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A general formulation is presented for the optimum controller in an active system for local sound

control in a spatially random primary field. The sound field in a control region is selectively attenu-

ated using secondary sources, driven by reference sensors, all of which are potentially remote from

this control region. It is shown that the optimal controller is formed of the combination of a least-

squares estimation of the primary source signals from the reference signals, and a least-squares con-

troller driven by the primary source signals themselves. The optimum controller is also calculated

using the remote microphone technique, in both the frequency and the time domains. The sound

field under control is assumed to be stationary and generated by an array of primary sources, whose

source strengths are specified using a spectral density matrix. This can easily be used to synthesize

a diffuse primary field, if the primary sources are uncorrelated and far from the control region,

but can also generate primary fields dominated by contributions from a particular direction, for

example, which is shown to significantly affect the shape of the resulting zone of quiet.
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I. INTRODUCTION

Active sound control in enclosures works well at low fre-

quencies, when the size of the enclosure is not too large com-

pared with the acoustic wavelength.1 At higher frequencies,

however, when global control of the sound field cannot be

achieved, local active control can still be used to reduce the

sound in a particular region of space. Above the Schroeder

frequency2,3 the sound field can often be approximated by a

diffuse field, with equal energy incident from all directions.

The zone of quiet, within which the original sound level is

reduced by at least 10 dB, that can be generated by a remote

secondary source around a control microphone in a diffuse

field has a diameter of about one-tenth of an acoustic wave-

length.4 The secondary source cannot be too remote, how-

ever, since otherwise it can increase the sound level

elsewhere in the enclosure,5 and so various arrangements of

active control systems with local secondary sources, close to

the control region, have been investigated.6–9

The objective of the control system is often to reduce the

sound level at a listener’s ears. The active headphone could

be seen as an ideal realization of such a local system, since

the zone of quiet moves around with the position of the head.

For reasons of safety and comfort, however, there has been

interest in implementing such local control systems with fixed

secondary source and sensor locations, particularly on

headrests.7,8,10,11 Some investigations have assumed that

knowledge of the primary waveform is available, so that

feedforward methods can been used;7,12 other investigations

have used feedback control,10,11 whose performance is

affected by the trade-off between good acoustic performance,

with the region of control close to the ear but relatively far

from the secondary source, and good control performance,

with the region of control close to the secondary source to

reduce delay.11 The performance of such controllers is also

affected by the spectrum of the disturbance signal and the

spatial arrangement of the secondary sources, feedback sen-

sors, and primary field. This paper presents a formulation that

allows the effect of different spatial geometries to be readily

calculated.

In the development of local active controllers there has

also been considerable interest, for practical reasons, in mon-

itoring the sound field within the region of control with sen-

sors outside this region, as reviewed by Moreau et al.13

Originally a virtual microphone technique was proposed for

the problem,13–17 where the primary pressure was assumed

to be the same at the sensor and in the control region. Later,

systems were developed using the remote microphone tech-

nique,13,18 which assumes a given transfer response between

the sensor and control region. There is thus an on-going in-

terest in the performance of active control systems that gen-

erate local zones of quiet with secondary sources and sensors

outside of the region of control. This paper presents a gen-

eral formulation for the calculation of the performance of

such systems in a stationary primary sound field. The formu-

lation uses spectral density matrices11 and the result is an ex-

pectation of the resulting mean square pressure in the region

of control, which avoids the calculation of the multiple

results that has previously been used for different realiza-

tions of the random primary field.4,5,15,19 The formulation

also allows a general specification of the spatially random

primary sound field, in terms of a distribution of energy from

different angles, for example. It is shown that this signifi-

cantly affects the results of some model calculations and that

the conventional diffuse field assumption is not sufficient to
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predict the performance of local active control systems in

such circumstances, as also discussed in Ref. 12.

Although the general formulation could include the

effects of diffraction around finite-sized secondary sources,

and the head, in the definition of the transfer responses,20,21

these effects are not included in the simulations presented

here, so as to more clearly illustrate the principles of the

method. The optimum control problem is first formulated in

the frequency domain, to explore the geometrical limitations

of control for relatively narrowband disturbances, but a

time-domain formulation is also included for the calculation

of causal broadband controllers. The secondary sources are

assumed here to be point monopoles, and the regions of con-

trol are assumed to be far enough away from the secondary

sources that the effects of the size of the secondary sources

can be neglected. The simulations presented concentrate on

illustrating the efficiency and the generality of the formula-

tion. Initially the method is used to reproduce some well-

known results, such as the extent of the quiet zone in a

diffuse sound field when controlled by a point source.19

Since the reference and monitor microphones are assumed to

be much closer to the secondary sources than the walls of

any enclosure, it is assumed that the responses between the

secondary sources and these microphones are dominated by

the direct sound component and hence modeled using

anechoic responses. The effect of the virtual and remote

microphone arrangements are calculated for this idealized

situation, before the effect of a more directional random pri-

mary field is investigated. An arrangement of multiple sec-

ondary sources and reference sensors is then investigated to

control an inner region in various primary sound fields.

