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Abstract — This paper presents a fast and effective approach 

to Li-ion battery performance modeling, particularly suited for 

automotive applications (i.e. HEV, PHEV, BEV). A second-order 

electrical equivalent circuit model made up by one voltage source, 

one series resistor and two series RC blocks (dual-polarization 

model), is here selected as the best trade-off solution for the task, 

addressing both acceptable levels of accuracy and complexity. 

While a lithium-iron-phosphate cylindrical battery cell is chosen 

for the purpose of the study, the presented procedure has broader 

validity and is mostly independent of Li-ion chemistry and/or cell 

format. The battery model is parametrized through a low time-

consuming current pulse test, performed during both charging 

and discharging, at different state of charge levels. The 

temperature and load-current effects on the battery performance 

are not considered for simplicity and lightness of the presented 

model. Validation is carried out by comparing measured and 

simulated results during the dynamic current pulse test, showing 

a high level of agreement between the two. 

Keywords — lithium-ion battery, battery model, electrical 

equivalent circuit (EEC) model, dual-polarization (DP) model, 

current pulse test, parameter extraction, electric vehicles. 

I. INTRODUCTION 

Lithium-ion (Li-ion) batteries have gathered great scientific 

and market attention during the last two decades, in response to 

an increasing demand in portable electronics: high energy 

density (both gravimetric and volumetric), high efficiency, low 

self-discharge and relatively long life have been the major 

advantages of this technology in respect to nickel-cadmium. 

However, even though battery cell employment in consumer 

electronics is rapidly approaching market saturation, a steep 

increase in overall Li-ion battery demand is expected in the 

recent years to come, since the technology is rapidly becoming 

attractive for other sectors, such as stationary power storage, 

hybrid and electric vehicles, space power systems and back-up 

(UPS) applications. The biggest issues with lithium-ion battery 

cells, such as safety, operating temperature range, and cost, are 

quickly being addressed by technology advancements and mass 

production. An overview and future prospect regarding 

different Li-ion chemistries, along with their most suitable 

application, is shown in [1], [2]. 

The automotive sector, above all, is now on the edge of a 

drastic shift, since international regulations on fuel 

consumption and carbon emissions are becoming increasingly 

binding and, therefore, manufacturing common gasoline or 

diesel powered vehicles may soon no longer be allowed. In 

order to meet pollution restrictions, researchers are developing 

and deploying vehicles with an increasing level of electric 

hybridization, from hybrid electric vehicles (HEVs) [3], to 

plug-in hybrid electric vehicles (PHEVs) [4], [5] and eventually 

to pure electric vehicles (EVs). This phenomenon is acting as a 

strong driving force for Li-ion battery technology, both from a 

scientific development and a cost reduction point of view. 

While automotive battery requirements vary depending on 

drivetrain power and level of hybridization of the specific 

vehicle considered, commonly desired characteristics are high 

energy and power density, high level of safety and reliability, 

high life cycle number (which translates in long vehicle 

mileage) and lowest possible cost. These properties are mostly 

embodied by lithium-iron-phosphate (LiFePO4) battery 

chemistry: while it is not the most energy dense Li-ion cathode 

technology, it shows exceptional stability (intrinsic safety, long 

life cycles), high power capability during both charge and 

discharge and low material cost [2], [6], [7]. 

Since lithium-ion battery performance highly depends on 

the operating conditions, such as the state of charge (SOC), 

temperature and load current, it is non-trivial to understand how 

battery cells will behave in a certain application. In order to 

optimize system-level design and energy management control 

strategies, this knowledge is essential: battery performance 

modeling and extensive battery cell characterization allow to 

accurately predict battery terminal current and voltage (I-V 

behavior) in most conditions. Accurate simulations also allow 

avoiding a lot of real-world tests on the battery itself, thus 

reducing required time and cost. Furthermore, battery models 

are often needed for real-time applications, such as in battery 

management systems (BMS), which monitor and control Li-ion 

battery cells when grouped and wired into packs. The main 

tasks of a BMS are to balance the battery pack (i.e. keeping the 

cells at the same SOC level) and to communicate its energy and 

power availability to the rest of the system. To execute these 

tasks in an effective way, an accurate battery model, able to 

estimate each battery cell’s SOC and state of health (SOH) from 

its terminal voltage and load-current history, must be 

implemented in the BMS on-line control strategy.  



