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Abstract Measuring change in a latent variable over time is
often done using the same instrument at several time points.
This can lead to dependence between responses across time
points for the same person yielding within person correla-
tions that are stronger than what can be attributed to the
latent variable. Ignoring this can lead to biased estimates of
changes in the latent variable. In this paper we propose a
method for modeling local dependence in the longitudinal
2PL model. It is based on the concept of item splitting, and
makes it possible to correctly estimate change in the latent
variable.

Keywords IRT model · Rasch model · Longitudinal Rasch
model · longitudinal IRT model · Local dependence

Introduction

In item response theory (IRT,) a set of items, the instru-
ment, measures a latent variable describing a person. The
latent variable could be for instance math skills, the level of
depression, or quality of life. In IRT models it is assumed
that items are conditionally independent given the latent
variable. This technical requirement that the items should
only be correlated through the latent trait that the test is
measuring is referred to as local independence and is well
described in the literature (Lord & Novick, 1968; Lazarsfeld
& Henry, 1968).
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The assumption of local independence can be violated in
different ways. Firstly, instruments are often composed of
item bundles each measuring their own aspect of the latent
variable and the higher-order latent variable alone might not
account for correlations between items in the same bun-
dle. This type of local dependence can be interpreted as a
violation of unidimensionality. Secondly, the assumption of
local independence can be violated if the response given to
one item directly influences the response given to another
item. This may happen due to similarities in item content
or in response format or, in an educational test, if the cor-
rect answer on the first item contains a clue as to the correct
answer for the second item.

Both of these situations yield inter-item correlations
beyond what can be attributed to the latent variable, but for
very different reasons. In order to distinguish between these
two types of dependence, the first one is sometimes termed
trait dependence and the second one response dependence.
In general, trait and response dependence are not clearly
distinguished in the literature. Nevertheless, using algebraic
formulations of the two phenomena, Marais and Andrich
(2008a, b) have demonstrated that the implications of the
two types of dependence point in opposite directions. One
of the important observations is that reliability indices (the
person separation index and Cronbach’s coefficient alpha)
decrease for data with trait dependence, but increase for data
with response dependence. Thus, the reliability of an instru-
ment should be interpreted with caution if the assumption of
local independence has not been carefully checked.

Methods for detecting both types of local independence
in Rasch models have been proposed by Kelderman (1984).
He expressed the dichotomous Rasch model as a log-linear
model and then showed that local dependence corresponds
to interactions between items in the resulting log-linear
Rasch model. Kelderman’s (1984) original model was for
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dichotomous item only, but log-linear Rasch models for
polytomous item formats also exist (Kelderman, 1997).

Log-linear Rasch models have also been considered by
Kreiner and Christensen (2004, 2007). Motivated by Tjur
(1982), they evaluated partial correlations between item
pairs conditionally on rest scores. This approach is similar
to the Mantel–Haenszel analysis of differential item func-
tioning (DIF) (Holland & Thayer, 1988; Holland & Wainer
1993) and is readily implemented in standard software.
Kreiner & Christensen argue that models that incorporate
local dependence still provide essentially valid and objec-
tive measurement and describe the measurement properties
of such models.

Methods for detecting local dependence in IRT mod-
els that are more complicated than Rasch models include
the use of conditional covariances (Douglas et al., 1998),
Mantel–Haenzsel type tests (Ip, 2001), or specification of
models that incorporate local dependence (Hoskens & De
Boeck, 1997; Ip, 2002). Furthermore, papers have addressed
consequences of local dependence (Scott & Ip, 2002) and
ways of adjusting for it (Ip, 2000).

Jiao and colleagues proposed a three-level hierarchical
generalized linear model (HGLM) to model clustered data
like this and compared it to the Rasch-equivalent two-level
HGLM that ignores the nested structure of items (Jiao et al.
2005). The result of fitting the too simple model was impre-
cise estimation of item difficulties and underestimation of
the variance in the distribution of the latent variable. Mod-
eling the structure estimated the variance in the distribution
of the latent variable correctly, while the two-level HGLM
increasingly underestimated the variance as the magnitude
of dependence increased.