Finally, a time-domain formulation of the method is derived

and some example results are discussed.

II. DIRECT CONTROL FORMULATION

An illustration of the physical arrangement assumed

here is shown in Fig. 1. An array of primary sources, of

source strengths vT ¼ ½v1; v2;…; vNv �, is assumed to generate

the spatially random pressure field under control. This field

is detected by a set of reference sensors producing signals

xT ¼ ½x1; x2;…; xNx
�, which are used to drive a set of second-

ary sources with signals uT ¼ ½u1; u2;…; uNu
�. The region of

control is assumed to be monitored by a set of sensors with

outputs yT ¼ ½y1; y2;…; yNy
�, some of which are used to

define the cost function used in the design of the control sys-

tem. Although, in the final system considered in Sec. III, the

outputs from some of the more remote monitoring sensors

will be assumed to be estimated from some of those closer to

the secondary sources, in this section the outputs from the

monitoring sensors are assumed to be known, so that the op-

timum acoustic performance can be calculated for a given

geometry.

The arrangement is illustrated in Fig. 1 in two dimen-

sions, but the simulations below have been conducted with

the primary sources arranged on a spherical grid surrounding

the local control system. It has also been assumed in this fig-

ure that the reference sensors and secondary sources are out-

side the region over which active control is to be

implemented. The sound field in this region is measured by a

dense array of monitoring sensors, so that the sound field can

be visualized, even though only some of the signals from

these sensors might be directly controlled. It has also been

assumed in the simulations below that the transfer responses

between the sources and sensors are those in a free field,

although this assumption is not necessary.

In the formulation used here, the disturbances are

assumed to be random, such as jet noise in aircraft or road

noise in cars, for example, and can be described by their

power and cross spectral densities. We will initially consider

the behavior of the control system in the frequency domain.

If wideband random disturbances are being controlled, an

implicit assumption with the frequency domain formulation

is that the matrix of control filters is causal. If this assump-

tion does not hold, then the causality of the controller can be

enforced by either using spectral factorization methods in

the frequency domain11 or by formulating the controller in

the time domain as a matrix of finite impulse response (FIR)

filters,11 as in Sec. V. If the disturbance signals have a rela-

tively narrowband spectrum, however, compared with the re-

ciprocal of the delay between the reference sensors and

control point, causality will not limit the performance and

the frequency domain formulation can be used to predict the

performance.

The relationship between the elements of the vectors of

signals is represented by spectral density matrices.11 The

spectral density matrix defining the primary source strengths,

for example, is given by

Svv ¼ E½vvH�; (1)

where the superscript H denotes the Hermitian, complex

conjugate transpose and E denotes the expectation operator.

It should be noted that the dependence of all of the variables

on frequency has been suppressed for notational convenience

and this dependence will also be suppressed throughout the

paper. The diagonal elements of Svv are the power spectral
FIG. 1. Illustration of the kind of geometric arrangement assumed, in two

dimensions in this case.
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densities of each individual primary source, and the off-

diagonal terms are the cross spectral densities between these

sources. In the simulations below it will be assumed that the

primary sources are uncorrelated, so that Svv is a diagonal

matrix, although this is not necessary in the general formula-

tion. The spectral density matrix could, for example, be used

to define a spatially correlated pressure field22 or a set of

original primary and secondary sources and their image

sources, to approximate an enclosed sound field.3

The block diagram for the control system is illustrated

in Fig. 2, where the primary sources, v, generate the refer-

ence signals, x, and the disturbance signals at the monitoring

sensors, d, via the matrices of transfer responses R and P,

respectively, and the matrix of control filters is denoted W.

The matrix of transfer responses from the secondary sources,

u, to the monitoring sensors, y, is denoted G, but it is

assumed that any feedback from the secondary sources to

the reference sensors, F, is canceled out by a perfect model,

F̂ equal to F, within the overall controller, so that x̂ in Fig. 2

is equal to x.11 The matrix of control filters, W, which drive

the secondary sources from the reference sensors, is thus

entirely feedforward. The vector of complex signals at the

monitoring sensors can then be written as

y ¼ dþGWx: (2)

The vector of error signals to be minimized, e, is

selected from the vector of signals from all the monitoring

sensors, y, via a matrix Ae so that e is equal to Aey. The cost

function to be minimized is thus

J ¼ E½eHe� ¼ traceA E½yyH�; (3)

where A is equal to AH
e Ae in this case and, in general, is any

square Hermitian matrix.

