experiment to evaluate 

physiological response to situations of changing workload, a cognitively relevant learning 

state.  College students experienced simultaneous tasking on detecting changes and 

indentifying threats on a displayed monitor.  Their cognitive state was monitored by a 

suite of sensors, with the data cognitively labeled with a high cost sensor.  Models 

developed under this effort are intended to aid in classification of workload, with the 

intent of having a system compensate during times of high/low operator workload.  This 

dataset, and the experiment that produced it, is referred to as Dataset #2, or as the 

Human-Computer Interaction Dataset.  The experiment which created it is described in 

greater detail in section 4.5. 
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The reason that Dataset #2 is included in this research is to prove that realtime, 

individual-specific, modeling techniques from sensor measurement are transferrable to a 

new population and purpose.  As the methods for creating the individualized models do 

not inherently contain information about the population, there is no reason to think that 

they would not satisfy the general transfer criterion; however, it still requires proof.  The 

inclusion of this second dataset is intended to show the transferability of the realtime 

modeling approach.  Only cognitive models will be created from Dataset #2 because it 

does not include any affective measures.  The features of this dataset are described in 

summary in Table 10. 

Dataset #1 is ideal for the creation of real time methods of model generation for 

the purpose of intelligent tutoring.  To the best knowledge of the author, no other 

“perfect” dataset exists besides this one.  However, the desire to create realtime models 

from physiological signals is not limited to the field of intelligent tutoring.  Dataset #2 

shows the application of physiological sensors in the area of Human Computer 

Interaction (HCI) as part of the University of Central Florida’s (UCF’s) Institute for 

Simulation and Training (IST) Human Agents for Training and Simulation (HATS) 

project.  
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Table 10 – Actual dataset features 

Dataset Relevant 
States 

Transferability 
beyond system 
of collection 

Relevant 
Population 

Relevant 
Sensors 
(cost) 

Labeled 
Data 

Evaluated 
Models 

#1 
Low-Cost 
Sensors 

Cognitive 
and 

Affective 

Yes Yes Yes Yes Yes 

#2 
Human-

Computer 
Interaction 

 
Cognitive 

but not 
Affective 

Yes Yes No Yes No 

 

The experiments that led to these datasets were conducted by other researchers, with 

little/no input from the author.  A new analysis, using different (and arguably more 

appropriate) methods of model construction is appropriate, given the historical issues 

presented in the first three chapters.  Because of the intertwined nature of data collection, 

analysis, and the analytical expansion through a realtime modeling approach presented in 

this dissertation, it is useful to discuss why these experiments were conducted, their 

relevance to ITS research, and their initial conclusions.  New methods of model creation 

are discussed in the following chapters. 

This chapter briefly describes the affective and cognitive states of broad interest for 

data capture.  It is followed by the discussion of the sensors used in the two datasets to 

capture these states, a brief description of the experiment that produced each dataset, the 

initial project, purpose, and the models created through data analysis. For Dataset #1, the 

initial offline models created for the analysis of this dataset are considered to be the 

initial benchmarks.  For Dataset #2, the online models created as part of this research are 
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evaluated for overall model quality.  Each of these tasks is discussed in this chapter, the 

real time methods described in Chapter 5, evaluated in Chapter 6, and summarized in 

Chapter 7. 

4.2. Affective and Cognitive States 

Cognitive phenomenon consist of mental state activities such as working memory load, 

executive function, attention, and sensory information processing (Derakhshan and 

Eysenck 2010).  In short, this is a state of mind consisting of various types of awareness 

of the environment.  Affective phenomena, on the other hand, consist of emotions 

attitudes, moods, and traits (Davidson et al. 2003).  Rather than the total mental state, 

these affective states consist of the reactionary biases to stimuli within the environment.  

Both of these models are of interest to human learning, and to machines that teach, as is 

explained in the following section. 

4.2.1. Cognitive States Of Interest To Learning 

Research on physiologically adaptive systems has traditionally focused on operational 

environments.  Examples of this are the systems within the Defense Advanced Research 

Projects Agency (DARPA) project for “Improving Warfighter Information Intake Under 

Stress through Augmented Cognition” (Raley et al. 2004).  This includes the cognitive 

state bottlenecks that can result from fast-paced decision-making under stress, and can 

include such items as working memory and attention.  Table 11 shows the identified 

cognitive states of meaning to specific operational environments (Morrison et al. 2006). 
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Table 11 - Cognitive Information bottlenecks identified for system action by DARPA projects 

Industry Team Military Application Transition 

Sponsor 

Primary 

Bottleneck 

Honeywell Dismounted Soldier US Army Attention 

Daimier Chrysler Armored Vehicle Driver USMC Sensory Input 

Lockheed Martin Tactical Strike Coord ONR Working Memory 

Boeing UCAV operator USAF Executive Function 

 

ITSs are not for optimizing the processing of information, but instead are tailored to 

influence the learning process.  Examples of where the learning process should be 

manipulated include, for example, an instance where mental workload causes delays in 

information processing, causing the user to incorrectly interpret information (Ryu and 

Myung 2005), or when large reductions in memory performance result from divided 

attention (Craik et al. 1996).  It is desirable to avoid these types of situations within an 

ITS through some type of intervention, provided that it is possible to identify these states 

in realtime.  The cognitive states of primary interest to learning are 1) workload, 2) 

attention, and 3) engagement.  These states have been the most positively associated with 

learning gains in a significant portion of the literature, and are addressed further below. 

 The first cognitive state that shows significant relevance to learning is attention.  

The impact of attention on learning is clear: increased attention produces increased 

retention and increased performance.  It should come as no surprise that increased 

attention is positively associated with quicker reaction time (Craik et al. 1996).  While 

few improvements in memory recall result from increased attention, divided attention is 

correlated with lower results in retention (Small 1996).  In task-specific learning, 
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increased attention focuses on the items of interest to the task, and increases overall 

performance (Ahissar and Hochstein 2002). 

 The second cognitive state that has been extensively studied is engagement.  

Similar to attention, lack of engagement is empirically correlated with a decrease in 

learning (Woolf et al. 2007).  Among military tasks, increasing levels of engagement rise 

linearly with increasing levels of task difficulty (Berka et al. 2004).  Low levels of 

engagement can be assumed to be indicative of non-participation in the learning 

environment, and related back to attention (Dorneich et al. 2007). 

 The third cognitive state that has empirically proven its relevance to learning is 

workload.  Again the result is clear: users who have high workloads have corresponding 

decreases in performance and retention (Gonzalez 2005).  Mental workloads are 

mediators to various aspects of perception, cognition (including learning), and even 

motor tasks (Parasuraman and Caggiano 2002).  Measurement of workload can assist in 

the ability of the system not to overtask the user. 

 Although this is not an exhaustive list of cognitive states that have influence over 

learning, it provides a good baseline of items of interest.  As shown later in this chapter, 

the cognitive states of attention, engagement, and workload are readily detectable using 

relatively inexpensive commercial sensors, or, alternatively using a single high-cost 

sensor.  Additionally, each of the two experiments discussed in this chapter have 

identified the relevance of these cognitive states.  It is important to monitor these various 

states of cognition in real time to provide remediation during the learning period. 
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4.2.2. Affective States Of Interest To Learning 

There are many affective states that are linked to learning effectiveness.  A short list 

includes: 

 Anxiety (Pintrich and De Groot 1990) 

 Arousal (Bradley et al. 1992; McQuiggan et al. 2007) 

 Boredom (Craig et al. 2004)  

 Confidence (Pajares and Miller 1994)  

 Confusion (D’Mello et al. 2007) 

 Frustration (McQuiggan et al. 2007) 

 Joy (Fredrickson 1998) 

 Motivation (Craig et al. 2004) 

 Sadness (Bower 1992)  

 Shame (Ingleton 2000) 

 Surprise (Holland and Gallagher 2006) 

 Wonderment (Campbell 2006) 

The above list is not complete, as there are additional affective states that can be 

psychologically linked to learning, such as anger and disappointment.  Potentially, many 

of these affective states could be measured as part of an experiment.  Dataset #1 measures 

three of these affective states of interest: 1) arousal, 2) boredom, and 3) frustration.  The 

last two of these states are negatively associated with increases in learning. 
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Arousal is a psychological and physiological state produced by the autonomic 

nervous system.  Increased arousal naturally leads to increased heart rate, blood pressure, 

and sensory alertness.  High arousal has been positively correlated with high retention 

(McQuiggan et al. 2007).  Additionally, low arousal has been positively correlated with 

rapid forgetting (Kleinsmith and Kaplan 1963).  In brief, something that invokes a 

measurement of high arousal can safely be assumed to be an item good for learning, as 

people learn about what excites them.  Specifically, arousal indicates memory retention 

relating to the arousing event (Bradley et al. 1992).  The reader should note that the 

experimenters of Dataset #1 have called this state ‘Fear’, but anxiety, fear, and arousal 

are all measured through the selected sensors and labeling techniques. 

Boredom is an emotional state of being generally disinterested in the 

surroundings, and has been described as "an unpleasant, transient affective state in which 

the individual feels a pervasive lack of interest in and difficulty concentrating on the 

current activity.” (Fisher 1993).  Rather unsurprising are the psychological research 

findings showing boredom as leading to lower retention and decreased ability to apply 

information (Small 1996).  Increased levels of boredom are negatively correlated with 

learning gain (Craig et al. 2004). 

Frustration is an affective state associated with failure to meet set goals.  The 

greater the failure, and the greater the amount of failed effort, the more frustrated a 

learner can become.  Frustration causes the user to focus on the frustrating item, 

eventually diverting the learner away from learning goals and ultimately impeding 
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learning  (McQuiggan et al. 2007).  Frustration is not inherently negative to learning, if it 

is to cause arousal, or increase attention, but is generally associated with non-learning 

activity. 

From the above discussion, we can conclude that arousal, frustration, and 

boredom have significant impact on learning.  Although these conclusions are not 

shocking, they can present a representation of the learner.  A classroom teacher or one-

on-one tutor who is able to successfully classify these affective states among their 

learners can work to steer the learners’ emotions away from states that have poor learning 

implications.  In the same way, an ITS that is able to classify these emotional states has 

the potential to respond to them.  How to respond to these states (e.g. what to do about a 

bored student) is beyond the scope of this dissertation, but the detection of these three 

measurements can provide an affective picture of the learner. 

The datasets, and experiments that produced them, identify all (Dataset #1), or 

some (Dataset #2) of these measures, in addition to providing a significant amount of 

other data.  Next we discuss the sensors used to capture these states before discussing the 

purpose, participants, experiment, analysis, and results of each experiment.  This 

dissertation then expands on the models which were created as part of these efforts 

through the machine learning techniques described in Chapter 5. 
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4.3. Application-Appropriate Sensors and Sensors Suites 

Affective and cognitive states are closely related, but can change independently, and be 

modeled independently.  The affective and cognitive states of arousal, frustration, 

boredom, attention, engagement, and workload provide a sufficient affective and 

cognitive sample, when measured by a sensor suite, to justify the adaption of various 

types of desired instructional protocol.  A smaller subset of this type of sensor suite is 

used in similar research (Calvo and D'Mello 2012; Graesser and D'Mello 2012).   While 

it is desirable to measure additional states for instructional purposes, a transferable, six-

dimensional, real time, learner model is expected to be of high value to affect-sensitive 

tutoring systems (Alexander et al. 2012; Graesser et al. 2012; Sottilare 2009).  If these 

states are to provide the ‘minimal’ set of states that are relevant to detect, then the sensors 

to detect them would be an example of the minimum amount of hardware required to 

detect them.  These states are able to be reasonably measured with a small sensor suite of 

five sensors, as shown in analysis section 4.4.3.  How to detect these states is well 

researched: arousal can be reliably detected via GSR sensor (Bradley et al. 1992); 

boredom and frustration can both be detected via behavioral motion sensing  (D’Mello 

and Graesser 2007; Woolf 2009b); attention engagement and workload may all be sensed 

via an EEG head cap and ECG sensor (Ahlstrom and Friedman-Bern 2006; Berka et al. 

2007).  Each of these sensors was selected for low cost, and is discussed in sections 4.4 

and 4.5. 

There are many advanced ways of sensing the emotion of the person at the other 

end of the keyboard.  In an effort to make affective-sensitive training ubiquitous 
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throughout the area of training, the cost must be on comparable to the computer system 

used to train (Carroll et al. 2011).  Additionally, the sensors used should not be readily 

apparent, or uncomfortable, to the learner who is being sensed.  While a ‘wearable’ 

sensor is not new, basic modern sensors can cost upwards of $1,000 (Picard 2011).  This 

is compared to the basic desktop computer purchase of approximately $400.  A summary 

table of the sensors to be discussed in this section and used in this dissertation as part of 

the Dataset #1 is presented in Table 12, while the higher-cost cognitive sensors of the 

Dataset #2 are detailed in Table 13.  

Table 12 - Summary of Sensors used, Affective States, and Cognitive States (Experiment #1 – Low 

Cost Sensors) 

Sensor Affective State Cognitive State 

ABM EEG (Ground Truth measure) 

Neurosky EEG  
  Attention, Engagement, 

Distraction, Drowsiness, 
Workload 

Eye-tracker   Attention, Drowsiness, 
Workload 

EmoPro (Ground Truth measure) Anger, Anxiety, 
Arousal, Boredom, 
Fear, Stress 

 

Zephyr Heart Rate Monitor Anger, Anxiety, 
Arousal, Boredom, 
Fear, Stress 

Attention 

Phidget Chair Pressure Sensor 
(posture) 

Arousal, Boredom, 
Frustration 

Engagement, Flow 

Vernier Motion Detector (posture) Arousal, Boredom, 
Frustration 

Engagement, Flow 
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Table 13 - Summary of Sensors used and Cognitive States (Experiment #2 – Human Computer 

Interaction) 

Sensor Cognitive State 

Eyetracker (Ground Truth measure) Attention, Engagement, Workload 

4.3.1. Sensor Hardware (Dataset #1 – Low Cost Sensors) 

The two baseline measures used in the collection of Dataset #1 were EmoProTM and an 

Advanced Brain Monitoring (ABM) EEG B-AlertTM X-10 Headset.  EmoProTM is a 

validated electronic emotional profiling tool (Champney and Stanney 2007).  The ABM 

headset includes validated classification measures of workload, engagement, and 

distraction (Johnson et al. 2011).  The ABM measures gives 10-channel, millisecond-by-

milisecond resolution of cognitive state to the data collected, while the EmoProTM metrics 

must, by necessity, be questioned after an emotional episode.  A sample of these labeled 

data, as well as further discussion of sensors measurements is shown in APPENDIX A.  

Each of the validation measures are ‘high cost’ sensors. 

 Briefly, the research question that the study that produced Dataset #1 addresses is 

“Can you replicate the measures of validated, high-cost, obtrusive sensors with yet-to-be-

validated, low-cost, unobtrusive ones?”.  In this regard, the initial conclusions drawn 

from Dataset #1 was that low-cost sensors were, to a reasonable degree, able to measure 

which are able to mirror the functionality of the validated, high cost, intrusive sensors.  

The Dataset #1 models show that the transition of a ITS system into a classroom setting 

could be accomplished with a suite of low-cost sensors and tuned computer models with 

minimal loss of functionality.  A fully instrumented participant is shown in Figure 8.  The 
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purpose to the remainder of this section is to describe, in detail, the exact sensors used as 

part of the study. 

 

Figure 8 – Fully Instrumented Participant 

 

4.3.1.1. LOW-COST EEG 

The Neurosky Mindset EEG system based around a single-point, dry-contact forehead 

sensor.  This sensor provides data on the Delta, Theta, Alpha, Beta, and Gamma 

brainwave blend, and produces measures of Attention and Meditation (NeuroSky 2007) .  
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The band power levels are output in the Delta, Theta, Alpha, Beta, and Gamma ranges.  

These measures of Attention and Meditation have not been validated in experimental 

research, and were used as part of one of the models in this study.  Data measures on this 

sensor are provided in realtime via Bluetooth connection.  This sensor produced measures 

of Alpha1, Alpha2, Gamma1, Gamma2, Delta, Beta1, Beta2, Theta, Attention, and 

Meditation, as discussed and shown graphically in Appendix A-1. 

4.3.1.2. EYE TRACKING 

The hardware for the low-cost eye tracking solution was composed of a Thorlab 

DCC1545M monochrome camera, mount, a Opteka HD2 37mmR72 720 nm infrared X-

Ray IR filter, and two IR010 Night Vision IR lights.  This was then linked to a ITU Gaze 

Tracker Open Source software solution to determine eye position.  A USB connection 

was used to collect and store the realtime data.  This sensor produced the measure of Left 

Eye Pupil Diameter, as discussed and depicted graphically in Appendix A-5. 

4.3.1.3. HEART RATE SENSOR 

The Zephyr HxMTM BT heart rate sensor is a strap-based heart rate sensor that is affixed 

to the target’s chest or midsection.  Software internal to the sensor reports out measures 

of average heart rate over a Bluetooth connection.  A future study should take note of 

sensor-free heart rate detection present within CardioCam, or similar technology (Mone 

2011; Picard 2011).  This sensor produced the measure of Heart, as discussed and 

depicted graphically in Appendix A-2. 
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4.3.1.4. CHAIR SENSOR 

The chair sensor used for this effort is custom-designed, but used a suite of sensors 

available commercially.  Specifically, eight Phidget pressure sensors were used, with four 

on the bottom of the chair and four on the back of the chair.  A USB connection was used 

to collect and store data in realtime.  This sensor produced measures of Chair1-8, with the 

first four measures corresponding to the back of the chair and the last 4 measures 

corresponding to the seat, as discussed and depicted in Appendix A-4.  A future study 

should take note of the Microsoft Kinect research team (Zhang 2012b). 

4.3.1.5. MOTION DETECTOR 

A motion detection sensor was used to determine the position, velocity, and acceleration 

data of objects moving in front of it.  When placed between the computer and the 

participant, it can determine changes in posture, as the participants lean 

forward/backward in the chair.  These data somewhat overlaps with chair posture data, 

and was collected in realtime via USB interface.  This sensor produced the measure of 

Motion, as discussed and depicted visually in Appendix A-3.  A future study should 

likewise take note of Microsoft Kinect Technology (Zhang 2012a). 

4.3.1.6. DIFFERENCE-BASED FEATURES 

Each of the sensors has produced several measures.  A reasonable attempt to perform 

feature extraction on this dataset was not attempted by the original experimenters.  

However, the original experimenters constructed several types of derived features for 

data interpretation.  Each of these features is calculated from the difference between the 

currently observed datapoint and the immediately previous one.  This was done in order 
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to add classification accuracy to the models.  The derived measures are: Alpha1Diff, 

Alpha2Diff, Gamma1Diff, Gamma2Diff, DeltaDiff, Beta1Diff, Beta2Diff, ThetaDiff, 

AttentionDiff, MeditationDiff, HeartRateDiff, and MotionDiff, and they are discussed 

and shown graphically in Appendix A-6. 

4.3.2. Sensor Hardware Suite For Dataset #2 (Human Computer Interaction 

Experiment) 

During the time that participants took part in the experiment to collect Dataset #2, they 

were simultaneously physiologically monitored via a different suite of sensors, including 

an EEG, a Transcranial Doppler system, a functional Near Infrared Imaging strip, an 

ECG system, and an eye tracking system.  This variety of sensors is what initially made 

this dataset attractive.  The study which produced Dataset #2 has not yet been able to 

construct models of workload from the integration of these sensors, and only of the 

sensors used in the study outputs validated metrics.  True class labels are produced from 

this sensor, in the form of the Index of Cognitive Activity (ICA).  These class labels are 

required for the production and evaluation of the online models.  This is the only sensor 

used in this study, as it is the only one which is able to assure the experimenter that it has 

meaning. 

4.3.2.1. EYE TRACKING 

Seeing Machines faceLAB 5 desk-mounted eye tracking system was used with two 

cameras (one per eye) and a central IR source.  This system measures movements of the 

eye, called saccades, how long the eye stays fixated on a point, called fixation duration, 
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and changes in pupil diameter.   These measurements can be combined, with an amount 

of filtering and feature extraction, to produce the labeled measure of Index of Cognitive 

Activity.  This sensor produces two measures: FixationDuration, PupilDiameter; and the 

labeled measure IndexofCognitveActivity, as discussed and shown in APPENDIX B and 

Appendix B-2, respectively. 

 

Figure 9 – FaceLab 5 System (SeeingMachines 2012) 

 

4.3.3. Sensor Hardware Suite Summary  

Two experiments have produced two datasets, which include multiple measures of states.  

The sensors and states of measurement are described in Table 12 and Table 13.  The 

exact models which were created from each of these studies are described later in this 

chapter.  A summary of the sensors, measures, and Datasets, and the location of example 

graphs is included in Table 14. 
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Table 14 - Summary of sensors measurements 

Dataset Sensor Measures Appendix 

#1 ABM EEG 
(ground truth) 

HighEngagement 

Distraction 
Workload 

A-7 

 
 

#1 EmoPro 
(ground truth) 

Anger 
Boredom 
Fear 

A-8 
 
 

#1 Neurosky EEG Alpha1, Alpha2, Gamma1, Gamma2, 
Delta, Beta1, Beta2, Theta, Attention, 
Meditation 

A-1 

#1 Zephyr HxM Heart A-2 

#1 Motion 
(custom) 

Motion A-3 

#1 Chair 
(custom) 

Chair1-8 A-4 

#1 Eye Tracking 
(custom) 

LeftEyePupilDiameter A-5 

#1 Difference-based 
features 
(software creation) 

Alpha1Diff, Alpha2Diff, Gamma1Diff, 
Gamma2Diff, DeltaDiff, Beta1Diff, 
Beta2Diff, ThetaDiff, AttentionDiff, 
MeditationDiff, HeartRateDiff, and 
MotionDiff 

A-6 

#2 FaceLab 5 ICA 
(ground truth) 

IndexofCognitveActivity B-2 

#2 FaceLab 5 ICA FixationDuration, PupilDiameter B-1 

 

4.4. Dataset One: Low Cost Sensor Experiment 

This section will describe the relevant features of the experiment which led to the 

collection of Dataset #1.  This includes the purpose for the original collection, the 

experiment which collected it, the initial analysis and results, and how this dissertation 

work will expand it. 
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4.4.1. Purpose (Dataset #1) 

The first three chapters of this dissertation served to show that one problem of intelligent 

tutoring relates to sensing the affective and cognitive states of the learner.  The ITS 

pipeline relies upon the sensing of the learner, the correct classification of the learner 

state, and the informed selection of instructional strategies to mitigate or improve this 

state while training.  Each of these presents a significant problem to the field, and is part 

of the reason why mastery-based ITSs have been prevalent: they can ignore state-based 

instruction and focus on content. 

The selection of sensors that are possible to use in a classroom setting is non-

trivial.  It is not envisioned that each learner will sit all day at a computer ITS with a tube 

of contact gel and issued a 10-channel ABM EEG system, at a cost of $50,000 per seat.  

However, it is rare to find a sensor that: 1) costs less than the computer system ($400), 2) 

is not intrusive to the user, and 3) can accurately measure affective and cognitive state.  

Rather than create a single sensor capable of serving these functions, the Army Research 

Laboratory designed a suite of sensors (section 4.3.1) that together can provide part of the 

functionality of the high-cost intrusive sensor suite.  Exactly how much functionality this 

suite of low cost sensors can provide is concluded as part of the original study and 

detailed in 4.4.3 and 0. 

The selected sensors were part of an initial pilot study, published earlier in 2011, 

by Carroll (et al. 2011) about the appropriate selection of sensors.  The initial study found 

meaningful effect sizes, and determined the cause of several kinds of errors, but 
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contained very few participants or clean collection.  There were many small details of 

software and hardware which were resolved by the original experimenters for the conduct 

of a full experiment and meaningful numbers of participants.  This encouraged a further, 

full-scale, study with more participants in order to fully evaluate a system of sensors.  

This study was conducted with the permission of Institutional Review Boards from Keller 

Medical Center, Design Interactive, and US Army Research Laboratory, the United 

States Military Academy (USMA) at West Point. 

4.4.2. Participants and Experiment (Dataset #1) 

A power analysis was conducted for this study and determined that 18 participants were 

necessary to determine which of the sensors could reliably determine affective and 

cognitive state information from the participants.  Although 27 data sets were collected, 

only 14 of them provided usable cognitive labels, and 19 provided usable emotional 

labels because of unreliable sensor information.  Each of the sensors used for this study 

was selected because of its low cost, which is typically correlated with low reliability.  

The 13 discarded sets of data are primarily due to one or more of the sensor datastreams 

being unavailable, which renders it impossible to evaluate which of the sensors contribute 

to a group model of affect or cognition.  The population of interest is United States 

Military Academy (USMA) cadets, with 9 to 44 months of experience at West Point.  

This is roughly equivalent to a population of modern college students.  The majority of 

the members of the population were Plebes (first year learners) enrolled in the Behavioral 

Sciences and Leadership (BS&L) Department’s General Psychology (PL100) course. 
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Participants were asked to undertake a visual vigilance task, watch video clips 

from the movie Halloween, and My Bodyguard, and play several scenarios within the 

Army’s Virtual Battlespace 2 (VBS2) video game.  The video segment from Halloween 

has been previously validated to induce Fear/Anxiety, while the video segment from My 

Bodyguard has previously been validated to induce Anger/Frustration (Hewig et al. 

2005).  The VBS2 scenarios 1, 3, 4, and 6 contained limited visual perception (validated 

to produce fear/anger/workload), large numbers of enemies (validated to produce 

fear/anger/workload/engagement), annoying sounds (validated to produce 

anger/workload/distraction), or equipment malfunction (validated to produce 

anger/fear/workload/distraction) (Jones et al. 2012).  The cognitive and affective states, 

and the tasks which induced them are presented in Table 15. 

During each of these tasks, data were collected via the low cost sensors, and 

cognitively compared against the ABM EEG headset baseline with millisecond-by-

millisecond resolution.  After each of these events, the participant was affectively 

measured with the use of the EmoPro tool, and all data from the experience were labeled 

to be of that class (eg, anger/boredom/frustration).  The EmoPro labels represent over 

five minutes of real time prior to a single label and correspond to a large number of data 

points.  Events were kept short to increase the resolution of the EmoPro data. 

Table 15 – Summary of tasks and states during Dataset #1 experiment 

 Affective State Cognitive State 

 Boredom Anxiety / 
Fear 

Anger / 
Frustration 

Workload Engagement Distraction  

Task Visual vigilance      

Movie Clip  Halloween My Bodyguard    

VBS2 Scenario  46 1346 1346 1346 1346 
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4.4.3. Analysis (Dataset #1) 

The initial analysis of dataset provides a baseline to the classification efforts presented 

later in this research.  The last item of interest on the checklist of features which 

described an ideal dataset was that it had already been analyzed using a type of offline 

method.  It is not useful for this dissertation work to construct online models with nothing 

against which to compare.  This analysis process has already been undertaken as part of 

the conduct of the first experimenters.  The online and active methods discussed in 

Chapter 5 expand this analysis work through the rapid construction and the intermittent 

use of labels.  

The initial classification algorithms considered for this dataset by the original 

analyzer, Ruben Padron, represent a broad spectrum of AI approaches: Logistic 

Regression Classification, k-Nearest Neighbor, Decision Tree Learning, Logistic Model 

Trees, Artificial Neural Networks (ANNs), Bayesian Networks, and Support Vector 

Classification.  The reasons they have given for inclusion/non-inclusion for each of these 

methods are discussed briefly in Table 16.  For the purposes of this dissertation, the 

realtime suitability is mentioned alongside the table, and is discussed deeper in Chapter 5. 
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Table 16 – Artificial Intelligence Methods Initially Considered for Offline Data Processing 

Method Inclusion Reason Real Time 

Application? 

Logistic 
Regression 
Classification 

Yes Logistic Regression can easily have a ‘goodness 
of fit’ metric through R2 statistical metric, and 
classify linear relationships between variables. 

No 

Decision Tree 
Learning 

No Although decision trees are capable of  
representing a wide swath of the classification 
space, they suffer from the ‘curse of 
dimensionality’, and cannot represent a non 
linearly-separable function 

No 

k-Nearest 
Neighbor 

No The k-NN approach does not allow the data set 
to be analyzed objectively for goodness of fit.  
As such, it was not included in the initial study.  
Given that it is real time capable, it will be 
included in the final study 

Yes 

Logistic Model 
Trees 

Yes The LMT approach allows for the gross 
separation of the data, followed by the linear 
regression on the reduced dataset, neatly solving 
the problems which are faced separately. 

No 

Artificial Neural 
Networks 
(ANNs) 

No The combined concerns of uninterpretable 
models, local minimum, and overfitting inclined 
the original experimenter away from this 
approach. 

No 

Bayesian 
Networks 

No This was ruled out in favor a method which is 
able to estimate correlations among variables (to 
determine which sensors are relevant) 

No 

Support Vector 
Machine 
Classification 

No SVMs have been ruled out for the same reasons 
as BN and NN approaches. 

Somewhat 

 

Additionally, it is worth mentioning that a binary classification of all states may not 

necessarily be the most appropriate method for intelligent tutoring systems.  As an 

example Processing Efficiency Theory (Eysenck and Calvo 1992) and Direction of 

Attention Theory (Wine 1971) both indicate that multiple levels of classification, such as 

high/medium/low, are more appropriate to the task.  In order to present a fair comparison 

between online and offline modeling techniques, the author cannot modify the dataset or 

labels.  However, as these tasks are intended for inclusion and use, the recommendation 
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for a 3-step or 5-step classification model should be noted, and is discussed further in the 

concluding notes. 

4.4.4. Results (Dataset #1) 

The results were analyzed (Carroll et al. 2011) for how well the combined sensor set is 

able to detect the labeled state of the learner.  The Logistic Model Regression method 

was encompassed in the technique of Logistic Model Trees that was selected as the 

method to use with 10-fold cross-validation.  The sample was analyzed with the Receiver 

Operator Characteristic (ROC) benchmark (Hanley 1989), which plots the proportion of 

correctly-classified observations from the positive class (true positive rate) against the 

incorrectly-classified observations (false positive rate).  The Area Under the Curve 

(AUC) of this function was calculated.  The AUC ROC is designed to compensate for the 

misleading figures of “percentage accuracy” for unbalanced data.  The AUC ROC 

measurement allows an algorithm with lower overall error rates, either true positive or 

false negative, to score well (Hanley and McNeil 1983), as the all of the categories of 

possible classification are weighted equally.  In general, AUC metrics of greater than 0.8 

are considered good, while classifiers lower than 0.6 are considered poor; those scoring 

in the 0.2 range in between those values are considered to be fair. 
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Table 17 – Results of the initial models on Dataset #1 – Which sensors can detect which states? 

Sensor EmoPro Measures ABM Measures 

Anger Anxiety/Fear Boredom Engagement Distraction Workload 

HR   X X X  

Eye Track     

EEG  X X    

Chair  X  X X X 

Distance  X X X  X 

 

Classification 
(AUC) 

NA .83 .79 .80 .81 .82 

 

 The reader should note that there are a number of created models shown in Table 

17.  Each of these models was created independent of the others, resulting in three 

models of emotion and three models of cognition.  These regression models may be 

linearly and independently combined for multiple attribute assessment.  In total, this 

combined model presents a picture of which sensors (e.g. chair) are able to discover each 

‘ground truth’ measure (e.g. anxiety).  For the purposes of this dissertation, each of the 

evaluated machine learning methods will be compared against each of these data sources. 

4.4.4.1. CREATED MODELS (DATASET #1) 

The initial experiment by Carroll aimed to create six models in total (Carroll et al. 

2011).  Three of these were to be on affective features, with the remaining three to be on 

cognitive features.  The cognitive labels were engagement, distraction, and workload, 

while the affective labels were anger, anxiety, and boredom.  Through analysis, five out 

of six of these models were created successfully, with a model for anger being the 

exception.  Carroll hypothesized that there were not enough instances of anger present in 

the dataset to create an effective model of any of the subjects.  This dissertation work, 
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however, does not see a need to exclude the attempt to create a model of anger from this 

data.  While offline, population-based, methods could not establish predictive meaning, 

online, individualistic models may be able to do so. 

4.4.4.2. SUMMARY OF THE LOW COST SENSOR DATASET FEATURES FOR 

CREATED MODELS (DATASET #1) 

Effectively, this dataset has 32 dimensions across all timescales.  There is a 33rd 

feature, time, which was explicitly not used in the construction of models from Dataset 

#1.  While is not explicitly used for offline-created linear regression trees of the initially 

created models, it is implicitly used during real-time processing, as realtime-capable 

algorithms are sensitive to the order of presentation of data.  This sensitivity to the order 

of data presentation may or may not convey an advantage, depending on the algorithm, 

but is hypothesized to aid based on previous research findings (Brawner and Gonzalez 

2011).  A summary of the data used to create each model in the initial study is shown in 

Table 18, while Appendix A-9 shows an example of a single data point, and the 

APPENDIX A to this dissertation shows examples of each feature of data over time.  
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Table 18 – Summary and example of features used in each created model 

 Appendix  Boredom Distraction Engagement Fear Workload 

Alpha1 A-1    X  

Alpha2 A-1 X   X  

Gamma1 A-1 X   X  

Gamma2 A-1    X  

Delta A-1    X  

Beta1 A-1    X  

Beta2 A-1    X  

Theta A-1    X  

Attention A-1    X  

Meditation A-1    X  

Left Eye Pupil 
Diameter 

A-5    X  

Heart A-2  X X X  

Chair 1-4 A-4      

Chair 5-8 A-4  X X X X 

Motion A-3   X X X 

Alpha1Diff A-6    X  

Alpha2Diff A-6    X  

Gamma1Diff A-6 X   X  

Gamma2Diff A-6    X  

DeltaDiff A-6    X  

Beta1Diff A-6 X   X  

Beta2Diff A-6 X   X  

ThetaDiff A-6    X  

AttentionDiff A-6    X  

MeditationDiff A-6    X  

HeartDiff A-6 X   X  

MotionDiff A-6    X  
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4.4.5. Expansion (Dataset #1) 

The reader should consider the initial goal of the experiment which produced Dataset #1 

when viewing the results (Carroll et al. 2012).  The goal of the experiment was to use 

classification techniques in order to evaluate how well a set of low cost sensors is able to 

mimic the performance of the higher-cost counterparts.  The goal of this dissertation is 

similar, but different: to create and evaluate online algorithms comparable to their offline 

counterparts, expanding the state of the art through making emotional/cognitive models 

available rather than accurate.  The initial analysis of Dataset #1 was performed in an 

offline manner, using the same type of classifiers that were used in previous studies 

mentioned in Chapter 2.  These methods are not used in this dissertation because of their 

offline nature and group-based modeling approach, which are discussed further in Section 

5.3. 

 Given the conclusions about the study of which low-cost sensors are able to 

successfully mimic their high-cost counterparts (shown in Table 17), it is known to be 

possible to create predictive classifiers on this sort of data, and that the sensors available 

are able to detect the results of the six types of cognitive and affective models.  The initial 

benchmarks in the construction of this dataset provide a good starting point for the work 

described in this dissertation in the evaluation of real time classification metrics, and 

provide a dataset that is likely to be applicable to future studies in ITS research. 
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4.5. Dataset Two: Human-Computer Interaction  

4.5.1. Purpose (Dataset #2) 

The experiment that produced the Dataset #2 was part of a larger suite of experiments, 

each of which was targeted towards different objectives.  The first of these was the 

objective to examine the relationship of workload and multi-tasking performance as part 

of a Mixed Initiative Experimental (MIX) testbed, which incorporates theory-driven tasks 

into a moderately high-fidelity military simulation designed for multi-tasking and 

physiological data capture (Reinerman-Jones et al. 2010).  Another objective was to 

validate previously-created created models of human performance.  The most relevant 

experimental purpose is to create generalized models of physiological response to 

situations of changing workload in order to preemptively reduce workload in the future 

(Barber and Hudson 2011).  The dataset which is of interest to this dissertation is the one 

which has collected physiological measures from various sensors for workload 

classification.   The results of the experiment which produced Dataset #2 are currently 

unpublished, but performed at the University of Central Florida Institute for Simulation 

and Training by Lauren Reinerman-Jones and Julian Abich. 

4.5.2. Participants and Experiment (Dataset #2) 

The experiment consisted of two simultaneous tasks shown in Figure 10: change 

detection and threat detection.  During a change detection task, the participant must note 

when an item on the lower half of the screen changes, which can be either of icon, color, 

or location.  During a threat detection task, the image of a hostile militant is presented 
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somewhere in the upper half of the environment.  There are five levels of threat/change 

stimulus frequency across four scenarios.  The first scenario presents only a change 

detection task, while the second presents only a threat detection task, while the remaining 

two scenarios present varying levels of stimulus frequency among the tasks.  These tasks 

variations are intended to cause variations among cognitive variables such as 

engagement, distraction, and workload.  More information on the experiment and 

experimental setup is available in recent publication (Vogel-Walcutt and Abich 2011). 

 

Figure 10 – MIX Testbed showing Threat Detection (Top) and Change Detection (Bottom) (IST 

2012) 

The participants were recruited from a population of undergraduate college students from 

several universities.  They were required not to have ingested alcohol 24 hours prior to 
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the study, and ingested neither caffeine nor nicotine two hours prior.  The total 

experiment length was three hours. 

4.5.3. Analysis (Dataset #2) 

The initial dataset, unfortunately, does not yet have created models built upon it.  The 

experiment collected measures of EEG activity, functional near-infrared imaging, and 

other physiological measures, but has not yet created labels models to test against.  As 

such, these other physiological sensors are not used in this dissertation work.  However, 

the FaceLab 5 sensor produce measures which have been validated (Bartels and Marshall 

2012; Palinko et al. 2010), and used in complex tasks (Halverson et al. 2012).  This 

assures the experimenter that reliable models can be created from the data.  A sample of 

the available data is shown in Appendix B-3, as it was earlier shown for the many-

dimensional data of Dataset #1. 

4.5.4. Expansion (Dataset #2) 

There were two objectives to the physiologically measured subset of the experiment that 

produced Dataset #2, as conducted by Dr. Reinerman-Jones.  The first of these was to 

determine more cost-effective measures of workload as garnered from a suite of sensors.  

The second objective was to build models/classifiers of an individuals’ workload.  It is 

expected that the cognitive models of workload created with offline methods for human-

computer interaction purposes will degrade over time for the same reasons as the ones 

created for ITS purposes (population differences, individual differences, and intraday 

differences).  The research to collect Dataset #2 can logically be expanded via the 
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methods proposed in the first three chapters, using online and active learning methods to 

rapidly construct and use individualized models. If an individual model can be created in 

real time, it would represent a more robust approach to model creation, and a new method 

for workload measurement.  This has application in HCI (Zander et al. 2010), robotics 

(Harriott et al. 2012), and other domains (Majumdar and Ochieng 2002; Parasuraman et 

al. 2009).  

4.6. Summary 

Many types of models were created and are discussed over the course of this dissertation, 

so it is useful to include a summary of the models created and their comparisons.  Several 

models of varying type were created from the analysis of Dataset #1 and #2.  The Dataset 

#1 analysis created six models from two ground truth labeling systems on the same data.  

The ABM EEG was used for the three types of cognitive labels, while the EmoPro tool 

was used for the remaining three types of affective labels.  Dataset #2 used the ABM 

EEG system for labeling differing cognitive states under varying levels of workload.  The 

Low-Cost Sensor study used a generalized regression model, while the Threat and 

Change Detection study used a generalized eyetracking approach.  Each study had a 

different population. 
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Table 19 – Types of models and their comparisons 

Comparison Study Population Type of feature Name of Feature 

Low-Cost Sensor Westpoint Affective Anger 

Low-Cost Sensor Westpoint Affective Anxiety/Fear 

Low-Cost Sensor Westpoint Affective Boredom 

Low-Cost Sensor Westpoint Cognitive Engagement 

Low-Cost Sensor Westpoint Cognitive Distraction 

Low-Cost Sensor Westpoint Cognitive Workload 

Human-Computer 
Interaction 

College Students Cognitive Workload 

 

 There is not a conclusive way to test whether an AI approach will generalize to all 

datasets of a problem domain.  Table 19 shows that the methods evaluated in subsequent 

chapters are tested against two populations, with two different types of features, across 

seven of different model outputs.  This large number of created, individualized, models is 

each tested across an amount of supervision, with fractional data.  It is reasonable to think 

that an approach that can address this wide variety of situations will, at minimum, 

provide a starting solution to the problem of rapid individual model creation. 
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5. ALGORITHMS FOR REALTIME PROCESSING 

The prior sections have made it clear that affective and cognitive models are needed in 

order to appropriately adjust instructional strategy.  They have also shown that the current 

methods of offline analysis are not generalizable to populations, and are not usable after a 

matter of hours of learner unavailability.  This creates a research gap in the area of model 

construction and realtime utilization.  Logically, only algorithms that can cope with the 

challenges of realtime computing are able to address this research need. 