A large number of battery cell model types are reported in 

literature, but the most suitable for system-level design and 

real-time application are definitely electrical models, also 

known as electrical equivalent circuits (EEC). Two main kinds 

of EECs exist [8]–[11]: impedance-based models and 

Thévenin-based models. Impedance-based models usually 

contain a complex network of circuit elements and specific 

impedance blocks (such as the constant-phase Warburg 

element) to fit experimental impedance spectra, extracted by 

electrochemical impedance spectroscopy (EIS) tests in the 

frequency domain [12], [13]. Since the EIS test procedure 

requires specific instrumentation and the fitting process is 

complex and non-intuitive, impedance-based models are not 

commonly adopted in practice. Thévenin-based models, on the 

contrary, are easier to work with, as they are normally made up 

by a series of a voltage source, a resistor and a set of parallel 

RC blocks: the parameter values are fitted on battery voltage 

responses to load current pulses in the time domain [9]. These 

models are particularly attractive, due to their simplicity, 

easiness of comprehension and standard test instrumentation 

requirement: they are therefore the most adopted models. 

Specifically, battery models for automotive application 

must have the best trade-off between simulation accuracy, 

computational complexity and parametrization effort. In 

general, the higher the model fidelity, the more effort will be 

required from both testing (time-consuming and expensive) and 

computing. Since the automotive field requires light and 

efficient models which must not sacrifice accuracy, both for 

system-level simulation (e.g. drivetrain electrification) and for 

real-time applications (e.g. BMS), the Thévenin-based EEC 

models represent the best choice. Battery model parameters can 

be easily extracted from pulse charging/discharging cell 

responses in different operating conditions, using standard 

laboratory equipment (e.g. power supplies, electronic loads, 

multimeters, etc.) in a short time period [14]. Furthermore, it is 

important to mention that accuracy and complexity of a 

Thévenin-based model both increase with the number of RC 

blocks adopted, as shown in [15]. 

The scope of this paper is to present an automotive-specific 

battery model, valid for a generic lithium-ion battery chemistry, 

highlighting its strengths and weaknesses during the battery cell 

testing, parameter extraction and simulation phases. The goal 

of the work is to provide automotive designers and powertrain 

engineers a complete tool to test, extract and model the battery 

behavior under different operating conditions: knowledge 

which may be used for system-level design or real-time control 

logics.  

This paper is organized as follows. In section II, a Thévenin-

based EEC model for electrified vehicle applications (HEV, 

PHEV, EV) is proposed and its choice is justified. Section III 

describes the battery cell chosen for this work and the 

experimental setup utilized to perform the cell characterization 

tests, which are presented in section IV. Section V illustrates 

the battery model parameter extraction procedure, while section 

VI shows a comparison between measured and simulated data, 

to provide validation of the proposed model. Finally, section 

VII concludes this paper. 

II. BATTERY PERFORMANCE MODEL 

Even restricting the battery model choice to the Thévenin-

based EEC models (for the reasons illustrated in the previous 

section), a wide range of alternatives still exists among them: 

an overview of these models and their performance comparison 

is available at [16]–[18]. Thévenin-based models differ mainly 

in the number of RC parallel pairs they possess, which affect 

both their accuracy and complexity [15]: the most common 

models found in literature present one RC block, as in [19]–

[22], two RC blocks, as in [10], [11], [23]–[28], three RC 

blocks, as in [29] and a more generic N RC blocks, as in [30], 

[31]. 

Given the relatively low complexity required by automotive 

system-level simulations and on-line control algorithms, no 

more than two RC blocks can be adopted for most applications. 