The second form of the cost function in Eq. (3) is writ-

ten in terms of the trace of the spectral density matrix11 for

y. In this form, the cost function can be expanded out using

Eq. (2) to give

J ¼ trace½AGWSxxWHGH þ AGWSH
xd þ � � �

þSxdWHGHAH þ ASdd�; (4)

where the spectral density matrix for the reference signals,

and the cross spectral density matrix between the output of

the reference and detection sensors, are defined to be

Sxx ¼ E½xxH�; (5)

Sxd ¼ E½dxH�: (6)

The properties of the trace operator, that trace(A þ B) is

equal to trace(A) þ trace(B) and that trace(AB) is equal to

trace(BA), together with the fact that A is Hermitian, have

also been used in the formulation of the third term in the

right-hand side of Eq. (4).

A generalization of the results derived in Refs. 11 and

23 then allows the optimum set of control filters to be

obtained that minimize the cost function in Eq. (4), as

Wopt ¼ �½GHAG��1
GHASxdS�1

xx ; (7)

where it is assumed that both G
H

AG and Sxx are invertible.

From the block diagram shown in Fig. 2, it can be seen

that x is equal to Rv, assuming that F̂ is equal to F, and that

d is equal to Pv, so that the matrices Sxx and Sxd, as defined

in Eq. (5), are equal to

Sxx ¼ RSvvR
H; (8)

Sxd ¼ PSvvR
H; (9)

where Svv is the spectral density matrix of the primary source

signals, as defined in Eq. (1). The optimum matrix of control

filters is thus equal to

Wopt ¼ �½GHAG��1
GHAPSvvR

H½RSvvR
H��1; (10)

where the matrices of transfer responses G, R, and P are

defined by the assumed geometry, Svv is defined by the

assumption of the primary field, and A is determined by the

definition of the local field under control. It is also possible

to generalize the cost function to include a control effort

term, proportional to trace[E [uuH]], in addition to the con-

trol error, which has the effect of regularizing the inverse of

the matrix G
H

AG in Eq. (10), although this was not found to

be necessary in the simulations below.

FIG. 2. The block diagram of the

assumed control system.
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It is interesting to analyze the form of the optimal con-

troller in Eq. (10), since it can be decomposed in terms of

the results of two separate optimization problems. If, instead

of having to control the disturbance signals with estimates of

the primary source signals obtained from the reference sig-

nals, the primary source signals were directly available to

drive the controller, so that

e ¼ dþGWv; (11)

then the optimum least-squares controller would be equal to

Wopt ¼ �½GHAG��1
GHAP: (12)

This corresponds to the first part of Eq. (10), and can be

obtained from this equation by assuming that R is equal to

the identity matrix.

Second, we can consider the problem of optimally esti-

mating the primary source signals, v, from the outputs of the

reference sensors, x, via a filter T. In this case we would

minimize the cost function

Jx ¼ E½ðv� TxÞHðv� TxÞ�; (13)

resulting in the optimal filter matrix

Topt ¼ SvvR
H½RSvvR

H��1; (14)

which forms the second part of Eq. (10). The optimal feed-

forward controller is thus equal to the combination of the op-

timum least-squares estimate of the primary source signals

from the reference signals and the optimal controller driven

directly by the primary source signals.

III. REMOTE CONTROL FORMULATION

In a number of practical active control arrangements,

the signals at the error sensors are not directly observable

and must be inferred from the outputs of a separate set of

measurement sensors, positioned some distance from the

location at which control is required. In this section the opti-

mal controller will be derived using the remote microphone

technique,13 in which an estimate of the error signals used in

Sec. II, ê, is formed from an estimate of the disturbance sig-

nals at these locations, d̂e, plus the contribution due to the

secondary sources operating via the plant matrix, Ge, which

is assumed to be known, so that

ê ¼ d̂e þGeu; (15)

where Ge is equal to AeG, with Ae being defined in Sec. II.

The disturbance at the error sensors, de, is estimated as a

linear function, O, of the disturbance at the measurement

sensor positions, dm, which are also assumed to be part of

the monitoring array, whose overall output is y. In practice

dm can be obtained by subtracting a known estimate of the

contribution from the secondary sources from the measured

signals. We thus assume that

d̂e ¼ Odm; (16)

where dm can be written as Pmv and the true disturbance at

the error sensors, de, can be written as Pev, where Pm and Pv

are subsets of the overall matrix relating the primary sources

to all of the monitoring signals, P, in Fig. 2. Using Eqs. (15)

and (16) the estimated error can be written as

ê ¼ Odm þGeu (17)

¼ OPmvþ AeGWx; (18)

and the expectation of ê
H

ê can be minimized, using similar

algebra to that used in Sec. II, if the matrix of control filters

is equal to

WoptðmÞ ¼ �½GHAG��1
GHAH

e OPmSvvR
H½RSvvR

H��1 ;

(19)

where A is again equal to AH
e Ae, and the subscript (m) on

wopt denotes that this is the optimum controller using the

measured signals.