There are four main problems with realtime data, each of which is discussed in 

this chapter.  In brief, they are 1) the data can be of potentially infinite length, 2) concept 

detection, 3) concept drift, and 4) concept evolution (Beringer and Hüllermeier 2006).  

The combination of these issues present a problem for whichever type of algorithm is 

used to solve it.  The realtime construction and use approach necessitates a stream model 

of the data, with the following assumptions, and corresponding design limitations, as 

Beringer outlines: 

 The data cannot be requested, and may be available only for a short time 

o Operations must be done on the data as they become available 

 The order of the data points is outside of the control of the program 

o Knowledge about prior points must be encoded, if they are to be related to 

each other 

 The dataset is of infinite length 
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o It is not possible to store or analyze all of the data 

 Data elements are not available for repeated request (data volatility) 

o Data must either be saved or discarded 

o Practical memory limits necessitate the discard of most data 

o Practical processing limits necessitate the discard of most data 

 There are strict time constraints 

o Data must be processed in real time 

o Data can change quickly 

o An approximate solution is an acceptable substitute for an ideal one 

(Considine et al. 2004) 

After a discussion of the problems with processing real time data, and a further 

discussion of the issues presented in affective modeling, each of the algorithms tested on 

the data is discussed.  These include a type of clustering, an adaptive linear approach, 

Adaptive Resonance Theory (ART), and a technique for Growing Neural Gas (GNG).  

Each of these algorithms required several non-trivial modifications to become appropriate 

for the task, and these modifications are discussed.  After a discussion of these different 

approaches is presented, the performance of each method on the datasets of Chapters 4 is 

shown, and conclusions are drawn.  
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5.1. The Problems with Real Time Data 

In this section we will explain the fundamental problems of realtime data.  These 

fundamental problems are infinite length, concept detection, concept drift, and concept 

evolution.  Each of these items is explained in depth in order to frame the discussion of 

algorithms later in this chapter, as each algorithm addresses these problems in a 

fundamentally different fashion.  

5.1.1. Infinite Length 

The first and most obvious problem with real time datastreams is that the stream is of 

unknown length (duration).  The software developer is not able to determine a priori how 

long the session with the learner will last.  New data points come in continuously, but 

typically at a constant rate.  The most significant effect this has on algorithm selection 

and development is the unavailability of historical data.  While an algorithm may be able 

to utilize a number of clusters, weighted vectors, or other encoded historical data, it is not 

able to directly analyze historical data for this encoding.  Encodings impose reduce 

memory limitations, but the growth of encoded representations typically increases 

computational cost in the comparisons between encodings.   

The problem of infinite length may be somewhat mitigated through the use of 

windowing techniques.  This involves looking at a small segment of the data at one time, 

training on it, and creating a new segment of training data.  This method has shown 

success in developing quicker training times with normal AI methods (LeCun et al. 1998) 

described in section 5.3, but has been shown to lack in performance when compared to a 
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well-constructed online version (Shalev-Shwartz et al. 2004).  Furthermore, the addition 

of windowing adds another variable of experimentation to the methods already being 

analyzed.  Experimentation with windowing is likely to have less overall effect on the 

problem than experimentation with differing forms of stream processing.  This 

dissertation focuses on stream processing, while acknowledging the advantages that 

certain windowing techniques may bring. 

This limitation rules out many AI techniques that analyze historical data as part of 

model construction.  For instance, probabilistic approaches such as Bayesian Networks 

require an update that considers all observed data in order to construct a new model, and 

performing this step for each additional data point is not feasible.  Other approaches, such 

as reinforcement learning and genetic approaches are also inappropriate, as they require 

the testing of the algorithm on the historical labeled data in order to improve.  The 

discarded classes of AI solutions are discussed further in Subsection 5.3. 

5.1.2. Concept Detection 

Given that an algorithm could be made to deal successfully with infinite data length, the 

next problem that it would face is the detection of a new concept.  When the learner starts 

a session, the algorithm begins with no historical knowledge and no encoded knowledge.  

It will then be presented with data that it must sort into a group, cluster, structure, 

encoded via weight vector, or other otherwise.  These encoded knowledge groups will 

eventually have meaning added to them (student performance data, self-report data, etc.), 

through the course of a training session. 
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 As such, it is likely that the first presented point will represent the first 

class/cluster/grouping of information.  Figure 11a shows a blank algorithmic slate that 

has had a single point added to it.  Figure 11b shows the algorithmic response to the 

addition of this first point.  This response can be made solely based on the determination 

that the datapoint is different from the previously established encodings where none exist.  

As it is not likely that all of the data presented is of a singular class, a future data point 

will need to be classified differently.  The algorithm must determine a way to separate 

this datapoint from other datapoints with which it will be presented at a later time, 

including the detection of additional concepts.  This problem is related to the realtime 

outlier detection problem (Subramaniam et al. 2006). Figure 12a shows the later addition 

of a differing class of data, along with Figure 12b, which shows the ideal algorithmic 

response to a differing class of data. 

 

 

Figure 11 - Initial Concept Detection 
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Figure 12 - Secondary (Novel) Concept Detection 

5.1.3. Concept Drift 

Concept drift refers to the changing nature of a concept over time.  After a concept is 

detected, patterns associated with it may be subsequently present.  It is the challenge of 

the selected algorithm to establish the similarity of the new data points to a previously 

established class without labels.  If these new data points are related to the previous ones, 

they should be encoded similarly.  Each concept will represent itself uniquely over time, 

and each algorithm must be able to cope with these observed changes. 

Figure 13 shows how an algorithm may deal with the problem of an emerging 

class through expanding a classification boundary.  A previously established 

classification boundary is expanded to deal with the neighboring objects.  The first 

classification boundary is shown on the left, and the newly established boundary that 

relates the newer points to the older ones is shown on the right. 
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Figure 13 - Concept Drift 

5.1.4. Concept Evolution 

The detection of a concept, such as trainee state, may not present itself in a single, 

unified, manner.  In the domain of affective computing, a learner state such as 

‘confusion’ may present itself as a wide variety of sensor and behavioral measures.  As 

an example, a learner may put his head on the desk or slouch in a chair while he/she 

thinks about a particularly hard problem.  Both of these actions are representative of the 

underlying state, but are significantly different actions.  If the algorithm is expressly 

informed that two groups of data are similar, it should be capable of associating them to 

be related.  Figure 14 shows two groups of data which are labeled as similar by an outside 

entity, and shows how the classification (left) changes (right) after the presentation of 

labels. 
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Figure 14 - Evolution of a single concept, determined to be the same state through outside labeling 

information as shown in red 

5.1.5. Discussion 

Just as it would be fortunate if there was a general-purpose group model of emotion, it 

would be fortunate if there was one algorithm that met the needs of this specific problem.  

Instead, there is a list of features that any algorithm must have in order to deal with the 

fundamental datastream problem.  This checklist of mandatory algorithmic features is 

shown in Table 20.   

Table 20 – A checklist of features for realtime AI algorithms 

Infinite Length Concept Detection Concept Drift Concept Evolution 

 

5.2. Real Data 

As a practical consideration, there is the availability of the occasional labeled data point.  

This section phrases the problem of making use of this occasional information and 

presents a two-part solution to the problem of algorithmically modeling this useful 



118 
 

information.  The guiding recommendations of this section are implemented in each of 

the algorithms tested within this dissertation. 

5.2.1. Problem 

In addition to each of the problem with realtime classification, there is a problem with 

how each algorithm adjusts to the nature of the underlying datastream.  The data which 

has been gathered as part of Dataset #1 and Dataset #2 are unique with respect to real 

world data in that it has labels.  Each datapoint has an associated label.  The cognitive 

labels of Dataset #1 and #2 have been provided via expensive data collection hardware, 

in the form of an EEG headset.  The affective labels of Dataset #1 have been infrequently 

collected after an emotional event, rather than immediately via headset. 

The labels which came provided with Dataset #1 and Dataset #2 were costly to 

obtain.  The first of these costs was the direct expense.  A validated affective labeling 

system is expensive (time, money, personnel resources) to design and validate.  A 

validated cognitive sensing system is expensive to purchase, as shown by the $50,000 

pricetag of the ABM EEG.  The second of these costs was time.  For the affective labels 

of Dataset #1, the participant must stop the event, think about how they are feeling, and 

label this state.  This process takes approximately 5 minutes of the total 60 minutes 

allocated.  For the cognitive labels of Dataset #1 and Dataset #2, the participant must be 

fitted with the EEG system, and have their baseline EEG state recorded and saved for 

future use.  This process takes 60 minutes, representing significant preparation time for a 
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40 minute collection period.  The time spent in either of these two events is time that 

would be better spent learning from an ITS. 

 It is reasonable to assume that this type of “ground truth” information will be not 

reliably available in the future (Conati 2011; Kokini et al. 2012).  The learner cannot be 

asked how they are feeling during each second of a learning session.  The learner cannot 

spend the first part of every training session being fitted with EEG systems and contact 

gel.  It is foreseen that unobtrusive sensors that require a minimum of calibration will be 

used as part of the learning classroom of the future (Carroll et al. 2011).  These systems 

provide a minimal amount of “ground truth” information about the state of the learner.  

This purpose of the research described in this dissertation is not to construct models for 

their own sake, or for their comparison and evaluation, but for their use.  The use of these 

models necessitates an approach where labels are neither inherently available nor entirely 

absent. 

5.2.2. Solution Part One: Semi-Supervised Adaption 

The problem of inherent label unreliability is solvable.  The machine learning community 

has traditionally segmented on the ideas of “supervised” (with labels) or “unsupervised” 

learning (without labels).  However, a new field is beginning to emerge to address this 

problem, known as semi-supervised, or transductive learning (Zhu 2005).  Semi-

supervised methods use information contained in the unlabeled data to 1) make 

inferences on the structure of the labeled data, 2) reprioritize the classification of prior 

data points. 
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Each of the methods used in this dissertation is screened for the ability to deal 

with all of the problems of realtime data classification, and the ability to handle the real 

world issue of limited label availability.  If a method does not have an implementation for 

semi-supervision, one was created for it, and is detailed in the appropriate section.  The 

most important feature of each algorithm is its ability to deal with the realtime data 

problems.  It is expected that some information about the user may be available during 

runtime, regardless of the level of supervision being used in model creation.  The user 

can be asked directly about their state, if it is done occasionally, and this information can 

be used to help build a model. 

A semi-supervised capacity has been added to the clustering, ART, and linear 

regression approaches discussed in this chapter.  The exact implementation follows an 

active learning implementation as discussed next in section 5.2.3.  The exact 

implementation that has been added to the algorithm is dependent on the algorithm itself. 

5.2.3. Solution Part Two: Active Learning 

There is a special category of semi-supervised learning which is applicable to the issue of 

user modeling called active learning.  Active learning involves exploiting the data 

structure of the semi-supervised version of an algorithm in order to request labels, 

provided that there is an ‘oracle’ which is capable of granting these label requests.  When 

an algorithm is able to assess which locations of datapoints will have significant impact 

on the overall classification performance, it is useful to be able to request them.  Dagupta 

and Langford present a review of active learning methods, when to request labels, and 
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why to do so.  In short, there are two reasons to make use of active learning to request the 

labels of data points: 1) exploit cluster structure, and 2) efficiently search through 

hypotheses (Dasgupta and Langford 2009). 

In the case of the work of this dissertation, the active learning modifications to 

algorithms are not explicitly appropriate for realtime implementation, as they make use of 

historical data.  On a practical level, however, it is possible to generate label requests in 

realtime, if it is done occasionally, as the total runtime data presented in Table 23 shows.  

However, this implementation is intended to investigate the promise that the occasional 

labeled data point can have.  The guidance of Dasgupa et al. has been followed for the 

selection of active learning data point selections (Dasgupta et al. 2007), described in each 

algorithms section.  In this dissertation, this is represented through the label request of the 

largest unknown classification category.  This is done a total of five times, which 

represents a user query roughly every six minutes.  This frequency of query is consistent 

with research on how often a user can be reasonably asked to provide this information 

(Hernandez et al. 2011).  The generation of this occasional label request, although not 

explicitly realtime appropriate, was not found to increase overall running time beyond 

realtime. 

5.3. Non-Selected Classes of Artificial Intelligence Application 

Many artificial intelligence methods are not appropriate for realtime selection.  Each of 

these methods may make use of historical data, may not adjust existing models of data 

dynamically, may not automatically respond to new types of data, or respond well to the 
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changing nature of data over time.  It is useful to include, as a brief list, some of the 

forms of AI that are applicable to well-known problems, but which are not applicable to 

the problems addressed by this dissertation.  A literature review of commonly available 

approaches (Koranne 2011) provides a roadmap to this section. 

5.3.1. Bayesian Approaches 

This section encompasses Bayesian Networks, Causal Networks, Probabilistic Networks, 

and other statistical approaches.  Bayesian approaches to model construction rely on the 

construction of a probability map in order to create an optimal model.  The creation of 

this model must take all historical data into account for model construction, rendering 

typical approaches unacceptable.  As one author looking for realtime Bayesian solutions 

put it: “in general, both the exact belief update and belief revision are NP-hard” (Guo and 

Hsu 2002).  One solution to this is the approximation of solutions, but the approximations 

are also mathematically proven to be NP-hard (Abdelbar and Hedetniemi 1998; Dagum 

and Luby 1993).  It is possible, via problem transformation, to solve NP-hard problems in 

polynomial time, but they cannot be solved in the linear time required for realtime 

approaches (Woeginger 2003). 

5.3.2. Evolutionary or Genetic Approaches 

Evolutionary approaches have seen recently popularity in the AI community (Davis 

1991; Haupt and Haupt 2004; Teoh et al. 2012).  This class of solutions encompasses 

Genetic Algorithms (GAs), evolutionary programming, evolution strategies, genetic 

programming, particle swarm optimization, and other complex adaptive systems.  



123 
 

Evolutionary approaches, in their most generalized form, utilize an encoded model of a 

solution combined with a combination method, a selection method, and an evaluation 

function (Eberhart and Shi 1998).  The evaluation function determines the ‘fitness’ of 

instances in the population of possible solutions, such that ‘fit’ instances may be selected 

and combined with other fit instances to create a new solution.  This algorithm is applied 

iteratively.  The determination of fitness (iterating through historical data points) in 

combination with the iterative nature (iterating through hundreds of possible solutions) of 

these approaches renders it impractical for real time constraints.  

5.3.3. Expert Systems 

There has been significant work in the creation of “expert systems”, which use rule-

based, case-based, context-based, cognitively modeled, or knowledge-engineered 

methods to emulate the decision-making ability of a human (Jackson 1990).  In the realm 

of physiological sensor measurements, there are very few experts from which to construct 

a model, and the author is aware of none.  Even if there were such experts present, it 

would be unlikely for their knowledge to transfer well between individuals or groups, for 

the reasons seen in Chapter 2.  While an individualized expert system can be constructed 

solely from the datastream with automated analysis techniques (Trinh 2009), these 

methods still require the use of historical data, rendering them inappropriate for linear 

time application because of the problems presented with infinite data length. 
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5.3.4. Agent-Based Systems Approaches 

Agent-based systems approaches fall into two categories.  The first category is that of an 

expert agent, which interacts with other agents as part of its operation.  This is a method 

by which to bring together the various sub-disciplines of the AI community (Jennings 

2000).  In an affective ITS, the reader may imagine a software agent that continuously 

informs an outside agent, such as a teacher, of the emotional state of the learner.  While 

this approach is relevant, the construction of such an agent must be undertaken with 

another AI method.  This type of category of approach is skirting the solution, rather than 

solving it. 

The second kind of agent-based approach is that of a complex adaptive system 

(Holland 1992).  In this type of system, the solution is modeled as the behavior of each of 

a number of software agents acting within an environment.  The approach encompasses 

some of the genetic methods described early.  Other examples are Ant Colony 

Optimiztion (Dorigo and Di Caro 1999), swarm intelligence methods (Beni and Wang 

1993), and stochastic diffusion search (Beni and Wang 1993).  This type of method is 

rendered inappropriate because of the computation time which it takes to arrive at a good 

solution.  There are not proofs for the discussion of these computational times, as the 

algorithms are stochastic in nature, but experimental testing by the author has shown that 

convergence on a solution takes longer than the incoming frequency of data.  This testing 

is confirmed by Martens et al. (2011), which identifies the need for real-time appropriate 

swarm intelligence models for data mining applications (Martens et al. 2011).  The 
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creation of this type of solution, and its adjustment to semi-supervised knowledge, is 

outside the scope of this dissertation and left to future research. 

5.3.5. Reinforcement Approaches 

Reinforcement learning, like the other types of machine learning presented earlier in this 

chapter, covers a wide swath of AI methods.  Artificial Neural Networks, Support Vector 

Machines, Monte Carlo methods for policy iteration, Q-Learning, and many others make 

use of this type of learning method (Sutton and Barto 1998).  When an experimenter is 

able to define a solution, they can make good use of a knowledge-based approach.  When 

an experimenter is able to describe fractions of a good solution, but not the entire 

solution, they can use agent-based and evolutionary approaches.  When the optimal set of 

input/output mappings is unclear but outputs have a known desired value, a policy of 

“reinforcing” good solutions becomes attractive.  At its simplest, reinforcement 

approaches rely upon a simulation of an environment, where an agent acts, and is given a 

reward.  Gradient descent backpropagation with neural networks typifies this type of 

solution (Widrow and Lehr 1990).  These solutions require both a model of the 

environment, a model of reward, and a method of iterating a solution over an amount of 

inputs.  The process of iteration is inappropriate for a datastream of potentially infinite 

length, which renders it inappropriate for a solution to the real time datastream problem, 

even when modified for incremental changes. 
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5.3.6. Hybrid Methods 

The types of hybrid methods are too numerous to mention here.  An example of a hybrid 

method is the NeuroEvolution of Augmenting Topologies, which combines 

reinforcement-based Artificial Neural Networks with Genetic Algorithm approaches 

(Stanley and Miikkulainen 2002).  This example becomes an impractical solution because 

of the nature of genetic (5.3.2) and reinforcement (5.3.5) approaches alike.  Other hybrid 

learning methods include neural methods for establishing case-based reasoning, genetic 

clustering, agent-based clustering,  regressive linear programming, and simulated 

annealing (Abraham et al. 2009).  Each of these methods is not appropriate because one, 

or the other, form of its hybrid approach makes use of historical data, does not establish 

new categories, does not adjust categories to new solutions, or does not respond to 

underlying changes of a category. 

5.3.7. Discussion 

When searching for machine learning methods that can deal with infinite data length, 

concept detection, concept drift, concept evolution, and lack of label availability, there 

are remarkably few items from which to select.  In some cases, most of the features of an 

algorithm are available without significant modification.  In this instance, the work done 

as part of this dissertation has made modifications to the underlying algorithm in order to 

render it appropriate to the problem.  In other cases, such as is the case with Support 

Vector Machines, there has been misaligned field growth.  Transductive SVMs make use 

of unlabeled data for future prediction (Zhang and Oles 2000), but the approach is too 

dissimilar from the ‘online’ or ‘active learning’ SVM approach which is capable of 
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realtime processing (Schohn and Cohn 2000).  The research gap between online and 

transductive Support Vector Machines is an interesting problem, discussed in section 7.3: 

Future Work. 

5.4. Selected Artificial Intelligence Classification Methods 

5.4.1. Introduction 

The first four items on Table 20 (infinite length, concept detection, concept drift, and 

concept evolution) are mandatory items for any selected algorithm.  Failure to deal with 

these fundamental datastream problems renders the algorithm infeasible for processing of 

the realtime physiological data of Dataset #1 and Dataset #2.  It is desirable, but not 

necessary, for the selected algorithm to naturally respond to the occasional presence of 

labels.  The selected clustering method and the selected ART method do not do this (but 

have been modified to), while the selected methods of growing neural gasses and linear 

regression have this functionality encoded as part of their operation.  As such, it was 

expected that the performance of the latter methods will be superior to that of the former.  

The remainder of this section discusses each selected method, and the modifications 

which occurred to address the problem.  A checklist of features for an ideal AI algorithm 

is below, with semi-supervision being optional. 

 

Table 21 – A checklist of features for realtime AI algorithms (semi-supervision is optional) 

Infinite Length Concept 
Detection 

Concept Drift Concept 
Evolution 

Semi-
Supervision 
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5.4.2. Clustering 

5.4.2.1. DESCRIPTION 

Clustering is the first method which is appropriate for real time analysis.  As  Jain 

(2008) says: “Organizing data into sensible groups is one of the most fundamental modes 

of understanding and learning” (Jain 2008).  Clustering is a method of grouping data into 

a category, before establishing the other characteristics of interest to classification.  

Clusters are traditionally evaluated for fitness based on a distance metric. Clustering 

represents a standard approach for dealing with data of an unlabelled class, and is the 

baseline method attempted as part of this dissertation. 

One of the most popular methods and simple methods of clustering is k-Means 

(Jain 2008; Steinhaus 1957).  However, the k-means algorithm which attempts to 

simultaneously classify and separate clusters is considered NP-hard (Jain 2008).  

Expectation-Maximization (EM) has been a favored method for determination of the 

number of clusters in the Expectation step, and the classification of these clusters in the 

Maximization step (Fayyad et al. 1998).  This EM process of guessing is computationally 

difficult portion of the EM process, rendering it inappropriate for real time, or processor-

limited, applications.  Modifications must be made by the experimenter to the initial 

algorithm in order to render it real time feasible.  Examples of different approaches 

include online agglomerative clustering (Guedalia et al. 1998), or incremental updates to 

a previously established clustering base (Brawner and Gonzalez 2011).  
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5.4.2.2. REAL TIME APPROACH AND SELECTION 

The clustering method examined in this dissertation was chosen for several 

reasons.  Firstly, like all other methods throughout this chapter, this method was 

determined to meet the algorithmic specifications for real time signal processing.  

Secondly, clustering has been shown to be a data processing technique of wide 

applicability, and has been applied as a solution to a broad number of problems as a “first 

pass” examination (Jain 2008).  Thirdly, this clustering approach has been proven 

relevant in the category of real time classification of physiological signals.  Engler and 

Schnel attempted to validate this approach through the input of individualized, sequential, 

multi-day, workload measurements (Engler and Schnel 2012).  Engler and Schnel found 

that the created model degraded over time due to individual day-to-day differences, but 

was highly (99%) accurate initially (Engler and Schnel 2012).  This lends credence to the 

idea that this type of approach is valid for initial analysis, and could have positive results. 

5.4.2.3. ADDRESSING THE PROBLEMS OF REALTIME DATA 

The clustering approach taken in this dissertation responds to all four problems of 

real time datastream classification.  The problem of infinite length is addressed through 

not saving historical data.  As a new data point is presented to the algorithm, it is either 

assigned to an existing cluster or a new cluster must be formed.  These clusters encode 

data.  Although the list of clusters must be searched with each new point, this is kept to a 

minimum acceptable number for rapid performance.  Initial experiments show that with 

unlimited cluster growth allowed, the number of clusters never exceeded more than 1% 

of total data. 
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The problem of novel concept detection is addressed through the creation of a 

new cluster for data which falls outside of known boundaries.  Concept drift is addressed 

through the slight movement of the cluster centroid in the direction of the newly 

presented data.  Concept evolution is addressed through the application of labels to a 

cluster as it is established, allowing the cluster to grow and move about the sampling 

space while still being identified as the same class.  These solutions can be seen below in 

the descriptions of the algorithm. 

5.4.2.4. MODIFICATIONS MADE 

The realtime algorithm was modified to deal with clustering labeled data.  Mixed-

classification clusters are allowed to be created.  The clustering is built on the underlying 

data, with each cluster maintaining a list of the labels which have been associated with it.  

The classified label of the cluster is maintained as the majority class label of the points 

which helped to establish it. 

This algorithm was modified for active learning through the creation of a label 

response policy.  When the implementation is asked for a label, it responds with a known 

point belonging to the current largest unlabelled cluster, as detailed in the below. 
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5.4.2.5. INITIAL CLUSTERING ALGORITHM (NOT REALTIME APPROPRIATE) 

For ‘K’ in a range determined by the experimenter 

Given a number of clusters ‘K’, select ‘K’ points randomly as the centroids for 
clusters 

Assign all objects in the dataset to the nearest centroid ‘C’ 
Compute the centroid of the objects now in ‘C’, move centroid to this point 

Repeat these steps until the centroids do not move (convergence) 

Evaluate the goodness of the fit (typically via distance metric) 

Continue to select a higher ‘K’ value until the fit is maximized 

5.4.2.6. CLUSTERING ALGORITHM USED (INCLUDES REALTIME 

MODIFICATIONS) 

For each new point, incrementally 

Compare each point to all known centroids 

If no cluster is within range of <vigilance parameter> this point is a new centroid 

Otherwise, move the matched cluster <delta parameter> in new point direction 

Check to see whether it is appropriate to merge this centroid with another 

Keep track of the number of points in these centroids, label if possible 

 Keep track of the last point which modified this centroid 

5.4.2.7. ADDITIONAL MODIFICATIONS MADE FOR SEMI-SUPERVISED 

ACTIVE LEARNING 

When a label is requested 

Find the largest size centroid which does not currently have a label 

Return the last seen datapoint which modified this centroid 

 

5.4.3. Adaptive Resonance Theory (ART) 

5.4.3.1. DESCRIPTION 

ART is a type of neural network architecture which classifies objects based on the 

activation of nodes in a structure.  It was developed to classify data in a one-pass learning 

environment (Carpenter and Grossberg 1995), and has historic performance roughly 

equivalent to neural networks, but with significantly reduced training time.  In its most 
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basic form, ART draws n-dimensional hypercubes around similar input patterns, where n 

is the dimension of the input data.  Matched data are those that fall within the smallest 

hypercube or of the class of the closest available hypercube.  Hypercubes are expanded to 

compensate for new data in accordance with parameter settings.  The locations of the 

hypercubes are stored as weight vectors.  Although sometimes viewed as a disadvantage, 

ART systems are capable of one-pass learning, which makes them appropriate for 

realtime classification problems.  This feature of ART adds sensitivity to the input order 

of data.  This is anticipated to assist in the classification of affective computing signals, 

where the order of the input data is relevant to the underlying affective signal, as shown 

in experiments with subliminal sensitivity (Carpenter and Grossberg 1987). 

Initial ART implementations (Carpenter et al. 1991a) show that important events 

can be captured quickly, novelty classes can be detected and classified, and that dataset 

learning could be accomplished with half of the available data.  This lends credibility to 

the hypothesis that semi-supervised learning will aid in the overall model quality by 

using a sampling of labels.  Because of the self-stabilizing nature of the system, it is able 

to continue learning until all encoding memory is used, which is not likely to occur 

during a standard training session because of the heavily encoded nature of the weight 

vectors the established hypercubes.  Furthermore, initial ART systems have been shown 

to respond well to 22-dimensional space (Carpenter et al. 1991a), which is comparable to 

the dimensionality of the dissertation dataset space, as discussed in Chapter 4.  Recent 

experiments show this to be a reasonably valid technique for the classification of 

emotions from physiological signals such as GSR, heart rate, and respiration rate 
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(Monajati et al. 2012).  Recent efforts have been applied to improve the overall speed of 

performance, which is relevant to the real time data problem (Castro et al. 2004). 

5.4.3.2. REAL TIME APPROACH AND SELECTION 

ART addresses the continuous nature of the real time data stream problem 

through knowledge encoding, which obviates the need for tracking prior datapoints.  

Similar to above clustering approach, there is still a need to iterate across all of the 

currently classified classes, but this small fraction of the overall data can be quickly 

processed, and does not expand significantly during runtime.  ART addresses the problem 

of novel class detection through the creation of a new class if it falls outside a predefined 

threshold, and tracks developing classes through the expansion of the encoded 

hypercubes.  Concept drift is addressed through the classification boundary modification 

in the presence of new data, which adjusts for concept evolution both with and without 

the presence of labels.  

In short, ART presents an approach that is capable of rapid, on-line learning, with 

novelty detection, across high-dimensional data.  Recently, they have been applied to a 

fragment of the underlying real time model construction problem (Cannady and Garcia 

2001).  There is significant evidence to believe that their performance will be more than 

adequate (Hoens et al. 2012). 

5.4.3.3. MODIFICATIONS MADE 

Modifications were made to the original algorithm for allowing it to deal with labeled 

data.  The labels can be thought of as an overlay to the data.  This is represented as a 
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property of the class, a ‘map’, which maps the index value of each hypercube to a known 

class.  When asked for the classification of a cluster, or a point which belongs to a cluster, 

a map of (clusters->labels) is consulted, and the class label is returned to the algorithm.  

This does not change the performance of the unsupervised method, as the clusters are not 

used for construction of the ART structure. 

There are several times when the known class label does comes into play, 1) at 

time of hypercube creation, 2) when an existing hypercube is matched within the 

vigilance threshold, and 3) when semi-supervised methods backlabel an existing 

hypercube.  For 1), at time of creation, the label is mapped in the map.  For 2), 

hypercubes of conflicting classes are disallowed existence, instead defaulting to creating 

a newer and smaller class of hypercube within the existing one.  For 3), backlabelling 

serves to label each of the points within an existing class index to the label provided.  

Each of these modifications is detailed below. 

5.4.3.4. ALGORITHM USED (REALTIME CAPABLE WITHOUT MODIFICATION) 

For each new datapoint 

 Compute each neurons’ weighted activation to it  ( yi = Σwij*xi ) 

Select the neuron with the highest activation 

Test if this neuron is within vigilance (xi fuzzyAnd wx < vigilence) 

If it is, Update the weights (wi = learningRate*xi + (1-learningRate)*wi ) 

Otherwise, create a new category with xi weights 

5.4.3.5. MODIFICATIONS MADE FOR SUPERVISED LEARNING 

Mixed-class clusters are disallowed existence 

an overlay mapping of labels to clusters is maintained 
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5.4.3.6. ADDITIONAL PSUEDO-CODE MODIFICATIONS MADE FOR SEMI-

SUPERVISED ACTIVE LEARNING 

When adding any new datapoint, keep a map of the amount of data associated with wi 

 

When adding a new labeled datapoint, keep a map of the wi’s which have labels 

 

When a label is requested, For all of the wi in the map, look for the ones without label 

The largest is unlabeled wi is the winner 

return the points associated with this largest, unlabeled classification category 

 

5.4.4. Online Semi-Supervised Growing Neural Gas (OSSGNG) 

5.4.4.1. DESCRIPTION 

Neural Gas is a robustly converging alternative to the k-means approach of clustering that 

finds optimal representations based on feature vectors.  These feature vectors construct a 

topographical map overlaying the data.  An example of such an overlay map is included 

in Figure 15. This approach has its roots in Self Organizing Maps (SOMs) (Kohonen 

1982) and Neural Gas topologies (Martinetz and Schulten 1991).  Growing Neural Gas 

(GNG) is an incremental version of Neural Gas which is appropriate for datastream 

analysis (Holmstrom 2002), and was initially proposed by Fritzke (Fritzke 1995).  Semi-

Supervised GNGs are a further outgrowth of these methods to make use of unlabelled 

datapoints for classification (Zaki and Yin 2008). 
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Figure 15 - GNG developed structure in presence of noised data.  All data is unlabeled.  Image 

displays raw data feed (left), and classification categories (right).  Colors are representative of 

different classes.  All data is unlabeled. 

The GNG algorithm has additionally grown from research in competitive Hebbian 

Learning (Martinetz 1993), which learns from the collective excitation of neighboring 

regions.  The primary portion of this algorithm is the connection of ‘close’ centers via 

‘edge’ connections in response to a presented input pattern.  These edge-connected items 

respond together to new input patterns.  This idea is extended into GNG through the 

addition of finite nodes to represent the space, their subsequent edge connections, and 

their movement in the classification space.  Updates to the network, although statistical, 

are performed with only local information.  This sole use of local information is what 

makes it appropriate to the realtime, data-constrained, problem presented in this 

dissertation. 

The initial semi-supervised algorithm for GNG (Zaki and Yin 2008) is an 

incremental improvement from the SOM, Neural Gas, Hebbian, and Expectation 
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Maximization (Moon 1996).  The EM algorithm was used in this implementation to 

assign class labels to existing classes of unknown data (E-step), maximize the marginal 

likelihood of the parameter selection (M-step), and retraining the classifier for a new 

result.  This approach is obviously not appropriate for realtime implementation, because 

of step-based solution iteration and non-linear time complexity of EM (Hofmann 2001). 

Beyer and Cimiano have modified the initial algorithm to remove the dependence 

on the EM nature (Beyer and Cimiano 2011), making it appropriate to realtime problems.  

They present Online, Semi-Supervied, Growing Neural Gasses (OSSGNG) as a 

topographical mapping algorithm synthesized from the various contributing fields.  They  

examine several metrics for determination of the establishment of clusters, and find that 

the minimum distance metric has the best performance on problems of interest.  This 

dissertation uses the metric recommended.  

There are several reasons why this implementation of neural gasses was chosen.  

The first is that it is representative of the field of Self Organizing Maps, which are 

sufficiently different from the clustering methods neural methods already discussed.  

Another reason is that the GNG method has had some research into semi-supervision 

(Zaki and Yin 2008), with favorable results.  Finally, and most specifically, is the specific 

method of online, semi-supervised, GNG has been shown to outperform the semi-

supervised method on a number of problems (Beyer and Cimiano 2011). 

The OSSGNG approach addresses each of the fundamental problems with 

realtime data.  Infinite length is addressed through the encoding of knowledge into a 
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connected series of nodes.  Concept detection, drift, and evolution are handled through 

the occasional injection of new nodes and the aging of existing nodes.  New node 

injection allows GNG methods to recognize new classes and associate with known 

structure, while aging nodes allows for the continuous evolution of concepts.  

5.4.4.2. MODIFICATIONS MADE 

The algorithm that was used as part of the experiments in this dissertation was obtained 

from contacting the researchers of the “Online Semi-Supervised Growing Neural Gas” 

paper (Beyer and Cimiano).  This method is adapted to handling semi-supervised 

information in an online fashion, so no modification to the core routine was made.  

However, there has been substantial technical work behind the scenes to adapt it to the 

problem at hand.  A brief and incomplete list includes making it a software library, 

generating a Python interface to the library, reformatting the structure of data that the 

algorithm expects, repairing major memory allocation errors, and making a thread-

compatible library for performance-based data runs. 

The most scientifically significant modification made was to add an active 

learning component.  To the knowledge of the author, this is the first time active learning 

has been used within the GNG family of AI algorithms.  The active learning component 

keeps track of the encoded knowledge that has been mapped to a label.  The largest 

structure with an unknown label is considered to be the most interesting class and 

responds to the request for a label.  The general assessment algorithm described in 

section 6.2.1 then assigns a majority-class label to these points. 
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This method was not found to have acceptable performance in requesting labels.  

In order to make this method computationally tractable, it was speeded up through the 

computation of a representational centroid, reducing the distance-based computations by 

over 100-fold.  As a performance note, the list of points was also modified to be held in a 

list sorted with mergesort, which can be searched via binary search.  This keeps the 

computational complexity during sort to O(n*log(n)) and the search complexity to 

O(log(n)).  This is not appropriate for true realtime processing, but is appropriate for 

practicality, as reported later in Section 6.3.1:Timing.  Briefly, an algorithm can make use 

of label requests if it does so infrequently. Note that this modification allows the structure 

of the data, rather than the labeled points, of the problem to dictate the classification 

boundaries.  The algorithms and modifications are detailed in the below sections. 

5.4.4.3. INITIAL PSEUDO-CODE GNG ALGORITHM (NOT REALTIME 

APPROPRIATE) 

Present a new point and find the two closest items (s1 and s2) 

Increment the age of all edges coming from s1 

Compute the local error of s1  (error = squared distance from weight to input) 

Move s1 and its edge-connected nodes towards xi in two fashions: 

Directly connected nodes: ⌂w = eb(xi – ws1) 

Indirectly connected nodes: ⌂w = en(xi – ws1) 

If s1 and s2 are edge-connected, set the age of the edge to 0 

Remove all edges older than the maximum age, if a node has no edge now, remove it 

If it is time to present a new node: 

 Determine largest error node network from earlier calculated local errors 

 Determine the largest error point node in this network 

 Insert a node halfway between these two items, create edges, remove previous 

Decrease all error by a factor, Alpha 

Check for convergence (maximum network size, small adjustments, etc.) 
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5.4.4.4. INITIAL PSUEDO-CODE SSGNG ALGORITHM (NOT REALTIME 

APPROPRIATE) 

Present the set of labeled data (LD) to the network, train only on it, label accordingly 

Present an input from unlabeled data set (UD), xj,with the previous distance metric 

Label xj according to the winning node, remove it from UD, enter it into the LD’ set 

Loop until UD set is empty 

Present LD and LD’ to evaluate performance 

 

5.4.4.5. OSSGNG ALGORITHM (USED) 

Present a datapoint, finding the two closest items s1 and s2 

If there is a missing label, assign a label based on the nearest item (unlabeled is possible) 

Increment ages (detailed originally) 

Proceed with GNG steps, do not loop to reevaluate 

 

5.4.4.6. ADDITIONAL PSUEDO-CODE MODIFICATIONS MADE FOR ACTIVE 

LEARNING (FIRST REVISION) 

When a label is requested, find the network of the largest unknown class 

Look through the data to find points which align to the map 

Request the labels of this list of unknown-class-mapped points 

 

5.4.4.7. ADDITIONAL PSUEDO-CODE MODIFICATIONS MADE FOR ACTIVE 

LEARNING (SECOND/USED REVISION) 

When a label is requested, find the network of the largest unknown class 

Compute the centroid of this node-created network 

Find and request the label of the point closest to the centroid 
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5.4.5. Vowpal Wabbit (VW) 

The previous methods discussed typically favor accuracy from among the various 

engineering tradeoffs.  Vowpal Wabbit is a software package implementation developed 

by John Langford at Yahoo! Research.  The goal of this implementation and algorithm is 

to be fast and use as little data as possible, with the assumption that labels are available 

(Langford et al. 2007).  It makes extensive use of gradient descent and multiple passes 

over the data to train a variety of encoded weight vectors.  The background assumption to 

the initial problem of interest is that the data of interest is too large to process efficiently, 

and that rapid training is critical.  This approach was developed specifically for large-

scale search operations.  The initial algorithm is described below. 

5.4.5.1. ORIGINAL ALGORITHM 

Start with ∀i: wi = 0 Within the loop: 

Get an example:  x ∈ (∞, ∞) 
Make a prediction:  y = Σiwixi 

Learn the Truth:  y ∈ [0,1] with importance I 

Update the weight: wi = wi + 2η(y-yi)I 

Repeat for  specified number of passes or other convergence criteria 

It is useful to note that the Vowpal Wabbit code has been optimized to be simple, 

fast, and flexible.  The core idea behind this implementation is that data would be 

optimized for very rapid iteration and convergence.  Each line of the above pseudo code 

does not depend significantly on the previous line, or on any previous data, and relies 

only on weight encodings.  This makes the core algorithm capable of extensive caching, 

hashing, and scaling to multiple processors, computers, and servers.  This is designed to 

function on datasets with large numbers of features and examples.  For example, 
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Langford tested against a dataset with 109 features across 107 examples (Langford et al. 

2009). 

The implementation of the VW set is able to use a variety of loss functions to 

calculate the rolling error represented in the weight update, including squared, hinge, 

logistic, and quantile.  This dissertation makes use of the Support Vector Machine Hinge 

Loss, as each of the models used in Dataset #1 and Dataset #2 is a subdivided binary 

classification problem (e.g. Bored or Not Bored).  Hinge Loss has been shown to be 

preferred for the reasons that, for binary classification, it converges more quickly, results 

in less approximation error, and has better generalization performance in theory, when 

compared to logistic and squared methods (Rosasco et al. 2004).  The hinge loss function 

can be represented as a function of the predicted class and weight, V(w,y) = max(1-wy,0). 

Much work has been done in the area of active and semi-supervised learning with 

linear regression models for the purposes of search optimization (Beygelzimer et al. 

2010a; Beygelzimer et al. 2010b; Duchi et al. 2010; Hoffman et al. 2010; Langford et al. 

2009; McMahan and Streeter 2010).  The crux of this research has relied upon the ability 

to establish importance weights of various data, minimization of data passes, or time 

optimization.  Operations of O(n*log(n)) have been obtained to establish the most 

significant categories of data. 