Furthermore, since one single RC pair is not capable of 

accurately modeling both fast and slow dynamics (an essential 

feature for automotive applications), the second-order 

Thévenin-based EEC model is chosen for the purpose of this 

paper. This equivalent circuit model, shown in Fig. 1, is made 

up by a voltage source in series with a resistor and two RC 

blocks. It is also known as double polarization (DP) model, 

since the two RC pairs normally represent the behavior of two 

different dynamical processes taking place inside the battery 

[11], [22], [28], [32]: the activation polarization and the 

concentration polarization. The activation polarization, or 

charge-transfer polarization, represents the voltage involved in 

increasing the rate of the chemical reactions, or, in other words, 

the voltage needed to overcome the activation barrier: this 

phenomenon is the fastest between the two and is thus fitted by 

the smaller time constant RC block (R1C1). The concentration 

polarization, also known as diffusion or mass-transport 

polarization, represents the voltage involved in the 

concentration gradients of the charge carriers in the electrolyte: 

this is the slowest between the two phenomena and is thus fitted 

by the larger time constant RC block (R2C2). The series resistor 

R0 represents the ohmic resistance of the battery cell, which is 

made up by different contributions belonging to the cell 

connectors, the current collectors, the electrolyte and the active 

materials. Finally, the voltage source represents the open circuit 

voltage (OCV), also referred as the cell terminal voltage in 

thermodynamic equilibrium conditions.  

It must be mentioned that all the presented model 

parameters highly depend on operating conditions. OCV and R0 

mostly depend on SOC and temperature, while resistors and 

capacitors belonging to the RC blocks also depend on load 

 
Fig. 1.  Dual polarization model. 



current (and its direction). This means that high-level accuracy 

models must consider all these dependencies, by extensively 

characterizing the battery cell, which is expensive and time-

consuming at least. In order not to overcomplicate the model 

and the characterization procedure, while maintaining a fast and 

efficient approach, some choices have been made for the 

purpose of this work: temperature and load current effects on 

battery performance have been neglected, restraining the 

parameter dependencies to state of charge and current direction. 

As a matter of fact, avoiding the load current dependency of the 

parameters does not greatly affect the model accuracy, while 

neglecting their temperature dependency definitely impacts on 

the model fidelity. However, implementing temperature-

dependent circuit components would also require the realization 

of a parallel running thermal model to estimate the battery cell 

temperature during the simulation, which would worsen the 

computational burden. 

The SOC dependency of the equivalent circuit elements is 

implemented in look-up table form, thus a running SOC 

calculator block is needed inside the model. An algorithm 

integrates the instantaneous battery load current and computes 

the SOC through its definition: 

 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶 0 − 100
+ , -,

.

/

0	2344
 (1) 

where 𝑆𝑂𝐶 𝑡  is the battery state of charge in percentage form, 

𝑆𝑂𝐶(0) the initial state of charge, 𝐼(𝑡) the instantaneous load 

current in A and 𝐶 is the battery cell capacity in Ah. The SOC 

information thus exits the calculator block and gets fed to the 

equivalent circuit parameter look-up tables: the whole model is 

easily implemented in MATLAB/Simulink environment. 

III. EXPERIMENTAL SETUP 

The characterization tests are performed on a specific 

LiFePO4 cell from A123, the ANR26650M1-B cylindrical 

model [33]: its main parameters are reported in TABLE  I. The 

experimental setup is shown in Fig. 2 and is made up by a 

Solartron Analytical 1470 battery cell tester [34], connected to 

the battery cells under test through power wires and directly 

communicating with a computer through GPIB interface. The 

tester has 8 separated test channels available, each capable of 

withstanding 15 V and carrying 4 A (either in charge or 

discharge), but more channels can be wired in parallel to carry 

higher currents. Neither of the tests here presented requires 

parallel configurations, since the absolute value of the current 

is never greater than 4 A, therefore the battery cells under test 

are wired to separate channels of the testing device. The 

Solartron Analytical 1470 can be programmed through a 

software interface to charge/discharge the connected battery 

cells with user-defined dynamical current or voltage profiles. 

This allows to perform all the test procedures presented in the 

following section. It must be said that the tests have been 

performed on three cells of the same type to reach a minimal 

statistical relevance, however, the behavior under test and the 

set of extracted EEC parameters belonging to only one cell will 

be shown, for clarity reasons. 