The expectation of the squared error ðde � d̂eÞ can now

be minimized to give an optimal value for the observation

matrix, O, in Eq. (16), as

Oopt ¼ PeSvvP
H
m½PmSvvP

H
m�
�1; (20)

where it is assumed that the matrix PmSvvP
H
m is invertible.

Substituting the optimal observation matrix into Eq. (19)

then gives

WoptðmÞ ¼ �½GHAG��1
GHAH

e PeSvvP
H
m½PmSvvP

H
m�
�1

� PmSvvR
H½RSvvR

H��1
(21)

and it can be seen that the difference between Wopt(m) in

Eq. (21) and Wopt in Eq. (10) is the factor of

AH
e PeSvvP

H
m½PmSvvP

H
m�
�1

Pm, instead of APSvv, that occurs in

the middle of the equation. The original expression for Wopt

in Eq. (10) is recovered if it is assumed that the measurement

sensors are co-located with the error sensors, in which case

Pm is equal to Pe, so that Oopt is the identity matrix, and Pe is

written as AeP so that AH
e AeP is equal to AP.

IV. SIMULATIONS

A. Single secondary source in a diffuse field

For comparison with earlier results,19 a series of simula-

tions has initially been performed of control at a single posi-

tion in a simulated diffuse primary sound field, using a

single monopole secondary source. This is separated from

the control position by a distance, L, assumed to be equal to

0.1 m. The primary field was generated by 408 uncorrelated

monopole sources uniformly distributed over a sphere of ra-

dius 1 m. This resulted in the averaged spatial correlation

function shown in Fig. 3, for the pressure in the

0.5 m� 0.5 m region measured by a 51� 51 grid of monitor-

ing microphones, which is at the center of the sphere. Also

shown in Fig. 3 is the sin (kr)/kr theoretical form for this spa-

tial correlation function, where k is the wavenumber and r is
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the separation distance between the two pressures. These

show a very good agreement for values of kr up to about 25,

which corresponds to a frequency of around 12.5 kHz in the

simulations here, if r is equal to the assumed separation, L,

between the secondary loudspeaker and error microphone,

i.e., 0.1 m.

In these initial simulations the reference microphone is

assumed to be collocated with the single error microphone at

the center of the sphere of primary sources, so that the pri-

mary field at this point is perfectly measured, to be consistent

with previous studies of canceling the pressure at a point.19

This is equivalent to assuming a feedback arrangement,

implemented with an internal model control architecture.24

The spatial extent of the zone of quiet calculated from this

simulation, within which the expectation of the primary pres-

sure has been reduced by 10 dB, is shown by the shaded

region in Fig. 4, for various normalized excitation frequencies.

The normalized excitation frequency is expressed as kL where

L is the separation distance between the secondary source and

cancellation point. These results are very similar to the results

of previous calculations of the zone of quiet under these con-

ditions,19 estimated by averaging multiple simulations, except

that the zones of quiet are now more symmetrical, indicating

a better estimate of the spatial extent of these zones.

Figure 5 shows the results of canceling at the same error

microphone location, but with a measurement microphone

positioned halfway between the error microphone at the can-

cellation point and the monopole secondary source, thus

implementing the remote microphone method. It can be seen

that the results are similar to those of Fig. 4 when the wave-

length is large compared with the separation distance

between the error and measurement sensor positions, so that

kL/2 is small compared with unity, but are somewhat

degraded at higher normalized frequencies. For comparison,

Fig. 6 shows the results of assuming that the primary field is

the same at the error and measurement sensors, and only tak-

ing account of the difference between the deterministic sec-

ondary sound field at these points, as in the virtual

microphone, arrangement.13,15 It can be seen that there is lit-

tle difference between this approach and the remote

FIG. 3. Spatial correlation function for the pressure obtained for simulations

of a diffuse field, dashed line, and the theoretical value, solid line.

FIG. 4. The shaded regions show the zone of quiet within which the average

pressure is reduced by 10 dB from simulations of cancellation of a diffuse

field at a single point, �, using an error sensor, o, and a single monopole

secondary source, *, at four different normalized frequencies.