Much of this research is not relevant to the topic of this dissertation, as 

importance weighting and regression-based approaches are not realtime-appropriate 

solutions for the reason that they make use of historical data.  The availability of the 
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realtime constructed model is more significant than the time for labeling.  However, a 

realtime active learning approach has been implemented as part of this work, based on 

the approach taken from Beygelzimer (Beygelzimer et al. 2010a). 

5.4.5.2. SEMI-SUPERVISED, ACTIVE LEARNING ALGORITHM 

Obtain an unlabeled data example 

Calculate the resultant error 

hk = argmin( err(h, Sk-1), h belongs to currentHypothesis) 

 hk’= argmin( err(h, Sk-1), h belongs to currentHypothesis OR is miscorrect) 

Caluclate the probability of labeling by finding s in the below equation 

Gk = error(hk’) – error(hk) 

Gk = (c1/√s – c1 + 1)*√C0*log(k)/(k-1))+(c2/s – c2 + 1)*C0*log(k)/(k-1) 

Randomly determine if a label is needed with probability PL = s 

C0 is a experimenter parameter, c1 is 5+2√2, c2 = 5, 

k is the data point number, s is ε(0,1) which solves Gk 

 

Note that the semi-supervised algorithm does not cope well with completely unlabeled 

data.  No adjustments to the encoded weight vectors will occur if the probability of 

labeling a point is not able to find a point to label.  As such, the performance of this 

version of this implementation was not expected to perform well on the data of interest, 

while the supervised and unsupervised approaches were expected to have good 

performance.  Initially, the C0 parameter was set so as to use significantly more labeled 

data than the other algorithms, but to assure partial convergence.  The ideal number of the 

C0 parameter is two, as has been theoretically proven (Beygelzimer et al. 2010a), as was 

set during testing. 
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5.4.5.3. ADDITIONAL MODIFICATIONS MADE 

Few modifications were made to the basic implementation aside from significant 

software development technical challenges such as running Unix-oriented, C++-coded, 

programs in Windows-based, python-scripted environment.  The current implementation 

of VW supports 78 command line parameters to modify, tweak, and report performance.  

A yearly tutorial is given in order for new users to understand the wide variety of settings 

that this implementation uses (Langford et al. 2010; Langford et al. 2007).  It was found 

unnecessary to invent further complications to configuration. 

There were two classes modifications made to adapt the above method to the 

problem of this dissertation.  The first and largest modification was made to support a 

very incremental version of online learning.  There were two forms of this adjustment.  

The first was to alter the loss function to one which did not require gradient descent and 

convergence.  Coupled with this modification, the learning rate was modified to be 

adaptive in order to respond dynamically to the incoming data.  The class of modification 

was added to support the occasional labeled data point in accordance with the active 

learning research (Beygelzimer et al. 2011). 

5.5. Conclusion 

There are many different methods, and an entire field, dedicated to the most fundamental 

problem in machine learning: creating meaning from data.  At this time we have 

discussed a clustering paradigm, a neural network approach, a graphical model, and a 

linear regression technique.  Each of these four algorithms is selected as part of the state 
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of the art in their respectively fields, and each approach is sufficiently different from the 

others so as to warrant pursuit.  All fundamental approaches covered in modern literature 

reviews (Jain 2008; Jain et al. 1999; Meireles et al. 2003; Quah and Sriganesh 2008; Tsai 

et al. 2009) are covered as part of this dissertation, which significantly limits the search 

space for an alternative approach.  Modifications were invented for algorithmic 

adaptation as well as semi-supervised and active learning.  At the initial time of writing, 

it is fundamentally unknown which, if any, of these approaches to model construction 

would be the most successful.  A discussion will follow the results and comparisons 

based on the successes or failures of these algorithms. 
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6. RESULTS AND COMPARISON 

The results of the experiments conducted are reported and discussed in this chapter.  Prior 

to the presentation of numerous graphs of results, the initial benchmark comparison is 

presented in section 6.1.  Following this, we discuss the general evaluation algorithm, 

how it averts the problem of contamination of data and labels over the course of a data 

run, and how the results are generated.  Experimental adjustments, preliminary testing, 

and the running parameters are briefly discussed in Section 6.3.  Finally, the discussion in 

Section 6.4 presents the questions, answers, and reasoning to the experimental questions 

addressed by this dissertation.  These are summarized in Section 6.5, with conclusions 

and future work discussed in Chapter 7. 

6.1. Initial Benchmarking 

Before a discussion of the results of the testing of the various the algorithms, it is useful 

to discuss the initial models of comparison.  These models represent the best effort of 

other researchers with the “infinite” time available in offline approaches.  Each of these 

models is additionally constructed with all of the data, and with all of the true class 

labels.  With all data, all labels, infinite time, and well-reasoned research approaches, 

these models represent the gold standard against which to compare our online, realtime 

models developed as part of this dissertation.  It is not expected that an online model with 

significantly constrained time, limited data, and limited label availability will be superior 

in performance to these benchmark models.  This represents the trade-off of accuracy for 

availability previously discussed in Chapter 3 of this dissertation. 
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Table 22 presents these initial benchmarks for experimentation, as created by the 

offline experimenters.  Dataset #2 does not yet have benchmark models, so a quality-

based comparison is impossible at this time.  In the absence of a metric provided by the 

original experimenter, models created for Dataset #2 will be evaluated using the same 

AUC ROC metric as for Dataset #1.  The AUC ROC metric used as part of the model 

evaluation in Table 22 is explained in further detail next in Section 6.1.1.  The reader 

should note that no model for the Anger state was successfully created by the Dataset #1 

offline experimenters. 

Table 22 – Finalized Results Dataset #1 (Low-Cost Sensors) 

 EmoPro Measures ABM Measures 

Anger Anxiety/Fear Boredom Engagement Distraction Workload 

 

Classification 
(AUC) 

NA 
(<0.6) 

.83 .79 .80 .81 .82 

 

6.1.1. Area Under the Receiver Operating Characteristic Curve 

The Area Under the Curve (AUC) of the Received Operating Characteristic (ROC) is a 

standard measure of the success of a modeling approach (Hanley 1989; Hanley and 

McNeil 1983).  This metric is computed in the manner described in section 0.  Generally, 

the AUC ROC measurement in binary classification problems places equal importance on 

each classification.  It is designed to penalize simple majority-class classification 

boundaries (e.g. 90% of the data is from one class).  In general, AUC metrics of greater 

than 0.8 are considered excellent, while classifiers lower than 0.6 are considered poor; 
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those scoring in the 0.2 range in between those values are considered to be acceptable but 

not optimal. 

During the evaluation, described next in Section 6.2, each of the algorithms is 

iteratively queried for its computed label of each datapoint, and this is compared against 

the true label of the point, from the “ground truth” measure described in section 4.3 and 

Table 12.  This is performed with a fractional amount of the data, on a per user basis, in 

order to generate the graphs seen later in this chapter. 

6.1.2. Full Results Located in the Appendices 

As part of this dissertation, several types of model creation algorithms are evaluated.  

Each of these algorithms is capable of realtime processing of the data.  Each algorithm 

uses supervised, semi-supervised, and unsupervised labeling schemes for data analysis.  

As discussed in Chapter 5, four algorithms are compared (clustering, ART, GNG, VW).  

As such, for this dataset, there are 72 models which are created and discussed – the 

combination of six models (i.e. Anger, Fear, Boredom, Engagement, Distraction, and 

Workload), three types of labeling (i.e. supervised, unsupervised, and semi-supervised), 

and four algorithms (i.e. ART, clustering, VW, and GNG).  In the same way, one model, 

with three labelings, and four algorithms is created for Dataset #2.  Rather than discuss 

these 84 (74+12) models separately, they are discussed in summary within Section 6.4.  

The full models are presented within APPENDIX C, and organized by set of results, 

rather than by research question. 
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6.2. General Evaluation Notes 

Each algorithm is compared fairly against each of the other algorithms through the use of 

library functionality.  Each implemented algorithm described in Section 5.4 adheres to a 

programmatic standard for evaluation.  This standardization is done for several reasons.  

The first is to make sure that the true class labels are always handled separately from the 

data, assuring that each algorithm is completely unable to garner extra information from 

the previous run, or from the labels.  The second is to assure that each pair of algorithm 

and labeling scheme is given, explicitly, exactly the same information as to make 

decisions as each other pairing.  The third is to provide an environment for testing future, 

or additional, algorithms on different datastreams.  Before discussing the results of the 

experiment the reader should be assured of the fairness of evaluation.  Sections 6.2.1, 

6.2.2, and 6.1.1 describe the general algorithm used to evaluate all algorithms, how the 

impact of labels is evaluated and the evaluation metrics used. 

6.2.1. General Evaluation Algorithm 

The general evaluation algorithm that controls how evaluations are performed is: 
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METHOD_LIST = [ART, VW, GNG, clustering] 

 

Initial setup, loading of data into a structure, loading of labels 

Initialize all clustering algorithms  

 For method in METHOD_LIST: METHODIMPLLIST.append(MethodInitialize()) 

For each 10% of the data, labels: 

  For each of [unsupervised, semisupervised, supervised]: 

   For method in METHODIMPLLIST: 

    evaluateMethod(method, data, labels, supervision) 

    deleteMethodAndContainedData() 

 

evaluateMethod(method, data, labels, supervision): 

switch(supervision) 

unsupervised: method.addUnlabelleddata(data), evaluate 

supervised: method.addLabelledData(data, labels), evaluate 

semi-: method.addUnlabelleddata(data), label 5 requests, evaluate 

evaluate 

while method.labelRequest() returns points 

calculateMajorityClassOfPoints 

method.label(calculatedClassMajority) 

evaluateAgainstBenchmark (AUC ROC) 

 

Given that this is a general evaluation algorithm, it requires each of the realtime AI 

algorithms to provide a uniform amount of functionality.  In some cases, this is standard 

functionality provided by the designer of the algorithm, as is the case with clustering.  

However, in some cases, as mentioned above, is it non-trivial to engineer a solution, as is 

the case with GNG.  From the above general algorithm, each individual AI method must 

be able to accommodate the below functionality: 
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Init(params) – initializes the algorithm and does all required setup work 

AddLabeledData – Takes datapoints/labels and inputs them one-by-one to the method 

AddUnlabeledData – Takes datapoints and inputs them one-by-one to the method 

Classification(point) – Returns the suspected class of the point 

LabelPoints(points) – Labels all points to the algorithm (does not adjust classifications) 

LabelRequest() – Returns points, suspected to be of the same, most interesting class 

Evaluate (data, labels) – Returns the list of predictions and true classifications 

Clear() – Deletes all data contained within the algorithm  

 

Source code to each of the methods, the testing environment, and a template for future 

testing with Python 2.7.3 functionality can be provided upon request directed to the 

author.  Each of the methods implemented was tested with a unit test, calling each of 

these functions on a dataset of over 200 points to determine overall classification ability, 

initial time-sensitive performance, and general assurance of the implementation. 

6.2.2. Assessing the Impact of Labels 

In the general algorithm for assessment, after each of the algorithms have classified all of 

the points in the dataset, each algorithm is queried for unlabelled classification preference 

(e.g. “what categories have unknown labels?”).  It responds with a list of points which 

belong to a class or cluster of unknown label (e.g. “the category that has these points”).  

In the evaluation algorithm, each of these points is examined for its true class label. The 

majority label of this group of points is returned to the algorithm for classification (e.g. 

“the majority of those points have label ‘0’, label them as such”). 

This cycle is repeated until the algorithm is able to compute a label, whether 

correct or incorrect, for all points.  After all points are known to fall into a category, the 

algorithm is ready for evaluation.  The newly labeled cluster can be evaluated for how 
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well it performs at representing the labels, which is impossible without obtaining a 

predicted value for all points, as is the case with unsupervised learning.  An example of 

this is shown in Figure 16, and discussed next. 

 

Figure 16 – Example of evaluation algorithm labeling an unlabeled cluster 

 

To give a specific example, each of the algorithms frequently has a classification cluster 

which incorrectly maps points into a class of mixed labels.  An example of this is a single 

cluster which contains 3 points of class ‘0’ and 2 points of class ‘1’, which are 

represented as red and blue in Figure 16a.  Initially, an algorithm has classified five 

points as belonging to a cluster of unknown label (Figure 16a), as shown by grey cluster 

outline.  The evaluation algorithm is aware of the label of each specific point (red or blue 

in Figure 16a).  When the realtime AI algorithm is asked by the general evaluation 

algorithm for the label of this cluster, it is unknown; the AI algorithm responds with 

belonging points.  The general evaluation algorithm assigns the majority-class 

classification to these points and gives them to the AI algorithm.  The AI algorithm now 



153 
 

classifies this cluster as the majority-class (Figure 16b), and can now be evaluated 

according to modeling ability. 

Note that a classifier that creates a single unsupervised cluster under this 

approach, will always, at minimum, classify 50% of the available data correctly through 

general evaluation labeling, representing a majority-class classifier.    This corresponds to 

a ROC measurement of 0.5, which is the worst possible classification performance.  

Based on the finished algorithm, a correct/incorrect mapping of labels is created in order 

to evaluate the effectiveness of the method for model creation as described in Section 

6.1.1. 

6.3. Experimental Adjustments, Timing, Preliminary Testing, and Results  

As with many AI projects, some amount of experimental adjustment is required for 

proper operation.  Data might need to be reformatted, parameters may need to be set, 

labeling may change, and algorithms may need to be modified slightly.  This section 

describes the initial testing and changes on both the datasets. 

6.3.1. Timing 

Firstly, this dissertation contends that it is possible to create useful realtime models.  

While it took many days to create all of the models used in the results section of this 

dissertation, this approach used 10 incremental models (one for each additional 10% of 

data, in order to graph performance over time) for each of 18+ participants and 84 

models, resulting in ~17,000 models in total.  Including the timing data for the 

construction of a single model allows the reader to easily verify that it is possible to 
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create a model in realtime.  The creation of all three sets (supervised, unsupervised, semi-

supervised) of boredom models is used as an example of the time taken to create an 

individualized model.  Approximately 45 minutes of data were processed to produce the 

timing data summarized in Table 23.  The represents the frequency of data response from 

each algorithm, summarized in Table 25.  These timing data were generated using a 

single core of a 2.66 GhZ laptop computer. 

Table 23 – Time, in seconds, required to create a single model of boredom.  2500 seconds of data 

were used. 

Algorithm Unsupervised Supervised Semi-Supervised 

Clustering 0.062 0.058 0.312 

ART 0.106 0.112 0.401 

VW 0.045 0.046 0.056 

GNG 99.816 73.787 120.634 

 

Table 24 – Time, in seconds, required to respond to a single point.  Anything over 0.3 is unacceptable. 

Algorithm Unsupervised Supervised Semi-Supervised 

Clustering 6.4e-05 6.0e-05 3.2e-04 

ART 1.1e-04 1.2e-04 4.2e-04 

VW 4.7e-05 4.8e-05 5.8e-05 

GNG 0.104 0.077 0.125 

 

The creation of the Boredom model in Table 23 takes between 0.045 and 120 seconds, 

depending on the algorithm and labeling scheme.  The fastest performance is consistently 

reported from VW, where each additional point presents only three multiplications, one 

addition, and one subtraction operation.  GNG may have over 100 operations per 

datapoint, but the number of computations is finite and computationally linear.  In the 

worst case, on modest hardware and a single CPU, a model for 45 minutes of data is 
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created in two minutes.  All of the models except GNG were created in less than a 

second.  This test experimentally proves what was theoretically proven in Section 5.4; 

that realtime algorithms are able to create models in real time. 

6.3.2. Data Normalization (Dataset #1) 

Preliminary analysis using Dataset #1 showed exceptionally poor results with both the 

ART classifier and the incremental k-means classifier on the first two users.  Each of 

these scored a 0.5 AUC ROC value, regardless of the user and type of model.  This was 

suspected to be because of parameter settings issues, as the recommended parameters 

were for normalized data (Brawner and Gonzalez 2011).  Differences among individuals 

make the selection of a uniform parameter set difficult, if not impossible.  Normalization 

on a per-user basis makes it possible to select a set of algorithmic parameters which are 

universally appropriate.  The data for each user were normalized with respect to the user 

in order to allow each algorithm to operate within the same geometric space.  In the real 

world, the maximum and minimum values for a user will not be known a priori.  In such 

cases, the maximum and minimum values reported by the sensor can be used for 

normalization.  The algorithm used to normalize the data is shown below, and was 

implemented prior to any results presented in this section. 

 

 

 



156 
 

For each user in listOfUsers 

Find the maximum and minimum value for the user: max and min 

For each oldDataPoint for the user: 

newDataPoint = (oldDataPoint-min)/(max-min) 

 

6.3.3. Resolution Collapse (Dataset #2) 

Initial runs using Dataset #2 data resulted in a number of problems relating to the size of 

the dataset.  This dataset was initially collected with approximately 14,000 Hz resolution, 

which has grossly oversampled outputs.  Changes in eye fixation and pupil diameter were 

not observed to change with this frequency.  Thus, the dataset was downsampled 25% 

(only every 4th point) to simplify time and memory requirements, with a resulting 

resolution of 3,500 Hz.  3,500 Hz likely represents oversampling as well, but brings the 

total amount of data to manageable size.  This brought the total data across 20 

participants from approximately 300MB to 75MB.  An example of a downsampled 

datapoint showing little variability is shown in Appendix B-3. 

6.3.4. Running Parameters 

Each of the four algorithms contains certain parameters which need to be set.  In the 

evaluation of the approach of creating realtime models, these parameters were set to the 

recommended values of the respective papers.  The parameters for the first batch of 

results are shown in Table 29.  The parameter settings used in this research are derived 

from author contact or literature review.  ART parameters are derived from initial 

literature (Carpenter and Grossberg 1995).  Clustering parameters are drawn from author 

contact (Brawner and Gonzalez 2011) and standard library functionality (Jones et al. 
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2001).  GNG parameters are drawn from author contact (Beyer and Cimiano 2011).  VW 

parameters were set as recommended by the various literature discussed in section 5.4.5, 

and from online tutorial information (Langford et al. 2010).  
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Table 25 – Summary of initial parameter settings for tested algorithms 

Algorithm Parameter Brief Description 
Initial 

Value 

k-means 

Clustering 

Delta 
Maximum amount of cluster 

movement allowed 
0.1 

Vigilance 
Maximum distance to be 

considered into a matching 
cluster 

0.2 

    

ART 

Max Number 
Categories 

Maximum number of 
categories which are allowed 

to be established 
Unlimited 

Vigilance 
Affects the possible 

classification distance for new 
points 

0.75 

Bias 
Small number for cluster 
activation to be above 0 

0.00001 

Learning 
Rate 

Amount of adjustment during 
each pass through the data 

(should always be 1 for one 
pass learning) 

1.0 

Complement 
Code 

Includes the inverse of a 
feature as an additional 

dimension. 
False 

    

VW 

Loss function 

The model of error introduced 
from a point.  Square loss is 
used by default, but research 
indicates that hinge loss is 

better for a small number of 
passes. 

Hinge 

Adaptive 
Learning 

Rates 

Adjusts the learning rate 
downward (decreasing the 

importance) for points which 
have been previously observed 

False 
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Algorithm Parameter Brief Description 
Initial 

Value 

OSSGNG 

Epsilon Beta 
See equations in 5.4.4.  

Amount of weight adjustment 
for connected node activation. 

0.1 

Epsilon Nu 

See equations in 5.4.4.  
Amount of weight adjustment 
for indirectly connected node 

activation. 

0.0006 

Alpha Error adjustment for a network 0.5 

Delta Error adjustment for a neuron 0.0005 

Lamda 
See equations in 5.4.4. 

Controls neuron addition rate. 
300 

Maximum 
Node Age 

How long neurons may exist 100 

Maximum 
Nodes 

Maximum number of neurons 200 

 

6.3.5. Reduced Feature Set 

Only some of the features of the total datastream were used in the offline-created models 

of the original researchers, as originally shown in Table 18 and reprinted below as Table 

27.  In some of the experiments, as discussed in future sections, the reduced feature set 

was used as a comparison.  Given that the offline modeling efforts made use of the same 

data, these comparisons may still be viewed as fair.  

  



160 
 

Table 26 – Summary and example of features used in each created model.  Reprint of Table 18.  No 

model of Anger above 0.6 ROC value was created with offline approaches. 

 Appendix  Boredom Distraction Engagement Fear Workload 

Alpha1 A-1    X  

Alpha2 A-1 X   X  

Gamma1 A-1 X   X  

Gamma2 A-1    X  

Delta A-1    X  

Beta1 A-1    X  

Beta2 A-1    X  

Theta A-1    X  

Attention A-1    X  

Meditation A-1    X  

Left Eye Pupil 
Diameter 

A-5    X  

Heart A-2  X X X  

Chair 1-4 A-4      

Chair 5-8 A-4  X X X X 

Motion A-3   X X X 

Alpha1Diff A-6    X  

Alpha2Diff A-6    X  

Gamma1Diff A-6 X   X  

Gamma2Diff A-6    X  

DeltaDiff A-6    X  

Beta1Diff A-6 X   X  

Beta2Diff A-6 X   X  

ThetaDiff A-6    X  

AttentionDiff A-6    X  

MeditationDiff A-6    X  

HeartDiff A-6 X   X  

MotionDiff A-6    X  

 

6.3.6. Summary of Direct Data Analysis and Controls 

Before discussing results, the reader should be assured that the algorithms are presented 

as they are discussed in the preceding chapters, and that a fair comparison is made.  We 

seek to compare two sets of models.  The first set of models was created by other 

researchers using offline AI algorithms in a generalized fashion.  This is theorized to 
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show poor transfer to a population for the reasons discussed in Chapter 2.  We created a 

second set of models that use online AI algorithms in an individualized fashion.  In order 

to conduct a fair comparison of these approaches, all other variables which do not relate 

to individualization or online approach should be held constant.  Additionally, the reader 

should be assured that the algorithms perform as theorized. 

Windowing approaches, filtering, feature extraction, combinations of features, 

and creation of a new datastream from a kernel are some techniques that are commonly 

used for boosting algorithmic classification quality (Guyon et al. 2006).  None of these 

approaches is taken in this dissertation in order to isolate independent variables from 

controls.  All models created as part of this dissertation have the same inputs as the 

offline models created by other researchers, which renders a fair comparison. 

In order to conduct this comparison fairly, this dissertation uses the same metric 

of quality as the original researchers, as discussed within Section 6.1.1.  A single 

evaluation algorithm was created to give each algorithm exactly the same data, using the 

same function calls for each algorithm, as discussed within Section 6.2.  Each algorithm 

is shown to perform in realtime, as theorized in Chapter 5 and as directly measured and 

confirmed in section 6.3.1.  Individual normalization, as an experimental variable, was 

changed slightly, as discussed in 6.3.2.  These actions have created a framework for the 

unbiased discussion of performance and these are presented next, within Section 6.4. 
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6.4. Experimental Results 

In this section, the research questions and results are presented and discussed.  Each 

research question is discussed in this section, and the key findings are summarized in the 

summary sections 6.4.8, 6.4.15, and 6.5.  These research questions are discussed in the 

list below, before moving to a discussion of the experiments: 

1a.  Can a quality cognitive model be constructed with fully supervised realtime 

algorithms? 

1b.  Can a quality affective model be constructed with fully supervised realtime 

algorithms? 

2a.  Can a quality cognitive model be constructed with unsupervised realtime algorithms? 

2b.  Can a quality affective model be constructed with unsupervised realtime algorithms? 

3a.  Do semi-supervised and active learning approaches improve cognitive model quality? 

3b.  Do semi-supervised and active learning approaches improve affective model quality? 

6.4.1. Analysis of Quality of Model Outputs 

The primary item of interest to realtime model creation is the goodness of fit of the 

model, over time, based on the AUC ROC metric and the previously established 

benchmarks discussed in Section 6.1.  The x-axis of each graph presented in the results 

section is time, with each line corresponding to a measured evaluation.  All evaluations 

are measured with the AUC ROC metric. 
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Three types of AUC ROC measures are taken: “all”, “next”, and “prev”.  The 

“all” ROC measure represents the ability of the model to correctly predict all of the data 

that has so far been presented.  The “prev” measure represents the ability of the current 

model to accurately classify the most recently observed data.  “Recently observed”, in 

this instance, refers to the previous 10% of data.  The “next” measure represents the 

ability of the current model to accurately predict the upcoming data.  “Upcoming data”, 

in this instance, refers to the next 10%.  The measurements of these three items indicate 

whether a method is able to correctly model the data presented recently, in total, and in 

the future.  The graphs presented in this section use these metrics, graphed or averaged 

over time, to determine the adequacy of each model.  An example of which data are used 

to generate a measure of each of these qualities is shown, in Table 27. 

Table 27 – Example of the meaning of the “all”, “next”, and “prev” measures of AUC ROC 

evaluative point when evaluated at 50% and 100%. 

 Data presented for evaluation 

Previous 10% of total data.  Most recent data. 
 Example for 50%: Data from 40-50%. 
 Example for 100%: Data from 90-100%. 

All 50% of total data.  All data so far 
 Example for 50%: Data from 0-50% 
 Example for 100%: Data from 0-100% 

Next 10% of total data.  Next data, predictive. 
 Example for 50%: Data from 50-60% 
 Example for 100%:  N/A 

 
The graphs in the below sections represent the averages of qualities of each model over 

time for all test subjects.  There are ten points where each algorithm is evaluated for 

goodness of fit, at each 10% of the data, with the final point being at 100%.  As an 

example of what each evaluative point represents, the evaluative point at 20% for a 
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Boredom model produced via ART method will represent a ROC value, when given 20% 

of the data, on the ability to model that 20%, averaged across all users. 

Multiple evaluation criteria (e.g. previous, next, and total quality), algorithmic 

methods (e g. clustering, ART, GNG, VW), and models (e g. Distraction, Engagement, 

Workload, Anger, Fear, Boredom) must be presented as concisely as possible to draw 

conclusions.  For the sake of simplicity, these have been combined into a few two-by-two 

grids of methods which each contain three dimensions of trend lines for three models, 

when a clear trend is present among all data.  This results in a low quality image which 

has easily observable trend.  Graphs shown in this section are presented in higher quality, 

divided by result set, in APPENDIX C, but are shown in a compressed form for overall 

trend analysis and discussion within the below sections.  Each of these graphs, when 

presenting all measures, uses one of two legends, depending on whether cognitive or 

affective models are created.  The legends are shown below in Figure 17 and Figure 18, 

respectively. 

 

Figure 17 – Legend for Cognitive Models 
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Figure 18 – Legend of Affective Models 

6.4.1.1. BENCHMARKS OF “ALL”, “NEXT”, AND “PREVIOUS” ADJUST IN 

CONCERT 

We theorized that a model may be useful for more than total model quality.  An 

algorithm may be useful if it is able to model how states are anticipated to change or the 

changes that have been recently experienced.  The “next” and “previous” measures of 

ROC were created to observe whether this modeling behavior occurs.  In general, it was 

found that these measures tend to reflect on another, and to adjust together. This is shown 

clearly in Figure 19 and Figure 20, the graphs of supervised Anger models for 

participants 4137 and 4111.  Once the three models are aligned at a single datapoint, they 

adjust together, which is an indication that they are measuring a similar item.  These 

participants were chosen for general model variability and typical example purposes, but 

the trend is present for all participants. 
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Figure 19 – All, Next, and Previous measures of model quality for Participant 4137.  The three 

measures move in concert with each other after 30% of the data is presented. 
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Figure 20 – All, Next, and Previous measures of model quality for Participant 4111.  The three 

measures move in concert with each other after 60% of the data is presented. 

In situations where is it appropriate to showing and discussing only one metric, the metric 

which has the greatest informative value should be selected.  The “previous” metric is 

selected for this functionality for several reasons.  Firstly, this is the metric of the most 

recent state of the participant, which has the most value to an instructional system.  

Secondly, this metric has the tendency to be accurate longer than the others, to degrade 

slowest, and to improve the quickest.  Finally, the measure of the ability to model the 

most recent student state is more instructionally interesting than the measure of ability to 

model all student states presented so far (all), or of the ability to predict the next student 

state (next).  In these cases, the below Figure 21 shows the abbreviated legend for 

affective models. 
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Figure 21 – Abbreviated Legend of Affective Models 

Some graphs will be presented and discussed in gridded format, while others will be 

presented and discussed singularly.  Some figures will present all algorithms, while other 

figures will present only one.  Some figures will present multiple variations of labeling 

scheme, while others will only present a single instance.  In each case, the author has 

attempted to select the few, among multiple, variables which provide clearest distinction 

to the reader.  In any of the cases, APPENDIX C shows graphically intensive measures of 

all models, algorithms, labeling schemes, and measures of quality.  All of the figures 

presented in this chapter can be constructed directly from images in APPENDIX C, 

without direct access to the data. 

6.4.2. Research Question 1a - Supervised Realtime Creation of Cognitive 

Models 

The question that the discussion within this subsection, and the first question asked as 

part of this research, is “Can a quality cognitive model be constructed with fully 

supervised realtime algorithms?”.  In order to answer this question, models of 

Distraction, Engagement, and Workload were created using Dataset #1 data and labels 

discussed in section 4.4 using only the supervised portions of the methods discussed in 

section 5.4.  Only supervised methods were used in order to construct an apples-to-apples 

comparison of realtime methods using labeled data to offline methods using labeled data.  
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Four methods, three evaluation criteria, and three models results in thirty-six dimensions 

to show.  For the sake of simplicity, these are combined.  Each graph shows the 

performance of three models and three evaluation criteria over time.  Four such graphs 

are combined into one image of performance, shown in Figure 22.  Higher quality images 

of these same data are presented in APPENDIX C. 
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Figure 22 – Summary of realtime cognitive modeling ability with across all algorithms using the 

initial parameter settings 

The Figure 22 graph for Distraction, Workload, and Engagement does not show model 

quality above 0.6, and are considered poor quality by AUC ROC measures.  Trend data 

for all collected measure of ROC shows the same results.  It is clear from visual 

inspection of Figure 22 that the models are universally poor for all labels and all methods.  

This leads the conclusion that it is not possible, via direct realtime AI method, to produce 

a model of cognitive state of acceptable quality with the algorithms selected.  However, 

further testing has been performed as a part of this dissertation work to conclude this with 

certainty.  This is described in additional testing of Sections 6.4.3-6.4.7 
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6.4.3. Research Question 2a – Unsupervised Cognitive Model Creation 

The question that the discussion in this subsection seeks to answer is “Can a quality 

cognitive model be constructed with unsupervised realtime algorithms?”.  This would be 

the case if the addition of labeled information to the realtime algorithms was in conflict 

with the data being used to build the models, as discussed below.  Figure 24 is used to 

draw conclusions for this experiment. 

One must ask why we bother testing unsupervised algorithms when those 

supervised failed to produce acceptable models of cognitive states, as shown in the 

previous section.  The answer is that there would be improvement in the cognitive models 

produced via unsupervised algorithms if the labeling information was in conflict with the 

underlying stream.  This would occur if supervised algorithms were forcing the groupings 

of inappropriate clusters, where unsupervised algorithms were not.  An example of this is 

shown pictorially in Figure 23.  It is more likely that this occurs in the opposite manner, 

where labeling information prevents the formation of inappropriate clusters, but only 

occurs when labels match the underlying information.  



172 
 

 

Figure 23 – Possible explanation for why an unsupervised algorithm (b) would outperform a 

supervised one (a).  Phenomenon not observed for unsupervised cognitive models shown in 

Figure 24. 



173 
 

 

Figure 24 – Summary of realtime unsupervised cognitive modeling ability across all algorithms using 

initial parameter settings 

Figure 24 shows the AUC ROC metrics used, and that none of them exceed a 0.6 

threshold level.  A visual inspection of Figure 24 indicates no improvement in model 

quality resulting from the lack of labeling information.  It can be seen that the cognitive 

models created in realtime through direct AI approach are low in quality.  It can be safely 

said that there is not conflict between the labels and the datastream that they represent 

based on two observed features: 1) the offline approaches were able to successfully 

model the problem, and 2) the removal of labeling information does not produce a higher 

quality model.  Reasons for this and ways to mitigate it are discussed in Section 6.4.8.  
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The way to mitigate this problem is likely to be through customized feature extraction 

techniques.  The used of these techniques is beyond the scope of this dissertation because 

it is not what was done for the offline models which are our comparison benchmark. 

6.4.4. Research Question 3a – Semi-Supervised Cognitive Model Creation 

In further attempt to isolate that labeling information is not the issue in the failure to 

create cognitive models, the semi-supervised versions of the algorithms were tested on 

cognitive model creation. Figure 25 shows the effect that semi-supervised algorithms 

have on cognitive models.  The curves of Figure 25 are all consistent and stable – and all 

below the 0.6 AUC minimum for acceptability.  The cognitive models show poor 

performance with both supervised and unsupervised methods, as seen in the previous two 

sections.  Because of this, there is no reason to believe that they will benefit from semi-

supervised modeling techniques, which label only occasionally.  This is tested for the 

sake of completeness.  It is confirmed that the semi-supervised algorithms indeed failed 

to create acceptable models of cognitive states, as observed in Figure 25. 
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Figure 25 – Summary of realtime semi-supervised cognitive modeling ability across all algorithms 

using initial parameter settings 

6.4.5. Revised Parameter Settings for Cognitive Models 

It is possible reason for the failures above could be that the initially recommended and 

tested parameter settings were inappropriate for the problem of cognitive modeling.  

Fundamentally, the clustering and classification algorithms used in this dissertation 

match input data with output data.  The most general solution to this problem is an input-

output matching machine, where a given input results in nearest neighbor output.  We 

considered that possibly, that the initial parameter setting represented too large of a 
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solution generalization from input-output matching, represented by creating too large of a 

class or cluster of data to be of use when creating cognitive models. 

In an attempt to remedy this, the parameter settings were changed in order to 

establish a more fine-grained model of the labels, in the hope of creating a higher quality 

model.  Generally, parameters were modified to create smaller groupings.  These changes 

are presented in Table 28, and the reasoning for each change is discussed below. 

Table 28 – Summary of parameter settings for tested algorithms for Results Set #1 (Dataset #1 

cognitive and affective models) 

Algorithm Parameter Brief Description 
Initial 

Value 

Revised 

Value 

k-means 

Clustering 

Delta 
Maximum amount of cluster 

movement allowed 
0.1 0.05 

Vigilance 
Maximum distance to be 

considered into a matching 
cluster 

0.2 0.05 

     

ART 

Max Number 
Categories 

Maximum number of 
categories which are allowed 

to be established 
Unlimited Unlimited 

Vigilance 
Affects the possible 

classification distance for new 
points 

0.75 0.25 

Bias 
Small number for cluster 
activation to be above 0 

0.00001 0.00001 

Learning 
Rate 

Amount of adjustment during 
each pass through the data 

(should always be 1 for one 
pass learning) 

1.0 1.0 

Complement 
Code 

Includes the inverse of a 
feature as an additional 

dimension. 
False True 
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Algorithm Parameter Brief Description 
Initial 

Value 

Revised 

Value 

VW 

Loss function 

The model of error introduced 
from a point.  Square loss is 
used by default, but research 
indicates that hinge loss is 

better for a small number of 
passes. 

Hinge Hinge 

Adaptive 
Learning 

Rates 

Adjusts the learning rate 
downward (decreasing the 

importance) for points which 
have been previously observed 

False True 

     

OSSGNG 

Epsilon Beta 
See equations in 5.4.4.  

Amount of weight adjustment 
for connected node activation. 

0.1 0.1 

Epsilon Nu 

See equations in 5.4.4.  
Amount of weight adjustment 
for indirectly connected node 

activation. 

0.0006 0.0006 

Alpha Error adjustment for a network 0.5 0.8 

Delta Error adjustment for a neuron 0.0005 0.0005 

Lamda 
See equations in 5.4.4. 

Controls neuron addition rate. 
300 300 

Maximum 
Node Age 

How long neurons may exist 100 50 

Maximum 
Nodes 

Maximum number of neurons 200 300 

 

The delta and vigilance parameters of clustering determine how much distance an 

established cluster can move in response to a new point and how “close” a new point 

must be to an existing cluster, respectively.   Making these parameters smaller is an effort 

to make fewer adjustments to established clusters, and to classify fewer total points as 
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belonging to a single class.  The specific parameter changes are discussed below in 

additional detail. 

The vigilance parameter of ART is similar to that of clustering and was adjusted 

from a value of 0.75 to 0.25 in an effort to establish smaller overall hypercubes.  

Complement coding has been shown to aid in binary classification (Carpenter et al. 

1991b), and was added to the problem in an attempt to boost classification accuracy. 

Vowpal Wabbit has many tunable parameters, but only a few which are relevant 

to the purposes of realtime classification.  The learning rate was adjusted to be adaptive 

in order to compensate for the lack of multi-pass learning.  It was found to have no effect 

on the modeling ability, as shown in the later sections. 

The OSSGNG algorithm has more parameters than the other algorithms because 

of the interconnections between the nodes which overlay the sampling space.  Several 

adjustments were made in order to attempt to boost created model quality.  OSSSGNG is 

the only algorithm which contains a model of ‘forgetting’ through the Maximum Node 

Age parameter.  The age of nodes was shortened to adjust the algorithm to respond more 

rapidly to trends.  Similarly, the total number of nodes was increased to model the space 

in a more finite fashion, with a modification to the Alpha parameter to punish more 

harshly for error.  More nodes, with less memory, that are more error-sensitive were 

thought to increase model quality.  This theory turned out to be accurate, as shown in the 

later in Section 6.4.13 and 6.4.14. 
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There is some trepidation by the researcher in creating smaller cluster sizes, as the 

unsupervised and semi-supervised models would be less transferable to the field.  In ITS 

research, it is desirable to have known user states via labels.  The reduction of cluster size 

in order to create finer models of performance results in a similar reduction in 

communication of state information for ITS use, which is worrisome.  These adjusted 

parameter settings were used to recreate the supervised, unsupervised, and semi-

supervised tests performed in 6.4.2, 6.4.3, and 6.4.4, respectively.  The results of these 

tests are shown in Figure 26, Figure 27, and Figure 28, respectively. 

 

Figure 26 – Summary of realtime supervised cognitive modeling ability with across all algorithms 

using the revised parameter settings 
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Figure 27 – Summary of realtime unsupervised cognitive modeling ability across all algorithms using 

revised parameter settings 
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Figure 28 – Summary of realtime semi-supervised cognitive modeling ability across all algorithms 

using revised parameter settings 

Unfortunately Figure 26, Figure 27, and Figure 28 show no improvement in the models 

across all algorithms and labeling schemes.  All curves are consistent with each other, 

equally stable, and below 0.6 AUC, thereby indicating failure.  The failure to fit these 

finer-grained models results in the theory that the data is noisy and that this noise was 

reduced by offline experiments, as discussed next.  
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6.4.6. Reduced Feature Set Cognitive Models 

Linear regression modeling approaches were used in the original offline input data with 

the intent of developing equations which classify the inputs.  The output of such an 

approach is a set of equations, using some of the input variables, which classify the input 

patterns into output classifications.  These equations frequently do not use all of the input 

variables.  The original regression models created for the benchmark offline models 

determined that several of the features of the datastream were unnecessary.  Note that 

Frustration (an affective state) was the exception to this rule, as it used all of the factors 

reflected in the data.  Given that these features were considered noise to the offline 

models, it was proposed that their removal might aid in overall classification quality for 

the online models. 

The question that the discussion in this subsection seeks to answer is “When 

eliminating features determined to be of little use during offline analysis, is overall model 

quality improved for cognitive models?”.  Only some of the features of the total 

datastream were used in the offline-created models of the original researchers, as 

originally shown in Table 18 and reprinted below as Table 29.  Figure 29 shows the 

effect that the removal of these features had on overall cognitive model quality. 
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Table 29 – Summary and example of features used in each created model.  Partial reprint of Table 

18.  No model of Anger above 0.6 ROC value was created with offline approaches. 

 Appendix  Distraction Engagement Workload 

Alpha1 A-1    

Alpha2 A-1    

Gamma1 A-1    

Gamma2 A-1    

Delta A-1    

Beta1 A-1    

Beta2 A-1    

Theta A-1    

Attention A-1    

Meditation A-1    

Left Eye Pupil 
Diameter 

A-5    

Heart A-2 X X  

Chair 1-4 A-4    

Chair 5-8 A-4 X X X 

Motion A-3  X X 

Alpha1Diff A-6    

Alpha2Diff A-6    

Gamma1Diff A-6    

Gamma2Diff A-6    

DeltaDiff A-6    

Beta1Diff A-6    

Beta2Diff A-6    

ThetaDiff A-6    

AttentionDiff A-6    

MeditationDiff A-6    

HeartDiff A-6    

MotionDiff A-6    
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Figure 29 – Summary of realtime cognitive modeling ability across all algorithms using the revised 

parameter settings and reduced feature set for Dataset #1 

When visually comparing Figure 26 to Figure 29 to gauge the effect that feature 

removal might have had on the produced cognitive models, it can be seen that there was 

no noticeable improvement gained from the elimination of “noise” data.  It is clear that 

cognitive models created using the reduced-feature dataset do not achieve the minimum 

quality benchmarks overall.  In the cognitive case, realtime model quality is too low to 

draw a conclusion on the effect of “noise” reduction.  We suspect that the removal of 

features for the cognitive models had a negative effect, but there is not enough data to 
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back this assertion.  It is certain that the feature removal did not aid overall model 

quality, but it is undetermined whether it hurt. 