IV. CHARACTERIZATION PROCEDURE 

The battery cells are characterized by a set of subsequent 

tests, illustrated in Fig. 3, which aim to collect the necessary 

data to parametrize the presented equivalent circuit model. 

A. Preconditioning test 

The preconditioning test here implemented is made up by 

three full charge/discharge cycles at 0.5C (i.e. 1.25 A) carried 

out at ambient temperature. A 90-minute rest is undertaken after 

either every full charge or discharge. The total time required by 

this test is roughly 24 hours. 

B. Capacity test 

The capacity of a battery cell (i.e. the total charge that the 

cell can provide during a full discharge) represents one of its 

most important parameters, since it not only provides an 

indication of the battery energy content, but its value is also 

necessary to define the state of charge variable, as shown in (1). 

TABLE  I.  BATTERY DATASHEET PARAMETERS 

Property Value 

Nominal capacity 2.5 Ah 

Nominal voltage 3.3 V 

Max. voltage 3.6 V 

Min. voltage 2.5 V 

Max. discharge current 70 A (21-C) 

Max. charge current 10 A (4-C) 

Operating temperature -30 °C to 55°C 

Cycle life > 1000 cycles 

 

 
Fig. 3.  Battery cell characterization flow chart. 

 
Fig. 2.  Overview of the laboratory test setup. 

Battery cells under test 

Solartron Analytical 
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A nominal capacity value is always provided by the 

manufacturer inside the battery cell datasheet (i.e. TABLE  I), 

however, since it represents a worst-case estimate, a test should 

be performed to estimate a more reasonable value to be 

employed inside the cell model. 

Battery capacity normally depends on the discharge current 

at which the test is performed, following Peukert’s law: 

 C78 = I:t (2) 

where 𝐶70  is the capacity of the cell measured during a 1C 

discharge, 𝐼 is the discharge current, 𝑡 is the time required by 

the discharge and 𝑘 is the Peukert’s coefficient (≥ 1). Since 

lithium-ion batteries show a Peukert’s coefficient value very 

close to 1 [6], the total charge that can be extracted from the cell 

is not significantly dependent on the current value. However, 

the load current largely affects the battery terminal voltage drop 

and, in order to avoid hitting prematurely the lower discharging 

threshold voltage (i.e. 2.5 V), an effective capacity 

measurement should be performed at low current rates. This 

paper will consider a unique value of capacitance (independent 

on the charging/discharging current rate) extracted at C/5 (i.e. 

0.5 A). 

This test can be performed both by charging or discharging 

the battery: in the first case a constant current (CC) charge at 

C/5 is applied until the upper voltage threshold is reached (i.e. 

3.6 V), thus a constant voltage (CV) procedure holds the 

voltage at its maximum until the current falls below C/200 (i.e. 

0.0125 A); in the second case only a constant current discharge 

at C/5 is applied, until the lower voltage threshold (i.e. 2.5 V) 

is reached. The voltage and current waveforms are shown in 

Fig. 4: a capacity value of approximatively 2650 mAh is 

extracted. The time required by the CC discharging test is 

roughly 5 hours.  

C. Relaxation test 

The relaxation test should provide a comprehensive view of 

the battery cell dynamics: the aim of this test is to show the 

order of magnitude of the time constants involved in the battery 

dynamical response. The cell is discharged with a constant 

current value of 2.5 A until 50% SOC is reached. The current is 

then interrupted and the voltage is measured during a 20-hour 

relaxation period, as in Fig. 5(a).  

The complete battery cell characterization is a highly time-

consuming process, mostly due to the numerous and recurring 

relaxation periods during the current pulse test (presented in the 

following section), therefore the time length of these periods 

must be chosen carefully. Long relaxation times provide 

accurate OCV data but have a considerable impact on the 

overall test time, thus a compromise must be accomplished. The 

relative error made by cutting off the relaxation at a certain time 

instant can be expressed as:  

 𝜀?(𝑡) =
@0ABA(,)

@0ABA(4)
 (3) 

where 𝑂𝐶𝑉 is the open circuit voltage (the last voltage value of 

the relaxation period), while 𝑉(𝑡) and 𝑉(0) are the 

instantaneous voltage and the initial voltage value respectively. 