FIG. 5. The shaded regions show the zone of quiet within which the average

pressure is reduced by 10 dB from simulations of cancellation of a diffuse

field using the remote microphone method at a single error sensor point, �,

using a measurement sensor, o, and a single monopole secondary source, *,

at four different normalized frequencies.
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microphone method in this case. It should be emphasized

that all of these results were obtained with a single calcula-

tion, as opposed to the average over multiple calculations

that had previously been used to calculate the performance

of such systems.4,5,15,19

The performance of the three control strategies used in

Figs. 4, 5, and 6 are compared at different frequencies in

Fig. 7. This shows the axial extent of the 10 dB zone of quiet,

i.e., on a line from the secondary source location to the

cancellation point, as a function of normalized excitation fre-

quency, kL. Not surprisingly, the case in which a physical

microphone can be placed at the cancellation point always

gives the best performance. The performance of the remote

microphone method, in Sec. III, is degraded compared to

this ideal case, but is very similar to that of the simpler vir-

tual microphone arrangement for kL less than about 0.5.

Also shown in Fig. 7 are the theoretical, k/10, results for a

remote secondary source,4 which the physical microphone

approaches at higher frequencies.

B. Single secondary source in a non-diffuse field

The influence of the spatial distribution of the primary

field on the shape of the zone of quiet is illustrated in Fig. 8,

for the remote microphone method at a normalized excita-

tion frequency, kL, equal to 0.5. The shape of the zone of

quiet for the simulations of the diffuse sound field is the

same as that in Fig. 5. Also shown in this figure, however, is

the shape of this zone when only 21 uncorrelated primary

sources are operating, either above or to the right or to the

left of the quiet zone. The zone of quiet is greatest when the

primary field is mainly above the plane of the sensors and

secondary source, since in this case the primary pressure

field is almost uniform in the plane shown in Fig. 8, so that

reductions at the control point will result in similar reduc-

tions at all positions which are a similar distance from the

secondary source. When the primary field is mainly from the

right, the zone of quiet is somewhat broader in the x-direc-

tion than that achieved with a diffuse primary field, since the

phase variation of the primary field then more nearly

matches that of the secondary field in this direction.

Conversely, when the primary field is mainly from the left,

the phase variations of the primary and secondary field

match more accurately in the y-direction, and so the extent

of the quiet zone has instead been extended in this direction.

FIG. 6. The shaded regions show the zone of quiet within which the average

pressure is reduced by 10 dB from simulations of cancellation of a diffuse

field using the virtual microphone method at a single error sensor point, �,

using a measurement sensor, o, and a single monopole secondary source, *,

at four different normalized frequencies.

FIG. 7. Axial length of 10 dB zone of quiet as a function of non-

dimensional frequency for cancellation at a point a distance L from a

monopole secondary source, solid line, the use of a virtual microphone at L/

2, dashed line, the use of a remote microphone at L/2, dashed-dotted line,

and the theoretical k/10 limit for a remote secondary source, dotted line.

FIG. 8. The extent of the 10 dB zone of quiet, for a normalized excitation

frequency of kL¼ 0.5, when the simulated field is a diffuse, thin solid black

line, mainly coming from above, thick solid black line, mainly from the

right-hand side, thin solid gray line, and mainly from the left-hand side,

thick solid gray line.
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C. Multiple secondary sources in a diffuse field

Finally, the power of the multichannel formulation is

illustrated in Fig. 9, in which four monopole secondary sour-

ces, positioned at the vertices of a square of side 2L, are

used to control the sum of the estimated mean square pres-

sures at a 3� 3 array of error microphones centrally

arranged in a square of length L, using the remote micro-

phone method with the signals from four measurement

microphones shown by the open circles in Fig. 9. These

microphones are also used to measure the reference signals

in this case. The measurement sensors are located at a dis-

tance L from the origin, at the midpoints of the edges of the

square formed by the four secondary sources. It should be

emphasized that the pressures at the error positions are esti-

mated from the output of the measurement microphones, and

no physical microphones are used in the interior of the

2L� 2L square defined by the secondary sources, so that a

listener could move their head freely in this region.

Since, in this case, the 10 dB zone of quiet extends over

the array of monitoring microphones to a higher frequency

than in the single channel case, the results in Fig. 9 are

shown for the normalized frequency, kL, equal to 0.25, 0.5,

1, and 1.5, instead of 0.1, 0.25, 0.5, and 1 in the single chan-

nel results above. For values of kL below about 0.5, the zone

of quiet extends around the secondary sources, except within

the immediate vicinity of these sources, because of their

near fields. The 10 dB zone of quiet does not extend beyond

the secondary source for normalized excitation frequencies,

kL, above about 1, but still encloses the error sensors in this

case. If L was equal to 0.3 m, for example, a normalized fre-

quency, kL, of 1.5 corresponds to a physical frequency of

270 Hz.

The results in Fig. 9 are only shown in the plane of the

secondary sources and the sensors, but the diameter of the

zone of quiet created with this four channel system is about

0.6k in this plane, which is clearly significantly more than

the upper limit of 0.1k generated by the single channel sys-

tem.6 The shape of the zone of quiet will in practice be

affected by the physical size of the secondary sources and by

any non-uniform directivity of the primary field. The results

in Fig. 9 do indicate, however, that zones of quiet that are

significantly larger than the k/10 single channel limit are

possible using local active control systems with only four

secondary sources.