6.4.7. Cognitive Model Generalization 

The question that the discussion in this subsection seeks to answer is “Does the method 

of creation for realtime cognitive models generalize to a second dataset?”.  We anticipate 

that it will not, given the poor experiences on the cognitive models of Dataset #1.  Figure 

30 shows the results of the experiment to test this hypothesis. 

 

Figure 30 – Summary of realtime supervised, unsupervised, and semi-supervised cognitive modeling 

ability across all algorithms using revised parameter settings on Dataset #2. 
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Except for an early spike in the supervised VW-created models that quickly subsides, it is 

evident from a visual inspection of the curves in Figure 30 that the same algorithms used 

in Dataset #1 were equally unable to create acceptable models of cognitive states with 

Dataset #2.  Given the poor results on the first dataset, this is unsurprising.  Two sets of 

parameters (initial and revised), three labeling approaches (unsupervised, supervised, and 

semi-supervised), a revised input set, and four cognitive models (Distraction, 

Engagement, and Workload, ICA) have failed to produce reliable models.  No further 

attempts to improve this situation were made.  The summary of these experiments is 

included next. 

6.4.8. Cognitive Modeling Summary 

The initial three research questions, and subsequent three new questions, which were 

asked as part of this work are below: 

1a.  Can a quality cognitive model be constructed with fully supervised realtime 

algorithms? 

2a.  Can a quality cognitive model be constructed with unsupervised realtime 

algorithms? 

3a.  Do semi-supervised and active learning approaches improve cognitive model 

quality? 

4.  Does a change of parameter settings to reflect finer-grained clusters create 

higher quality models? 
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5.  Does reducing the set of features to only the features used on cognitive model 

outputs create higher quality models? 

6.  Do the models approaches generalize to another dataset (Dataset #2)? 

Quality realtime models of cognition were not able to be created as part of the work in 

the section which answers each of these research questions regardless of labeling scheme, 

parameter setting, feature set, or Dataset.  In a fair comparison, where the same input data 

is presented to both the offline models and the online models, the offline approaches were 

able to create quality models where the online approaches were not. 

The results of the cognitive modeling experiments on Dataset #1 and Dataset #2 

are disappointing, as no viable cognitive model was able to be created during the course 

of this research.  This is especially discouraging when one examines the contributing 

factors towards cognitive modeling in the previously created models, by others, using 

offline techniques. There are several hypotheses for the failure of the cognitive modeling 

algorithms.  The first hypothesis was that the model quality was degrading over time 

because of bad parameter settings and was addressed through a modification of 

parameters to support smaller overall cluster sizes.  The second hypothesis was that the 

algorithms were ineffectively classifying data that were noisy and was addressed through 

the creation of a set of limited-data results.  The third hypothesis was that the approach 

was viable on another dataset and was addressed through testing on this dataset.  None of 

these approaches were able to produce usable models of cognition. 
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In response to this lack of usable models of cognition, a series of additional 

parameter settings were attempted for ART.  ART is the best-performing algorithm 

across both affect and cognition, and various values of the vigilance parameter were 

attempted.  These were not shown to aid in cognitive model creation, but are included for 

completeness in APPENDIX D. 

6.4.9. Research Question 1b - Supervised Realtime Creation of Affective 

Models 

The question that the discussion within this subsection seeks to answer is “Can a quality 

affective model be constructed with fully supervised realtime algorithms?”.  In order to 

answer this question, models of Anger, Fear, and Boredom were created from Dataset #1 

labels, discussed in section 4.4, using only the supervised methods discussed in Section 

5.4.  Only supervised methods were used in order to construct an apples-to-apples 

comparison of realtime methods using labeled data to offline methods using labeled data.  

The results required to draw this conclusions to this question are presented in Figure 31 

and in the same manner as the previous section, and in Figure 32 using a arrangement 

figure.  These figures are presented with only the “previous” measure taken, as the “all” 

and “next” measures confused the figure for discussion, as previously mentioned in 

Section 6.4.1.  Full results are available within Appendix C-1. 



189 
 

 

Figure 31 – Summary of supervised realtime affective modeling ability across all algorithms using 

the initial parameter settings 
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Figure 32 – Affective modeling quality, as measured over time by AUC ROC on the most recent 10% 

of data, with all algorithms in supervised fashion. 

Figure 31 and Figure 32 generally show that acceptable affective models are able to be 

created in realtime.  All of the methods for ART result in final model quality higher than 

0.7.  The majority of the clustering models also result in comparable quality.  However, 

from visual inspection of these figures, it is clearly evident that VW and GNG were at no 

point in time able to exceed the 0.6 AUC threshold of acceptability.  The complicated and 

dynamic nature of the provided graphs call for a more in-depth discussion of the two 

best-performing methods (ART and clustering).  Table 30, Table 31, and Table 32 focus 

ART inck VW GNG
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this discussion on the ART models, while Table 33, Table 34, and Table 35 focus on the 

clustering models. 

These six tables show the model performance for each user (vertically) across 

time (horizontally).  The average model quality for each user is shown, bolded, on the 

right, as an indication of how well the user was modeled across the training session.  

Average model quality at a given percentage of the data is shown at the bottom.  The 

average average model quality is mathematically equivalent whether it is taken from the 

user average or time average, and is used as an overall indication of quality for numeric 

discussion.  As an example, the number 0.776 will be used as an indication of the quality 

of the supervised ART models of Anger using the initial parameter set, as presented in 

Table 30. 
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Table 30 –Anger model qualities with supervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.54 0.947

4133 0.58 0.58 0.58 0.58 0.54 0.51 0.68 0.69 0.50 0.584

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 1.00 0.67 0.69 0.71 0.70 0.71 0.77 0.82 0.70 0.753

4111 0.63 0.81 0.79 0.78 0.79 0.80 0.79 0.66 0.74 0.756

4115 0.99 0.87 0.95 0.97 0.97 0.90 0.75 0.74 0.75 0.878

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 0.78 0.64 0.65 0.62 0.70 0.78 0.74 0.77 0.79 0.719

4137 1.00 0.76 0.53 0.53 0.53 0.73 0.77 0.77 0.76 0.709

4101 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.50 0.50 0.868

4117 0.56 0.52 0.50 0.50 0.57 0.53 0.58 0.56 0.56 0.545

4102 0.56 0.56 0.56 0.56 0.66 0.50 0.73 0.78 0.50 0.602

4105 0.76 0.70 0.76 0.66 0.65 0.64 0.70 0.70 0.58 0.682

4104 1.00 0.68 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.859

4107 1.00 1.00 0.99 0.63 0.63 0.63 0.63 0.63 0.63 0.749

4106 0.63 0.63 0.50 0.66 0.67 0.64 0.68 0.69 0.70 0.645

4112 0.91 0.64 0.64 0.67 0.58 0.69 0.76 0.77 0.84 0.723

4132 0.87 0.75 0.67 0.70 0.75 0.74 0.74 0.72 0.56 0.724

Average 0.857 0.780 0.772 0.760 0.768 0.772 0.790 0.771 0.712 0.776

17 89%Total Usable (avg ROC >0.6): Percent Usable:  

Except for user #4133 and #4117, the average AUC for the entire time for 19 users are 

above the 0.6 acceptable threshold, and many are well in excess of 0.7.  By any 

definition, these results indicate success in building a realtime model of the Anger state.  

This is especially relevant for the Anger state, as it was not possible to model this state 

with offline methods. 
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Table 31 - Boredom model qualities with supervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.96 0.92 0.92 0.77 0.70 0.71 0.68 0.72 0.58 0.773

4131 0.97 0.66 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.939

4127 0.63 0.67 0.60 0.60 0.53 0.51 0.62 0.51 0.65 0.591

4121 0.80 0.95 0.82 0.81 0.83 0.83 0.81 0.84 0.77 0.829

4111 1.00 1.00 1.00 0.75 0.73 0.79 0.83 0.74 0.79 0.846

4115 1.00 1.00 1.00 0.95 0.63 0.91 0.52 0.79 0.58 0.821

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 0.91 0.78 0.74 0.73 0.76 0.78 0.80 0.81 0.82 0.792

4101 0.66 0.66 0.66 0.64 0.65 0.74 0.72 0.64 0.63 0.665

4117 1.00 0.67 0.52 0.67 0.72 0.51 0.56 0.58 0.59 0.648

4102 0.85 0.79 0.78 0.85 0.80 0.67 0.71 0.76 0.81 0.780

4105 0.80 0.84 0.84 0.69 0.62 0.66 0.63 0.62 0.66 0.708

4104 1.00 1.00 0.75 0.87 0.80 0.74 0.66 0.73 0.75 0.810

4107 1.00 1.00 1.00 0.75 0.79 0.74 0.79 0.79 0.79 0.848

4106 0.65 0.75 0.67 0.75 0.70 0.64 0.70 0.70 0.72 0.699

4112 0.98 0.88 0.88 0.88 0.78 0.78 0.65 0.60 0.58 0.779

4132 1.00 1.00 0.79 0.89 0.84 0.85 0.87 0.86 0.75 0.873

Average 0.906 0.872 0.839 0.800 0.760 0.760 0.743 0.750 0.739 0.796

18 95%Total Usable (avg ROC >0.6): Percent Usable:  

Table 31 shows the results for Boredom using the ART algorithm.  The results for 

Boredom exceed the already excellent results seen for Anger.  95% of the subjects (only 

one exception) were able to be modeled at a AUC of >0.6, with most of them 

significantly higher.  
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 Table 32 - Fear model qualities with supervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.55 0.55 0.55 0.55 0.53 0.51 0.68 0.70 0.59 0.578

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 0.83 0.64 0.79 0.62 0.75 0.75 0.74 0.72 0.66 0.722

4111 0.61 0.53 0.52 0.52 0.52 0.52 0.52 0.54 0.52 0.535

4115 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4137 1.00 0.58 0.54 0.58 0.58 0.58 0.58 0.58 0.58 0.625

4101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4117 0.53 0.51 0.53 0.51 0.51 0.53 0.54 0.54 0.63 0.534

4102 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.51 0.892

4105 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.82 0.960

4104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.64 0.960

4107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4106 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.51 0.895

4112 0.98 0.72 0.71 0.71 0.65 0.73 0.63 0.59 0.57 0.698

4132 0.58 0.67 0.59 0.60 0.52 0.59 0.52 0.56 0.52 0.572

Average 0.898 0.853 0.854 0.847 0.846 0.853 0.853 0.795 0.765 0.841

15 79%Total Usable (avg ROC >0.6): Percent Usable:  

Table 32 shows the Fear models created by the ART method.  For Fear, although the 

variability was greater (only 15 out of 19 subjects were >0.6), the results for 15 were 

clearly excellent, with a final average of 0.841 AUC.  This result, combined with the 

other results, indicate that ART was able to model the affect states very effectively. 
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Table 33 –Anger model qualities with supervised clustering algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.953

4133 0.58 0.58 0.58 0.58 0.53 0.52 0.51 0.50 0.50 0.545

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 0.96 0.61 0.54 0.53 0.57 0.58 0.63 0.63 0.64 0.632

4111 0.55 0.60 0.54 0.58 0.60 0.61 0.62 0.61 0.58 0.589

4115 0.92 0.69 0.69 0.66 0.66 0.61 0.50 0.50 0.50 0.639

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 0.60 0.51 0.56 0.55 0.55 0.50 0.50 0.50 0.50 0.531

4137 1.00 0.71 0.69 0.58 0.53 0.56 0.61 0.58 0.61 0.652

4101 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.50 0.50 0.835

4117 0.56 0.53 0.56 0.50 0.50 0.49 0.54 0.54 0.51 0.526

4102 0.56 0.56 0.56 0.56 0.51 0.50 0.50 0.50 0.50 0.531

4105 0.49 0.51 0.57 0.62 0.64 0.64 0.63 0.63 0.62 0.596

4104 1.00 0.54 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.570

4107 1.00 1.00 1.00 0.63 0.63 0.63 0.63 0.63 0.63 0.750

4106 0.59 0.52 0.50 0.50 0.53 0.52 0.50 0.50 0.50 0.519

4112 0.62 0.54 0.54 0.53 0.53 0.58 0.62 0.65 0.50 0.570

4132 0.51 0.53 0.50 0.50 0.50 0.52 0.53 0.50 0.50 0.511

Average 0.787 0.706 0.702 0.676 0.674 0.673 0.651 0.648 0.616 0.681

9 47%Total Usable (avg ROC >0.6): Percent Usable:  

The results for the clustering algorithm for the Anger model indicate a successful 

modeling process, but not nearly as effective as what was seen with ART in Table 30.  

Nevertheless, the total average AUC of 0.681 is in the acceptable level.  The other mildly 

disappointing results is that only 9 of the 19 subjects (47%) scored an average AUC of 

>0.6. 
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Table 34 - Boredom model qualities with supervised clustering algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.51 0.51 0.51 0.51 0.50 0.54 0.53 0.50 0.50 0.513

4131 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4127 0.58 0.58 0.57 0.57 0.54 0.54 0.51 0.51 0.51 0.546

4121 0.66 0.56 0.56 0.54 0.54 0.63 0.71 0.68 0.69 0.620

4111 1.00 1.00 1.00 0.74 0.58 0.60 0.62 0.61 0.53 0.741

4115 1.00 1.00 0.99 0.55 0.53 0.53 0.53 0.53 0.53 0.686

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 0.97 0.66 0.51 0.53 0.51 0.51 0.51 0.51 0.51 0.579

4101 0.52 0.52 0.52 0.52 0.64 0.57 0.57 0.57 0.56 0.553

4117 1.00 0.67 0.52 0.55 0.58 0.55 0.51 0.50 0.50 0.597

4102 0.76 0.67 0.60 0.60 0.63 0.60 0.57 0.57 0.57 0.619

4105 0.53 0.51 0.51 0.54 0.62 0.62 0.56 0.56 0.52 0.552

4104 1.00 1.00 0.56 0.55 0.52 0.50 0.50 0.50 0.50 0.627

4107 1.00 1.00 1.00 0.61 0.58 0.59 0.59 0.59 0.59 0.728

4106 0.55 0.55 0.52 0.52 0.53 0.51 0.51 0.50 0.50 0.521

4112 0.61 0.63 0.60 0.59 0.58 0.61 0.58 0.55 0.55 0.589

4132 0.51 0.54 0.51 0.54 0.51 0.51 0.50 0.50 0.50 0.514

Average 0.773 0.732 0.685 0.610 0.605 0.607 0.600 0.594 0.588 0.644

9 47%Total Usable (avg ROC >0.6): Percent Usable:  

The results for the Boredom state with the clustering algorithm are roughly similar to 

those found for the Anger state of Table 33; they are good, but not as good as the results 

for the ART algorithm.  Despite the fact that only 47% of models were worthwhile for 

participants, the total value of 0.644 indicates that they are usable, on average. 
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Table 35 - Fear model qualities with supervised clustering algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.55 0.55 0.55 0.55 0.52 0.52 0.51 0.50 0.52 0.530

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 0.60 0.58 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.527

4111 0.56 0.53 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.525

4115 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4137 1.00 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.593

4101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4117 0.53 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.509

4102 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.51 0.892

4105 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.56 0.50 0.896

4104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.946

4107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4106 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.50 0.890

4112 0.61 0.57 0.58 0.55 0.55 0.59 0.57 0.55 0.54 0.568

4132 0.52 0.52 0.50 0.50 0.50 0.50 0.50 0.51 0.50 0.507

Average 0.861 0.831 0.828 0.826 0.824 0.826 0.825 0.748 0.718 0.810

12 63%Total Usable (avg ROC >0.6): Percent Usable:  

The Fear model created with the clustering algorithm fared much better than the prior two 

models.  The 0.81 average AUC value is excellent.  However, the 63% usability number, 

while better than obtained for Anger or Boredom, is shy of what was obtained through 

the ART approach.  The offline methods, using all available labeled data, created models 

of Anger, Fear, and Boredom of <0.6, 0.83, and 0.79 in quality, respectively (see Table 

22), resulting in an ability to create two of the three models.  A model of Anger was not 

successfully created through offline experimentation. 
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This can be compared with the ART ability to produce models of 0.776, 0.796, 

and 0.841 (for Anger, Fear, and Boredom) in overall model quality when using the 

recommended parameter settings.  Supervised ART is able to successfully model, using 

an infinitesimal fraction of the total data at a time, with little overall degradation in 

quality.  This fraction represents one datapoint, rather than the use of all datapoints, and 

corresponds to approximately 0.1% of the total for a participant, and a much smaller 

fraction when thinking about a model built from multiple participants.  Clustering 

methods are additionally able to create models with overall quality greater than 0.6, with 

values of 0.681, 0.644, and 0.810.  It is clear that fully supervised realtime methods can 

perform comparably to the fully supervised offline methods.  The individualized ART 

models generally outperform their generalized offline equivalents in all cases, as shown 

clearly in Table 36, which compares the supervised results. 

Table 36 – Summary of supervised ART (Table 30, Table 31, Table 32) and clustering (Table 33, 

Table 34, Table 35) when compared against the offline equivalents. 

Model Anger Fear Boredom 

Offline NA (<0.6) 0.83 0.79 

ART 0.776 0.841 0.796 

Clustering 0.681 0.810 0.644 

 

The models produced using the online regression in VW and SOMs in GNG are not 

discussed in the above table as they did not reach sufficient levels of quality.  The ART 

and clustering approaches taken in this dissertation clearly outperformed the VW and 

GNG approaches.  Reasons for this trend are discussed next, before resuming the 

discussion of the various research questions. 
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6.4.10. Discussions of Specific Algorithms 

Now that a few results graphs and tables have been presented, it is appropriate to discuss 

general trends among algorithms reflected in the remaining results graphs throughout this 

chapter, using the initial figures as the example.  The first of these algorithmic trends is 

that the GNG methods do not obey the trends seen in this other algorithms of the data.  

The second is the performance of VW.  These trends are discussed below, before 

returning to the discussion of research questions. 

6.4.10.1. GROWING NEURAL GASSES BEHAVES DIFFERENTLY 

Growing Neural Gas is a relatively new technique for pattern recognition.  It has seen 

increasing use in the research areas of image recognition (García-Rodríguez et al. 2007) 

and topology learning (Prudent and Ennaji 2005).  Our previous research has revealed 

that it responds well to the injection of uniform noise information (Brawner and Gonzalez 

2011).  Fundamentally, the GNG approach creates an overlay to the data which detects 

edges in patterns and forms the areas interior to the edges into clusters.  The boundary 

edges clusters serve to identify unique groups of data among the dimensions of the input 

space. 

 When data are closely aligned in the sampling space, segmentation of the data 

becomes difficult.  Figure 33 shows the classification of normalized raw EEG 

information via the GNG approach, where only five classes of data are established during 

one hour of raw data, with one class covering the vast majority of the sampling space.  As 

a reference, a clustering approach similar to the one taken in this dissertation established 
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thirty classes of data on the same dataset, with approximately even division among them 

(Brawner and Gonzalez 2011). 

 

Figure 33 – Plot of normalized “Engagement” metric (x-axis) against “Short Term Excitement” (y-

axis).  Data is measured from the eMotive EEG Sensor using a slightly different GNG approach.  For 

more information, see (Brawner and Gonzalez 2011).  The left side of the image shows raw data while 

the right side shows classification categories.  GNG is implemented in an unsupervised fashion, and 

creates one large cluster. 

The graphs plotted in APPENDIX A show that the dataset has raw features that are not 

clearly segmentable over time.  Additionally, the features have a tendency to move 

through the sampling space fluidly, leading to difficulty in establishment of classification 

boundaries.  These two features of the data determine the approach of the GNG algorithm 

on the problem, leading to a general trend that the GNG approach establishes one large 

classification cluster of the entire sampling space.  This large cluster grows until it has 

encompassed all of the data available, with few exceptions.  The ROC measure for such a 

cluster is 0.5.  While the GNG algorithm appears to “improve” in quality over time and 
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eventually reaches 0.5 AUC, it is a model of the baseline majority-class classifier, and 

does not produce usable models for any of the research questions of interest. 

The observation that GNG does not produce usable models in any condition 

renders the safe removal of the approach from the discussion throughout this chapter.  

This phenomenon is surprising.  The Online Semi-Supervised Growing Neural Gas 

(OSSGNG) models implemented by Beyer and Cimiano is the only approach in this 

dissertation which met all of the realtime AI algorithm checklist features shown in Table 

21 (Beyer and Cimiano 2011).  The consistently best performing algorithms were the 

ones we invented or most heavily modified for adaption to this work, rather than the 

approaches which were invented for the solution of this problem.  

6.4.10.2. VOWPAL WABBIT UNDERPERFORMS 

Each algorithm models a different AI approach.  While GNG represents a topographical 

overlay of the data, VW represents an approach to linear regression modeling.  VW 

adjusts weight vectors towards classes of labeled data, which increases a reliance on 

labeling information.  When there are few states and feature sets in which to model, VW 

performs much better than the other algorithms. 

New concept detection, however, has disastrous results in its overall performance.  

VW degrades to minimum performance quickly, and does not display any aptitude 

towards individual model recovery (as seen in the clustering and ART tables).   The 

brittleness of the VW models is displayed through the remaining chapter.  Although VW 

will have an initially higher performance standard, when compared to the rest of the AI 
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implemented in this dissertation, it will also have baseline performance for the longest 

period of time.  The discussion of VW has been ignored in favor of discussion with ART 

and clustering, as the overall performance is lower, the models behave in more brittle 

fashion, the least amount of performance boost from labeling information is observed, 

and it was generally implemented for comparison against offline linear regression 

models. 

6.4.11. Research Question 2b - Unsupervised Affective Model Creation 

The question that the discussion within this subsection seeks to answer is “Can a quality 

affective model be constructed with unsupervised realtime algorithms?”.  Only 

unsupervised versions of the methods in Section 5.4 were used in this section, as they are 

the only version able to be modeled without the benefit of labels.  If models of reasonable 

quality are able to be created without the use of labeled information, this would mark a 

significant extension to the original work, as models of users could be created without 

their direct knowledge or interaction, aside from sensor measurement.  A realtime model 

created without labeling information is able to forego the stage of asking the user about 

their affective state, and instead use this time for training within the ITS.  Figure 34 and 

Figure 35 show the initial results of this experiment in the same fashion as the previous 

section. 
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Figure 34 – Summary of realtime unsupervised affective modeling ability across all algorithms using 

initial parameter settings 
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Figure 35 – Affective modeling quality, as measured over time by AUC ROC on the most recent 10% 

of data, with all algorithms in unsupervised fashion. 

 

Once again, the performance of the models is difficult to grasp directly from visual 

inspection, and warrants a closer look into the results obtained.  Table 37, Table 38, and 

Table 39 show the quality of ART created models without labeling information over 

time, while Table 40, Table 41, Table 42 show similar information for clustering.  Table 

43 summarizes the results of these tables.  These tables show the numeric information for 

all models and all participants in order to conduct logical comparison of the resultant 

degradation in model quality. 

ART inck VW GNG
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Table 37 – Anger model qualities with unsupervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.949

4133 0.58 0.58 0.58 0.58 0.52 0.50 0.50 0.50 0.50 0.540

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 1.00 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.560

4111 0.56 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.509

4115 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.559

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.506

4137 1.00 0.56 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.570

4101 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.50 0.50 0.835

4117 0.56 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.510

4102 0.56 0.56 0.56 0.56 0.51 0.50 0.50 0.50 0.50 0.531

4105 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4104 1.00 0.54 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.565

4107 1.00 1.00 1.00 0.63 0.63 0.63 0.63 0.63 0.63 0.750

4106 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4112 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4132 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.504

Average 0.781 0.674 0.668 0.648 0.642 0.641 0.614 0.614 0.589 0.652

6 32%Total Usable (avg ROC >0.6): Percent Usable:  

Overall, a model of Anger is able to be created from the unsupervised version of the ART 

algorithm which is usable, on average.  This averagely usable model is only usable for a 

total of 32% of the participants, due to the nature of the modeling approach.  The offline 

approaches to a model of Anger were not able to produce a model in quality greater than 

0.6 with supervised labeling approaches, while the online models without labels are able 

to create a model with 0.65 in quality, effectively outperforming the offline models.  
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Table 38 – Boredom model qualities with unsupervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.504

4131 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4127 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4121 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.50 0.50 0.510

4111 1.00 1.00 1.00 0.75 0.51 0.50 0.50 0.50 0.50 0.696

4115 1.00 1.00 1.00 0.51 0.51 0.51 0.51 0.51 0.51 0.673

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.511

4101 0.52 0.52 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.508

4117 1.00 0.67 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.579

4102 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.558

4105 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.506

4104 1.00 1.00 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.615

4107 1.00 1.00 1.00 0.56 0.52 0.52 0.52 0.52 0.52 0.687

4106 0.53 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.508

4112 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.507

4132 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.505

Average 0.745 0.701 0.666 0.580 0.564 0.563 0.563 0.563 0.563 0.612

7 37%Total Usable (avg ROC >0.6): Percent Usable:  

Boredom model qualities using the ART algorithm in unsupervised fashion are roughly 

equivalent to the qualities produced for models of Anger.  This results in an overall value 

of 0.612, which is usable for 37% of the subject population.  These are encouraging 

results, considering no information on the actual state of the participant was given in this 

approach. 
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Table 39 – Fear model qualities with unsupervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.55 0.55 0.55 0.55 0.52 0.50 0.50 0.50 0.50 0.525

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 0.54 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4111 0.56 0.53 0.52 0.52 0.52 0.52 0.52 0.51 0.50 0.524

4115 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4137 1.00 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.593

4101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4117 0.53 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.510

4102 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.51 0.892

4105 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.56 0.50 0.896

4104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.946

4107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4106 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.50 0.891

4112 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4132 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.507

Average 0.853 0.824 0.823 0.823 0.821 0.821 0.820 0.745 0.715 0.805

12 63%Total Usable (avg ROC >0.6): Percent Usable:  

Unsupervised models of Fear created by the ART algorithm are comparable in quality to 

their supervised versions.  When comparing the unsupervised models (0.805) with their 

supervised equivalents (0.841), one can draw the conclusion that the introduction of 

labeling information does not aid significantly.  Labeling information boosted overall 

quality, and created 3 additional usable models for individual participants, but involved 

an unrealistic amount of information.  It is hoped that semi-supervised information can 

bridge the gap between these created models.  
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Table 40 – Anger model qualities with unsupervised clustering algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.949

4133 0.58 0.58 0.58 0.58 0.52 0.50 0.50 0.50 0.50 0.540

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 1.00 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.560

4111 0.56 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.509

4115 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.559

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.506

4137 1.00 0.56 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.570

4101 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.50 0.50 0.835

4117 0.56 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.510

4102 0.56 0.56 0.56 0.56 0.51 0.50 0.50 0.50 0.50 0.531

4105 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4104 1.00 0.54 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.565

4107 1.00 1.00 1.00 0.63 0.63 0.63 0.63 0.63 0.63 0.750

4106 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4112 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4132 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.504

Average 0.781 0.674 0.668 0.648 0.642 0.641 0.614 0.614 0.589 0.652

6 32%Total Usable (avg ROC >0.6): Percent Usable:  

The performance of unsupervised Anger models created using clustering is barely 

acceptable, with total quality levels of 0.652.  Clustering and ART modeled these states 

nearly identically, and outperform their offline equivalents with labeled data.  While 

barely acceptable, it is worthwhile to note that this closely marks the real world 

performance, when labeling information is not present. 
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Table 41 – Boredom model qualities with unsupervised clustering algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.506

4131 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4127 0.54 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.507

4121 0.54 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.508

4111 1.00 1.00 1.00 0.75 0.51 0.50 0.50 0.50 0.50 0.696

4115 1.00 1.00 1.00 0.51 0.51 0.51 0.51 0.51 0.51 0.673

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 1.00 0.53 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.562

4101 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4117 1.00 0.67 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.579

4102 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.558

4105 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4104 1.00 1.00 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.615

4107 1.00 1.00 1.00 0.56 0.52 0.52 0.52 0.52 0.52 0.687

4106 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4112 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4132 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

Average 0.770 0.697 0.662 0.577 0.562 0.561 0.561 0.561 0.561 0.612

7 37%Total Usable (avg ROC >0.6): Percent Usable:  

The overall unsupervised Boredom model qualities produced by clustering are 

comparable to the similar ones produced by ART, as they both reflect 0.612 in aggregate.  

Each of these produced 7 individually usable participant models without any labeling 

information. 
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Table 42 – Fear model qualities with unsupervised clustering algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.55 0.55 0.55 0.55 0.52 0.50 0.50 0.50 0.50 0.525

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 0.54 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4111 0.56 0.53 0.52 0.52 0.52 0.52 0.52 0.51 0.50 0.524

4115 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4137 1.00 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.593

4101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4117 0.53 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.510

4102 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.51 0.892

4105 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.56 0.50 0.896

4104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.946

4107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4106 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.50 0.891

4112 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4132 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.507

Average 0.853 0.824 0.823 0.823 0.821 0.821 0.820 0.745 0.715 0.805

12 63%Total Usable (avg ROC >0.6): Percent Usable:  

Unsupervised models of Fear created using clustering are comparable to their supervised 

versions as they produced aggregate values of 0.805 and 0.810, respectively.  This leads 

to the conclusion that labeling information was not particularly helpful in the 

establishment of categories of data for this affective state.  Now that each of the three 

models of Anger, Boredom, and Fear have been briefly discussed with clustering and 

ART, they can be summarily discussed with the aid of the below table. 
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Table 43 – Summary of supervised ART (Table 30, Table 31, Table 32) and clustering (Table 33, 

Table 34, Table 35) when compared against unsupervised version of ART (Table 37, Table 38, and 

Table 39) and clustering (Table 40, Table 41, Table 42)  

Model Anger Boredom Fear 

Supervised ART 0.776 0.796 0.841 

Unsupervised ART 0.652 0.612 0.805 

Change -0.124 -0.184 -0.036 

    

Supervised Clustering 0.681 0.644 0.810 

Unsupervised Clustering 0.652 0.612 0.805 

Change -0.029 -0.032 -0.005 

 

Firstly, the reader will note that there is not any improvement of an individual model over 

time within the unsupervised versions of these models.  As an example, the supervised 

ART Fear model User 4121 (Table 32) improves over time, from a low of 0.62 to a high 

of 0.75.  The same model for this user, when constructed without supervision (Table 39), 

starts at 0.54 and never recovers, ending with a 0.51 value.  Labeling information allows 

for higher quality model construction when state changes are not obvious to the 

algorithm.  The idea that being algorithmically informed of labels allows a model to 

better predict labeling information is intuitive, and is expressly confirmed in the resulting 

data. 

Secondly, it is obvious from Table 36 that the unsupervised models are poorer in 

overall quality.  The use of labeling information allows models to be of higher quality 

overall.  These algorithms, however, are created for their use in real world settings, where 

labeling information is not available with fine resolution.  There is no comparison against 

offline models for unsupervised models, as the offline models are not predicted to be 

useful, for the reasons of transferability discussed in Chapter 2.  The testing of 
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unsupervised parameters allows the researcher to estimate how well constructed model 

quality will be within the field of use. 

In general, with model qualities of 0.652, 0.612, 0.805 for the Anger, Boredom, 

and Fear models, respectively, making them barely usable.  Only a model of Fear is able 

to be both good in quality and created in realtime for users, on average.  Even the model 

of Fear is only reliable for two thirds of the population, while the other models are usable 

for approximately one third of the population.  It is worth noting that the models of Anger 

and Boredom approach meaningful levels of classification using VW, clustering, and 

ART methods of creation.  The tuning of parameters in a similar fashion to the cognitive 

models of Section 6.4.5 is performed in order to attempt to gain quality improvements 

through finer-grained cluster sizes. 

The question that this subsection attempts to answer is “Can a quality affective 

model be constructed with unsupervised realtime algorithms?”.  The answer to the 

question is that a quality affective model can be made in realtime, but may not be valid 

for a significant portion of the population.  There are several implications of this finding, 

which depend on the perspective field.  The fields considered in this section are the field 

of Intelligent Tutoring Systems and the field of psychology, and are discussed next. 

From a psychological perspective, the reason for this bifurcated behavior is 

simple: some users are more expressive than others.  Unsupervised models were created 

without in-depth labeling information about user state.  If a user is expressive about their 

state (e.g. physically recoiling from the computer, clear change in heart rate, etc.), then 
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in-depth labels are not required.  The algorithm will model this state transition and does 

not require information about the new state for quality model construction.  Users which 

present distinct states need little labeling information, leading to quality models despite 

lack of labeling information. 

From an ITS perspective, information about participant state is not required at 

millisecond-by-millisecond resolution, as instructional interventions operate on a longer 

timescale.  The ITS is interested in states when they have known labels, which is not 

possible under a completely unsupervised approach.  Affective models only need to 

occasionally communicate information about student state to an instructional engine, as 

changes to instruction within an ITS occur infrequently.  A model should communicate 

information only when the state is known, which makes use of semi-supervised 

approaches.   

Having a model which is only occasionally reliable is acceptable to ITS systems 

in two occasions.  The first occasion is that it does not communicate unreliable 

information, or only communicates state information when the state is known.  The 

second occasion is if it informs the ITS of its reliability.  An example of this is an 

affective model which communicates a message such as “This module has only 5% 

confidence that this user is Bored”. 

The reader should observe that it is not possible with realtime individualized 

completely unsupervised approaches to communicate information such as “Bored”.  

Instead, the algorithm communicates “Cluster 5”.  While “Cluster 5” may be a quality 
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model of state, as shown in Table 36, it has little instructional meaning.  It would be more 

desirable to communicate this state as “Bored”. 

Unsupervised models were created in order to represent the worst possible 

performance of labeled information.  This sets the lower bound for comparison of the 

semi-supervised methods which closer approximate the real world problem, as discussed 

in Section 5.2.  This lower bound can be compared against the two established fully 

supervised bounds presented by offline and online approaches. 

Garnering information about the learner to give mostly-unsupervised algorithms 

information about the true state and an estimate of reliability is undertaken in section 

6.4.12, with a discussion of semi-supervised learning methods.  Additionally, it is 

possible that this information can be used to build higher quality models, as part of well-

reasoned active learning selections of labeled datapoints. 

6.4.12. Research Question 3b - Semi-Supervised and Active Learning for 

Affective Models 

The question that the discussion within this subsection seeks to answer is “Do semi-

supervised and active learning approaches improve affective model quality?”.  As 

discussed in Section 5.2, it is possible to ask the user directly, on occasion, for a point of 

labeled data.  For the models with barely acceptable average quality, does the injection of 

the occasional label help?  Figure 36 and Figure 37 graphically show the effect that this 

has on overall model quality.  
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Figure 36 – Summary of realtime semi-supervised affective modeling ability across all algorithms 

using initial parameter settings 
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Figure 37 – Affective modeling quality, as measured over time by AUC ROC on the most recent 10% 

of data, with all algorithms in semi-supervised fashion. 

The answer, when comparing Figure 36 and Figure 37 to Figure 34 and Figure 35, is 

unclear.  Once again, the graphs of Figure 36 and Figure 37 should be examined in 

further depth to determine exactly the effect that semi-supervision had on overall quality.  

This is performed within the semi-supervised ART tables (Table 44, Table 45, Table 46) 

and semi-supervised clustering table (Table 47, Table 48, Table 49), for the two best 

performing methods.  These results are summarized across all tables in Table 50, before 

discussion. 

ART inck VW GNG
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 VW performed poorly on two of the three models.  Additionally, VW still 

experiences the brittleness discussed earlier.  Given these two items, the discussion of the 

following tables will focus on the two best performing algorithms (ART and clustering), 

as these are the most likely to be useful in the field. 

Table 44 – Anger model qualities with semi-supervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.949

4133 0.58 0.58 0.58 0.58 0.52 0.50 0.50 0.50 0.50 0.540

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 1.00 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.560

4111 0.56 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.509

4115 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.559

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.506

4137 1.00 0.56 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.570

4101 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.50 0.50 0.835

4117 0.56 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.510

4102 0.56 0.56 0.56 0.56 0.51 0.50 0.50 0.50 0.50 0.531

4105 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4104 1.00 0.54 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.565

4107 1.00 1.00 1.00 0.63 0.63 0.63 0.63 0.63 0.63 0.750

4106 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4112 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4132 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.504

Average 0.781 0.674 0.668 0.648 0.642 0.641 0.614 0.614 0.589 0.652

6 32%Total Usable (avg ROC >0.6): Percent Usable:  

Semi-supervised methods of creating models of Anger have no effect on the overall 

quality of models created, when compared to the unsupervised models.  While they give 

context, as discussed above, they do not outperform the offline approaches.  
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Table 45 – Boredom model qualities with semi-supervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.504

4131 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4127 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4121 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.50 0.50 0.510

4111 1.00 1.00 1.00 0.75 0.51 0.50 0.50 0.50 0.50 0.696

4115 1.00 1.00 1.00 0.51 0.51 0.51 0.51 0.51 0.51 0.673

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.511

4101 0.52 0.52 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.508

4117 1.00 0.67 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.579

4102 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.558

4105 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.506

4104 1.00 1.00 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.615

4107 1.00 1.00 1.00 0.56 0.52 0.52 0.52 0.52 0.52 0.687

4106 0.53 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.508

4112 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.507

4132 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.505

Average 0.745 0.701 0.666 0.580 0.564 0.563 0.563 0.563 0.563 0.612

7 37%Total Usable (avg ROC >0.6): Percent Usable:  

Similar to semi-supervised ART models of Anger, the semi-supervised ART models of 

Boredom experienced no improvement in quality due to the injection of labeling 

information.  The quality produced in this fashion is identical to the quality produced via 

unsupervised clustering models, and is barely acceptable overall. 
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Table 46 – Fear model qualities with semi-supervised ART algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.55 0.55 0.55 0.55 0.52 0.50 0.50 0.50 0.50 0.525

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4121 0.54 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4111 0.56 0.53 0.52 0.52 0.52 0.52 0.52 0.51 0.50 0.524

4115 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4137 1.00 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.593

4101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4117 0.53 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.510

4102 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.52 0.51 0.892

4105 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.56 0.50 0.896

4104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.946

4107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4106 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.50 0.891

4112 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4132 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.507

Average 0.853 0.824 0.823 0.823 0.821 0.821 0.820 0.745 0.715 0.805

12 63%Total Usable (avg ROC >0.6): Percent Usable:  

As noted for the semi-supervised ART models of Boredom, the semi-supervised ART 

models of Fear obtained quality which matches the unsupervised clustering and ART 

models.  While it adds context, the semi-supervision added to ART has not, in any case, 

produced more usable models or higher overall quality.  This finding is discussed in 

greater depth after an examination of the clustering performance. 
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Table 47 – Anger model qualities with semi-supervised clustering algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4133 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4131 0.51 1.00 0.50 0.50 0.50 0.50 0.50 0.63 0.50 0.572

4127 1.00 0.54 1.00 0.51 0.63 0.63 0.63 0.51 0.63 0.672

4121 1.00 0.50 0.51 0.50 0.51 0.51 0.51 0.50 0.51 0.560

4111 0.51 0.56 0.50 0.56 0.50 0.50 0.50 0.50 0.50 0.516

4115 0.56 0.51 0.56 0.50 0.51 0.50 0.50 0.50 0.50 0.518

4135 0.56 1.00 0.50 0.51 0.50 0.50 0.50 0.51 0.50 0.566

4136 1.00 0.51 1.00 0.50 1.00 1.00 0.51 0.50 0.50 0.724

4137 1.00 0.51 0.51 1.00 0.51 0.51 0.51 1.00 0.50 0.674

4101 0.53 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.561

4117 1.00 1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 0.890

4102 1.00 0.58 0.50 0.51 0.50 0.50 0.50 1.00 0.50 0.623

4105 1.00 1.00 0.50 1.00 0.50 0.50 0.50 1.00 0.50 0.724

4104 1.00 0.75 0.51 0.58 1.00 1.00 0.50 0.50 1.00 0.761

4107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4106 0.58 0.79 1.00 0.76 0.52 0.50 1.00 0.75 0.50 0.712

4112 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.889

4132 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.52 0.895

Average 0.804 0.751 0.690 0.655 0.668 0.667 0.640 0.629 0.588 0.677

11 58%Total Usable (avg ROC >0.6): Percent Usable:  

Semi-supervised methods of clustering have increased overall model quality 

significantly, when compared to the unsupervised approaches.  In order of discussion, 

from supervised, to unsupervised, to semi-supervised, overall model quality for Anger is 

0.681, 0.652, and 0.677, which indicates that semi-supervision has increased overall 

quality. 