The voltage relative error is shown in percentage form in Fig. 

5(b): it can be noticed that the greatest amount of the error 

(more than 90%) falls during the first hour of relaxation. 

D. Current pulse test 

This test allows the proper characterization of the EEC model 

by soliciting the battery with charging/discharging current 

pulses while observing its voltage response. Furthermore, to 

fully parametrize the equivalent circuit elements, pulses must 

be performed across the whole battery SOC range. The test 

procedure implemented in this work is shown in Fig. 6 and 

consists of three main parts: 

1. Series of 1C discharging current pulses (i.e. 2.5 A) separated 

by 10-minute rest periods in between. Each pulse discharges 

5% of the battery cell SOC, until the lower threshold voltage 

is reached (i.e. 2.5 V) and a constant voltage discharging 

procedure is applied to fully discharge the cell. 

2. 10-hour rest period; the cell approaches thermodynamic 

equilibrium and chemical hysteresis effects are reduced.  

3. Series of 1C charging pulses separated by 10-minute rest 

periods in between. Each pulse charges 5% of the battery 

cell SOC, until the upper voltage threshold is reached (i.e. 

3.6 V) and a constant voltage charging procedure is applied 

to fully charge the cell. 

 
 (a) 

 
 (b) 

Fig. 5. Voltage relaxation (a) and voltage relative error (b) 

 
Fig. 4.  Battery capacity test. 



It is easy to see how the relaxation periods between pulses 

account for the most part of the overall test time: the here-

implemented procedure is quite rapid, as the whole dynamic 

characterization test can be carried out in less than 24 hours. 

However, this choice has undoubtedly its drawbacks, since the 

model will only be capable of predicting dynamics of higher or 

same order of the test relaxation period: slow chemistry-related 

dynamical phenomena will not be modeled in this case. 

Moreover, low relaxation times directly translate in low OCV 

accuracy, since the voltage cannot reach its stationary condition 

(thermodynamic equilibrium), as explained before 

V. PARAMETER EXTRACTION 

The model parameter extraction process is based on the 

current pulse test and is well explained in [9], [26]: the 

parameter values are obtained from the short rest periods 

subsequent to the current pulses, since the battery SOC remains 

unchanged during these phases. A highlight of a single voltage 

relaxation event is shown in Fig. 7. 

The first extracted parameter is the OCV, obtained as the 

last voltage value at the end of the relaxation: the larger the 

relaxation period, the more accurate will be the extracted OCV 

value. The R0 value is then acquired from the sudden voltage 

variation 𝑉4 following the current pulse end ∆𝐼: 

 𝑅4 =
A/

∆+
 (4) 

Finally, the remaining parameters are obtained by curve-fitting 

the remaining part of the voltage response 𝑉7 𝑡 + 𝑉G(𝑡), 

recalling that the double-RC equivalent circuit model response 

has the following form: 

 𝑉 𝑡 = 𝑂𝐶𝑉 − 𝑉7𝑒
B, IJ − 𝑉G𝑒

B, IK (5) 

The fitting process is carried out in MATLAB environment, 

using a bounded-parameter least-square algorithm, and 𝑉7, 𝜏7, 

𝑉G, 𝜏G are thus extracted. Their relationship with the model 

equivalent circuit parameters is the following: 

 𝑅M =
AN

∆+
 (6) 

 𝐶M =
IN

ON
 (7) 

𝑅7, 𝐶7, 𝑅G, 𝐶G are therefore obtained.  

 
 (a) 

 
 (b) 

Fig. 6.  Current pulse test: voltage (a) and current (b) waveforms. 

 

Fig. 7.  Highlight of the parameter extraction procedure for a discharging pulse. 



The presented procedure is performed both for the pulse 

discharging and pulse charging tests: the extracted parameter 

datasets are only available between 5% and 95% SOC (due to 

the nature of the test itself) and are shown in Fig. 8. The OCV 

shape is noticeably different between charging and discharging 

and the two curves show a roughly constant offset: this is 

mostly due to the limited relaxation time of the test procedure. 