V. TIME DOMAIN FORMULATION

The formulation of the local active noise control prob-

lem in the frequency domain, using spectral density matri-

ces, provides an efficient method of assessing the acoustic

performance for different control geometries and sound field

distributions when the disturbance is narrowband. It does

not, however, enforce a causality constraint on the control

filters, W, or the observation filters, O. For broadband sig-

nals, it is generally necessary to enforce this causality con-

straint, which can be achieved by formulating the control

problem in the time domain.

The time domain formulation can be achieved by

describing the control filter and transfer responses in terms

of their impulse responses and using a formulation with fil-

tered reference signals.11 In this case the vector of sampled

monitoring signals can be written as11

yðnÞ ¼ dðnÞ þ RðnÞwðnÞ; (22)

where y(n) and d(n) are vectors of the Ny sampled monitor-

ing and disturbance signals at the nth sample time, and there

are Nx reference signals and Nu secondary sources, so that

w(n) is the NuNxI� 1 vector of control filter coefficients,

where each of the Nx�Nu control filters has I coefficients,

and R(n) is an Ny�NuNxI matrix of filtered reference signals

given by

RðnÞ ¼

rT
1 ðnÞ rT

1 ðn� 1Þ � � � rT
1 ðn� I þ 1Þ

rT
2 ðnÞ rT

2 ðn� 1Þ

rT
LðnÞ rT

Lðn� 1Þ � � � rT
Lðn� I þ 11Þ

2
666664

3
777775
; (23)

where rT
l ðnÞ is given by

rT
l ðnÞ ¼ ½rl11ðnÞ rl12ðnÞ � � � rl1Nx

ðnÞ rl21ðnÞ � � � rlNuNx
ðnÞ�

(24)

and rlnunx
is the nxth reference signal filtered by the plant

response between the lth error sensor and the nuth secondary

source.

FIG. 9. Extent of the 10 dB zone of quiet when four secondary sources, *,

are optimally driven in a diffuse field simulation to generate a zone of quiet

over a 3� 3 array of error microphones, �, using the optimal virtual micro-

phone techniques with four physical microphones, �, at various normalized

excitation frequencies.
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If the cost function to be minimized is defined as the

weighted sum of the squared error signals, which are

selected from all of the monitoring signals as in Eq. (3), then

using the time domain formulation, the cost function can be

expressed as

J ¼ E½yTðnÞAyðnÞ�: (25)

The vector of optimal control filter coefficients that mini-

mizes this cost function is given by11

wopt ¼ �fE½RTðnÞARðnÞ�g�1E½RTðnÞAdðnÞ�: (26)

In the context of the local active noise control system

employing remote microphones, the vector of disturbance

signals at the error microphones must be estimated from the

vector of signals at the measurement microphones, as

described in Sec. III. The matrix of optimal observation fil-

ters, Oopt, is given in the frequency domain by Eq. (20),

which does not enforce a constraint on the causality of the

filters. Therefore, this estimation problem should also be for-

mulated in the time domain.

The estimate of the disturbance signal at the neth error

sensor can be written in the time domain as

d̂ne
ðnÞ ¼

XNm

nm¼1

XJ�1

j¼0

onenmjdnm
ðn� jÞ; (27)

where onenmj is the jth coefficient of the length J FIR observa-

tion filter between the nmth measurement signal and the neth

error sensor. This can be written in matrix form as

d̂neðnÞ ¼ oT
ne

dmðnÞ; (28)

where dm(n) is the JNm� 1 vector of measurement signals

and one
is the JNm� 1 vector of observation filter coefficients

given by

one
¼ ½oT

ne1 oT
ne2 � � � oT

ne;Nm
�T ; (29)

where onenm is the J� 1 vector

onenm
¼ ½onenm0 onenm1 � � � onenmðJ�1Þ�T : (30)

The full vector of the Ne estimated disturbance signals at the

error sensor positions can then be written as

d̂1ðnÞ
d̂2ðnÞ

..

.

d̂Ne
ðnÞ

2
666664

3
777775
¼

oT
1

oT
2

..

.

oT
Ne

2
666664

3
777775

d1ðnÞ
d2ðnÞ

..