The more interesting finding is that semi-supervision has increased the number of 

individually usable models.  Unsupervised methods produce 6 usable models, while 

supervised methods result in 9 usable models.  Semi-supervised methods have targeted 
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the most relevant data points, resulting in 11 individually usable models, which is greater 

than in either other case.  The invention of the clustering method of semi-supervision is a 

significant contribution, as it boosts overall model quality while significantly increasing 

the number of usable models.  This finding is discussed in greater depth in the summary 

section. 

Table 48 – Boredom model qualities with semi-supervised clustering algorithm using initial 

parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4133 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4131 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.612

4127 1.00 1.00 1.00 0.56 0.52 0.52 0.52 0.52 0.52 0.687

4121 0.51 0.50 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.505

4111 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.557

4115 1.00 0.53 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.560

4135 0.51 1.00 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.561

4136 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.613

4137 1.00 1.00 0.51 0.51 0.51 0.50 0.60 0.50 0.60 0.637

4101 1.00 1.00 1.00 0.60 0.60 0.60 1.00 0.60 1.00 0.822

4117 1.00 0.51 1.00 1.00 1.00 1.00 0.51 1.00 0.51 0.836

4102 1.00 0.50 1.00 0.51 0.51 0.51 0.50 0.51 0.50 0.617

4105 0.54 0.51 1.00 0.50 0.51 0.50 0.50 0.50 0.50 0.563

4104 0.54 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.562

4107 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4106 0.51 0.51 0.50 0.51 0.50 0.50 0.50 0.50 1.00 0.559

4112 1.00 0.76 0.51 1.00 0.50 0.50 1.00 0.50 0.50 0.697

4132 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

Average 0.796 0.728 0.662 0.590 0.562 0.561 0.587 0.561 0.587 0.626

9 47%Total Usable (avg ROC >0.6): Percent Usable:  

The semi-supervised models of Boredom created by the online clustering algorithm have 

similar findings to those discussed in the Anger section.  The added semi-supervision 

produced model quality less than full supervision, but greater than no supervision.  The 
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more interesting finding is that semi-supervised methods have produced as many usable 

individual models as fully supervised methods.  This finding is discussed in greater depth 

in the summary section. 

Table 49 – Fear model qualities with semi-supervised clustering algorithm using initial parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.506

4133 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00 0.946

4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.946

4121 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.945

4111 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.56 0.51 0.896

4115 0.53 0.51 1.00 1.00 1.00 1.00 1.00 0.52 0.50 0.784

4135 1.00 1.00 0.51 0.51 0.51 0.51 0.51 0.51 1.00 0.672

4136 1.00 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.949

4137 1.00 1.00 0.54 1.00 0.54 0.54 0.54 0.54 1.00 0.745

4101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4117 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.945

4102 0.56 0.53 1.00 0.52 1.00 1.00 1.00 1.00 0.51 0.791

4105 0.54 0.52 0.52 0.51 0.52 0.52 0.52 0.51 1.00 0.575

4104 1.00 1.00 0.51 1.00 0.51 0.51 0.51 0.51 1.00 0.727

4107 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.945

4106 0.55 0.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.900

4112 1.00 1.00 0.55 0.53 0.52 0.50 0.50 0.50 0.50 0.623

4132 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

Average 0.853 0.824 0.823 0.846 0.821 0.821 0.820 0.745 0.739 0.810

16 84%Total Usable (avg ROC >0.6): Percent Usable:  

As observed with the semi-supervised clustering models of Anger and Boredom, the 

occasional labeled data point has significantly increased the number of usable models.  

Both full supervision and no supervision resulted in 12 individually usable models of 

Fear, while semi-supervision resulted in 16.  Average model quality in the semi-
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supervised case is identical to the fully supervised case, despite the significant 

withholding of labeled information. 

Table 50 – Summary of all ART and clustering tables thus far 

Model Anger Boredom Fear 

Supervised ART 0.776 0.796 0.841 

Unsupervised ART 0.652 0.612 0.805 

Semi-Supervised ART 0.652 0.612 0.805 

    

Supervised Clustering 0.681 0.644 0.810 

Unsupervised Clustering 0.652 0.612 0.805 

Semi-Supervised Clustering 0.677 0.626 0.810 

 

Firstly, the reader should note the effect that semi-supervised methods have had on the 

ART and clustering algorithms.   They have had no effect on ART performance, while 

having significant effect on clustering quality.  The reasons for this are discussed next. 

 The occasional labeled point did not help ART performance.  The reason for this 

how labeling information is used in the establishment of clusters in Section 5.4.3.  

Labeling information is used to separate one cluster from another.  When only five labels 

are given to the data, and these are only given to the largest class of data, there is not 

enough differentiation to have an effect on the model.  The labeling information given to 

ART is merely associating a label with an existing cluster, rather than aiding in the 

establishment of a new cluster. 

 Active learning is performed differently in each algorithmic case.  In brief, ART 

requests the label of the largest cluster, VW selects a point which minimizes the 

hypothesis error, GNG selects the centroid of an established network, and clustering 
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requests the label of the last datapoint seen on the largest cluster.  The approach taken 

with clustering selects a point which, according to Table 47, Table 48, Table 49, was 

misclassified.  This selection results in the improvement of the model. 

 Using Anger as an example, supervised clustering produces nine usable models 

while unsupervised clustering produces only six.  Semi-supervised approaches lead to the 

production of eleven usable models.  This gain in performance furthers a deeper look into 

how many models were usable across each method and labeling scheme, and is shown in 

Table 51. 

Table 51 – Summary of all ART and clustering usable models thus far.  Each number represents how 

many usable affective models were created, of 19 total. 

Model Anger Boredom Fear 

Supervised ART 17 18 15 

Unsupervised ART 6 7 12 

Semi-Supervised ART 6 7 12 

    

Supervised Clustering 9 9 12 

Unsupervised Clustering 6 7 12 

Semi-Supervised Clustering 11 9 16 

 

Semi-supervised clustering redeems a number of the models of affect.  It outperforms 

unsupervised and semi-supervised ART, as well as all of the other methods of clustering.  

This performance is done with only five labeled datapoints per user, and their intelligent 

selection, while remaining realtime appropriate.  The selection, in the instance of 

clustering, is determined by the last point which was categorized to be belonging to the 

largest class of unlabeled data.  The selection of an appropriate datapoint to label can 

remove the confusion caused by numerous inconsistent labels, which is why it 
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outperforms supervised clustering.  This selection is also used to give meaning to 

unsupervised clusters, which boosts overall model performance. The story of the success 

of semi-supervised clustering is best told in the story of User 4117, shown below in Table 

52. 

Table 52 – Differing supervision of clustering for User 4117 Anger models 

clustering labeling User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

supervised 4117 0.563 0.527 0.555 0.503 0.503 0.490 0.545 0.541 0.510 0.526

unsupervised 4117 0.563 0.510 0.504 0.503 0.503 0.503 0.502 0.501 0.501 0.510

semi-supervised 4117 1.000 1.000 1.000 0.503 1.000 1.000 1.000 0.503 1.000 0.890

 

The algorithmic selection of five labeling points belonging to the largest class of data for 

User 4117 boosts performance from unacceptable levels to near-perfect levels.  This 

occurs though labeling conflict, where a cluster has multiple conflicting labels.  The 

approach of using a point which is representative of the cluster to determine the total 

cluster label redeems data which may have previously been misclassified. 

 However, as mentioned in the preceding section, each algorithm is not able to 

draw conclusions from the data classifications without the injection of the occasional 

point.  Each algorithm must identify a group of datapoints as “Cluster #1” or “Category 

4”.  These unsupervised classification mechanisms are not useful to an ITS, despite that 

they may be accurately modeling the individual.  Giving context, via a labeled datapoint 

request, to a previously established cluster is an important part of ITS research.  This 

allows the algorithm to associate “Cluster 1” with “Boredom”, which has instructional 

implications.  The finding from this section is that infrequently requesting labeled 
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datapoints both aids in overall model quality and allows for the establishment of 

instructional meaning.  The answer to the question of “Do semi-supervised and active 

learning approaches improve affective model quality?” is “Yes, it helps to both establish 

cluster meaning and to improve overall model quality.” 

6.4.13. Revised Parameter Settings for Affective Models 

While the cognitive models presented in Section 6.4.5 did not benefit from the creation of 

smaller cluster sizes, it is possible that the affective models could benefit from the same 

type of change.  The parameters in this section were modified in the same fashion, with 

the same reasoning, as discussed in Section 6.4.5 and Table 28.  The research question 

addressed by Figure 38, Figure 39, and Figure 40 is “Does a change of parameter settings 

to reflect finer-grained clusters create higher quality models?” 
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Figure 38 – Performance of all supervised algorithms and both parameter sets for all affective 

models using the previous measure.  From left to right, the algorithms shown are ART, clustering, 

VW, and GNG. 

As can be seen via visual inspection of trends, there was no significant change observed 

from a change of parameter settings in the quality of constructed models at any time.  

Being given roughly twice the number of categories of classification does not 

significantly aid overall in the modeling of this specific affective dataset.  This finding is 

a repeat of the finding observed from the same change in cognitive models. 

ART inck VW GNG

ART inck VW GNG
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Figure 39 – Performance of all unsupervised algorithms and both parameter sets for all affective 

models using the previous measure.  From left to right, the algorithms shown are ART, clustering, 

VW, and GNG. 

The change in parameter set for unsupervised models has the same overall effect as the 

one for supervised models.  A brief visual inspection of Figure 39 reveals no discernible 

difference between the parameters.  This is validated in the experimental tables, which 

are not shown, as no conclusion can be drawn from them. 

 

ART inck VW GNG

ART inck VW GNG
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Figure 40 – Performance of all semi-supervised algorithms and both parameter sets for all affective 

models using the previous measure.  From left to right, the algorithms shown are ART, clustering, 

VW, and GNG. 

There are three items worth mentioning about the above differences in Figure 38, Figure 

39, and Figure 40, which are little overall improvements, significantly reduced 

performance for VW, and overall clustering improvements.  These items for discussion 

are shown most clearly in Figure 40, which shows semi-supervised performance. 

 Figure 40 shows VW experiencing significantly reduced performance in the case 

of the model of Fear through the use of adaptive learning rates.  The use of adaptive 

ART inck VW GNG

ART inck VW GNG
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learning rates is designed to allow mostly-unsupervised models to more closely 

approximate the supervised equivalents (Agarwal et al. 2011).  In this rare instance, the 

unsupervised models outperform the supervised models, leaving the supervised model 

approximation to have overall net negative effect.  This finding is consistent with the 

observations of Agarwal et al., where adaptive one-pass learning more closely 

approximated supervised learning, but has resulted in a performance decrease in this 

instance (Agarwal et al. 2011). 

As part of further testing, a series of additional parameter settings were attempted 

for ART.  ART is the best-performing algorithm across both affect and cognition, and 

various values of the vigilance parameter were attempted.  These were not shown to aid 

in significantly from initially chose parameter settings, but are included for completeness 

in APPENDIX D. 

Small improvements were observed in the semi-supervised clustering methods, 

which take longer to decay through the use of smaller cluster sizes.  Because of this 

observation, the tests conducted in Section 6.4.14, discussed next, use revised parameter 

settings.  The other cases show no improvement in overall model quality, which is 

consistent with the results from the cognitive models.  In answer to the research question, 

the change of parameter settings has a small positive overall effect when labeling 

information is limited with no harmful effect in other cases. 
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6.4.14. Reduced Feature Set Affective Models 

As discussed in Section 6.4.6, the offline linear regression models created by other 

researchers did not make use of all features of the data.  For completeness, the use of the 

reduced feature set is tested on the affective models, in order to answer the developed 

research question.  This question is “When eliminating features determined to be of little 

use during offline analysis, is overall model quality improved for either cognitive or 

affective models?” 

The reader should note that, of the three affective labels (Boredom, Anger, Fear), 

only Boredom is used in this experiment.  An initial model of Anger was not able to be 

created using offline algorithms of the other researchers, and therefore does not have a 

reduced input feature set.  The model of Fear created by the offline researchers used all of 

the available features, so is identical to the earlier created models.  The exact features 

used are shown in Table 53, but are briefly the Alpha, Gamma, and Heart features.  The 

below figures show the trend of the reduced feature set models when compared to the 

initial models. 
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Table 53 – Summary and example of features used in each created model.  Partial reprint of Table 

18.  No model of Anger above 0.6 ROC value was created with offline approaches. 

 Appendix  Boredom Fear 

Alpha1 A-1  X 

Alpha2 A-1 X X 

Gamma1 A-1 X X 

Gamma2 A-1  X 

Delta A-1  X 

Beta1 A-1  X 

Beta2 A-1  X 

Theta A-1  X 

Attention A-1  X 

Meditation A-1  X 

Left Eye Pupil 
Diameter 

A-5  X 

Heart A-2  X 

Chair 1-4 A-4   

Chair 5-8 A-4  X 

Motion A-3  X 

Alpha1Diff A-6  X 

Alpha2Diff A-6  X 

Gamma1Diff A-6 X X 

Gamma2Diff A-6  X 

DeltaDiff A-6  X 

Beta1Diff A-6 X X 

Beta2Diff A-6 X X 

ThetaDiff A-6  X 

AttentionDiff A-6  X 

MeditationDiff A-6  X 

HeartDiff A-6 X X 

MotionDiff A-6  X 
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Figure 41 – Performance of all supervised algorithms for Boredom models using the previous 

measure.  From left to right, the algorithms shown are ART, clustering, VW, and GNG. 

Reducing the number of features available for the supervised ART and clustering is 

worthy of discussion.  A significant decrease in overall quality is observed for ART, 

which had an initial plateau above 0.7, and was reduced to a plateau value of less than 

0.6.  Clustering, contrarily, experienced no overall degradation due to the lack of features.  

The implications to experimenters are less clear in the supervised case, and the results 

from un- and semi-supervised methods are presented next.  

ART inck VW GNG

ART inck VW GNG
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Figure 42 – Performance of all unsupervised algorithms for Boredom models using the previous 

measure.  From left to right, the algorithms shown are ART, clustering, VW, and GNG. 

Unlike in the supervised case, the unsupervised reduced feature set has no immediately 

observable change in algorithmic performance.  If this visual inspection observation were 

true, it would imply that an experimenter interested in the Boredom state would not have 

needed to collect extra sensor information from sensor chair, motion sensor, or heart rate 

monitor.  These figures indicate a further discussion of the differences between the 

reduced features set and full feature set is required.  

ART inck VW GNG

ART inck VW GNG
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Figure 43 – Performance of all semi-supervised algorithms for Boredom models using the previous 

measure.  From left to right, the algorithms shown are ART, clustering, VW, and GNG. 

The similarities among Figure 41, Figure 42, and Figure 43 provides a justification for 

further study of how many of these models are usable when using a much smaller 

fraction of the overall data and sensor set.  This is performed with the top two performing 

algorithms (ART and clustering) in the manner of the previous section, and presented in 

Table 54, Table 55, and Table 56 for ART and Table 57, Table 58, and Table 59 for 

clustering.  These results are summarized across all tables in Table 60 prior to further 

discussion. 

ART inck VW GNG

ART inck VW GNG
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Table 54 – Boredom model qualities with supervised ART algorithm using reduced feature set and 

revised parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.96 0.92 0.92 0.77 0.70 0.71 0.68 0.72 0.58 0.773

4131 0.97 0.66 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.939

4127 0.63 0.67 0.60 0.60 0.53 0.51 0.62 0.51 0.65 0.591

4121 0.80 0.95 0.82 0.81 0.83 0.83 0.81 0.84 0.77 0.829

4111 1.00 1.00 1.00 0.75 0.73 0.79 0.83 0.74 0.79 0.846

4115 1.00 1.00 1.00 0.95 0.63 0.91 0.52 0.79 0.58 0.821

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 0.91 0.78 0.74 0.73 0.76 0.78 0.80 0.81 0.82 0.792

4101 0.66 0.66 0.66 0.64 0.65 0.74 0.72 0.64 0.63 0.665

4117 1.00 0.67 0.52 0.67 0.72 0.51 0.56 0.58 0.59 0.648

4102 0.85 0.79 0.78 0.85 0.80 0.67 0.71 0.76 0.81 0.780

4105 0.80 0.84 0.84 0.69 0.62 0.66 0.63 0.62 0.66 0.708

4104 1.00 1.00 0.75 0.87 0.80 0.74 0.66 0.73 0.75 0.810

4107 1.00 1.00 1.00 0.75 0.79 0.74 0.79 0.79 0.79 0.848

4106 0.65 0.75 0.67 0.75 0.70 0.64 0.70 0.70 0.72 0.699

4112 0.98 0.88 0.88 0.88 0.78 0.78 0.65 0.60 0.58 0.779

4132 1.00 1.00 0.79 0.89 0.84 0.85 0.87 0.86 0.75 0.873

Average 0.906 0.872 0.839 0.800 0.760 0.760 0.743 0.750 0.739 0.796

18 95%Total Usable (avg ROC >0.6): Percent Usable:  

These Boredom model qualities can be compared with the initial reporting.  The initial 

model models created 18 individually usable models and an average model quality of 

0.796.  Overall, there is no change resultant from the removal of three of the sensors. 
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Table 55 – Boredom model qualities with unsupervised ART algorithm using reduced feature set and 

revised parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.504

4131 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4127 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4121 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.50 0.50 0.510

4111 1.00 1.00 1.00 0.75 0.51 0.50 0.50 0.50 0.50 0.696

4115 1.00 1.00 1.00 0.51 0.51 0.51 0.51 0.51 0.51 0.673

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.511

4101 0.52 0.52 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.508

4117 1.00 0.67 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.579

4102 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.558

4105 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.506

4104 1.00 1.00 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.615

4107 1.00 1.00 1.00 0.56 0.52 0.52 0.52 0.52 0.52 0.687

4106 0.53 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.508

4112 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.507

4132 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.505

Average 0.745 0.701 0.666 0.580 0.564 0.563 0.563 0.563 0.563 0.612

7 37%Total Usable (avg ROC >0.6): Percent Usable:  

As was observed in the supervised ART case, the removal of features from the 

datastream had little effect on the number of acceptable models or overall model quality.  

The full feature set also produced 7 individually usable models, with a final average AUC 

value of 0.612.  Given that the ART semi-supervised implementation has followed the 

unsupervised implementation in all cases presented so far, it is expected that these results 

will be similar in the semi-supervised case. 

  



238 
 

Table 56 – Boredom model qualities with semi-supervised ART algorithm using reduced feature set 

and revised parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.504

4131 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4127 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4121 0.52 0.52 0.52 0.51 0.51 0.51 0.51 0.50 0.50 0.510

4111 1.00 1.00 1.00 0.75 0.51 0.50 0.50 0.50 0.50 0.696

4115 1.00 1.00 1.00 0.51 0.51 0.51 0.51 0.51 0.51 0.673

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.511

4101 0.52 0.52 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.508

4117 1.00 0.67 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.579

4102 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.558

4105 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.506

4104 1.00 1.00 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.615

4107 1.00 1.00 1.00 0.56 0.52 0.52 0.52 0.52 0.52 0.687

4106 0.53 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.508

4112 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.507

4132 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.505

Average 0.745 0.701 0.666 0.580 0.564 0.563 0.563 0.563 0.563 0.612

7 37%Total Usable (avg ROC >0.6): Percent Usable:  

The prediction made after the previous table holds true; semi-supervised ART methods 

on a reduced feature set have produced the same number of usable models and the same 

value of overall model quality which was observed with the earlier full feature set.  This 

implication is discussed further in the summary of this section. 
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Table 57 – Boredom model qualities with supervised clustering algorithm using reduced feature set 

and revised parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.51 0.51 0.51 0.51 0.50 0.54 0.53 0.50 0.50 0.513

4131 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.513

4127 0.58 0.58 0.57 0.57 0.54 0.54 0.51 0.51 0.51 0.546

4121 0.66 0.56 0.56 0.54 0.54 0.63 0.71 0.68 0.69 0.620

4111 1.00 1.00 1.00 0.74 0.58 0.60 0.62 0.61 0.53 0.741

4115 1.00 1.00 0.99 0.55 0.53 0.53 0.53 0.53 0.53 0.686

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 0.97 0.66 0.51 0.53 0.51 0.51 0.51 0.51 0.51 0.579

4101 0.52 0.52 0.52 0.52 0.64 0.57 0.57 0.57 0.56 0.553

4117 1.00 0.67 0.52 0.55 0.58 0.55 0.51 0.50 0.50 0.597

4102 0.76 0.67 0.60 0.60 0.63 0.60 0.57 0.57 0.57 0.619

4105 0.53 0.51 0.51 0.54 0.62 0.62 0.56 0.56 0.52 0.552

4104 1.00 1.00 0.56 0.55 0.52 0.50 0.50 0.50 0.50 0.627

4107 1.00 1.00 1.00 0.61 0.58 0.59 0.59 0.59 0.59 0.728

4106 0.55 0.55 0.52 0.52 0.53 0.51 0.51 0.50 0.50 0.521

4112 0.61 0.63 0.60 0.59 0.58 0.61 0.58 0.55 0.55 0.589

4132 0.51 0.54 0.51 0.54 0.51 0.51 0.50 0.50 0.50 0.514

Average 0.773 0.732 0.685 0.610 0.605 0.607 0.600 0.594 0.588 0.644

9 47%Total Usable (avg ROC >0.6): Percent Usable:  

The supervised Boredom models created via clustering with the reduced feature set do 

not differ in overall quality or number of acceptable models.  They produce and overall 

AUC measure of 0.644, and 9 usable models.  This finding is similar to the on observed 

previously from ART and via visual inspection of the figures earlier in this section. 
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Table 58 – Boredom model qualities with unsupervised clustering algorithm using reduced feature 

set and revised parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4133 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.506

4131 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4127 0.54 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.507

4121 0.54 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.508

4111 1.00 1.00 1.00 0.75 0.51 0.50 0.50 0.50 0.50 0.696

4115 1.00 1.00 1.00 0.51 0.51 0.51 0.51 0.51 0.51 0.673

4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733

4137 1.00 0.53 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.562

4101 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4117 1.00 0.67 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.579

4102 1.00 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.558

4105 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4104 1.00 1.00 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.615

4107 1.00 1.00 1.00 0.56 0.52 0.52 0.52 0.52 0.52 0.687

4106 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4112 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4132 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

Average 0.770 0.697 0.662 0.577 0.562 0.561 0.561 0.561 0.561 0.612

7 37%Total Usable (avg ROC >0.6): Percent Usable:  

The above table further indicates that the removal of features identified by the offline 

experimenters to contain little value had no overall effect on model quality.  The 

unsupervised Boredom models produced via clustering resulted in a 0.612 overall quality 

with 7 usable models in both cases. 
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Table 59 – Boredom model qualities with semi-supervised clustering algorithm using reduced feature 

set and revised parameters 

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4133 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.502

4131 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.612

4127 1.00 1.00 1.00 0.56 0.52 0.52 0.52 0.52 0.52 0.687

4121 0.51 0.50 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.505

4111 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.557

4115 1.00 0.53 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.560

4135 0.51 1.00 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.561

4136 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.613

4137 1.00 1.00 0.51 0.51 0.51 0.50 0.60 0.50 0.60 0.637

4101 1.00 1.00 1.00 0.60 0.60 0.60 1.00 0.60 1.00 0.822

4117 1.00 0.51 1.00 1.00 1.00 1.00 0.51 1.00 0.51 0.836

4102 1.00 0.50 1.00 0.51 0.51 0.51 0.50 0.51 0.50 0.617

4105 0.54 0.51 1.00 0.50 0.51 0.50 0.50 0.50 0.50 0.563

4104 0.54 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.562

4107 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.503

4106 0.51 0.51 0.50 0.51 0.50 0.50 0.50 0.50 1.00 0.559

4112 1.00 0.76 0.51 1.00 0.50 0.50 1.00 0.50 0.72 0.722

4132 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

Average 0.796 0.728 0.662 0.590 0.562 0.561 0.587 0.561 0.598 0.627

9 47%Total Usable (avg ROC >0.6): Percent Usable:  

The above table mirrors the findings of the previous five; removal of features extraneous 

to offline analysis has no effect on online model quality.  The Boredom models produced 

via semi-supervised clustering on the reduced feature set result in 9 usable models and 

overall quality of 0.627.  This is slightly better than the 9 usable models and 0.626 quality 

observed in the full feature set.  
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Table 60 – Summary of quality metrics and usable models for ART and clustering Boredom models 

with reduced feature set 

 AUC Individually Usable Models 

Model Boredom 

Original 

Boredom 

Reduced 

Boredom 

Original 

Boredom 

Reduced 

Supervised ART 0.796 0.796 18 18 

Unsupervised ART 0.612 0.612 7 7 

Semi-Supervised ART 0.612 0.612 7 7 

     

Supervised Clustering 0.644 0.644 9 9 

Unsupervised Clustering 0.612 0.612 7 7 

Semi-Supervised Clustering 0.626 0.627 9 9 

 

These results are encouraging, as they indicate that not all sensors were required to 

construct realtime models of Boredom.  The use of the reduced feature set found in the 

original offline models did not hurt overall model quality, as shown in Table 60.  This has 

the implication that only two sensors (EEG and Heart) were required in order to create a 

model of Boredom.  An ITS looking for this state could obtain this type information with 

lower cost when compared with information about Anger or Fear.  Additionally, this 

finding supports the recommendation that offline models can be created in order to 

inform the decisions of online model data collection.  This finding indicates that future 

experiments should attempt offline modeling for feature reduction prior to online 

modeling for use, and that offline modeling approaches taken by other researchers in the 

fashion of Chapter 2 are not wasted effort. 
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6.4.15. Affective Modeling Summary 

The initial three research questions, and the two subsequently developed questions, asked 

as part of this work are below: 

1b.  Can a quality affective model be constructed with fully supervised realtime 

algorithms? 

2b.  Can a quality affective model be constructed with unsupervised realtime algorithms? 

3b.  Do semi-supervised and active learning approaches improve affective model quality, 

when compared to the unsupervised approaches? 

4.  Does a change of parameter settings to reflect finer-grained clusters create higher 

quality models? 

5.  Does reducing the set of features to only the features used on affective model outputs 

create higher quality models? 

In brief, the answers are that quality affective models can be constructed using 

supervised, unsupervised, and semi-supervised approaches, where very infrequent semi-

supervision information can increase the number of usable models beyond the other 

approaches, while fine-grained clusters using fewer overall features produce results of 

similar quality.  Each of these answers warrants further discussion, through use of 

Summary Table 61. 
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Table 61 – Summary of all ART and clustering tables 

Model Anger Boredom Boredom 

(Reduced) 

Fear Usable? 

Offline Linear Regression NA 
(<0.6) 

0.79 NA 0.83 Some 

      

Supervised ART 0.776 0.796 0.796 0.841 Yes 

Unsupervised ART 0.652 0.612 0.612 0.805 Yes 

Semi-Supervised ART 0.652 0.612 0.612 0.805 Yes 

      

Supervised Clustering 0.681 0.644 0.644 0.810 Yes 

Unsupervised Clustering 0.652 0.612 0.612 0.805 Yes 

Semi-Supervised Clustering 0.677 0.626 0.627 0.810 Yes 

6.4.15.1. SUPERVISED AND UNSUPERVISED MODELS 

The results from the creation of the affective models are encouraging.  The previously 

created affective models achieved quality of <0.6, 0.83, and 0.79, while supervised ART 

is able to outperform, on all benchmarks, the offline approach using a infinitesimal 

fraction of the total data.  This succinctly answers the question of whether online models 

can be created and indicates that the future research of others should be conducted in this 

fashion. 

 The research conducted as part of this dissertation has not lost track of the goal: 

the creation of student models for use in an ITS setting.  With this goal in mind, a more 

valuable metric of success is how well the algorithms for creating models perform when 

given little labeling information, as is the case in an ITS.  When looking at the research 

by this metric, the ART and clustering models are equivalent, while the offline models 

are expected to have poor quality for the reasons discussed within Chapter 2.  The 

research conducted in this dissertation indicates that the algorithmic creation of such 
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models will be able to transfer to use.  This represents a significant contribution to the 

field, as no other model has been found in the literature that can make this claim. 

6.4.15.2. SEMI-SUPERVISED MODELS 

Three experimental results are considered as part of this dissertation.  The first is the 

impractical example of an “all knowing” system that reports fully supervised true user 

state, which is intended to represent the best possible classification performance for any 

algorithm.  The second example is complete lack of labeling information about user state 

to the algorithm of classification, which results in algorithmically encoded knowledge of 

classification (e.g. “Cluster #17”) but not of state (e.g. “Bored”).  The third example 

represents direct user query every few minutes, resulting in some algorithmically encoded 

knowledge of state.  The difference between the first representation and the third is on the 

order of thousands of datapoints, but realistically represents the level of user annoyance.  

The difference between the second example and third is only five datapoints, but 

represents the difference between a program which requires user interaction and a 

background process.  

The selection of appropriate classes for user query is an active learning problem 

in AI.  This is complicated by the idea that the active learning conducted should also be 

realtime appropriate.  The implementation of realtime algorithms with realtime active 

learning is a significant contribution to the field of AI for the reasons described in Section 

5.2.  The invention of realtime active learning components for online clustering (Section 

5.4) is shown to significantly increase the number of usable models of affect (Section 
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6.4.12).  This increases the number of usable models beyond supervised methods, as 

shown in the reprinted Table 62. 

Table 62 – Summary of all ART and clustering usable models.  Each number represents, out of 19, 

how many usable affective models were created.  Reprint of Table 51. 

Model Anger Boredom Fear 

Supervised ART 17 18 15 

Unsupervised ART 6 7 12 

Semi-Supervised ART 6 7 12 

    

Supervised Clustering 9 9 12 

Unsupervised Clustering 6 7 12 

Semi-Supervised Clustering 11 9 16 

 

6.4.15.3. REDUCED FEATURE SETS 

There are two relevant findings resulting from the use of the reduced feature set.  The 

first of these findings is that offline analysis can contribute to online analysis.  This has 

ITS consequences in the limitation of physically applied sensors through the findings of 

linear regression models. 

The second of these findings is that the algorithms presented here are fairly robust 

to noise. The use of features that did not contribute classification value, without reduced 

model performance, is an indication that the approaches taken in this dissertation are 

robust to noise.  This finding can be exploited through the artificial creation of dataset 

features, and may result in higher overall model quality.  While this was not done, for 

reasons of fair comparison to offline models discussed in Section 6.3.5, further work to 

exploit and examine this phenomenon is suggested in Section 7.3.   
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6.5. Summary 

While each of the research questions from section 6.4 has been answered in the preceding 

subsections, it is useful to include a summary of their answers.  This summary is below: 

1a, 2a, 3a:  Can a quality cognitive model be constructed with fully supervised, 

unsupervised, or semi-supervised realtime algorithms? 

No.  No usable cognitive model was created as part of this work. 

1b.  Can a quality affective model be constructed with fully supervised realtime 

algorithms? 

Yes.  Additionally, realtime affective models are of similar quality to their offline 

equivalents. 

2b.  Can a quality affective model be constructed with unsupervised realtime algorithms? 

Yes.  Additionally, these are transferable to a field of use. 

3b.  Do semi-supervised and active learning approaches improve affective model quality? 

Yes.  Invented methods are additionally shown to improve the number of usable 

models. 

4.  Does a change of parameter settings to reflect finer-grained clusters create higher 

quality models? 

Cognitive model quality was unaltered as a result of changes in parameter setting. 
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Affective model quality produced through clustering was slightly improved 

because of parameter setting changes, while other algorithmic performance was 

unaltered. 

5.  Does reducing the set of features to only the features used on cognitive model outputs 

create higher quality models? 

Cognitive model quality was unaltered because of reduced feature set.  This 

finding is indicative of the trend of not producing usable cognitive models. 

Affective model quality was unaltered because of reduced feature set.  This 

finding is indicative that a reduced set of sensors may be used, if suggested 

through offline analysis. 

6.  Do the cognitive models approaches generalize to another dataset? 

No.  No usable cognitive model was created on Dataset #2 as part of this work. 

6.5.1. Summary Discussion Notes 

The affective and cognitive models were built from the same input data.  This presents 

the question: “Why are the affective models stronger in performance than the cognitive 

ones?”.  We present the idea that affective states are less transient over time.  For 

instance, as shown in Appendix A-7, the HighEngagement metric reported from the 

ABM headset changes multiple times per second, ranging between high and low.  In 

contrast, the Anger metric reported from the EmoPro measurement tool Appendix A-8, 



249 
 

changed only twice over the course of the training session for user 4102.  This subject 

was affectively modeled nearly perfectly via a variety of algorithmic approaches. 

Slower changes among the observed states are much easier to algorithmically 

observe among physiological and behavioral data, resulting in higher overall model 

quality.  The EmoPro measure of affective state is a self-report metric, however, with the 

implication that a state cannot be labeled second-by-second.  In order to label affective 

states in a more fine-grained fashion, personnel could be used to label states as they were 

observed.  The collection of such a dataset to perform thusly is recommended in section 

7.3. 

Overall, this dissertation makes the contribution of a proof of concept that 

reasonable quality affective models can be created in realtime, presents several methods 

to use, determines which of these is most appropriate for the task, validates that these 

methods would transfer to the field, and invents an approach for boosting overall model 

quality.  The implications of these findings, the discussion of areas of future work 

uncovered during this work, recommendations for other researchers, and a summary of 

this dissertation are included next. 
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7. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

Chapters 1, 2, and 3 of this work contend that Intelligent Tutoring Systems are useful; 

that they could be more useful with the creation of better models of student state; that the 

creation of improved student models has been met with limited success; and that this is 

primarily the result of poor engineering tradeoff decisions.  Optimizing the accuracy of a 

model is not meaningful if it is not able to be used for the student.  The algorithms 

presented in this dissertation have made a different trade-off decision; models should be 

useful first and accurate second. 

 Chapter 5 presents a framework for determining which algorithms are to be 

considered appropriate for this problem, selects a representative sampling of algorithms 

from the field, and improves upon their implementation through semi-supervision active 

learning.  Chapter 6 shows and discusses the failure in creating cognitive models in this 

fashion.  However, it also shows that the affective models created using these 

availability-driven approaches are comparable in quality to those ones that are accuracy-

driven.  Chapter 6 also shows that the adaptations for active learning, invented here, help 

to improve overall model quality.  The implication of this work is clear: these algorithms 

create models that can are useful in application. 

7.1. Conclusions 

There are many variations on the goal of the field of artificial intelligence, such as 

defining it as “The study of how to make computers do things at which, at the moment, 

people are better” (Rich and Knight 1991), “The study of the computations that make it 
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possible to perceive, reason, and act” (Winston 1992), or “The branch of computer 

science that is concerned with the automation of intelligent behavior” (Luger 2005).  We 

choose to define the fundamental goal of the field of Artificial Intelligence as “emulating 

or surpassing human performance through the recognition of patterns and the 

establishment of pattern meaning for the purpose of producing action”.  Under this 

definition, it is useful to do so instantaneously, and while asking as few questions about 

the world as possible.  Many AI approaches have been created for pattern recognition 

while looking at all possible data (ANNs, GAs, etc.), while fewer have been developed 

while looking at a single data point.  Many AI approaches have been created to make use 

of a large amount of pre-classified data, while fewer have been developed to ask 

questions about observed trends.  All of the approaches pursued in this dissertation 

attempt to solve what we consider the most fundamental problem in AI: instantaneous 

classification of patterns while simultaneously questioning their meaning. 

Just as it is desirable to have a general purpose model of cognitive and emotional 

state for all individuals, it is desired for one algorithm to have near-instantaneous, near-

perfect performance on all problems.  The “No Free Lunch” theorem indicates that there 

is no one approach which will outperform all others on all problems (Wolpert and 

Macready 1997).  These leaves the selection of appropriate algorithms to the AI expert 

(Rice 1975), at least until someone constructs an AI system which is able to select an 

optimal algorithm, rather than implement it (Gagliolo and Schmidhuber 2006; Kotthoff et 

al. 2011).  Until such a time as this is complete, an AI researcher must hypothesize about 

the class of problem that he/she is given, and the types of approach which will be useful 
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for it.  Given that this dissertation presents an approach that has never been attempted, the 

author has surveyed the field for applicable approaches. 

Each chosen method represents a different approach to establishing models from 

data in realtime.  Online clustering represents the method of dealing with online data of 

unknown classification through establishing and adjusting areas of the sampling space. 

Vowpal Wabbit represents the online approach to linear regression modeling, 

corresponding to the initial offline modeling approach chosen by the Dataset #1 

experimenters.  Adaptive Resonance Theory represents a neural network approach to 

online modeling, previously shown to have good one-pass learning results.  Growing 

Neural Gasses represents the Self Organizing Map approach to establishing structure 

among data.  Before testing, it was not known which of these classes of solution, if any, 

would be appropriate for the fundamental problem of rapidly establishing models from 

physiological signals. 

The performance of supervised, unsupervised, and semi-supervised modeling 

algorithms on cognitive and affective models is summarized individually in Section 6.4.8, 

and 6.4.15, and in summary in Section 6.5.  A brief review of this summary is that 

realtime cognitive models (Distraction, Engagement, Workload) were not able to be 

constructed with any algorithm (ART, clustering, VW, GNG), labeling approach 

(supervised, unsupervised, semi-supervised), parameter settings, feature set, or Dataset, 

while affective models were able to perform acceptably with ART and clustering in all 

circumstances.  Additionally, realtime semi-supervised active learning, as implemented in 
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the clustering approach, was shown to have significant impact for affective model 

creation, and the two most successful algorithms are shown to be robust to noise.  

However, this work was not performed without issues or surprises. 

7.2. Issues and Surprises 

In general, there were fewer issues than surprises encountered during this dissertation.  

The primary issue faced during this dissertation was the implementation of each 

algorithm.  Vowpal Wabbit is written in C++ and incorporated through the use of 

precompiled binary with executable wrapper code (written in Python) and library 

functionality code (written in Python).  Online Semi-Supervised Growing Neural Gasses 

is written in C++ and incorporated into Python through use of a program to automatically 

generate software interface libraries, after learning the software interface library 

configuration process.  Adaptive Resonance Theory was implemented in C, and then re-

implemented in Python.  It was simpler to just re-implement the tested and invented 

clustering algorithm in Python, given the simplicity.  All of these were encoded into 

library, threaded, and tested using the same controlling program in order to assure fair 

evaluation.  Cross-language, library-driven, thread-safe support for programming has 

certainly come a long way in the last decade, but is still a non-trivial issue, and was the 

largest issue overcome during this dissertation process. 

 There were a few surprises encountered during this research.  The first of these is 

that majority of researchers in Intelligent Tutoring Systems appear to be generating 

recommendations for software, rather than the software itself.  This is in stark contrast to 
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the research performed in Artificial Intelligence, where a new algorithm is developed for 

a research paper, proven successful, and posted on the internet for wide distribution.  A 

byproduct of this trend is that no form of student modeling or dataset from other ITS 

researchers could be used as part of this work.  Research undertaken as part of this work 

is anticipated to transfer to the field through implementation as open source software and 

made publicly available, in alignment with the AI field. 

 The next surprise was that there has been a dearth of research in the field of 

realtime datastreams.  AI research has focused on classification accuracy, function 

approximation, statistical modeling, and optimal choice within finite state machine 

simulations.  The algorithms implemented in this dissertation are research byproducts 

from the problems of credit card fraud detection, identifying pirate traffic in network 

analysis, and classification of webpages to optimize search results.  These are relatively 

unlikely places to find AI for student modeling.  It appears that the field abandoned the 

idea of rapid problem solving in the mid-1990s, along with the rise in processing power.  

Research addressing realtime semi-supervised and active learning is similarly sparse. 