In this work, the battery hysteresis effects are neglected, since 

a very time-consuming experiment would be needed to 

highlight them: an average value between the charging and 

discharging OCV is therefore used for the modeling purpose. 

𝑅4 shows an approximately constant behavior over the whole 

SOC range, since the ohmic resistance of the cell only depends 

on temperature. Furthermore, while time constants 𝜏7 and 𝜏G 

result nearly independent on SOC, the respective equivalent 

resistors and capacitors consistently change in value towards 

the edges of the SOC range. Resistance values increase in 

discharge towards 0% SOC and in charge towards 100% SOC: 

this is mainly because, in these regions, both activation and 

concentration polarization phenomena increase their impact on 

the battery terminal voltage.  

VI. MODEL VALIDATION 

The model validation process is carried out by comparing 

the measured and simulated waveforms during the current pulse 

test, both in discharging and charging (Fig. 9). It must be 

mentioned that the comparison is only performed between 5% 

and 95% SOC values, in agreement with the model parameter 

set availability. 

The voltage absolute error is shown in Fig. 10, defined as 

the difference between the measured and the simulated voltage: 

 𝜀PQR(𝑡) = 𝑉STPR(𝑡) − 𝑉RMS(𝑡) (8) 

A general high fidelity level is observed since the absolute error 

module lies below 10 mV along most of the test procedure: a 

considerable increase in the error value is seen towards the end 

of the test, both in charge and in discharge. This is mostly due 

to the rapidly increasing cell resistance (𝑅7 and 𝑅G) while 

approaching the SOC edges, as shown in Fig. 8: the model 

parameter discretization becomes insufficient to precisely 

predict the battery behavior. 

While the maximum absolute error hits 88 mV (in the pulse 

discharging test), a better indicator of the overall model fidelity 

may be provided by the root mean square error (RMSE):  

 𝑅𝑀𝑆𝐸 =
7

W
[𝑉STPR 𝑡 − 𝑉RMS 𝑡 ]G
W

4
𝑑𝑡 (9) 

where 𝑇 is the considered time period. The calculated global 

RMSE is 5.7 mV. 

 
 (a) (b) 

Fig. 9.  Comparison between measured and simulated waveforms: discharge (a) and charge (b). 

 
Fig. 8.  Extracted equivalent circuit model parameters. 



It should finally be noted that the model better behaves during 

the relaxation period since the equivalent circuit parameters 

have been extracted during this phase. 

VII. CONCLUSIONS 

A battery performance modeling approach, mostly suited 

for automotive applications, is presented in this paper. The 

scope is to provide a comprehensible and rapid tool for 

automotive designers and powertrain engineers to model and 

parametrize battery cells in a time and cost-effective way, 

without sacrificing a certain level of dynamical precision. A 

trade-off between accuracy, computational complexity and 

parametrization effort is achieved, by selecting a double-RC 

equivalent circuit model and performing a fast and effective set 

of characterization tests. A final comparison between measured 

and simulated results validates the performance model, 

showing a high level of fidelity: the voltage prediction error lies 

below 10 mV in most of the battery operating SOC range, 

resulting in an overall RMSE value of 5.7 mV. 

Since no tests have been performed to evaluate the battery 

cell performance dependency on temperature and current rate, 

the presented model is clearly limited in its predictive 

capabilities outside the narrow set of extracted parameters. The 

enhancement of this parameter set will be the object of the 

authors’ future work, in order to extend the model validity to a 

broader set of operating conditions, while necessarily accepting 

more expensive and time-consuming testing. The model real-

time implementation, coupled with an extended Kalman filter 

for SOC estimation, will also be the object of future study. 

ACKNOWLEDGMENT 

Authors want to acknowledge IEHV-Polito research group 

and Hysylab for providing instrumentation and facilities. 

Special thanks to Eng. M. Fausone for his helpful advice. 

REFERENCES 

[1] B. Scrosati and J. Garche, “Lithium batteries: Status, prospects and 
future,” J. Power Sources, vol. 195, no. 9, pp. 2419–2430, May 2010. 