.

dNm
ðnÞ

2
666664

3
777775
; (31)

so that

d̂ eðnÞ ¼ OdmðnÞ: (32)

As detailed in Sec. III, the optimal estimation filters can

be obtained by solving the least squares problem which

minimizes the error given by ðdeðnÞ � d̂ eðnÞÞ. Using the

time domain formulation, the cost function to be minimized

can be expressed as

JO ¼ E½ðdeðnÞ � d̂ eðnÞÞTðdeðnÞ � d̂ eðnÞÞ� (33)

or equivalently as

JO ¼ tracefE½ðdeðnÞ � d̂ eðnÞÞðdeðnÞ � d̂ eðnÞÞT �g: (34)

Substituting Eq. (32) for the estimated disturbance signal

and expanding gives

JO¼ tracefORmmOT�ORem�RT
emOTþE½deðnÞdT

e ðnÞ�g;
(35)

where

E½dmðnÞdT
e ðnÞ� ¼ Rem (36)

and

E½dmðnÞdT
mðnÞ� ¼ Rmm; (37)

where it should be noted that these correlation matrices are

not related to the transfer response R in Fig. 2. The matrix of

causally constrained optimal estimation filter coefficients is

thus given by

Oopt ¼ ½R�1
mm Rem�T : (38)

The full time domain solution for the optimal control filter

coefficients employing remote sensors is thus given by

rewriting Eq. (26) such that Ad is equal to AT
e de, where

de¼Aed and Ae is now assumed to be a real matrix, and

substituting d̂e in Eq. (32) for de with the estimation filter

responses given by the optimal solution, i.e.,

wopt ¼fE½RTðnÞARðnÞ�g�1E½RTðnÞAT
e OoptðnÞdmðnÞ� :

(39)

VI. TIME DOMAIN SIMULATIONS

Using the optimal, causally constrained, time domain

solution given by Eq. (39), the performance of the single

channel system with one secondary source, one measure-

ment microphone, and one reference microphone, in the

physical arrangement shown in Fig. 10, has been evaluated

as the distance between the measurement microphone and

the reference microphone, and hence the distance from the

reference microphone to the primary source, is varied. The

FIG. 10. Geometry of the control system with a single error sensor, single

secondary source, single reference sensor, and single primary source.
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measurement microphone in these simulations is assumed to

be collocated with the error microphone, located at coordi-

nate position (0, 0, 0), and the secondary source is located at

a distance L from the error sensor location in the x coordi-

nate direction, where L in the simulations is taken as 0.1 m.

The primary field in this case has been generated by a single

primary source located at co-ordinate position (1, 0, 0) and

this is driven by a white noise signal. To understand the

effect of the causality constraint on the control system, the

performance has been evaluated for both the causally con-

strained, time domain, solution, and the unconstrained, fre-

quency domain, solution, as the distance between the

reference microphone and the error microphone position is

increased from 0 to 0.9 m. The sample rate has been assumed

to be 3.4 kHz, so that the plant response consists of a pure

delay of one sample, and the length of the control filter, w,

and the observation filter O, have been defined as 64 coeffi-

cients. The performance of this system has been evaluated in

terms of the area of the zone in which the sound pressure

level is attenuated by more than 10 dB in the plane of con-

trol. The performance has been calculated at the normalized

frequencies of kL¼ 0.05, 0.1, 0.25, and 0.5, and at reference

microphone positions corresponding to integer values of L.

The results of these simulations are shown in Fig. 11, with

the frequency domain solutions shown by the dark lines and

the time domain solutions shown by the gray lines.

From the results presented in Fig. 11, it can be seen that

the performance of the frequency domain controller does not

depend on the location of the reference microphone, as

expected. For the causally constrained, time-domain, results,

however, the performance of the controller rapidly drops off

as the reference microphone is moved between the second-

ary source position, at a radius of L, and the error sensor

position, at the origin. This is due to the reference signal no

longer providing a time-advanced signal to the controller.

That is, the wave from the primary source reaches the sec-

ondary source location before it reaches the reference micro-

phone and, therefore, without using a negative delay time

(i.e., a non-causal controller) the control system is unable to

achieve control.

It is also interesting to consider the case when the pri-

mary field is produced by multiple primary sources. Using

the time-domain formulation, Fig. 12, for example, shows

the results for the case when six primary sources are equally

distributed around the error sensor location in three dimen-

sions, at a distance of 1 m, as shown in Fig. 13. The second-

ary source and measurement microphone are located as in

the previous time-domain simulations, however, in this case

six reference microphones, with outputs x1 to x6, have been

employed located along radial lines toward the positions of

the six primary sources, driven by uncorrelated white noise

signals, v1 to v6. Once again, the performance of the time-

domain and frequency-domain controllers has been calcu-

lated as the reference sensors are moved from the error

sensor position toward the primary source positions. From

the results presented in Fig. 12, it can once again be seen

that the frequency-domain predictions are not affected by

the positions of the reference microphones since the six pri-

mary signals can always be perfectly recovered from the six

reference signals. For the time-domain filters, however, the

performance drops off as the reference sensors are moved

away from the primary sources. When the reference micro-

phones are very close to the respective primary sources, they

are able to provide reference signals to the controller that are

both time-advanced and coherent with the individual pri-

mary sources. However, as the reference signals are moved

away from the primary sources and toward the error sensor

location, both the time-advance and coherence are reduced

such that all of the primary source signals cannot be recov-

ered from the reference sensors’ signals with causal filters.