 The OSSGNG and VW algorithms were predicted to perform better than the ART 

and clustering algorithms.  OSSGNG and VW had implemented semi-supervised 

(OSSGNG) and active (VW) learning methods already, and had shown good performance 

in publication.  It was surprising to see that the research in this dissertation outperformed 

these two approaches to a level where their performance was not worth in-depth 

discussion.  This surprise further indicates that algorithms for realtime semi-supervised 
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active learning on datastreams have significant room for improvement, as the 

implemented improvements are relatively intuitive in nature. 

 The online models produced during this research are individualized, rather than 

generalized, which makes comparison to the offline models somewhat different.  In this 

fashion, the offline models are able to drastically outperform their online counterparts.  

The finding that the online affective models can match the performance of the offline 

affective models was unexpected.  It was expected that the online models, given a 

fraction of the data and time, would perform somewhat worse.  It was surprising that they 

were able to compare favorably, despite significant limitations. 

Lastly, it was surprising that the online cognitive models were of low quality, 

when contrasted with the offline models.  This is discussed in significantly deeper depth 

next, in Future Work. 

7.3. Future Work 

Part of the goal of the publication of any research project is to put the work in a larger 

context.  This work directly interfaces with many fields, including machine learning, 

computer programming, architectural development, instructional strategy selection, 

human computer interaction, modeling and simulation, classroom instruction, and others.  

The work in these areas is not yet finished, and here we will present some of the 

problems uncovered during the course of the research.  These future research efforts are 

structured from the “ground up”, first dealing with AI and datastream problems and lastly 

discussing instructional implications. 
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 Several approaches may assist in the creation of realtime models of cognition and 

affect.  In short, they are windowing techniques, feature extraction techniques, feature 

expansion, improvements in realtime active learning, collection of a new affective dataset 

for validation and comparison, merging this work into an ITS framework to provide back 

to the field, and initial adjustment of instructional strategy based on state.  These 

approaches are discussed next, after a focused discussion on the hypothesis most likely to 

produce usable models of cognition. 

7.3.1. Feature Extraction 

Realtime preprocessing of a datastream for feature extraction purposes is a related 

research vein.  This can include statistical metrics, such as the 

mean/median/mode/standard deviation inside of a window, extrapolation of trend, 

traditional electrical engineering approaches such as a high pass filter, derivatives, or 

other approaches.  A given problem may have more than one type of filtering approach 

taken in realtime, such as the band-pass filtering, derivative, squaring, integration, and 

thresholding of the QRS signal present in heartbeats (Brawner and Goldberg 2012; Pan 

and Tompkins 1985).  It is likely that a developed approach will be specific to the 

physiological signal that it models, while all of the methods presented in this dissertation 

could adjust to an additional dimension of data without underlying algorithmic 

modifications.  Preprocessing development is signal-specific, while realtime processing is 

signal-agnostic.  The types and variations of realtime physiological signal filtering are 

interesting areas of research. 
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7.3.1.1. STATISTICAL FEATURES 

Parameter adjustment for cognitive models from the initial parameter set to the revised 

parameter set had no effect on the quality of the models.  Overall, the number of 

classifications or clustering categories was doubled as a result of these adjustments.  It is 

surprising that such an increase in the granularity of sampling had no overall effect on 

model quality.  This observation leads us to believe that offline, historical, and trend data 

are important to the overall construction of the cognitive models, as is the case with the 

ICA metric. 

Given that the quality of affective models did not diminish significantly through 

the addition of features determined by offline modelers to be ‘noise’, the injection of a 

single statistical feature was attempted as part of this dissertation work.  A five second 

moving window average was added to each of the 21 features of Dataset #1, resulting in 

42 total features.  Each of the methods of supervision and algorithms was tested against 

this new dataset.  This single feature was not observed to increase total quality of either 

affective or cognitive models, and is shown in Appendix C-4. 

The injection of this single feature is only an exploratory analysis for how much 

additional data should be considered in a statistical feature.  Varying the length of 

statistical feature extraction should be considered, as well as other methods for feature 

extraction.  A summary of statistical modifications which may be attempted is shown in 

Table 63. 
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Table 63 – Summary of signal agnostic statistical feature extraction techniques 

Approach Example 

Rolling Average Average of the last 5 seconds (Appendix C-4) 

Variance Variance of the last 5 seconds 

Standard Deviation Standard Deviation of the last 5 seconds 

Root Mean Square RMS of the last 5 seconds 

Derivative Average derivative of a smoothed 5-second signal 

Integral Average integral of a smoothed 5-second signal 

Signal Power Square Root of the integral of the second derivative of 
the signal (Brawner and Goldberg 2012) over the last 5 
seconds 

Variations in time All above approaches, 10 seconds rather than 5 

 

7.3.1.2. SIGNAL SPECIFIC APPROACHES 

It is possible for each of the sensor signals to have customized feature extraction 

methods, which is likely to boost overall performance of the cognitive modeling 

techniques for the rapidly changing signal.  This is opposed to the direct signal values 

used by the offline modelers and the comparison work in this dissertation.  The methods 

taken in this dissertation have relied upon direct AI methods of modeling so as to 

generalize to differing sets of sensors.  Future attempts at cognitive models should 

attempt signal-specific feature extraction techniques. 

It is likely that feature extraction will play a key role in the future development of 

cognitive models.  As an example, consider the P300 Event Related Potential, which is 

embedded within EEG signals (Donchin et al. 2000).  The P300 event related potential 

has been linked to a number of neurological phenomena, and is an aggregate measure 

from multiple simultaneous EEG channels of data.  Efforts to detect this signal in 

realtime have been met with mixed success (Donchin et al. 2000).  This feature detection 
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is performed prior to being used in AI methods (Bostanov 2004).  The methods presented 

in this dissertation rely upon direct processing of raw EEG data, and may not successfully 

group the P300 event related potential appropriately. 

This feature extraction is very specific to the signal in question and does not 

generalize to unknown signals, unlike all of the methods presented in this dissertation.  

Any feature extraction undertaken during this dissertation would not result in a fair 

comparison to offline methods, as discussed in Section 6.3.  Furthermore, all of the 

methods taken here are appropriate to all sensor datastreams, while the creation of 

customized feature extraction for one of the twenty-two dimensions of the input set will 

not be appropriate for general inclusion.  A summary of specific feature extraction 

methods which may be appropriate for generating higher quality realtime models is 

included in Table 64. 
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Table 64 – Summary of signal specific feature extraction techniques 

Sensor Feature Extraction Citation 

EEG Shannon Entropy (Stevens and Galloway 2013) 

EEG P300 Region Activity (Dal Seno et al. 2010) 

Heart Time since between last beat 
(heart rate) 

(Pan and Tompkins 1985) 

Heart Heart Rate Variability (Malik et al. 1996) 

Sonar (Distance) Kalman Filter (for tracking) (Welch and Bishop 1995) 

Sonar (Distance) Leaning information 
(forward/backward binary 
feature extraction) 

 

Chair Sensors Posture by Mixture of 
Gaussians 

(Mota and Picard 2003) 

Chair Sensors Activity Level 
(low/med/high) 

(Kapoor and Picard 2005b) 

Eye Tracking Discrete Wavelet Transforms (Candes et al. 2006) 

Eye Tracking Scale Invariant Feature 
Transform 

(Lalonde et al. 2007) 

 

7.3.2. Intelligent Tutoring Systems 

The first three chapters of this dissertation contend that learner models of affect and 

cognition can aid in the selection of a learning strategy, and that a learner model should 

be created using an individualized and realtime approach.  The next three chapters show 

that it is possible for this to be performed for classification of affect.  The clearest avenue 

for future work is the integration of this work into an intelligent tutoring system. 

The methods presented here for realtime modeling were not created for the 

purpose of creation.  The use of these methods has been a driving force behind their 

development.  The logical next step is to merge the work presented here into an 

intelligent tutoring system, whether for testing, validation, or use.  At the time of this 

writing, the Generalized Intelligent Framework for Tutoring (GIFT) project by Army 
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Research Laboratory has over 200 users, two running experiments, four planned 

experiments, and an upcoming workshop at the Artificial Intelligence in Education 

conference.  It is anticipated that the next release of the GIFT framework will incorporate 

the researched improvements in individualized student modeling, as the author is very 

familiar with the project, developers, controlling organization, and timeline of the project.  

The outputs of this dissertation are intended to be presented back to the field through 

integration into this community-driven research platform, with the recommendations for 

parameter settings chosen in APPENDIX D. 

GIFT has been designed based on the idea of a learning effect chain, as shown in 

Figure 44.  This has the derived requirement for separable software modules, which have 

defined inputs and outputs, as shown in Figure 45.  The defined process of the learner 

module is to take sensor and performance data and form it into a “picture of the learner” 

from which to make pedagogical decisions.  The work in this dissertation has been 

specifically targeted to make this type of decision. 

 

Figure 44 – Learning effect chain diagram which drives GIFT development (Sottilare et al. 2012b).  

Learner model is highlighted for effect of indicating where this research is intended to transition. 
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Figure 45 – Derived GIFT diagram of functional modules (Sottilare et al. 2012b).  

Of course, knowledge of student state is not enough information, by itself, to 

inform how instruction should be adapted.  For example, a learner which is anxious 

during test-taking may require no instructional intervention, while a leaner anxious 

during initial training exposure may need the pace of material presentation slowed.  GIFT 

3.0 presents a framework for pedagogy, as informed by state classification machines that 

adjusts content.  Figure 46 shows an example of a prototype authoring interface, 

developed by Dignitas Technologies, with the purpose of creating such a relationship.  
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Other work is done by the University of Central Florida’s Institute for Simulation and 

Training to create domain-independent pedagogy (Goldberg et al. 2012).  The functional 

architectural component of GIFT which uses this technology is called the Engine for 

Macro-Adaptive Pedagogy, or EMAP.  Further developments are currently in process for 

a strategy recommendation engine for micro-adaption, which will likely be more state-

dependent than its macro-adaptive counterpart. 

 

Figure 46 – Possible adaption of instructional pedagogy based on Merrill’s Branching Theory and 

learner variables.  Learner variables may be either sensor/state-driven or survey-driven. 

Work in this dissertation to classify affective and cognitive states is intended to 

function as a part of architecture to support intelligent tutoring.  The GIFT architecture is 

the intended architecture for the transition of this technology.  It already collects various 

sensor characteristics such as electro-dermal response, and posture data from the 
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Microsoft Kinect.  It makes instructional strategy recommendations based on a decision 

tree of traits, states, and performance.  It does not, however, contain a module for 

merging performance and sensor data into states for decisions.  The work presented in 

this dissertation is the first of its kind to do so in a manner which can withstand 

validation; this presents a clear path for use. 

7.3.3. Other Avenues for Future Work 

The first of these other approaches is that a windowing technique may be more 

appropriate than initially supposed.  It is difficult for an algorithm to build a model of the 

entire datastream while only being able to adjust to the smallest mathematically possible 

slice of it at any time.  Windowing techniques and additional derived measures may assist 

in the creation of a model by giving trend data, reducing noise, or eliminating true 

outliers.  The examination of how to create the correct window size which balances the 

explicit delay in real time performance against the benefits of multiple data point analysis 

is an interesting problem. 

One of the findings in this work is that all realtime model construction approaches 

are relatively insensitive to the injection of extraneous data.  This is an interesting finding 

which is worth investigating further, as it has consequences for research in datastream 

filtering.  If it is known a priori that the creation of additional features will not 

meaningfully impact the construction of a model, then it is advantageous to create many 

features.  For instance, a 1-dimensional feature of GSR may be expanded into many 

features such as: mean over the last 3 seconds, mean over the last 5 seconds, standard 
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deviation over the last 3 seconds, signal power (Brawner and Goldberg 2012) over the 

last 300 miliseconds, or others.  The expansion of features may present a simpler problem 

to algorithmic processing, as only a few signal values that are correlated with the true 

label are needed over the entire featureset.  It is unknown if multiple-filtering for dataset 

expansion is harmless to overall accuracy, as this would have resulted in unfair 

comparison to offline models, but leaves room for future research. 

The current methods for realtime active learning leave something to be desired.  

The determination of the confusion that an individual point contributes to the whole of 

the model, without examination of the model, is a difficult problem.  Realtime methods 

of active learning are not readily available, and had to be invented as a part of this 

dissertation.  A few ideas to improve realtime active learning techniques include 

attempting to get a label when the most recently presented datapoint is determined not to 

belong to any of the previously observed clusters, requesting the label of a point which is 

near to the current fringe of a cluster, and propagating the label of a point across clusters 

and points for a short period of time.  The effect of any of these decisions is currently 

unknown, and presents an interesting vein of research. 

An interesting question has been asked of the author many times during the 

writing of this dissertation: “After this model has been built, for an individual, in 

realtime, what do you do with it?”.  The answer, currently, is to discard it.  The research 

indicates that static individualized models degrade in quality over time, as the individual 

changes.  The research presented in this dissertation presents methods for dynamic and 
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individualized approaches which are able to adapt to individual trends over time.  Do 

they degrade?  Is there a benefit to keeping a model created in a previous training 

session?  To which sensors do such a benefit, if any, extend?  The evaluation of 

transferability of an individualized model requires an experiment where individuals are 

brought back into an experimental or laboratory setting after a period of absence.  The 

author is not aware of a dataset which has measured this type of learning interaction. 

 Another interesting area of future research is the validation of the techniques of 

realtime monitoring of the student.  The affective technique is somewhat validated with 

the creation three sets of models, but further validation should be performed.  

Unfortunately, there is not a data set on which to validate these measures, as discussed in 

Chapter 4.  As part of this research, it has come to the attention of the author that such a 

dataset would have meaningful contribution to the body of research.  A project of this 

nature, informed by the research done in this dissertation, may involve an unobtrusive 

and wearable sensor or Kinect sensor (to replace a motion sensor and the chair sensors), 

and fine-grained affective coding.  A project of this nature could validate their approach 

on the dataset used as part of this dissertation, and should meet the requirements of Table 

10, the checklist of features dataset inclusion. 

It is possible that interactive user query will result in overall better quality models, 

as the algorithms are fed misinformation in the time between initial outlier classification 

and true class label.  It is intended to test this hypothesis with affective data that has finer 

resolution, such as described above.  The problem of how/when to query the user to add 
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information about a state or cluster is still an open problem of research.  Although the 

work performed in this dissertation shows it is not often required, this has yet to be 

validated experimentally. 

 The models created by other researchers have classified learner state into one of 

two categories, forming a binary classification problem.  For example, a learner is 

classified as ‘anxious’, or ‘not anxious’.  There is research which indicates that binary 

classification may not be most appropriate to the task (Eysenck and Calvo 1992; Wine 

1971).  This research indicates that a moderate level of anxiety results in the ideal state.  

Further work should be undertaken to classify the various values of varying state on a 3-

point, 5-point, or 7-point Likert scale (Likert 1932). 

7.4. Dissertation Summary 

Intelligent tutoring systems should mimic human tutors in order to achieve greater 

gains in learning.  Doing so involves monitoring affective and cognitive states of users as 

they interact with the tutor.  “One size fits all” generalized models have been shown not 

to transfer to practical application because individuals are different from each other.  

Individualized models, however more accurate, are also unusable, primarily because of 

normal variations in behavior and physiology.  Only individualized models with very 

rapid creation times are hypothesized to create instructional value, but they have never 

before been created. 

This dissertation presents four methods for the creation of four types of cognitive 

and three types of affective models, and experiments with how often the “true” label 
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information, provided by the student, is needed.  It concludes by determining that more 

research is needed for the rapidly-changing cognitive states, but that individualized 

affective models can be rapidly created with minimum degradation in quality.  

Furthermore, it was found that these models can be created with minimal information 

about the true affective state of the user. 

The ability to affectively model the student presents a possible solution to 

informing pedagogical instruction, such as instructing ‘bored’ students differently.  By 

modeling individual learners, instruction can be more effectively individualized and 

overall learning can increase.  The methods presented here detail how to do so for 

affective states, and show promise towards doing the same with cognitive states.  This 

research is significant, as it addresses what other researchers have considered a 

significant problem, novel, in that new algorithms were created for the purpose of solving 

this problem, and useful, in that it is proven to be applicable to the field. 
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APPENDIX A GRAPHS OF SENSOR MEASUREMENTS FOR 

PARTICIPANT 4104 FROM DATASET #1 
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The below graphs from Dataset #1 are shown in the fashion that they are given to the 

machine learning algorithms described throughout this dissertation.  Each feature of each 

sensor is shown one dimensionally for clarity, but is input as a batch.  The x dimension of 

each graphs is “number of datapoints”, which corresponds to time.  The number of 

datapoints corresponds to approximately 40 minutes of data, but varies for each 

participant.  The y axis of the below figures is a normalized measure of the sensor output.  

This normalization requires that the y axis has no units.  A brief description of the 

measurements of each sensor is included for completeness. 
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Appendix A-1 Neurosky Measurements for Participant 4104 

Alpha is a measurement of neural oscillation in the frequency range of 8-12 Hz.  In 

general, increased activity in the alpha band has been correlated with drowsiness and 

sleep.  They have been detected at higher levels during meditation and relaxation.  The 

Alpha and Alpha2 represent the readings on the left and right side of the forehead from 

the Neurosky sensor. 
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The gamma brainwave is measured between the 25-100 Hz frequency.  Higher 

frequencies have been linked to language and cognition (Benasich et al. 2008).  It is 

possible that gamma waves represent a mis-measurement of EEG signals, and instead 

correspond to small eye movements (Yuval-Greenberg et al. 2008).  Either of these 

features may be of interest to cognitive and affective models.  The Gamma and Gamma2 

represent the readings on the left and right side of the forehead from the Neurosky sensor. 
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The beta brainwave is measured between the 12-30 Hz frequency.  The beta wave is 

associated with normal waking consciousness and interacts with the alpha wave during 

cognition (Pfurtscheller and Klimesch 1992).  Responses in the motor cortex are also 

known to increase the prevalence of beta waves.   The Beta and Beta2 represent the 

readings on the left and right side of the forehead from the Neurosky sensor. 
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The Delta wave is measured between 0 and 4 Hz.  It is associated with the deepest stages 

of sleep, and is used to characterize the depth of sleep (Tononi and Cirelli 2006). 
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The Theta rhythm is measured between 6 and 10 Hz.  It is not well understood, but may 

be linked to exploration, learning, memory, or motor cortex function. 
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Meditation is a metric produced via unknown combination and weighting from the 

proprietary NeuroSky sensor.  It has not been validated, but has been tested against 30 

expert meditators.  This metric has been able to differentiate between problem-solving 

tasks and previously-validated psychological batteries (Crowley et al. 2010).  In theory, 

high measures show when someone is meditating. 
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Attention is a metric produced via unknown combination and weighting from the 

proprietary NeuroSky sensor.  It has not been validated, but has been tested against 30 

expert meditators.  This metric has been able to differentiate between problem-solving 

tasks and previously-validated psychological batteries (Crowley et al. 2010).  In theory, 

high measures show when someone is dedicating cognitive resources. 
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Appendix A-2 Zephyr Heart Measurements for Participant 4102 

The Heart measure measures heart rate over time through heartbeat detection methods 

from the Zephyr Heart sensor.  High measures correlate with higher heart rate which 

correlates with higher levels of bloodflow, stress, excitement, and psychological arousal 

(Anderson and Brown 1984).  
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Appendix A-3 Sonar Distance Sensor Measurements for Participant 4102 

The Motion measure from the sonar senor record how far a participant was from the 

computer.  Higher measures indicate that the participant was further away while lower 

measures indicate closeness.  These behaviors generally mean different things for 

different individuals. 
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Appendix A-4 Sensor Chair Measurements for Participant 4104 

The measurements from the sensor chair correspond to the pressure on each of the eight 

sensors.  Sensors numbered one through four were placed on the back of the chair and 

generally show little variability from any participants.  Sensors numbered five through 

eight show significantly more variability.  It is unknown how these measures correlate 

with cognitive and emotional states, aside from that they are used in the Linear 

Regression models used by the original experimenters.   These measures generally mean 

different things for different individuals. 

 

Sensors 1 through 4 measured the amount of pressure on the back of the chair.  These did 

not always result in a non-zero reading.  Note that Chair Sensors 1-4 are the only feature 

of Dataset #1 not used in any cognitive or affective model.  See Table 18 for more 

information. 
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Appendix A-5 Eye Sensor Measurements for Participant 4102 

The measurement of left eye pupil diameter is taken via the customized sensor for this 

experiment.   Pupil diameter has been shown to be correlated with memory (Kahneman 

and Beatty 1966) and other cognitive states (Marshall 2007). 
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Appendix A-6 Derived Measurements for Participant 4102 

The difference measures associated with these data are not known to be associated with 

any specific state.  There are taken in order to ease the burden on the machine learning 

methods, and were used by the original experimenters.  
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Appendix A-7 Labeled Measurements from the ABM Headset for Participant 

4102 

The ABM EEG headset produces three outputs measures: Engagement, Distractions, and 

Workload.  These measures are derived from Power Spectral Density (PSD) absolute and 

relative signals in the 1-4 Hz, 5-7 Hz, 8-13 Hz, 14-24 Hz, and 25-40 Hz bands from eight 

key sites around the cranial area across a large population of individuals.  The Workload 

metric is correlated with task load, memory, complex operations.  The Engagement 

metric is correlated with drowsiness/alertness in driving tasks, attention to simulations, 

verbal processing in simple/complex environments, and verbal reasoning tasks.  The 

Distraction metric is a measurement of whether the individual is “on task”.  See (Berka et 

al. 2007) for more information. 
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Appendix A-8 Labeled Measurements from the EmoPro Self-Report 

The EmoPro® measurement tool produces three outputs measures used in this study: 

Anger, Boredom, and Fear.  These measures are derived from direct user query with an 

emoticon-based interface.  While the three measures have not been validated, the 

measures have face validity, as the user selects the emoticon closest to the emotion that 

they are experiencing.  It has been used in other recent studies (Jones et al. 2012; Kokini 

et al. 2012), and is commercially available.  Its use is consistent with other user feedback 

reporting mechanisms. 
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Appendix A-9 Example of a Single Datapoint for Dataset #1 

Table 65 – Example of a single data point from Dataset #1 (point 1, participant 1) shown 

DateTime 14:56.0 

Alpha 0.0192 

Alpha2 0.01152 

Gamma 0.02402 

Gamma2 0.06282 

Beta 0.90774 

Beta2 0.0745 

Delta 0.02695 

Theta 0.03727 

Meditation 0.50505 

Attention 0.34343 

Heart 0.69156 

Motion 0.45775 

Sensor1 0 

Sensor2 0 

Sensor3 0 

Sensor4 0 

Sensor5 0.75 

Sensor6 0.52108 

Sensor7 0.76461 

Sensor8 0.79086 

LeftEyePupilDiamter 0.55969 

AlphaDiff 0.51934 

Alpha2Diff 0.44642 

GammaDiff 0.49582 

Gamma2Diff 0.50694 

BetaDiff 0.45627 

Beta2Diff 0.69313 

DeltaDiff 0.55585 

ThetaDiff 0.19525 

MediationDiff 0.43284 

AttentionDiff 0.54878 

HeartDiff 0.65885 

MotionDiff 0.51036 

ParticipantID 4101 

HighEngagement 1 

Distractions 0 
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WorkloadFBDS 0 

Anger 0 

Boredom 0 

Fear 0 
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APPENDIX B MEASUREMENTS FOR DATASET #2 
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Appendix B-1 Graphs Of Measurements from the SeeingMachine Facelab 5 

(5% Of Total Data) 

The Fixations measurement corresponds to how long the participant remained starting at 

a point on the screen.  The longer a participant remained staring, the higher the reported 

fixation.  If the participant was not staring at a point on the screen, this measurement 

reported ‘0’.  The high variability of fixations data corresponds to the participant looking 

around and focusing on different items during the conduct of the experiment. This data 

was normalized prior to running machine learning experiments.  This is shown via the 

large jump in total number of usable models in the final section of this Appendix. 
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Pupil Diameter refers to the number of millimeters the radius of the pupil of the left eye.  

For a more full description, see Appendix A-5. 
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Appendix B-2 Graphs of Labeled Measurements from the Facelab System (5% 

Of Total Data) 

The Index of Cognitive Activity is a measure of cognitive workload produced from 

eyetracking data (Marshall 2002).  It has been validated in high and low light 

environments, and against EEG measures of workload.  It remains to be commonly used 

in the psychology domain for identification of workload (Demberg et al. 2013; Marshall 

2007). 
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Appendix B-3 Sample Datapoint for Dataset #2, Downsampled 

Table 66 shows the effect that downsampling, as discussed in Section 6.3.3, has on 

overall data collection.  The read will note that there is still a large amount of repeated 

data, and that no significant information was destroyed in the process.  Data was 

downsampled from 14000 Hz to 3500 Hz. 

 

Table 66 – Downsampled Dataset #2, 3500 Hz, few changes observed. 

Time ParticipantID Fixations 
Pupil 

Diameter 
Index Of Cognitive 

Activity 

11.20.41.22.075 32 0 0.0051 0 

11.20.41.22.075 32 0 0.0051 0 

11.20.41.22.075 32 0 0.0051 0 

11.20.41.22.075 32 0 0.0051 0 

11.20.41.22.075 32 0 0.0051 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.005 0 

11.20.41.22.075 32 0 0.0051 0 

11.20.41.22.075 32 0 0.0051 0 
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APPENDIX C COMPLETE RESULTS OF ALL ALGORITHMS ON 

ALL DATASETS 
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A dissertation should present all complete results sets.  This dissertation presents the 

results from several batches of model creation.   The first set of results, hereafter referred 

to as Results Set #1, is created from default algorithmic parameter settings on the total set 

of cognitive and affective data from Dataset #1.  The second set of results, hereafter 

referred to as Results Set #2, uses Dataset #1 and Dataset #2 with altered parameter 

settings believed to produce models with more accuracy, as earlier in this dissertation.  

The third set of results, hereafter referred to as Results Set #3, is created through the use 

of an abbreviated set of Dataset #1 models, using only the input features which have 

already been determined to be useful in the previous studies. 
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Appendix C-1 Results Set #1  

Each algorithm has three sets of graph per set of model which corresponds to one for 

each scheme of labeling (unsupervised, supervised, or semi-supervised).  Each model is 

divided into type.  The first type is the Dataset #1 Cognitive models of distraction, 

engagement, and workload.  The second type is the Dataset #1 affective models of anger, 

boredom, and fear.  The third type is the Dataset #2 cognitive models of the Index of 

Cognitive Activity.  In order to facilitate a more in-depth discussion of the impact of 

semi-supervision on overall algorithm performance in Chapter 0, the semi-supervision of 

all algorithms and all models are graphed together.  A brief summary of the presented 

graphs is shown in Table 67. 

Table 67 – Preview of upcoming results graphs 

Method Supervision Type of 
Model 

Graphed Performance Data 

ART Unsupervised Cognitive Distraction, Engagement, Workload 

ART Supervised Cognitive Distraction, Engagement, Workload 

ART Semi-supervised Cognitive Distraction, Engagement, Workload 

ART Unsupervised Affective Anger, Boredom, Fear 

ART Supervised Affective Anger, Boredom, Fear 

ART Semi-supervised Affective Anger, Boredom, Fear 

… … … … 

Other 
methods 

Un-/semi-/fully- 
supervised 

Both All 

… … … … 

All Semi-Supervised Cognitive Distraction, Engagement, Workload 

All Semi-Supervised Affective Anger, Boredom, Fear 

 

The primary item of interest to realtime model creation is the goodness of fit of the model 

over time.  The x-axis of each graph presented in the results section is time, with each 
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line corresponding to a measured evaluation.  All evaluations are measured with the AUC 

ROC metric.  Three types of AUC ROC measures are taken: “all”, “next”, and “prev”.  

The “all” ROC measure represents the ability of the model to correctly predict all of the 

data that has so far been presented.  The “next” and “prev” measures represent the ability 

of the model to correctly predict the unseen next 10% of total data and the recently 

presented previous 10% of total data, respectively. 
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Appendix C-1-1 ART 

 

Figure 47 – Performance of unsupervised ART for cognitive modeling 
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Figure 48 – Performance of supervised ART for cognitive modeling 
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Figure 49 – Performance of semi-supervised ART for cognitive modeling 
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Figure 50 – Performance of unsupervised ART for affective modeling 
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Figure 51 – Performance of supervised ART for affective modeling 



316 
 

 

Figure 52 – Performance of semi-supervised ART for affective modeling 
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Appendix C-1-2 K-Means 

 

Figure 53 – Performance of unsupervised K-Means clustering for cognitive modeling 
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Figure 54 – Performance of supervised K-Means clustering for cognitive modeling 
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Figure 55 – Performance of semi-supervised K-Means clustering for cognitive modeling 
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Figure 56 – Performance of unsupervised K-Means clustering for affective modeling 
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Figure 57 – Performance of supervised K-Means clustering for affective modeling 
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Figure 58 – Performance of semi-supervised K-Means clustering for affective modeling 
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Appendix C-1-3 Growing Neural Gas 

 

Figure 59 – Performance of unsupervised Growing Neural Gas for cognitive modeling 
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Figure 60 – Performance of supervised Growing Neural Gas for cognitive modeling 
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Figure 61 – Performance of semi-supervised Growing Neural Gas for cognitive modeling 
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Figure 62 – Performance of unsupervised Growing Neural Gas for affective modeling 
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Figure 63 – Performance of supervised Growing Neural Gas for affective modeling 
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Figure 64 – Performance of semi-supervised Growing Neural Gas for affective modeling 
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Appendix C-1-4 Vowpal Wabbit 

 

Figure 65 – Performance of unsupervised VW for linear cognitive modeling 
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Figure 66 – Performance of supervised VW for linear cognitive modeling 
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Figure 67 – Performance of semi-supervised VW for linear cognitive modeling 
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Figure 68 – Performance of unsupervised VW for linear affective modeling 
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Figure 69 – Performance of supervised VW for linear affective modeling 
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Figure 70 – Performance of semi-supervised VW for linear affective modeling 
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Appendix C-1-5 Total Results Set #1 Semi-Supervised Modeling Ability 

 

Figure 71 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for cognitive 

modeling 
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Figure 72 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for affective 

modeling 

Appendix C-2 Results Set #2 

The results in this section will be presented similar to the previous section, as 

summarized in Table 67.  It will be broken into a section for the algorithm, the method of 

label assignment, and the type of model created.  In each of these results graphs, the 

measures of classification quality, previous model quality, and predictive accuracy for 

each of the model types is shown.  Results Set #2 additionally introduces workload 
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models produced from Dataset #2 analysis, and the altered parameter settings from 

Results Set #1 experimentation. 

Appendix C-2-1 ART (Dataset #1) 

 

Figure 73 – Performance of unsupervised ART for cognitive modeling 
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Figure 74 – Performance of supervised ART for cognitive modeling 
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Figure 75 – Performance of semi-supervised ART for cognitive modeling 
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Figure 76 – Performance of unsupervised ART for affective modeling 
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Figure 77 – Performance of supervised ART for affective modeling 
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Figure 78 – Performance of semi-supervised ART for affective modeling 
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Appendix C-2-2 K-Means (Dataset #1) 

 

Figure 79 – Performance of unsupervised K-Means clustering for cognitive modeling 
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Figure 80 – Performance of supervised K-Means clustering for cognitive modeling 
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Figure 81 – Performance of semi-supervised K-Means clustering for cognitive modeling 
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Figure 82 – Performance of unsupervised K-Means clustering for affective modeling 
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Figure 83 – Performance of supervised K-Means clustering for affective modeling 
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Figure 84 – Performance of semi-supervised K-Means clustering for affective modeling 
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Appendix C-2-3 GNG (Dataset #1) 

 

Figure 85 – Performance of unsupervised Growing Neural Gas for cognitive modeling 
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Figure 86 – Performance of supervised Growing Neural Gas for cognitive modeling 
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Figure 87 – Performance of semi-supervised Growing Neural Gas for cognitive modeling 
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Figure 88 – Performance of unsupervised Growing Neural Gas for affective modeling 
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Figure 89 – Performance of supervised Growing Neural Gas for affective modeling 
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Figure 90 – Performance of semi-supervised Growing Neural Gas for affective modeling 
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Appendix C-2-4 Vowpal Wabbit (Dataset #1) 

 

Figure 91 – Performance of unsupervised VW for linear cognitive modeling 
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Figure 92 – Performance of supervised VW for linear cognitive modeling 
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Figure 93 – Performance of semi-supervised VW for linear cognitive modeling 
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Figure 94 – Performance of unsupervised VW for linear affective modeling 
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Figure 95 – Performance of supervised VW for linear affective modeling 
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Figure 96 – Performance of semi-supervised VW for linear affective modeling 
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Appendix C-2-5 ART (Dataset #2) 

 

Figure 97 – Performance of ART for cognitive index modeling 
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Appendix C-2-6 Growing Neural Gas (Dataset #2) 

 

Figure 98 – Performance of GNG for cognitive index modeling 
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Appendix C-2-7 Vowpal Wabbit (Dataset #2) 

 

Figure 99 – Performance of VW for cognitive index modeling 
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Appendix C-2-8 Total Results Set #2 Semi-Supervised Modeling Ability 

(Dataset #1) 

 

Figure 100 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for cognitive 

modeling 
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Figure 101 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for affective 

modeling 
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Appendix C-2-9 Total Results Set #2 Semi-Supervised Modeling Ability 

(Dataset #2) 

 

Figure 102 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for cognitive 

index modeling 
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Appendix C-3 Results Set #3 

The results in this section will be presented similar to the previous section.  It will be 

broken into a section for the algorithm, the method of label assignment, and the type of 

model created.  In each of these results graphs, the measures of classification quality, 

previous model quality, and predictive accuracy for each of the model types is shown.  

Results Set #3 differs from Results Set #1 and #2 in that the created affective and 

cognitive models were given a significantly reduced input feature set, as found in the 

previous research study. 
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Appendix C-3-1 ART (Dataset #1) 

 

Figure 103 – Performance of unsupervised ART for cognitive modeling 
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Figure 104 – Performance of supervised ART for cognitive modeling 
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Figure 105 – Performance of semi-supervised ART for cognitive modeling 
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Figure 106 – Performance of unsupervised ART for affective modeling 
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Figure 107 – Performance of supervised ART for affective modeling 
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Figure 108 – Performance of semi-supervised ART for affective modeling 
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Appendix C-3-2 K-Means (Dataset #1) 

 

Figure 109 – Performance of unsupervised K-Means clustering for cognitive modeling 
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Figure 110 – Performance of supervised K-Means clustering for cognitive modeling 
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Figure 111 – Performance of semi-supervised K-Means clustering for cognitive modeling 
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Figure 112 – Performance of unsupervised K-Means clustering for affective modeling 
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Figure 113 – Performance of supervised K-Means clustering for affective modeling 
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Figure 114 – Performance of semi-supervised K-Means clustering for affective modeling 
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Appendix C-3-3 GNG (Dataset #1) 

 

Figure 115 – Performance of unsupervised Growing Neural Gas for cognitive modeling 



381 
 

 

Figure 116 – Performance of supervised Growing Neural Gas for cognitive modeling 
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Figure 117 – Performance of semi-supervised Growing Neural Gas for cognitive modeling 
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Figure 118 – Performance of unsupervised Growing Neural Gas for affective modeling 
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Figure 119 – Performance of supervised Growing Neural Gas for affective modeling 
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Figure 120 – Performance of semi-supervised Growing Neural Gas for affective modeling 
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Appendix C-3-4 VW (Dataset #1) 

 

Figure 121 – Performance of unsupervised VW for linear cognitive modeling 
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Figure 122 – Performance of supervised VW for linear cognitive modeling 
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Figure 123 – Performance of semi-supervised VW for linear cognitive modeling 
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Figure 124 – Performance of unsupervised VW for linear affective modeling 
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Figure 125 – Performance of supervised VW for linear affective modeling 
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Figure 126 – Performance of semi-supervised VW for linear affective modeling 
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Appendix C-3-5 Total Results Set #3 Semi-Supervised Modeling Ability 

(Dataset #1) 

 

Figure 127 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for cognitive 

modeling 
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Figure 128 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for affective 

modeling 
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Appendix C-4 Results Set #4 

The results in this section will be presented similar to the previous sections.  It will be 

broken into a section for the algorithm, the method of label assignment, and the type of 

model created.  In each of these results graphs, the measures of classification quality, 

previous model quality, and predictive accuracy for each of the model types is shown.  

Results Set #4 differs from Results Set #1, #2, and #3 in so far as 22 new features were 

introduced into the dataset.  This was performed through incorporation of a 5-second 

average of each of the previous 21 features, resulting in 42 total features. 

It is not appropriate to compare models created on this new dataset directly to 

models produced with the other datasets, but was performed to shed light on whether a 

simple historical statistical measure introduced into the datastream would be enough to 

stabilize models of cognition or produce superior models of affect.  This was not 

observed in comparisons of the C-2-1 appendix to the C-1-1 appendix.   
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Appendix C-4-1 ART 

 

Figure 129 – Performance of unsupervised ART for cognitive modeling for Results Set #4 
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Figure 130 – Performance of supervised ART for cognitive modeling for Results Set #4 
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Figure 131 – Performance of supervised ART for cognitive modeling for Results Set #4 
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Figure 132 – Performance of unsupervised ART for affective modeling for Results Set #4 
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Figure 133 – Performance of supervised ART for affective modeling for Results Set #4 
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Figure 134 – Performance of semi-supervised ART for affective modeling for Results Set #4 

  



401 
 

Appendix C-4-2 K-Means 

 

Figure 135 – Performance of unsupervised clustering for cognitive modeling for Results Set #4 
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Figure 136 – Performance of supervised clustering for cognitive modeling for Results Set #4 
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Figure 137 – Performance of semisupervised clustering for cognitive modeling for Results Set #4 
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Figure 138 – Performance of unsupervised clustering for affective modeling for Results Set #4 
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Figure 139 – Performance of supervised clustering for cognitive modeling for Results Set #4 
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Figure 140 – Performance of semi-supervised clustering for cognitive modeling for Results Set #4 
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Appendix C-4-3 GNG 

 

Figure 141 – Performance of unsupervised neural gas for cognitive modeling for Results Set #4 
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Figure 142 – Performance of supervised neural gas for cognitive modeling for Results Set #4 
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Figure 143 – Performance of semi-supervised neural gas for cognitive modeling for Results Set #4 
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Figure 144 – Performance of unsupervised neural gas for affective modeling for Results Set #4 
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Figure 145 – Performance of supervised neural gas for affective modeling for Results Set #4 
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Figure 146 – Performance of semi-supervised neural gas for affective modeling for Results Set #4 
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Appendix C-4-4 VW 

 

Figure 147 – Performance of unsupervised VW for cognitive modeling for Results Set #4 
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Figure 148 – Performance of supervised VW for cognitive modeling for Results Set #4 
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Figure 149 – Performance of semi-supervised VW for cognitive modeling for Results Set #4 
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Figure 150 – Performance of unsupervised VW for affective modeling for Results Set #4 
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Figure 151 – Performance of supervised VW for affective modeling for Results Set #4 
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Figure 152 – Performance of semi-supervised VW for affective modeling for Results Set #4 

 

 

 

 

 

 

Appendix C-4-5 Total Results Set #4 Semi-Supervised Modeling Ability  
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Figure 153 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for cognitive 

modeling for Results Set #4 
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Figure 154 – Performance of semi-supervised methods (ART, K-Means, VW, OSSGNG) for affective 

modeling for Results Set #4 
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APPENDIX D VARIATION OF PARAMETERS OF THE 

ADAPTIVE RESONANCE THEORY ALGORITHM 
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Additional attempts to tune parameter settings on the ART algorithm were attempted in 

order to recommend parameter settings for field use.  Vigilance parameter values of 01., 

0.3, 0.5, 0.7, and 0.9 were tested with full supervision and examined with various results 

presented below.  Generally, the 0.75 parameter setting value which was initially 

attempted based on literature recommendations was found to have acceptable 

performance.   

The reader should note that a vigilance parameter setting of 0.9 is a very large 

vigilance parameter.  As a result, nearly every datapoint is given its own input category, 

which classifies a very small amount of the total data.  This leads to higher overall 

accuracy, but at the cost of practicality.  For a practical Intelligent Tutoring System to 

make use of learner data, it must have stable categories over an area of instruction.  