[2] A. I. Stan, M. Świerczyński, D. I. Stroe, R. Teodorescu, and S. J. 
Andreasen, “Lithium ion battery chemistries from renewable energy 

storage to automotive and back-up power applications - An overview,” 

in 2014 International Conference on Optimization of Electrical and 
Electronic Equipment (OPTIM), 2014, pp. 713–720. 

[3] M. Carello, N. Filippo, and R. d’Ippolito, “Performance Optimization 

for the XAM Hybrid Electric Vehicle Prototype,” in SAE Technical 
Paper Series, 2012. 

[4] M. Carello, A. Airale, A. Ferraris, and A. Messana, “XAM 2.0: from 

Student Competition to Professional Challenge,” Comput.-Aided Des. 
Appl., vol. 11, no. sup1, pp. S61–S67, May 2014. 

[5] M. Carello, A. Ferraris, A. Airale, and F. Fuentes, “City Vehicle XAM 
2.0: Design and Optimization of its Plug-In E-REV Powertrain,” in SAE 

Technical Paper Series, 2014. 

[6] N. Omar et al., “Evaluation of performance characteristics of various 
lithium-ion batteries for use in BEV application,” in 2010 IEEE Vehicle 

Power and Propulsion Conference, 2010, pp. 1–6. 

[7] F. P. Tredeau and Z. M. Salameh, “Evaluation of Lithium iron 
phosphate batteries for electric vehicles application,” in 2009 IEEE 

Vehicle Power and Propulsion Conference, 2009, pp. 1266–1270. 

[8] A. Seaman, T.-S. Dao, and J. McPhee, “A survey of mathematics-based 
equivalent-circuit and electrochemical battery models for hybrid and 

electric vehicle simulation,” J. Power Sources, vol. 256, pp. 410–423, 
Jun. 2014. 

[9] A. Hentunen, T. Lehmuspelto, and J. Suomela, “Time-Domain 

Parameter Extraction Method for Thevenin-Equivalent Circuit Battery 
Models,” IEEE Trans. Energy Convers., vol. 29, no. 3, pp. 558–566, 

Sep. 2014. 

[10] M. Chen and G. A. Rincon-Mora, “Accurate electrical battery model 
capable of predicting runtime and I-V performance,” IEEE Trans. 

Energy Convers., vol. 21, no. 2, pp. 504–511, Jun. 2006. 

[11] L. Lam, P. Bauer, and E. Kelder, “A practical circuit-based model for 

Li-ion battery cells in electric vehicle applications,” in 2011 IEEE 33rd 
International Telecommunications Energy Conference (IN℡EC), 

2011, pp. 1–9. 

[12] D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. 
U. Sauer, “Characterization of high-power lithium-ion batteries by 

electrochemical impedance spectroscopy. I. Experimental 
investigation,” J. Power Sources, vol. 196, no. 12, pp. 5334–5341, Jun. 

2011. 

[13] D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-Guth, and D. U. 
Sauer, “Characterization of high-power lithium-ion batteries by 

electrochemical impedance spectroscopy. II: Modelling,” J. Power 
Sources, vol. 196, no. 12, pp. 5349–5356, Jun. 2011. 

[14] S. Abu-Sharkh and D. Doerffel, “Rapid test and non-linear model 

characterisation of solid-state lithium-ion batteries,” J. Power Sources, 
vol. 130, no. 1–2, pp. 266–274, May 2004. 

[15] H. Zhang and M.-Y. Chow, “Comprehensive dynamic battery modeling 

for PHEV applications,” in IEEE PES General Meeting, 2010, pp. 1–6. 

 
 (a) (b) 

Fig. 10.  Absolute error (in mV) between measured and simulated results: discharge (a) and charge (b). 



[16] H. He, R. Xiong, H. Guo, and S. Li, “Comparison study on the battery 

models used for the energy management of batteries in electric 
vehicles,” Energy Convers. Manag., vol. 64, pp. 113–121, Dec. 2012. 

[17] X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit 
models for Li-ion batteries,” J. Power Sources, vol. 198, pp. 359–367, 

Jan. 2012. 