FIG. 11. The change in the area of the 10 dB zone of quiet for the single-

input single-output control system, controlling the field from a single pri-

mary source located at 10L from the error sensor location as the position of

the single reference sensor relative to the error sensor is increased from 0 to

9L. The thick dark lines show the frequency domain results and the thin

gray lines show the time domain results. kL¼ 0.1 solid line, kL¼ 0.25

dashed line, kL¼ 0.5 dotted line, and kL¼ 1 dotted-dashed line.

FIG. 12. The change in the area of the 10 dB zone of quiet for the control

system shown in Fig. 13, with a single error sensor and secondary source

but with six reference sensors, controlling six primary sources located at

610L from the error sensor in the three coordinate directions as the distance

between the six reference sensors and the error sensor is increased from 0 to

0.9 L. The thick dark lines show the frequency domain results and the thin

gray lines show the time domain results. kL¼ 0.1 solid line, kL¼ 0.25

dashed line, kL¼ 0.5 dotted line, and kL¼ 1 dotted-dashed line.
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Although one reference microphone may provide a time-

advanced reference signal to the closest primary sources, it

will also have components from the other primary sources

that are delayed by more than the delay to the secondary

source location. This means that control becomes a trade-off

between canceling the component of the error signal due to

the primary source closest to the reference sensor, and not

enhancing the components due to the other primary sources.

VII. CONCLUSIONS

A general formulation has been presented for the opti-

mal least-squares solution to the local active noise control

problem in a spatially random, stationary primary sound

field. The field under control is assumed to be generated by

an array of primary sources, specified in terms of their spec-

tral density matrix. By assuming a uniform distribution of

uncorrelated primary sources in the far field, a diffuse pri-

mary field is readily generated, but the formulation also

allows more realistic primary fields to be generated, such as

when it is dominated by sources in a particular direction, or

in an enclosure.

The optimal least-squares controller is initially derived

in the frequency domain, for the case in which the outputs of

a set of error sensors can be directly measured. The form of

this optimal controller is seen to be made up of two separate

parts. The first part provides an optimal least-squares estimate

of the primary source signals from the reference signals, and

the second part is the optimal least-squares controller if the

primary source signals themselves could be used to drive the

controller. The problem is then considered of optimally con-

trolling these error signals, using only the outputs from a

remote set of measurement sensors. This is shown to involve

an optimal form of the remote microphone method.

By way of illustration, a number of simulations that use

this optimal solution are then presented, starting with local

control at a point in a diffuse primary field. It is seen how

the present formulation provides a single closed-form solu-

tion for the expectation of the resulting field, rather than hav-

ing to average the result over many realizations of the

primary field, as had been done previously.

The influence of the spatial directivity of the primary

field on the shape of the zone of quiet is then explored,

showing that it is important to take this directivity into

account when predicting the performance of local active

sound control systems. The results of a local active control

system are also calculated for the case of multiple secondary

sources and multiple reference signals, all outside the zone

of control, which demonstrate the generality of the solution

and also highlights the significant improvements that may be

achieved in practice by employing a multichannel control

system. Finally, a causally constrained, time domain, formu-

lation of the control problem is formulated and the effects of

the causality constraint on the control performance are calcu-

lated for the case of a control system canceling at a point

operating in two different primary fields. The performance

of the system in this case is dependent on both the spectral

properties of the primary sources and their spatial correlation

properties. The time domain formulation allows the practical

performance to be predicted from experimental measure-

ments of plant responses and sensor correlation functions.

Although the general formulation presented in this paper

has been demonstrated using idealized acoustic environ-

ments, it should be emphasized that one of its strengths is its

ability to rapidly assess the performance of different control

geometries in a practical system using either a numerical

model of the local control system or measurements in a prac-

tical arrangement. Since the presented formulation provides

a closed-form solution for the expectation of the controlled

sound field, it can, for example, be used to calculate the per-

formance of different control geometries, given only the

measured cross and power spectral densities of the sensor

signals in the primary field and the measured transfer

responses between the secondary sources and these sensors.

This formulation can thus provide a powerful tool for the

many calculations that need to be performed in the design of

the control geometry for a local active noise control system

in a practical environment.
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