Extremely high number of classification categories do not allow for this, but provide an 

estimate of the levels of vigilance which must be selected. 
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Figure 155 – Performance of various ART parameters for modeling Distraction 
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Figure 156 – Performance of various ART parameters for modeling Engagement 
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Figure 157 – Performance of various ART parameters for modeling Workload 

 



426 
 

 

Figure 158 – Performance of various ART parameters for modeling Anger 
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Figure 159 – Performance of various ART parameters for modeling Boredom 
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Figure 160 – Performance of various ART parameters for modeling Fear 
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Appendix D-1 Numerical Summary of ART parameter settings 

Table 68 – Quality values for various parameter settings using supervised ART 

Model 0.1 0.3 0.5 0.7 0.9

Anger 0.677 0.668 0.705 0.760 0.932

Boredom 0.610 0.655 0.702 0.823 0.973

Fear 0.809 0.809 0.818 0.857 0.943

Distraction 0.538 0.538 0.545 0.568 0.767

Engagement 0.560 0.557 0.559 0.579 0.739

Workload 0.522 0.523 0.523 0.535 0.713

Quality Metric

 

 

Table 69 – Percentage of usable models for various parameter settings using supervised ART 

Model 0.1 0.3 0.5 0.7 0.9

Anger 58% 63% 74% 89% 100%

Boredom 32% 63% 89% 100% 100%

Fear 89% 74% 95% 100% 100%

Distraction 14% 7% 14% 7% 100%

Engagement 21% 14% 14% 14% 100%

Workload 0% 0% 0% 0% 100%

Percentage Usable

 

 

  



430 
 

LIST OF REFERENCES 

Abdelbar, A. M., and Hedetniemi, S. M. (1998). "Approximating MAPs for belief 
networks is NP-hard and other theorems." Artificial Intelligence, 102(1), 21-38. 

Abraham, A., Corchado, E., and Corchado, J. M. (2009). "Hybrid learning machines." 

Agarwal, A., Chapelle, O., Dudík, M., and Langford, J. (2011). "A reliable effective 
terascale linear learning system." arXiv preprint arXiv:1110.4198. 

Ahissar, M., and Hochstein, S. (2002). "The Role of Attention in Learning Simple Visual 
Tasks", in M. Fahle and T. Poggio, (eds.), Perceptual Learning. Cambridge, MA: 
The MIT Press, pp. 253-272. 

Ahlstrom, U., and Friedman-Bern, F. J. (2006). "Using eye movement activity as a 
correlate of cognitive workload." International Journal of Industrial Ergonomics, 
36(7), 623-636. 

Alexander, T., Goldberg, S., Magee, L., Sottilare, R., Andrews, D., and Roessingh, J. J. 
"Enhancing Human Effectiveness through Embedded Virtual Simulation." 
Presented at The Interservice/Industry Training, Simulation & Education 

Conference (I/ITSEC). 

AlZoubi, O., Calvo, R., and Stevens, R. (2009). "Classification of EEG for Affect 
Recognition: An Adaptive Approach." AI 2009: Advances in Artificial 

Intelligence, 52-61. 

Alzoubi, O., Hussain, S., D’Mello, S., and Calvo, R. A. (2011). "Affective Modeling 
from Multichannel Physiology: Analysis of Day Differences", in S. D'Mello, A. 
Graesser, B. Schuller, and J.-C. Martin, (eds.), Proceedings of the 4th 

International Conference on Affective Computing and Intelligent Interaction 

(ACII 2011), LNCS. Berlin Heidelberg: Springer-Verlag, pp. 4-13. 

AlZoubi, O., Koprinska, I., and Calvo, R. A. "Classification of Brain-Computer Interface 
Data." 

Anderson, G., and Brown, R. I. F. (1984). "Real and laboratory gambling, 
sensation‐seeking and arousal." British Journal of Psychology, 75(3), 401-410. 

Anderson, J. R. (1987). "Production systems, learning and tutoring", in D. Klahr, P. 
Langley, and R. Neches, (eds.), Production System Models of Learning and 

Development London: MIT Press,, pp. 437-458. 



431 
 

Anderson, J. R., Boyle, C. F., Farrell, R., and Reiser, B. J. (1987). "Cognitive Principles 
in the Design of Computer Tutors", in P. Morris, (ed.), Modelling Cognition. John 
Wiley & Sons Ltd., pp. 93-133. 

Army, D. o. t. (2011). The U.S. Army Learning Concept for 2015. TRADOC. 

Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., and Christopherson, 
R. (2009). "Emotion sensors go to school"International Conference on Artificial 

Intelligence in Education. City: IOS Press, pp. 17-24. 

Arroyo, I., and Woolf, B. P. "Inferring learning and attitudes from a Bayesian Network of 
log file data." 

Arroyo, I., Woolf, B. P., and Beal, C. R. (2006). "Addressing Cognitive Differences and 
Gender During Problem Solving." Technology, Instruction, Cognition and 

Learning, 4, 31-63. 

Baker, R., Gowda, S., Corbett, A., and Ocumpaugh, J. "Towards automatically detecting 
whether student learning is shallow." 

Baker, R. S., Corbett, A. T., Koedinger, K. R., and Wagner, A. Z. "Off-task behavior in 
the cognitive tutor classroom: when students game the system." Presented at 

Proceedings of the SIGCHI conference on Human factors in computing systems. 

Baker, R. S. J., D'Mello, S. K., Rodrigo, M. M. T., and Graesser, A. C. (2010). "Better to 
be frustrated than bored: The incidence, persistence, and impact of learners' 
cognitive-affective states during interactions with three different computer-based 
learning environments." International Journal of Human-Computer Studies, 
68(4), 223-241. 

Baker, R. S. J., Kalka, J., Aleven, V., Rossi, L., Gowda, S. M., Wagner, A. Z., Kusbit, G. 
W., Wixon, M., Salvi, A., and Ocumpaugh, J. (2012b). "Towards Sensor-Free 
Affect Detection in Cognitive Tutor Algebra." 

Baker, R. S. J. d. (2010). "Mining data for student models", in R. Nkmabou, R. 
Mizoguchi, and J. Bourdeau, (eds.), Advances in Intelligent Tutoring Systems, 

Studies in Computational Intelligence. Heidelberg: Springer Verlag, pp. 323-337. 

Banda, N., and Robinson, P. (2011). "Multimodal Affect Recognition in Intelligent 
Tutoring Systems", in S. D. Mello, A. Graesser, B. Schuller, and J.-C. Martin, 
(eds.), Proceedings of the 4th International Conference on Affective Computing 

and Intelligent Interaction (ACII 2011), LNCS. Berlin Heidelberg: Springer-
Verlag, pp. 200-207. 



432 
 

Barber, D., and Hudson, I. (2011). "Distributed logging and synchronization of 
physiological and performance measures to support adaptive automation 
strategies." Foundations of Augmented Cognition. Directing the Future of 

Adaptive Systems, 559-566. 

Barr, A., and Feigenbaum, E. A. (1982). The Handbook of Artificial Intelligence, Los 
Altos, CA: Kaufmann. 

Bartels, M., and Marshall, S. P. "Measuring cognitive workload across different eye 
tracking hardware platforms." Presented at Proceedings of the Symposium on Eye 

Tracking Research and Applications. 

Beck, J., Stern, M., and Haugsjaa, E. (1996). "Applications of AI in Education." ACM 

Crossroads, 3(1), 11-15. 

Benasich, A. A., Gou, Z., Choudhury, N., and Harris, K. D. (2008). "Early cognitive and 
language skills are linked to resting frontal gamma power across the first 3 years." 
Behavioural brain research, 195(2), 215-222. 

Beni, G., and Wang, J. (1993). "Swarm intelligence in cellular robotic systems." Robots 

and Biological Systems: Towards a New Bionics?, 703-712. 

Beringer, J., and Hüllermeier, E. (2006). "Online clustering of parallel data streams." 
Data Knowl. Eng, 58(2), 180-204. 

Berka, C., Levendowski, D. J., Cvetinovic, M., Petrovic, M. M., Davis, G. F., Lumicao, 
M. N., and al., e. (2004). "Real-time analysis of EEG indices of alertness, 
cognition and memory acquired with a wireless EEG headset." International 

Journal of Human-Computer Interaction, 17(2), 151-170. 

Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., 
Olmstead, R. E., Tremoulet, P. D., and Craven, P. L. (2007). "EEG Correlates of 
Task Engagement and Mental Workload in Vigilance, Learning, and Memory 
Tasks." Aviation Space and Environmental Medicine, 78(5), B231-B244. 

Bersak, D., McDarby, G., Augenblick, N., McDarby, P., McDonnell, D., McDonal, B., 
and Karkun, R. "Biofeedback using an Immersive Competitive Environment." 
Presented at Ubicomp 2001, Designing Ubiquitous Computing Games Workshop. 

Beyer, O., and Cimiano, P. "Online semi-supervised growing neural gas." Presented at 

Workshop New Challenges in Neural Computation 2011. 

Beygelzimer, A., Hsu, D., Karampatziakis, N., Langford, J., and Zhang, T. "Efficient 
active learning." Presented at ICML 2011 Workshop on On-line Trading of 

Exploration and Exploitation. 



433 
 

Beygelzimer, A., Hsu, D., Langford, J., and Zhang, T. (2010a). "Agnostic active learning 
without constraints." arXiv preprint arXiv:1006.2588. 

Beygelzimer, A., Hsu, D., Langford, J., and Zhang, T. (2010b). "Agnostic Active 
Learning Without Constraints"Neural Information Processing Systems. City. 

Blanchard, E., Chalfoun, P., and Frasson, C. (2007). "Towards advanced learner 
modeling: Discussion on quasi real-time adaptation with physiological data", 
Proceedings of the 7th IEEE International Conference on Advanced Learning 

Technologies. Montreal, Quebec, pp. 809-813. 

Blanchard, E. G., Volfson, B., Hong, Y.-J., and Lajoie, S. P. (2009). "Affective Artificial 
Intelliegnce in Education: From Detection to Adaptation", V. D. R. Mizoguchi, B. 
d. Boulay, and A. Grasser, (eds.), International Conference on Artificial 

Intelligence in Education. City: IOS Press, pp. 81-88. 

Bloom, B. S. (1984). "The 2-Sigma Problem: The search for methods of group instruction 
as effective as one-to-one tutoring,." Educational Researcher, 13(6), 4-16. 

Bohl, O., Scheuhase, J., Sengler, R., and Winand, U. "The sharable content object 
reference model (SCORM)-a critical review." 

Bonnet, A. (1985). Artificial Intelligence:  Promise and Performance., London: Prentice 
Hall. 

Bostanov, V. (2004). "BCI competition 2003-data sets Ib and IIb: feature extraction from 
event-related brain potentials with the continuous wavelet transform and the t-
value scalogram." Biomedical Engineering, IEEE Transactions on, 51(6), 1057-
1061. 

Boulay, B. d., and Luckin, R. (2001). "Modelling Human Teaching Tactics and Strategies 
for Tutoring Systems." International Journal of Artificial Intelligence in 

Education, 12, 235-256. 

Bower, G. H. (1992). "How might emotions affect learning?", in S. A.Christianson, (ed.), 
The handbook of emotion and memory. Hillsdale, NJ: Erlbaum, pp. 3 –31. 

Bradley, M. M., Greenwald, M. K., Petry, M. C., and Lang, P. J. (1992). "Remembering 
Pictures: Pleasure and Arousal in Memory." Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 18(2), 379-390. 

Bransford, J. D., Brown, A. L., Cocking, R. R., Donovan, M. S., and Pellegrino, J. W. 
(2000). How People Learn: Brain, Mind, Experience, and School, Washington, 
D.C.: National Academy Press. 



434 
 

Brawner, K., and Goldberg, B. "Real-Time Monitoring of ECG and GSR Signals during 
Computer-Based Training." 

Brawner, K., Sottilare, R., and Gonzalez, A. "Semi-Supervised Classification of Realtime 
Physiological Sensor Datastreams for Student Affect Assessment in Intelligent 
Tutoring." 

Brawner, K. W., and Gonzalez, A. J. (2011). "Realtime Clustering of Unlabeled Sensory 
Data for User State Assessment"Proceedings of International Defense & 

Homeland Security Simulation Workshop of the I3M Conference. City: Rome, 
Italy. 

Brawner, K. W., Holden, H. K., Goldberg, B. S., and Sottilare, R. A. "Understanding the 
Impact of Intelligent Tutoring Agents on Real-Time Training Simulations." 

Brown, J. S., and VanLehn, K. (1980). "Repair theory: A generative theory of bugs in 
procedural skills." Cognitive Science, 4(4), 379-426. 

Brusilovsky, P., Eklund, J., and Schwarz, E. (1998). "Web-based education for all: A tool 
for developing adaptive courseware", Computer Networks and ISDN Systems 

(Proceedings of Seventh International World Wide Web Conference, 14-18 April 

1998). pp. 291-300. 

Burns, H. L., and Capps, C. G. (1988). "Foundations of intelligent tutoring systems: an 
introduction", in M. C. Poison and J. J. Richardson, (eds.), Foundations of 

Intelligent Tutoring Systems. London: Lawrence Erlbaum Associates, Inc., pp. 1-
19. 

Burton, R., and Brown, J. (1976). "A tutoring and student modelling paradigm for 
gaming environments"SIGCSE-SIGCUE Joint Symposium on Computer Science 

Education. . City. 

Calvo, R. A., and D'Mello, S. (2012). "Frontiers of Affect-Aware Learning 
Technologies." Intelligent Systems, IEEE, 27(6), 86-89. 

Campbell, J. "Theorising habits of mind as a framework for learning." Presented at 

Proceedings of the Australian Association for Research in Education Conference. 

Candes, E., Demanet, L., Donoho, D., and Ying, L. (2006). "Fast discrete curvelet 
transforms." Multiscale Modeling & Simulation, 5(3), 861-899. 

Cannady, J., and Garcia, R. (2001). "The application of fuzzy ARTMAP in the detection 
of computer network attacks." Artificial Neural Networks—ICANN 2001, 225-
230. 



435 
 

Capuano, N., Marsella, M., and Salerno, S. "ABITS: an agent-based intelligent tutoring 
system for distance learning." Presented at International Workshop on Adaptive 

and Intelligent Web-based Educational Systems, International Conference on 

Intelligent Tutoring Systems (ITS 2000), Montreal, Canada. 

Carole, R., and Hyokyeong, L. (2005). "Creating a pedagogical model that uses student 
self reports of motivation and mood to adapt ITS instruction." 

Carpenter, G. A., and Grossberg, S. (1987). "A massively parallel architecture for a self-
organizing neural pattern recognition machine." Computer vision, graphics, and 

image processing, 37(1), 54-115. 

Carpenter, G. A., and Grossberg, S. (1995). "Adaptive resonance theory (ART)", in M. 
Arbib, (ed.), The handbook of brain theory and neural networks. Cambridge, MA: 
MIT press, pp. 79-82. 

Carpenter, G. A., Grossberg, S., and Reynolds, J. H. (1991a). "ARTMAP: Supervised 
real-time learning and classification of nonstationary data by a self-organizing 
neural network." Neural networks, 4(5), 565-588. 

Carpenter, G. A., Grossberg, S., and Rosen, D. B. (1991b). "Fuzzy ART: Fast stable 
learning and categorization of analog patterns by an adaptive resonance system." 
Neural networks, 4(6), 759-771. 

Carroll, M., Kokini, C., Champney, R., Sottilare, R., and Goldberg, B. (2011). "Modeling 
Trainee Affective and Cognitive State Using Low Cost Sensors", Proceedings of 

the Interservice/Industry Training, Simulation, and Education Conference 

(I/ITSEC). Orlando, FL. 

Carroll, M., Kokini, C., Champney, R., Sottilare, R., and Goldberg, B. "Pending..." 
Presented at Interservice/Interindustry Training Simulation and Education 

Conference 2012, Orlando, FL. 

Castro, J., Georgiopoulos, M., Demara, R., and Gonzalez, A. "A Partitioned Fuzzy 
ARTMAP Implementation for Fast Processing of Large Databases on Sequential 
Machines." Presented at FLAIRS Conference. 

Cha, H., Kim, Y., Park, S., Yoon, T., Jung, Y., and Lee, J. H. "Learning styles diagnosis 
based on user interface behaviors for the customization of learning interfaces in 
an intelligent tutoring system." 

Chalfoun, P., and Frasson, C. (2012). "Cognitive Priming: Assessing the Use of Non-
conscious Perception to Enhance Learner’s Reasoning Ability"Intelligent 

Tutoring Systems 2012. City: Springer: Crete, Greece, pp. 84-89. 



436 
 

Champney, R. K., and Stanney, K. M. "Using emotions in usability." 

Chaouachi, M., Chalfoun, P., Jraidi, I., and Frasson, C. (2010). "Affect and mental 
engagement: towards adaptability for intelligent systems.", in H.W. Guesgen and 
R. C. Murray, (eds.), Proceedings of the 23rd International Florida Artificial 

Intelligence Research Society Conference   Menlo Park, CA: AAAI Press., pp. 
355-360. 

Chaouachi, M., and Frasson, C. (2010). "Exploring the Relationship between Learner 
EEG Mental Engagement and Affect"10th International Conference on Intelligent 

Tutoring Systems. City: Springer Verlag: Pittsburgh, PA. 

Charniak, E. (1991). "Bayesian Networks without tears." AI Magazine, 12(4), 50. 

Chi, M. T. H. (1996). "Constructing self-explanations and scaffolded explanations in 
tutoring." Applied Cognitive Psychology, 10(7), 33-49. 

Clarke, R. J., and Macrae, R. (1988). Coffee: Physiology: Kluwer Academic Pub. 

Clearinghouse, W. W. (2008). "WWC procedures and standards handbook". City: Dec. 

Cocea, M., Hershkovitz, A., and Baker, R. S. J. (2009). "The impact of off-task and 
gaming behaviors on learning: immediate or aggregate?". 

Cohen, J. (1992). "Quantitative Methods in Psychology: A Power Primer." Psychological 

Bulletin, 112(1), 155-159. 

Coles, M. G. H. (1989). "Modern mind-brain reading: psychophysiology, physiology, and 
cognition." Psychophysiology, 26(3), 251-269. 

Conati, C. (2002). "Probabilistic assessment of user’s emotions in educational games." 
Journal of Applied Artificial Intelligence, 16, 555-575. 

Conati, C. (2010). "Bayesian Student Modeling. Studies in Computational Intelligence, 
2010." Advances in Intelligent Tutoring Systems, 308, 281-299. 

Conati, C. (2011). "Combining cognitive appraisal and sensors for affect detection in a 
framework for modeling user affect." New Perspectives on Affect and Learning 

Technologies, 71-84. 

Conejo, R., Guzmán, E., Millán, E., Trella, M., Pérez-De-La-Cruz, J. L., and Ríos, A. 
(2004). "SIETTE: A Web–Based Tool for Adaptive Testing." International 

Journal of Artificial Intelligence in Education, 14, 1-33. 



437 
 

Considine, J., Li, F., Kollios, G., and Byers, J. "Approximate aggregation techniques for 
sensor databases." Presented at 20th IEEE International Conference on Data 

Engineering. 

Cooper, D., Muldner, K., Arroyo, I., Woolf, B., and Burleson, W. (2010). "Ranking 
feature sets for emotion models used in classroom based intelligent tutoring 
systems." User Modeling, Adaptation, and Personalization, 135-146. 

Cooper, D. G., Arroyo, I., and Woolf, B. P. (2011). "Actionable affective processing for 
automatic tutor interventions." New Perspectives on Affect and Learning 

Technologies, 127-140. 

Corbett, A. T. (2001). "Cognitive Computer Tutors: Solving the Two-Sigma Problem", in 
M. Bauer, P. J.Gmytrasiewicz, __, and J. Vassileva., (eds.), Proceedings of the 

8th International Conference on User Modeling 2001 (UM '01). London, UK: 
Springer-Verlag pp. 137-147. 

Craig, S. D., Graesser, A. C., Sullins, J., and Gholson, B. (2004). "Affect and learning: 
An exploratory look into the role of affect in learning with AutoTutor." Journal of 

Educational Media, 29(3), 241-250. 

Craik, F. I., Govoni, R., Naveh-Benjamin, M., and Anderson, N. D. (1996). "The effects 
of divided attention on encoding and retrieval processes in human memory." 
Journal of Experimental Psychology General, 152(2), 159-180. 

Crowder, N. A. (1959). "Automatic tutoring by means of intrinsic programming." 
Automatic teaching: The state of the art, 116. 

Crowley, K., Sliney, A., Pitt, I., and Murphy, D. "Evaluating a brain-computer interface 
to categorise human emotional response." Presented at Advanced Learning 

Technologies (ICALT), 2010 IEEE 10th International Conference on. 

Curtin, M. (1998). "Write once, run anywhere: Why it matters." Technical Article. 

http://java. sun. com/features/1998/01/wo. 

Cuseo, J. (2007). "The empirical case against large class size: adverse effects on the 
teaching, learning, and retention of first-year students." The Journal of Faculty 

Development, 21(1), 5-21. 

D'Mello, S., Graesser, A., and Picard, R. W. (2007). "Toward an affect-sensitive 
AutoTutor." Intelligent Systems, IEEE, 22(4), 53-61. 

D Mello, S., and Graesser, A. (2007). "Mind and Body: Dialogue and posture for affect 
detection in learning environments." Frontiers in Artificial Intelligence and 

Applications, 158, 161. 

http://java/


438 
 

D’Mello, S., and Graesser, A. (2007). "Mind and Body: Dialogue and Posture for Affect 
Detection in Learning Environments", in R. Luckin, K. Koedinger, and J. Greer, 
(eds.), Proceedings of the 13th International Conference on Artificial Intelligence 

in Education (AIED 2007). Amsterdam, The Netherlands: IOS Press, pp. 161-168. 

D’Mello, S. K., Taylor, R., and Graesser, A. C. (2007). "Monitoring Affective 
Trajectories during Complex Learning", in D. S. McNamara  and J. G. Trafton, 
(eds.), Proceedings of the 29th Annual Cognitive Science Society. Austin, TX: 
Cognitive Science Society, pp. 203-208. 

Dagum, P., and Luby, M. (1993). "Approximating probabilistic inference in Bayesian 
belief networks is NP-hard." Artificial Intelligence, 60(1), 141-153. 

Dal Seno, B., Matteucci, M., and Mainardi, L. (2010). "Online detection of P300 and 
error potentials in a BCI speller." Computational intelligence and neuroscience, 
2010, 11. 

Dasgupta, S., Hsu, D., and Monteleoni, C. (2007). "A general agnostic active learning 
algorithm." Advances in neural information processing systems, 20, 353-360. 

Dasgupta, S., and Langford, J. (2009). "Active Learning Tutorial, ICML 2009." 

Davidson, R. J., Scherer, K. R., and Goldsmith, H. H. (2003). Handbook of Affective 

Sciences, New York: Oxford University Press. 

Davis, L. (1991). Handbook of genetic algorithms: Van Nostrand Reinhold New York. 

Demberg, V., Kiagia, E., and Sayeed, A. (2013). "The Index of Cognitive Activity as a 
Measure of Linguistic Processing." reading time, 500, 1500. 

Dennerlein, J., Becker, T., Johnson, P., Reynolds, C., and Picard, R. W. "Frustrating 
computer users increases exposure to physical factors." 

Derakhshan, N., and Eysenck, M. (2010). "Emotional states, attention, and working 
memory: a special issue of cognition & emotion." Recherche, 67, 02. 

Dolan, B., and Behrens, J. (2012). "Five Aspirations for Educational Data Mining." 
Proceedings of the 5th International Conference on Educational Data Mining. 

Donchin, E., Spencer, K. M., and Wijesinghe, R. (2000). "The mental prosthesis: 
assessing the speed of a P300-based brain-computer interface." Rehabilitation 

Engineering, IEEE Transactions on, 8(2), 174-179. 

Dorigo, M., and Di Caro, G. "Ant colony optimization: a new meta-heuristic." Presented 

at Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress 

on. 



439 
 

Dorneich, M. C., Ververs, P. M., Mathan, S., and Whitlow, S. D. (2007). Defense 

Advanced Research Projects Agency (DARPA) Improving Warfighter Information 

Intake under Stress: Augmented Cognition - Phases 2, 3, and 4. - Final rept. Jun 

2003-Jan 2007. Honeywell, Inc., Honeywell Laboratories., Minneapolis, MN. 

Dragon, T., Arroyo, I., Woolf, B. P., Burleson, W., el Kaliouby, R., and Eydgahi, H. 
(2008). "Viewing Student Affect and Learning through Classroom Observation 
and Physical Sensors", in B. Woolf, E. Aimeur, R. Nikambou, and S. Lajoie, 
(eds.), Intelligent Tutoring Systems: Proceedings of the 9th International 

Conference on Intelligent Tutoring Systems. LNCS. Berlin: Springer-Verlag, pp. 
29-39. 

Duchi, J., Hazan, E., and Singer, Y. (2010). "Adaptive subgradient methods for online 
learning and stochastic optimization." Journal of Machine Learning Research, 12, 
2121-2159. 

Durlach, P. J. (1998). "The effects of a low dose of caffeine on cognitive performance." 
Psychopharmacology, 140(1), 116-119. 

Eberhart, R., and Shi, Y. "Comparison between genetic algorithms and particle swarm 
optimization." Presented at Evolutionary Programming VII. 

El Kaliouby, R., and Robinson, P. "Mind reading machines: Automated inference of 
cognitive mental states from video." 

Engler, J., and Schnel, T. (2012). "Classifying Workload using Discrete Deterministic 
Nonlinear Models Across Subject Populations and for Extended Time." IEEE 

Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans. 

Eysenck, M. W., and Calvo, M. G. (1992). "Anxiety and performance: The processing 
efficiency theory." Cognition & Emotion, 6(6), 409-434. 

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (1996). Advances 

in knowledge discovery and data mining. 

Fayyad, U. M., Reina, C., and Bradley, P. S. (1998). "Refining Initialization of 
Expectation Maximization Clustering Algorithms"4th International Conference 

on Knowledge Discovery and Data Mining (KDD-98). City: New York City. 

Feng, M., Heffernan, N., and Koedinger, K. (2010). "Student Modeling in an Intelligent 
Tutoring System." Intelligent Tutoring Systems in E-Learning Environments: 

Design, Implementation and Evaluation, 208. 

Fischer, G. (2001). "User modeling in human–computer interaction." User Modeling and 

User-Adapted Interaction, 11(1), 65-86. 



440 
 

Fisher, C. D. (1993). "Boredom at work: A neglected concept." Human Relations, 46, 
395– 417. 

Fletcher, J. D. (2011). DARPA Education Dominance  Program: April 2010 and 

November 2010 Digital Tutor Assessments. Institute for Defense Analyses. 

Folsom-Kovarik, J. T. (2012). Leveraging Help Requests in POMDP Intelligent Tutoring 

Systems, University of Central Florida. 

Frasson, C., and Chalfoun, P. (2010). "Managing Learner's Affective States in Intelligent 
Tutoring Systems", in R. Nkambou, R. Mizoguchi, and J. Bourdeau, (eds.), 
Advances in Intelligent Tutoring Systems. Berlin-Heidelberg: Springer, pp. 339–
358. 

Fredrickson, B. (1998). "What good are positive emotions?" Review of General 

Psychology, 2(3), 300-319. 

Fritzke, B. (1995). "A growing neural gas network learns topologies." Advances in neural 

information processing systems, 7, 625-632. 

Gagliolo, M., and Schmidhuber, J. (2006). "Learning dynamic algorithm portfolios." 
Annals of Mathematics and Artificial Intelligence, 47(3-4), 295-328. 

García-Rodríguez, J., Flórez-Revuelta, F., and García-Chamizo, J. "Image compression 
using growing neural gas." Presented at Neural Networks, 2007. IJCNN 2007. 

International Joint Conference on. 

Goldberg, B., Brawner, K., Sottilare, R., Tarr, R., Billings, D. R., and Malone, N. "Use of 
Evidence-based Strategies to Enhance the Extensibility of Adaptive Tutoring 
Technologies." Presented at The Interservice/Industry Training, Simulation & 

Education Conference (I/ITSEC). 

Gonzalez, C. (2005). "The relationship between task workload and cognitive abilities in 
dynamic decision making." Human Factors, 47(1), 92-101. 

Gowda, S., Pardos, Z., and Baker, R. "Content learning analysis using the moment-by-
moment learning detector." 

Graesser, A., Chipman, P., Haynes, B., and Olney, A. (2005). "AutoTutor: An intelligent 
tutoring system with mixed-initiative dialogue." IEEE Transactions on Education, 
48(4), 612-618. 

Graesser, A., Chipman, P., King, B., McDaniel, B., and D’Mello, S. (2007). "Emotions 
and learning with AutoTutor", in R. Luckin, K. Koedinger, and J. Greer, (eds.), 



441 
 

Proceedings of the 13th International Conference on Artificial Intelligence in 

Education (AIED 2007). Amsterdam, The Netherlands: IOS Press, pp. 569-571. 

Graesser, A. C., Conley, M. W., and Olney, A. (2012). "Intelligent tutoring systems." 
APA handbook of educational psychology. Washington, DC: American 

Psychological Association. 

Graesser, A. C., and D'Mello, S. (2012). "Moment-To-Moment Emotions During 
Reading." The Reading Teacher, 66(3), 238-242. 

Graesser, A. C., Jackson, G. T., Mathews, E. C., Mitchell, H. H., Olney, A., Ventura, M., 
Chipman, P., Franceschetti, D., Hu, X., and Louwerse, M. M. "Why/AutoTutor: A 
test of learning gains from a physics tutor with natural language dialog." 

Graesser, A. C., Person, N. K., Harter, D., and Group, T. R. (2001). "Teaching tactics and 
dialog in AutoTutor." International Journal of Artificial Intelligence in 

Education, 12(3), 257-279. 

Graesser, A. C., Person, N. K., and Magliano, J. P. (1995). "Collaborative dialogue 
patterns in naturalistic one‐to‐one tutoring." Applied Cognitive Psychology, 9(6), 
495-522. 

Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P., and Kreuz, R. (1999). 
"AutoTutor: A simulation of a human tutor." Cognitive Systems Research, 1(1), 
35-51. 

Gross, R., Matthews, I., Cohn, J., Kanade, T., and Baker, S. (2010). "Multi-pie." Image 

and Vision Computing, 28(5), 807-813. 

Guedalia, I. D., London, M., and Werman, M. (1998). "An on-line agglomerative 
clustering method for non-stationary data." Neural Computation. 

Guo, H., and Hsu, W. "A survey of algorithms for real-time Bayesian network inference." 
Presented at AAAI/KDD/UAI02 Joint Workshop on Real-Time Decision Support 

and Diagnosis Systems. 

Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. A. (2006). Feature extraction: 

foundations and applications: Springer. 

Haddad, W. D. (1978). "Educational Effects of Class Size", World Bank Staff Working 

Paper, No 280. Washington D.C: World Bank. 

Halverson, T., Estepp, J., Christensen, J., and Monnin, J. "Classifying Workload with Eye 
Movements in a Complex Task." Presented at Proceedings of the Human Factors 

and Ergonomics Society Annual Meeting. 



442 
 

Hanley, J. A. (1989). "Receiver operating characteristic (ROC) methodology: the state of 
the art." Critical reviews in diagnostic imaging, 29(3), 307. 

Hanley, J. A., and McNeil, B. J. (1983). "A method of comparing the areas under receiver 
operating characteristic curves derived from the same cases." Radiology, 148(3), 
839-843. 

Harriott, C. E., Buford, G. L., Zhang, T., and Adams, J. A. "Assessing workload in 
human-robot peer-based teams." Presented at Proceedings of the seventh annual 

ACM/IEEE international conference on Human-Robot Interaction. 

Hartley, J. R., and Sleeman, D. H. (1973). "Towards more intelligent teaching systems." 
International Journal of Man-Machine Studies, 5(2), 215-236. 

Hassell, L. (2005). "Affect and trust." Trust Management, 271-284. 

Haupt, R. L., and Haupt, S. E. (2004). Practical genetic algorithms: Wiley-Interscience. 

He, Y., Hui, S. C., and Quan, T. T. (2009). "Automatic summary assessment for 
intelligent tutoring systems." Computers & Education, 53, 890-899. 

Healey, J. (2011). "Recording Affect in the Field: Towards Methods and Metrics for 
Improving Ground Truth Labels ", in S. D'Mello, A. Graesser, B. Schuller, and J.-
C. Martin, (eds.), Proceedings of the 4th International Conference on Affective 

Computing and Intelligent Interaction (ACII 2011), LNCS. Berlin Heidelberg: 
Springer-Verlag, pp. 107-116. 

Heift, T. (2004). "Corrective feedback and learner uptake in CALL." ReCALL, 16(2), 
416-431. 

Hernandez, J., Morris, R. R., and Picard, R. W. (2011). "Call Center Stress Recognition 
with Person-Specific Models", S. D. Mello, A. Graesser, B. Schuller, and J.-C. 
Martin, (eds.), Proceedings of the 4th International Conference on Affective 

Computing and Intelligent Interaction (ACII 2011), LNCS. City: Springer-Verlag: 
Berlin Heidelberg, pp. 125-134. 

Hewig, J., Hagemann, D., Seifert, J., Gollwitzer, M., Naumann, E., and Bartussek, D. 
(2005). "A revised film set for the induction of basic emotions." Cognition and 

Emotion, 19(7), 1095. 

Hockenberry, M. "Simple tutors for hard problems: understanding the role of pseudo-
tutors." 



443 
 

Hoens, T. R., Polikar, R., and Chawla, N. V. (2012). "Learning from streaming data with 
concept drift and imbalance: an overview." Progress in Artificial Intelligence, 1-
13. 

Hoffman, M. D., Blei, D. M., and Bach, F. (2010). "Online learning for latent dirichlet 
allocation." Advances in neural information processing systems, 23, 856-864. 

Hofmann, T. (2001). "Unsupervised learning by probabilistic latent semantic analysis." 
Machine Learning, 42(1), 177-196. 

Holland, J. H. (1992). "Complex adaptive systems." Daedalus, 17-30. 

Holland, P. C., and Gallagher, M. (2006). "Different Roles for Amygdala Central 
Nucleus and Substantia Innominata in the Surprise-Induced Enhancement of 
Learning." The Journal of Neuroscience, 26(14), 3791-3797. 

Hollenstein, T., McNeely, A., Eastabrook, J., Mackey, A., and Flynn, J. (2012). 
"Sympathetic and parasympathetic responses to social stress across adolescence." 
Developmental Psychobiology. 

Holmstrom, J. (2002). "Growing neural gas". City: Uppsala University. 

Holt, P., Dubs, S., Jones, M., and Greer, J. (1994). "The state of student modelling." 
NATO ASI SERIES F COMPUTER AND SYSTEMS SCIENCES, 125, 3-3. 

Hothi, J., and Hall, W. "An evaluation of adapted hypermedia techniques using static user 
modelling." 

Hu, X., Cai, Z., Han, L., Craig, S. D., and Wang, T. (2009). "Autotutor Lite", 
Proceedings of the 2009 Conference on Artificial Intelligence in Education: 

Building Learning Systems that Care: From Knowledge Representation to 

Affective Modelling. Amsterdam, The Netherlands: IOS Press. 

Hulten, G., Spencer, L., and Domingos, P. "Mining time-changing data streams." 

Ingleton, C. (2000). "Emotion in learning - a neglected dynamic", in R. James, J. Milton, 
and R. Gabb, (eds.), Research and Development in Higher Education, 

Cornerstones of Higher Education. Melbourne, pp. 86-99. 

IST. (2012). "MIX Testbed Project Description". City: www.active.ist.ucf.edu. 

Jackson, P. (1990). Introduction to expert systems: Addison-Wesley Longman Publishing 
Co., Inc. 

Jackson, T., Mathews, E., Lin, K., Olney, A., and Graesser, A. (2003). "Modeling student 
performance to enhance the pedagogy of autotutor.", in P. Brusilovsky, A. 

http://www.active.ist.ucf.edu/


444 
 

Corbett, and F. d. Rosis, (eds.), Proceedings of the 9th International Conference 

on User modeling (UM'03). Berlin, Heidelberg: Springer-Verlag, pp. 368-372. 

Jain, A. K. (2008). "Data clustering: 50 years beyond k-means", ECML PKDD ’08: 
Proceedings of the 2008 European Conference on Machine Learning and 

Knowledge Discovery in Databases - Part I,. Berlin Heidelberg: Springer-Verlag, 
pp. 3-4. 

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). "Data clustering: a review." ACM 

computing surveys (CSUR), 31(3), 264-323. 

James, W. (1884). "What is Emotion?" Mind, Brain, and Education, 9, 188–205. 

Jaques, P. A., Vicari, R., Pesty, S., and Martin, J.-C. (2011). "Evaluating a Cognitive-
Based Affective Student Model", in S. D. Mello, A. Graesser, B. Schuller, and J.-
C. Martin, (eds.), Proceedings of the 4th International Conference on Affective 

Computing and Intelligent Interaction (ACII 2011), LNCS. Berlin Heidelberg: 
Springer-Verlag, pp. 599-608. 

Jennings, N. R. (2000). "On agent-based software engineering." Artificial Intelligence, 
117(2), 277-296. 

Johnson, R. R., Popovic, D. P., Olmstead, R. E., Stikic, M., Levendowski, D. J., and 
Berka, C. (2011). "Drowsiness/alertness algorithm development and validation 
using synchronized EEG and cognitive performance to individualize a generalized 
model." Biological Psychology. 

Jones, D., Hale, K., Dechmerowski, S., and Fouad, H. "Creating Adaptive Emotional 
Experience During VE Training." Presented at The Interservice/Industry 

Training, Simulation & Education Conference (I/ITSEC). 

Jones, E., Oliphant, T., and Peterson, P. (2001). "SciPy: Open source scientific tools for 
Python." http://www. scipy. org/. 

Kahneman, D., and Beatty, J. (1966). "Pupil diameter and load on memory." Science. 

Kapoor, A., and Picard, R. W. (2005a). "Multimodal affect recognition in learning 
environments." ACM Multimedia, 2005, 677-682. 

Kapoor, A., and Picard, R. W. "Multimodal affect recognition in learning environments." 
Presented at Proceedings of the 13th annual ACM international conference on 

Multimedia. 

Katz, S., Lesgold, A., Eggan, G., and Gordin, M. (1992). "Modelling the student in 
Sherlock II." Journal of Artificial Intelligence in Education, 3, 495-495. 

http://www/


445 
 

Kim, Y., and Baylor, A. (2006). "A Social-Cognitive Framework for Pedagogical Agents 
as Learning Companions." Educational Technology Research and Development,, 
54(6), 569-596. 

Kirschner, P., Sweller, J., and Clark, R. E. (2006). "Why unguided learning does not 
work: An analysis of the failure of discovery learning, problem-based learning, 
experiential learning and inquiry-based learning." Educational Psychologist, 
41(2). 

Klašnja-Milićevića, A., Vesina, B., Ivanovićb, M., and Budimac, Z. (2011). "E-Learning 
personalization based on hybrid recommendation strategy and learning style 
identification." Computers & Education, 56(3), 885-899. 

Kleinsmith, L. J., and Kaplan, S. (1963). "Paired-associate learning as a function of 
arousal and interpolated interval." Journal of Experimental Psychology General, 
65(2), 190-193. 

Koedinger, K. R., Anderson, J. R., Hadley, W. H., and Mark, M. A. (1997). "Intelligent 
Tutoring Goes To School in the Big City." International Journal of Artificial 

Intelligence in Education, 8, 30-43. 

Kohonen, T. (1982). "Self-organized formation of topologically correct feature maps." 
Biological cybernetics, 43(1), 59-69. 

Kokini, C., Carroll, M., Ramirez-Padron, R., Hale, K., Sottilare, R., and Goldberg, B. 
"Quantification of trainee affective and cognitive state in real-time." Presented at 

The Interservice/Industry Training, Simulation & Education Conference 

(I/ITSEC). 

Koranne, S. (2011). "Artificial Intelligence and Optimization." Handbook of Open Source 

Tools, 391-408. 

Koren, Y. "Factorization meets the neighborhood: a multifaceted collaborative filtering 
model." 

Kort, B., Reilly, R., and Picard, R. W. "An affective model of interplay between emotions 
and learning: Reengineering educational pedagogy-building a learning 
companion." 

Kotthoff, L., Gent, I. P., and Miguel, I. "A preliminary evaluation of machine learning in 
algorithm selection for search problems." Presented at Fourth Annual Symposium 

on Combinatorial Search. 



446 
 

Kraiger, K., Ford, J. K., and Salas, E. (1993). "Application of cognitive, skill-based, and 
affective theories of learning outcomes to new methods of training evaluation." 
Journal of Applied Psychology, 78(2), 311. 

Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N., and Laurendeau, D. "Real-time eye 
blink detection with GPU-based SIFT tracking." Presented at Computer and 

Robot Vision, 2007. CRV'07. Fourth Canadian Conference on. 