[18] M. Einhorn, F. V. Conte, C. Kral, and J. Fleig, “Comparison, Selection, 
and Parameterization of Electrical Battery Models for Automotive 

Applications,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1429–
1437, Mar. 2013. 

[19] T. Huria, M. Ceraolo, J. Gazzarri, and R. Jackey, “High fidelity 

electrical model with thermal dependence for characterization and 
simulation of high power lithium battery cells,” in 2012 IEEE 

International Electric Vehicle Conference, 2012, pp. 1–8. 

[20] L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery model 
for system simulation,” IEEE Trans. Compon. Packag. Technol., vol. 

25, no. 3, pp. 495–505, Sep. 2002. 

[21] F. Baronti, G. Fantechi, E. Leonardi, R. Roncella, and R. Saletti, 
“Enhanced model for Lithium-Polymer cells including temperature 

effects,” in IECON 2010 - 36th Annual Conference on IEEE Industrial 
Electronics Society, 2010, pp. 2329–2333. 

[22] G. Aurilio et al., “A battery equivalent-circuit model and an advanced 

technique for parameter estimation,” in 2015 IEEE International 
Instrumentation and Measurement Technology Conference (I2MTC) 

Proceedings, 2015, pp. 1705–1710. 

[23] J. Li and M. S. Mazzola, “Accurate battery pack modeling for 

automotive applications,” J. Power Sources, vol. 237, pp. 215–228, 
Sep. 2013. 

[24] W. Y. Low, J. A. Aziz, N. R. N. Idris, and R. Saidur, “Electrical model 

to predict current–voltage behaviours of lithium ferro phosphate 
batteries using a transient response correction method,” J. Power 

Sources, vol. 221, pp. 201–209, Jan. 2013. 

[25] B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of high 

power automotive batteries by the use of an automated test system,” 
IEEE Trans. Instrum. Meas., vol. 52, no. 4, pp. 1087–1091, Aug. 2003. 

[26] T. Hu, B. Zanchi, and J. Zhao, “Simple Analytical Method for 
Determining Parameters of Discharging Batteries,” IEEE Trans. 

Energy Convers., vol. 26, no. 3, pp. 787–798, Sep. 2011. 

[27] T. Kim and W. Qiao, “A Hybrid Battery Model Capable of Capturing 
Dynamic Circuit Characteristics and Nonlinear Capacity Effects,” 

IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1172–1180, Dec. 
2011. 

[28] K. Li and K. J. Tseng, “An equivalent circuit model for Li-ion batteries 

used in energy storage systems in building environment,” in 2016 IEEE 
Innovative Smart Grid Technologies - Asia (ISGT-Asia), 2016, pp. 504–

510. 

[29] L. H. Saw, Y. Ye, and A. A. O. Tay, “Electro-thermal characterization 
of Lithium Iron Phosphate cell with equivalent circuit modeling,” 

Energy Convers. Manag., vol. 87, pp. 367–377, Nov. 2014. 

[30] Y. Hu, S. Yurkovich, Y. Guezennec, and B. J. Yurkovich, “Electro-
thermal battery model identification for automotive applications,” J. 

Power Sources, vol. 196, no. 1, pp. 449–457, Jan. 2011. 

[31] K. S. Hariharan and V. Senthil Kumar, “A nonlinear equivalent circuit 
model for lithium ion cells,” J. Power Sources, vol. 222, pp. 210–217, 

Jan. 2013. 

[32] H. He, R. Xiong, X. Zhang, F. Sun, and J. Fan, “State-of-Charge 

Estimation of the Lithium-Ion Battery Using an Adaptive Extended 
Kalman Filter Based on an Improved Thevenin Model,” IEEE Trans. 

Veh. Technol., vol. 60, no. 4, pp. 1461–1469, May 2011. 

[33] A123 Systems, “Nanophosphate® High Power Lithium Ion Cell.” 
ANR26650M1-B datasheet, 2011. 

[34] Solartron Analytical, “Solartron CellTest® System.” 1470E 

Specification Datasheet, 2015. 

 