Lane, C., Noren, D., Auerbach, D., Birch, M., and Swartout, W. (2011). "Intelligent 
Tutoring Goes to the Museum in the Big City: A Pedagogical Agent for Informal 
Science Education," Lecture Notes in Computer Science. pp. 155-162. 

Langford, J., Karampatziakis, N., Hsu, D., and Hoffman, M. (2010). Vowpal Wabbit 5.0. 

Langford, J., Li, L., and Strehl, A. (2007). Vowpal wabbit online learning. Technical 
report. 

Langford, J., Li, L., and Zhang, T. (2009). "Sparse online learning via truncated 
gradient." The Journal of Machine Learning Research, 10, 777-801. 

Laparra-Hernández, J., Belda-Lois, J., Medina, E., Campos, N., and Poveda, R. (2009). 
"EMG and GSR signals for evaluating user's perception of different types of 
ceramic flooring." International Journal of Industrial Ergonomics, 39(2), 326-
332. 

LeCun, Y., Bottou, L., Orr, G., and Müller, K. (1998). "Efficient backprop." Neural 

networks: Tricks of the trade, 546-546. 

Lepper, M., and Hodell, M. (1989). "Intrinsic motivation in the classroom", in C. Ames 
and R. E. Ames, (eds.), Research on Motivation in Education Vol. 3. New York: 
Academic Press, pp. 73-105. 

Lepper, M., and Woolverton, M. (2002). "The Wisdom of Practice: Lessons Learned 
from the Study of Highly Effective Tutors", in J. Aronson, (ed.), Improving 

academic achievement: impact of psychological factors on education New York: 
Academic Press, pp. 135-158. 

Lepper, M. R., Woolverton, M., Mumme, D. L., and Gurtner, J. (1993). "Motivational 
techniques of expert human tutors: Lessons for the design of computer-based 
tutors", in S. P. Lajoie and S. J. Derry, (eds.), Computers as cognitive tools. 
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., pp. 75-105. 

Lesta, L., and Yacef, K. (2002). "An Intelligent Teaching-Assistant System for Logic", in 
S. Cerri and F. Paraguo, (eds.), Proceedings of Intelligent Tutoring Systems. 
Biarritz, France. 



447 
 

Lester, J. C. (2011). "Affect, Learning, and Delight", in S. D'Mello, A. Graesser, B. 
Schuller, and J.-C. Martin, (eds.), Proceedings of the 4th International 

Conference on Affective Computing and Intelligent Interaction (ACII 2011), 

LNCS. Berlin Heidelberg: Springer-Verlag, pp. 2. 

Lester, J. C., Towns, S. G., and Fitzgerald, P. J. (1999). "Achieving affective impact: 
Visual emotive communication in lifelike pedagogical agents." International 

Journal of Artificial Intelligence in Education, 10(3-4), 278–291. 

Likert, R. (1932). "A technique for the measurement of attitudes." Archives of 

psychology. 

Luger, G. F. (2005). Artificial intelligence: Structures and strategies for complex 

problem solving: Addison Wesley Longman. 

Lyster, R., and Ranta, L. (1997). "Corrective feedback and learner uptake." Studies in 

second language acquisition, 19(01), 37-66. 

Madria, S., Bhowmick, S., Ng, W. K., and Lim, E. (1999). "Research issues in web data 
mining." DataWarehousing and Knowledge Discovery, 805-805. 

Majumdar, A., and Ochieng, W. Y. (2002). "Factors affecting air traffic controller 
workload: Multivariate analysis based on simulation modeling of controller 
workload." Transportation Research Record: Journal of the Transportation 

Research Board, 1788(-1), 58-69. 

Malik, M., Bigger, J., Camm, A., Kleiger, R., Malliani, A., and Moss, A. (1996). "Heart 
rate variability." Circulation, 93(5), 1043-1065. 

Marshall, S. P. "The index of cognitive activity: Measuring cognitive workload." 
Presented at Human factors and power plants, 2002. proceedings of the 2002 

IEEE 7th conference on. 

Marshall, S. P. (2007). "Identifying cognitive state from eye metrics." Aviation, space, 

and environmental medicine, 78(Supplement 1), B165-B175. 

Martens, D., Baesens, B., and Fawcett, T. (2011). "Editorial survey: swarm intelligence 
for data mining." Machine Learning, 82(1), 1-42. 

Martinetz, T. (1993). "Competitive Hebbian learning rule forms perfectly topology 
preserving maps." 

Martinetz, T., and Schulten, K. (1991). A" neural-gas" network learns topologies: 
University of Illinois at Urbana-Champaign. 



448 
 

Mason, B. J., and Bruning, R. (2001). "Providing Feedback in Computer-Based 
Instruction: What the Research Tells Us". City: Center of Instructional 
Innovation: University of Nebraska-Lincoln. 

McMahan, H. B., and Streeter, M. (2010). "Adaptive bound optimization for online 
convex optimization." arXiv preprint arXiv:1002.4908. 

McQuiggan, S., Lee, S., and Lester, J. (2007). "Early prediction of student frustration." 
Affective Computing and Intelligent Interaction, 698-709. 

Medina, J. (2008). Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, 

and School: Pear Press. 

Meireles, M. R., Almeida, P. E., and Simões, M. G. (2003). "A comprehensive review for 
industrial applicability of artificial neural networks." Industrial Electronics, IEEE 

Transactions on, 50(3), 585-601. 

Miller, G. A., Levin, D. N., Kozak, M. J., Cook III, E. W., McLean Jr, A., and Lang, P. J. 
(1987). "Individual differences in imagery and the psychophysiology of emotion." 
Cognition and Emotion, 1(4), 367-390. 

Mitrovic, A., Martin, B., and Suraweera, P. (2007). "Intelligent  tutors  for  all:  
Constraint-based  modeling methodology, systems and authoring." IEEE 

Intelligent Systems, 22, 38-45. 

Mitrovic, A., and Ohlsson, S. (1999). "Evaluation of a constraint-based tutor for a 
database language." 

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., and Holland, J. 
"Authoring constraint-based tutors in ASPIRE." 

Monajati, M., Abbasi, S. H., Shabaninia, F., and Shamekhi, S. (2012). "Emotions States 
Recognition Based on Physiological Parameters by Employing of Fuzzy-Adaptive 
Resonance Theory." International Journal of Intelligence Science, 2(24), 166-
176. 

Mone, G. (2011). "2011 Invention Awards: A Mirror That Monitors Vital Signs"Popular 

Science. City. 

Moon, T. K. (1996). "The expectation-maximization algorithm." Signal Processing 

Magazine, IEEE, 13(6), 47-60. 

Morrison, J. G., Kobus, D. A., and Brown, C. M. (2006). DARPA Improving Warfighter 

Information Intake Under Stress –Augmented Cognition, Phase II: The Concept 



449 
 

Validation Experiment (Technical Report 1940). SPAWAR Systems Center, San 
Diego, California. 

Mota, S., and Picard, R. W. "Automated posture analysis for detecting learner's interest 
level." Presented at Computer Vision and Pattern Recognition Workshop, 2003. 

CVPRW'03. Conference on. 

Muldner, K., Burleson, W., Van de Sande, B., and VanLehn, K. (2011). "An analysis of 
students’ gaming behaviors in an intelligent tutoring system: predictors and 
impacts." User Modeling and User-Adapted Interaction, 21(1), 99-135. 

Murray, T., and Arroyo, I. (2002). "Toward Measuring and Maintaining the Zone of 
Proximal Development in Adaptive Instructional Systems"International 

Conference on Intelligent Tutoring Systems. City: Biarritz, France. 

Murray, T., and Arroyo, I. "Toward an operational definition of the zone of proximal 
development for adaptive instructional software." Presented at 25th Annual 

Meeting of the Cognitive Science Society Boston, MA. 

Navarro, D. J., Griffiths, T. L., Steyvers, M., and Lee, M. D. (2006). "Modeling 
individual differences using Dirichlet processes." Journal of mathematical 

Psychology, 50(2), 101-122. 

Neches, R., Langley, P., and Klahr, D. (1987). Learning, development, and production 

systems: The MIT Press. 

NeuroSky. (2007). City. 

Nkambou, R. (2006). "Towards Affective Intelligent Tutoring System, Workshop on 
Motivational and Affective Issues in ITS", 8th International Conference on ITS. 
pp. 5-12. 

Nkambou, R. (2010). Advances in Intelligent Tutoring Systems: Springer Verlag. 

Nurminen, M. L., Niittynen, L., Korpela, R., and Vapaatalo, H. (1999). "Coffee, caffeine 
and blood pressure: a critical review." European journal of clinical nutrition, 
53(11), 831. 

Nwana, H. S. (1990). "Intelligent Tutoring Systems: An Overview." Artificial 

Intelligence Review 4(4). 

Ohlsson, S. (1994). "Constraint-based student modeling." NATO ASI SERIES F 

COMPUTER AND SYSTEMS SCIENCES, 125, 167-167. 



450 
 

Ok-choon, P., Ray, S. P., and Seidel, R., J. . (1987). "Intelligent CAI: old wine in new 
bottles or a new vintage?", Artificial Intelligence  and Instruction: Instruction and 

Methods. Reading, MA: Addison-Wesley, pp. 11-43. 

Olney, A., Graesser, A. C., and Person, N. K. (2010). "Tutorial Dialog in Natural 
Language", in R. Nkambou, J. Bourdeau, and R. Mizoguchi, (eds.), Advances  in  

Intelligent  Tutoring  Systems, Studies  in  Computational  Intelligence. Berlin: 
Springer-Verlag, pp. 181-206. 

Pajares, F., and Miller, M. D. (1994). "Role of self-efficacy and self-concept beliefs in 
mathematical problem solving: a path analysis." Journal of Educational 

Psychology, 86, 193-203. 

Palinko, O., Kun, A. L., Shyrokov, A., and Heeman, P. "Estimating cognitive load using 
remote eye tracking in a driving simulator." Presented at Proceedings of the 2010 

Symposium on Eye-Tracking Research & Applications. 

Palinscar, A. S., and Brown, A. L. (1984). "Reciprocal teaching of comprehension-
fostering and comprehension-monitoring activities." Cognition and instruction, 
1(2), 117-175. 

Pan, J., and Tompkins, W. J. (1985). "A real-time QRS detection algorithm." IEEE 

Trans. Biomed. Eng. BME, 32(3), 230-236. 

Parasuraman, R., and Caggiano, D. (2002). "Mental workload." Encyclopedia of the 

human brain, 3, 17-27. 

Parasuraman, R., Cosenzo, K. A., and De Visser, E. (2009). "Adaptive automation for 
human supervision of multiple uninhabited vehicles: Effects on change detection, 
situation awareness, and mental workload." Military Psychology, 21(2), 270-297. 

Patil, A. S., and Abraham, A. (2010). "Intelligent and Interactive Web-Based Tutoring 
System in Engineering Education: Reviews, Perspectives and Development", in F. 
Xhafa, S. Caballe, A. Abraham, T. Daradoumis, and A. J. Perez, (eds.), 
Computational Intelligence for Technology Enhanced Learning. Studies in 

Computational Intelligence. Berlin: Springer-Verlag., pp. 79-97. 

Person, N., Klettke, B., Link, K., Kreuz, R., and Group, T. R. "The integration of 
affective responses into AutoTutor." 

Person, N. K., and Graesser, A. C. (2003). "Fourteen Facts about Human Tutoring: Food 
for Thought for ITS Developers", in V. Aleven, U. Hoppe, J. Kay, R. Mizoguchi, 
H. Pain, F. Verdejo, and K. Yacef, (eds.), Artificial Intelligence in Education 

2003 Workshop Proceedings on Tutorial Dialogue Systems: With a View Toward 

the Classroom Sydney, Australia pp. 335-344. 



451 
 

Pfurtscheller, G., and Klimesch, W. (1992). "Event-related synchronization and 
desynchronization of alpha and beta waves in a cognitive task", Induced rhythms 

in the brain. Springer, pp. 117-128. 

Picard, R. (2006). "Building an Affective Learning Companion."Keynote address at the 

8th International Conference on Intelligent Tutoring Systems. City: Jhongli, 
Taiwan. 

Picard, R. (2011). "Measuring Affect in the Wild", in S. D'Mello, A. Graesser, B. 
Schuller, and J.-C. Martin, (eds.), Proceedings of the 4th International 

Conference on Affective Computing and Intelligent Interaction (ACII 2011), 

LNCS. Berlin Heidelberg: Springer-Verlag, pp. 3. 

Pintrich, P. R., and De Groot, E. V. (1990). "Motivational and self-regulated learning 
components of classroom academic performance." Journal of Educational 

Psychology, 82, 33-40. 

Pollock, V. E., Teasdale, T., Stern, J., and Volavka, J. (1981). "Effects of caffeine on 
resting EEG and response to sine wave modulated light." Electroencephalography 

and clinical neurophysiology, 51(5), 470-476. 

Prudent, Y., and Ennaji, A. "An incremental growing neural gas learns topologies." 
Presented at Neural Networks, 2005. IJCNN'05. Proceedings. 2005 IEEE 

International Joint Conference on. 

Quah, J. T., and Sriganesh, M. (2008). "Real-time credit card fraud detection using 
computational intelligence." Expert Systems with Applications, 35(4), 1721-1732. 

Raley, C., Stripling, R., Kruse, A., Schmorrow, D., and Patrey, J. "Augmented Cognition 
overview: Improving information intake under stress." 

Rauh, R., Burkert, M., Siepmann, M., and Mueck‐Weymann, M. (2006). "Acute effects 
of caffeine on heart rate variability in habitual caffeine consumers." Clinical 

physiology and functional imaging, 26(3), 163-166. 

Reinerman-Jones, L., Barber, D., Lackey, S. J., and Nicholson, D. "Developing methods 
for utilizing physiological measures." Presented at Applied Human Factors and 

Ergonomics Society Conference 2010. 

Rice, J. R. (1975). "The algorithm selection problem." 

Rich, E., and Knight, K. (1991). "Artificial intelligence." International Student Edition, 

MacGraw-Hill, London. 



452 
 

Rickel, J. W. (1989). "Intelligent computer-aided instruction: A survey organized around 
system components." Systems, Man and Cybernetics, IEEE Transactions on, 
19(1), 40-57. 

Ridgway, J. (1988). "Of course ICAI is impossible, . . worse though, it might be 
seditious.", in J. A. Self, (ed.), Artificial Intelligence  and Human Learning: 

Intelligent  computer-aided instruction. London: Chapman & Hall, pp. 28-48. 

Robison, J., McQuiggan, S., and Lester, J. "Evaluating the consequences of affective 
feedback in intelligent tutoring systems." 

Robison, J., McQuiggan, S., and Lester, J. "Developing empirically based student 
personality profiles for affective feedback models." 

Rodrigo, M. M. T., Baker, R., D'Mello, S., Gonzalez, M. C. T., Lagud, M. C. V., Lim, S. 
A. L., Macapanpan, A. F., Pascua, S. A. M. S., Santillano, J. Q., Sugay, J. O., 
Tep, S., and Viehland, N. J. B. (2007). "Comparing Learners’ Affect While Using 
an Intelligent Tutoring System and a Simulation Problem Solving Game"9th 

International Conference on Intelligent Tutoring Systems. City: Montreal, 
Canada, pp. 40-49. 

Rodrigo, M. M. T., and Baker, R. S. J. d. (2009). "Coarse-grained detection of student 
frustration in an introductory programming course.", Proceedings of the Fifth 

International Workshop on Computing Education Research (ICER '09). New 
York, NY: ACM, pp. 75-80. 

Roll, I., Aleven, V., McLaren, B. M., and Koedinger, K. R. I. p. (2011). "Metacognitive 
Practice Makes Perfect: Improving Students’ Self-Assessment Skills with an 
Intelligent Tutoring System", Artificial Intelligence in Education Berlin / 
Heidelberg: Springer, pp. 288-295. 

Romero, C., and Ventura, S. (2007). "Educational data mining: A survey from 1995 to 
2005." Expert Systems with Applications, 33(1), 135-146. 

Rosasco, L., Vito, E. D., Caponnetto, A., Piana, M., and Verri, A. (2004). "Are loss 
functions all the same?" Neural Computation, 16(5), 1063-1076. 

Rowe, J., Shores, L., Mott, B., and Lester, J. C. (2010a). "Integrating Learning and 
Engagement in Narrative-Centered Learning Environments", in V. Aleven, J. 
Kay, and J. Mostow, (eds.), Intelligent Tutoring Systems: Proceedings of the 10th 

International Conference on Intelligent Tutoring Systems. LNCS Berlin: Springer, 
pp. 166-177. 

Rowe, J. P., Shores, L. R., Mott, B. W., and Lester, J. C. (2010b). "A framework for 
narrative adaptation in interactive story-based learning environments.", 



453 
 

Proceedings of the Intelligent Narrative Technologies III Workshop (INT3 '10). 
New York, NY: ACM. 

Ryu, K., and Myung, R. (2005). "Evaluation of mental workload with a combined 
measure based on physiological indices during a dual task of tracking and mental 
arithmetic." International Journal of Industrial Ergonomics, 35(11), 991-1009. 

Sabourin, J., Mott, B., and Lester, J. C. (2011). "Generalizing Models of Student Affect 
in Game-Based Learning Environments", in S. D. Mello, A. Graesser, B. Schuller, 
and J.-C. Martin, (eds.), Proceedings of the 4th International Conference on 

Affective Computing and Intelligent Interaction (ACII 2011), LNCS. Berlin 
Heidelberg: Springer-Verlag, pp. 588-597. 

Sabourin, J., Rowe, J., Mott, B., and Lester, J. "Exploring inquiry-based problem-solving 
strategies in game-based learning environments." 

Sabourin, J., Shores, L., Mott, B., and Lester, J. "Predicting student self-regulation 
strategies in game-based learning environments." 

Scandura, J. M. (2011). "What TutorIT Can Do Better Than a Human and Why: Now and 
in the Future." 

Schachter, J. (1991). "Corrective feedback in historical perspective." Second Language 

Research, 7(2), 89-102. 

Schohn, G., and Cohn, D. "Less is more: Active learning with support vector machines." 
Presented at MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN 

CONFERENCE-. 

Schulze, R. (2004). Meta-analysis: A comparison of approaches: Hogrefe & Huber 
Publishers. 

SeeingMachines. (2012). "faceLAB Brochure". City. 

Shalev-Shwartz, S., Singer, Y., and Ng, A. Y. "Online and batch learning of pseudo-
metrics." Presented at Proceedings of the twenty-first international conference on 

Machine learning. 

Shute, V., and Glaser, R. (1991). "An intelligent tutoring system for exploring principles 
of economics." Improving inquiry in social science: A volume in honor of Lee J. 

Cronbach, 333-336. 

Shute, V. J., and Psotka, J. (1994). Intelligent Tutoring Systems: Past, Present, and 

Future. DTIC Document. 



454 
 

Sidney, K. D., Craig, S. D., Gholson, B., Franklin, S., Picard, R., and Graesser, A. C. 
"Integrating affect sensors in an intelligent tutoring system." 

Skinner, B. F. (1954). The science of learning and the art of teaching: Cambridge, Mass, 
USA. 

Skinner, B. F. (1958). "Teaching machines." Science. 

Slavin, R. E. (2002). "Evidence-based education policies: Transforming educational 
practice and research." Educational Researcher, 31(7), 15-21. 

Small, R. V. (1996). "Dimensions of Interest and Boredom in Instructional Situations." 

Soller, A. (2001). "Supporting social interaction in an intelligent collaborative learning 
system." International Journal of Artificial Intelligence in Education (IJAIED), 
12, 40-62. 

Soriano, J., Rodrigo, M., Baker, R., Ogan, A., Walker, E., Castro, M., Genato, R., 
Fontaine, S., and Belmontez, R. "A cross-cultural comparison of effective help-
seeking behavior among students using an ITS for math." 

Sottilare, R. "Making a case for machine perception of trainee affect to aid learning and 
performance in embedded virtual simulations." Presented at Proceedings of the 

NATO HFM-169 Research Workshop on the Human Dimensions of Embedded 

Virtual Simulation. Orlando, Florida. 

Sottilare, R. (2010). "Challenges in the development of intelligent tutors for adaptive 
military training systems", International Training and Education Conference 

2010. London, England. 

Sottilare, R., Goldberg, S., and Durlach, P. J. "Research Gaps for Adaptive and Predictive 
Computer-Based Tutoring Systems." Presented at International Defense and 

Homeland Security Simulation Workshop (DHSS), Rome, Italy. 

Sottilare, R. A., Brawner, K., Goldberg, B., and Holden, H. (2012a). "A Modular 
Framework to Support the Authoring and Assessment of Adaptive Computer-
Based Tutoring Systems"Interservice/Industry Training, Simulation, and 

Education Conference (I/ITSEC). City: Orlando, FL. 

Sottilare, R. A., Brawner, K. W., Goldberg, B. S., and Holden, H. K. (2012b). "The 
Generalized Intelligent Framework for Tutoring (GIFT)." 

Sottilare, R. A., Holden, H. K., Brawner, K. W., and Goldberg, B. S. "Challenges and 
Emerging Concepts in the Development of Adaptive, Computer-based Tutoring 
Systems for Team Training." 



455 
 

Srivastava, J., Cooley, R., Deshpande, M., and Tan, P. N. (2000). "Web usage mining: 
Discovery and applications of usage patterns from web data." ACM SIGKDD 

Explorations Newsletter, 1(2), 12-23. 

Stanley, K. O., and Miikkulainen, R. (2002). "Evolving neural networks through 
augmenting topologies." Evolutionary computation, 10(2), 99-127. 

Steinhaus, H. (1957). "Sur la division des corps materiels en parties (in French)." Bull.  

Acad.  Polon.  Sci., 4(12), 801-804. 

Stevens, R., and Galloway, T. (2013). "Towards the Development of a Quantitative 
Descriptions of the Neurodynamic Rhythms and Organizations of Teams"Human 

Factors and Ergonomic Society. City. 

Stevens, R. H., Galloway, T. L., Berka, C., Johnson, R., and Sprang, M. "Assessing 
Student's Mental Representations of Complex Problem Spaces with EEG 
Technologies." 

Su, F., Xia, L., Cai, A., and Ma, J. "Evaluation of recording factors in EEG-based 
personal identification: A vital step in real implementations." 

Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., and Gunopulos, D. 
"Online outlier detection in sensor data using non-parametric models." Presented 

at Proceedings of the 32nd international conference on Very large data bases. 

Suppes, P. (1966). The uses of computers in education: Freeman. 

Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction: 
Cambridge Univ Press. 

Sykes, J., and Brown, S. "Affective gaming: measuring emotion through the gamepad." 

Teoh, T.-T., Cho, S.-Y., and Nguwi, Y.-Y. "Emotional prediction using time series 
multiple-regression genetic algorithm for autistic syndrome disorder." Presented 

at Computer Science & Education (ICCSE), 2012 7th International Conference 

on. 

Tononi, G., and Cirelli, C. (2006). "Sleep function and synaptic homeostasis." Sleep 

medicine reviews, 10(1), 49-62. 

Trinh, V. (2009). Contextualizing observational data for modeling human performance: 
ProQuest. 

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009). "Intrusion detection by 
machine learning: A review." Expert Systems with Applications, 36(10), 11994-
12000. 



456 
 

Tvarožek, J., and BIeliková, M. "The Friend: Socially-Intelligent Tutoring and 
Collaboration." 

Uhr, L. "Teaching machine programs that generate problems as a function of interaction 
with students." 

Van Der Linden, W. J., and Glas, C. A. W. (2000). Computerized adaptive testing: 

Theory and practice: Springer. 

Vandewaetere, M., Desmet, P., and Clarebout, G. (2011). "The contribution of learner 
characteristics in the development of computer-based adaptive learning 
environments." Computers in Human Behavior, 27(1), 118-130. 

VanLehn, K. (2011). "The Relative Effectiveness of Human Tutoring, Intelligent 
Tutoring Systems, and Other Tutoring Systems." Educational Psychologist, 46(4), 
197-221. 

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., Treacy, D., 
Weinstein, A., and Wintersgill, M. (2005). "The Andes Physics Tutoring System: 
Five Years of Evaluations", G. McCalla and C. K. Looi, (eds.), International 

Conference on Artificial Intelligence in Education. City: IOS Press: Amsterdam, 
pp. 678-685. 

Verdú, E., Regueras, L. M., Verdú, M. J., De Castro, J. P., and Pérez, M. A. (2008). "Is 
Adaptive Learning Effective? A Review of the Research", in L. Qing, S. Y. Chen, 
A. Xu, and M. Li, (eds.), Proceedings of the 7th WSEAS International Conference 

on Applied Computer &  Applied Computational Science (ACACOS '08). Stevens 
Point, Wisconsin: WSEAS Press, pp. 710-715. 

Vogel-Walcutt, J., and Abich, J. (2011). "Using neurophysiological data to inform 
feedback timing: a pilot study." Foundations of Augmented Cognition. Directing 

the Future of Adaptive Systems, 265-274. 

Vygotsky, L. S. (1978). Mind in Society: The development of higher psychological 

processes, Cambridge, MA: Harvard University Press. 

Weiss, D. J., and Kingsbury, G. (1984). "Application of computerized adaptive testing to 
educational problems." Journal of Educational Measurement, 21(4), 361-375. 

Welch, G., and Bishop, G. (1995). "An introduction to the Kalman filter". City. 

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and 

Cognitive Approaches to the Communication of Knowledge, Los Altos, CA: 
Morgan Kaufmann Publishers, Inc. 



457 
 

Widrow, B., and Lehr, M. A. (1990). "30 years of adaptive neural networks: Perceptron, 
madaline, and backpropagation." Proceedings of the IEEE, 78(9), 1415-1442. 

Wiemer-Hastings, P., Graesser, A., and Harter, D. "The foundations and architecture of 
AutoTutor." 

Wikipedia. (2012). "Intelligent tutoring system"Wikipedia. City: 
http://en.wikipedia.org/wiki/Intelligent_tutoring_system. 

Wiley, J., and Bailey, J. (2006). "Effects of collaboration and argumentation on learning 
from web pages." Collaborative learning, reasoning, and technology, 297-321. 

Wine, J. (1971). "Test anxiety and direction of attention." Psychological Bulletin, 76(2), 
92. 

Winston, P. H. (1992). "Artificial intelligence." Reading, Addison Wesley. 

Wixon, M., Baker, R., Gobert, J., Ocumpaugh, J., and Bachmann, M. (2012). "WTF? 
detecting students who are conducting inquiry without thinking fastidiously." 
User Modeling, Adaptation, and Personalization, 286-296. 

Woeginger, G. (2003). "Exact algorithms for NP-hard problems: A survey." 
Combinatorial Optimization—Eureka, You Shrink!, 185-207. 

Wolpert, D. H., and Macready, W. G. (1997). "No free lunch theorems for optimization." 
Evolutionary Computation, IEEE Transactions on, 1(1), 67-82. 

Woods, P., and Hartley, J. (1971). "Some learning models for arithmetic tasks and their 
use in computer based learning." British Journal of Educational Psychology, 
41(1), 38-48. 

Woolf, B. (2009a). Building Intelligent Interactive Tutors: Student-Centered Strategies 

for Revolutionizing e-Learning, Burlington, MA: Elsevier. 

Woolf, B., Burelson, W., and Arroyo, I. "Emotional intelligence for computer tutors." 
Presented at Supplementary Proceedings of the 13th International Conference of 

Artificial Intelligence in Education. 

Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., and Picard, R. (2009). 
"Affect-Aware Tutors: Recognising and Responding to Student Affect." 
International Journal of Learning Technology, 4(3/4), 129-164. 

Woolf, B. P. (2009b). Building Intelligent Interactive Tutors: Student-Centered 

Strategies for Revolutionizing E-Learning, Burlington, MA: Morgan Kaufmann. 

http://en.wikipedia.org/wiki/Intelligent_tutoring_system


458 
 

Woolf, B. P. (2010). A Roadmap for Education Technology. National Science 
Foundation. 

Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I., and Deouell, L. Y. (2008). 
"Transient induced gamma-band response in EEG as a manifestation of miniature 
saccades." Neuron, 58(3), 429-441. 

Zaïane, O. R., Xin, M., and Han, J. "Discovering web access patterns and trends by 
applying OLAP and data mining technology on web logs." 

Zaki, S. M., and Yin, H. (2008). "A semi-supervised learning algorithm for growing 
neural gas in face recognition." Journal of Mathematical Modelling and 

Algorithms, 7(4), 425-435. 

Zander, T. O., Kothe, C., Jatzev, S., and Gaertner, M. (2010). "Enhancing human-
computer interaction with input from active and passive brain-computer 
interfaces." Brain-Computer Interfaces, 181-199. 

Zhang, T., and Oles, F. "The value of unlabeled data for classification problems." 
Presented at Proceedings of the Seventeenth International Conference on 

Machine Learning,(Langley, P., ed.). 

Zhang, Z. (2012a). "Microsoft Kinect Sensor and Its Effect." IEEE MultiMedia, 19(2), 4-
10. 

Zhang, Z. (2012b). "Microsoft Kinect Sensor and Its Effect." Multimedia, IEEE, 19(2), 4-
10. 

Zhu, X. (2005). "Semi-supervised learning literature survey." 

Zwaan, R. A., and Singer, M. (2003). "Text comprehension." 

 

 


	Modeling Learner Mood In Realtime Through Biosensors For Intelligent Tutoring Improvements
	STARS Citation

	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION AND BACKGROUND
	1.1. Background
	1.2. Measuring Learning Gains
	1.3. Early Computer-Based & Adaptive Training
	1.4. Tutoring
	1.4.1. Human Tutoring
	1.4.2. Different Types of Instructional Intervention
	1.4.3. Tutoring Strategies For Humans And Computers
	1.4.3.1. Tutor-Centric Instruction
	1.4.3.2. Learner-Centric Instruction
	1.4.3.3. Interaction-Centric Instruction
	1.4.3.4. Strategic note


	1.5. Intelligent Tutoring
	1.6. Reasons for an ITS
	1.6.1. Research-Purposed Intelligent Tutoring Systems
	1.6.2. Use-Focused Systems
	1.6.3. Functions of an ITS
	1.6.3.1. Communication
	1.6.3.2. Domain Content
	1.6.3.3. Instructional Strategy Selection
	1.6.3.4. Learner Model

	1.6.4. Current Challenges in Intelligent Tutoring


	2. AFFECTIVE LEARNER MODELING
	2.1. Introduction
	2.2. Affect and Learning
	2.3. Learner Models
	2.4. Data Mining
	2.5. Mining Data for Learner Models
	2.6. Affective Tutoring
	2.7. AutoTutor
	2.8. Crystal Island Experiments
	2.9. Educational Psychology
	2.10. Affective Sensor Development
	2.11. Realtime Mental State Classification
	2.12. Individualized Mental Models
	2.13. Conclusion

	3. PROBLEM DEFINITION
	3.1. Hypothesis

	4. DATA OF INTEREST FOR AFFECTIVE AND COGNITIVE MODELING
	4.1. Introduction
	4.2. Affective and Cognitive States
	4.2.1. Cognitive States Of Interest To Learning
	4.2.2. Affective States Of Interest To Learning

	4.3. Application-Appropriate Sensors and Sensors Suites
	4.3.1. Sensor Hardware (Dataset #1 – Low Cost Sensors)
	4.3.1.1. Low-Cost EEG
	4.3.1.2. Eye Tracking
	4.3.1.3. Heart Rate Sensor
	4.3.1.4. Chair Sensor
	4.3.1.5. Motion Detector
	4.3.1.6. Difference-Based Features

	4.3.2. Sensor Hardware Suite For Dataset #2 (Human Computer Interaction Experiment)
	4.3.2.1. Eye Tracking

	4.3.3. Sensor Hardware Suite Summary

	4.4. Dataset One: Low Cost Sensor Experiment
	4.4.1. Purpose (Dataset #1)
	4.4.2. Participants and Experiment (Dataset #1)
	4.4.3. Analysis (Dataset #1)
	4.4.4. Results (Dataset #1)
	4.4.4.1. Created Models (Dataset #1)
	4.4.4.2. Summary of the Low Cost Sensor Dataset Features For Created Models (Dataset #1)

	4.4.5. Expansion (Dataset #1)

	4.5. Dataset Two: Human-Computer Interaction
	4.5.1. Purpose (Dataset #2)
	4.5.2. Participants and Experiment (Dataset #2)
	4.5.3. Analysis (Dataset #2)
	4.5.4. Expansion (Dataset #2)

	4.6. Summary

	5. ALGORITHMS FOR REALTIME PROCESSING
	5.1. The Problems with Real Time Data
	5.1.1. Infinite Length
	5.1.2. Concept Detection
	5.1.3. Concept Drift
	5.1.4. Concept Evolution
	5.1.5. Discussion

	5.2. Real Data
	5.2.1. Problem
	5.2.2. Solution Part One: Semi-Supervised Adaption
	5.2.3. Solution Part Two: Active Learning

	5.3. Non-Selected Classes of Artificial Intelligence Application
	5.3.1. Bayesian Approaches
	5.3.2. Evolutionary or Genetic Approaches
	5.3.3. Expert Systems
	5.3.4. Agent-Based Systems Approaches
	5.3.5. Reinforcement Approaches
	5.3.6. Hybrid Methods
	5.3.7. Discussion

	5.4. Selected Artificial Intelligence Classification Methods
	5.4.1. Introduction
	5.4.2. Clustering
	5.4.2.1. Description
	5.4.2.2. Real Time Approach and Selection
	5.4.2.3. Addressing the problems of realtime Data
	5.4.2.4. Modifications Made
	5.4.2.5. Initial Clustering Algorithm (not realtime appropriate)
	5.4.2.6. Clustering Algorithm Used (includes realtime modifications)
	5.4.2.7. Additional Modifications made for semi-supervised active learning

	5.4.3. Adaptive Resonance Theory (ART)
	5.4.3.1. Description
	5.4.3.2. Real Time Approach and Selection
	5.4.3.3. Modifications Made
	5.4.3.4. Algorithm Used (Realtime capable without modification)
	5.4.3.5. Modifications made for Supervised Learning
	5.4.3.6. Additional Psuedo-Code Modifications made for semi-supervised active learning

	5.4.4. Online Semi-Supervised Growing Neural Gas (OSSGNG)
	5.4.4.1. Description
	5.4.4.2. Modifications Made
	5.4.4.3. Initial Pseudo-Code GNG Algorithm (not realtime appropriate)
	5.4.4.4. Initial Psuedo-Code SSGNG Algorithm (not realtime appropriate)
	5.4.4.5. OSSGNG Algorithm (Used)
	5.4.4.6. Additional Psuedo-Code Modifications made for active learning (First Revision)
	5.4.4.7. Additional Psuedo-Code Modifications made for active learning (second/Used revision)

	5.4.5. Vowpal Wabbit (VW)
	5.4.5.1. Original Algorithm
	5.4.5.2. Semi-Supervised, Active Learning Algorithm
	5.4.5.3. Additional Modifications Made


	5.5. Conclusion

	6. RESULTS AND COMPARISON
	6.1. Initial Benchmarking
	6.1.1. Area Under the Receiver Operating Characteristic Curve
	6.1.2. Full Results Located in the Appendices

	6.2. General Evaluation Notes
	6.2.1. General Evaluation Algorithm
	6.2.2. Assessing the Impact of Labels

	6.3. Experimental Adjustments, Timing, Preliminary Testing, and Results
	6.3.1. Timing
	6.3.2. Data Normalization (Dataset #1)
	6.3.3. Resolution Collapse (Dataset #2)
	6.3.4. Running Parameters
	6.3.5. Reduced Feature Set
	6.3.6. Summary of Direct Data Analysis and Controls

	6.4. Experimental Results
	6.4.1. Analysis of Quality of Model Outputs
	6.4.1.1. benchmarks of “All”, “Next”, and “Previous” adjust in concert

	6.4.2. Research Question 1a - Supervised Realtime Creation of Cognitive Models
	6.4.3. Research Question 2a – Unsupervised Cognitive Model Creation
	6.4.4. Research Question 3a – Semi-Supervised Cognitive Model Creation
	6.4.5. Revised Parameter Settings for Cognitive Models
	6.4.6. Reduced Feature Set Cognitive Models
	6.4.7. Cognitive Model Generalization
	6.4.8. Cognitive Modeling Summary
	6.4.9. Research Question 1b - Supervised Realtime Creation of Affective Models
	6.4.10. Discussions of Specific Algorithms
	6.4.10.1. Growing Neural Gasses Behaves Differently
	6.4.10.2. Vowpal Wabbit Underperforms

	6.4.11. Research Question 2b - Unsupervised Affective Model Creation
	6.4.12. Research Question 3b - Semi-Supervised and Active Learning for Affective Models
	6.4.13. Revised Parameter Settings for Affective Models
	6.4.14. Reduced Feature Set Affective Models
	6.4.15. Affective Modeling Summary
	6.4.15.1. Supervised and Unsupervised Models
	6.4.15.2. Semi-Supervised Models
	6.4.15.3. Reduced Feature Sets


	6.5. Summary
	6.5.1. Summary Discussion Notes


	7. SUMMARY, CONCLUSIONS, AND FUTURE WORK
	7.1. Conclusions
	7.2. Issues and Surprises
	7.3. Future Work
	7.3.1. Feature Extraction
	7.3.1.1. Statistical Features
	7.3.1.2. Signal Specific Approaches

	7.3.2. Intelligent Tutoring Systems
	7.3.3. Other Avenues for Future Work

	7.4. Dissertation Summary

	APPENDIX A GRAPHS OF SENSOR MEASUREMENTS FOR PARTICIPANT 4104 FROM DATASET #1
	Appendix A-1 Neurosky Measurements for Participant 4104
	Appendix A-2 Zephyr Heart Measurements for Participant 4102
	Appendix A-3 Sonar Distance Sensor Measurements for Participant 4102
	Appendix A-4 Sensor Chair Measurements for Participant 4104
	Appendix A-5 Eye Sensor Measurements for Participant 4102
	Appendix A-6 Derived Measurements for Participant 4102
	Appendix A-7 Labeled Measurements from the ABM Headset for Participant 4102
	Appendix A-8 Labeled Measurements from the EmoPro Self-Report
	Appendix A-9 Example of a Single Datapoint for Dataset #1

	APPENDIX B MEASUREMENTS FOR DATASET #2
	Appendix B-1 Graphs Of Measurements from the SeeingMachine Facelab 5 (5% Of Total Data)
	Appendix B-2 Graphs of Labeled Measurements from the Facelab System (5% Of Total Data)
	Appendix B-3 Sample Datapoint for Dataset #2, Downsampled

	APPENDIX C COMPLETE RESULTS OF ALL ALGORITHMS ON ALL DATASETS
	Appendix C-1 Results Set #1
	Appendix C-1-1 ART
	Appendix C-1-2 K-Means
	Appendix C-1-3 Growing Neural Gas
	Appendix C-1-4 Vowpal Wabbit
	Appendix C-1-5 Total Results Set #1 Semi-Supervised Modeling Ability

	Appendix C-2 Results Set #2
	Appendix C-2-1 ART (Dataset #1)
	Appendix C-2-2 K-Means (Dataset #1)
	Appendix C-2-3 GNG (Dataset #1)
	Appendix C-2-4 Vowpal Wabbit (Dataset #1)
	Appendix C-2-5 ART (Dataset #2)
	Appendix C-2-6 Growing Neural Gas (Dataset #2)
	Appendix C-2-7 Vowpal Wabbit (Dataset #2)
	Appendix C-2-8 Total Results Set #2 Semi-Supervised Modeling Ability (Dataset #1)
	Appendix C-2-9 Total Results Set #2 Semi-Supervised Modeling Ability (Dataset #2)

	Appendix C-3 Results Set #3
	Appendix C-3-1 ART (Dataset #1)
	Appendix C-3-2 K-Means (Dataset #1)
	Appendix C-3-3 GNG (Dataset #1)
	Appendix C-3-4 VW (Dataset #1)
	Appendix C-3-5 Total Results Set #3 Semi-Supervised Modeling Ability (Dataset #1)

	Appendix C-4 Results Set #4
	Appendix C-4-1 ART
	Appendix C-4-2 K-Means
	Appendix C-4-3 GNG
	Appendix C-4-4 VW
	Appendix C-4-5 Total Results Set #4 Semi-Supervised Modeling Ability


	APPENDIX D VARIATION OF PARAMETERS OF THE ADAPTIVE RESONANCE THEORY ALGORITHM
	Appendix D-1 Numerical Summary of ART parameter settings

	LIST OF REFERENCES