Another formalization of local dependence in IRT mod-
els is the notion of testlets, i.e., groups of items that are
placed on a test as a unit, typically reading passages fol-
lowed by a group of questions (Bradlow et al., 1999; Wang
& Wilson, 2005). When evidence of local dependence turns
up, constructing testlets post hoc can be a solution that per-
mits the use of conventional unidimensional IRT models
even in the presence of local dependence (Yen, 1993).

Confirmatory factor analysis (CFA) models are applied
to describe correlation structures, and have been formulated
for latent response variables measured using ordinal cate-
gorical observed variables (Muthén, 1979, 1984). Confir-
matory factor analysis can be used to test local dependence
across time points by considering models with an added
covariance parameters.

Common to the HGLM, the testlet model and the CFA
approach is that they all model dependence using random
effects. This means that they are methods for modeling trait
dependence. As for response dependence, a way of quanti-
fying this has been proposed by Andrich and Kreiner (2010)
for two dichotomous items. It is based on splitting one of

the items into two new items according to the responses
to the other item. The magnitude of dependence is then
estimated as half the distance between the estimated item
locations of the new items. A generalization of this approach
to polytomous items was later proposed (Andrich et al.,
2012).

Beyond local item dependence, local person dependence
can also occur in case of cluster sampling (Jiao et al., 2012),
however this is not discussed in this paper.

Longitudinal extensions of IRT models have been pro-
posed (Andersen, 1985; Embretson, 1991; Liu & Hedeker,
2006; Bousseboua & Mesbah 2010). Many of these impose
an additional requirement of local independence across time
points. In these models, correlations between responses
for the same person are modeled by including a latent
correlation matrix. However, when the same measurement
instrument is used at two time points, correlations between
responses for the same person might be stronger than what
the latent variable accounts for. If this is the case, the
requirement of local independence across time points is vio-
lated by response dependence. Marais (2009) has shown that
ignoring response dependence can either mask or exagger-
ate changes in both items and persons potentially leading to
wrong conclusions. It is therefore important to be able to
deal with this type of dependence.

Another key assumption when measuring trends over
time is that the item parameters do not change over time
(Wells et al., 2002; Miller and Fitzpatrick 2009). This can
be considered differential item functioning with respect to
time and is often referred to as item parameter drift. In many
applications, persons are followed over time in order to mea-
sure change in some latent variable. For that purpose, the
measurement instrument should be somewhat stable in the
sense that there is no item drift. Tests of this assumption
have been proposed and implemented in SAS by Olsbjerg
and Christensen (2013a, b) for the special case of the Rasch
(1PL) model. DIF across time, or item parameter drift,
describes the situation where the parameters of an item
changes for everybody in the population, while local depen-
dence across time, as operationalized here, describes the
situation where the parameters of an item at the second
time point depends on the response given to the item at the
first time point. Thus, these are different phenomena, but it
should be noted that in the case of local dependence across
time points, spurious evidence of item parameter drift can
turn up: Consider for example a situation where a test item
becomes much easier for the 80 % of subjects who answer
correctly at time point 1, but retains its difficulty for the
remaining 20 % of the population. In this situation, the item
will appear to have item parameter drift.

In this paper we propose a method for modeling response
dependence in a longitudinal version of the 2PL model.
This way, unbiased estimation of change in the latent
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variable becomes feasible. It is based on the idea by of
splitting dependent items in unidimensional Rasch mod-
els of Andrich and Kreiner (2010), see also Andrich et al.
(2012). Henceforth, we use the term local dependence when
referring to response dependence.

The 2PL model

The dichotomous Rasch (or 1PL) model (Rasch, 1960;
Fischer and Molenaar, 1995) and the Birnbaum (or 2PL)
model (Birnbaum, 1968) are the simplest IRT models.
They describe the responses to manifest dichotomous items
X1, . . . , XI measuring a latent variable θ ∈ R. The
response probability for item i for a given value of θ is
modeled as

P(Xi = xi |θ) = exp[xiαi(θ − βi)]
1 + exp[αi(θ − βi)] (i = 1, . . . , I ) (1)

where the discrimination αi and the threshold βi are param-
eters describing the items and θ a parameter describing
the person responding. The special case of Rasch mod-
els appears when the discrimination parameter is constant
across items α1 = ... = αI . Usually the α’s are fixed at
1 and the variance in the distribution of the latent variable
is estimated, but alternatively the variance can be fixed and
the common value of the discrimination can be estimated.
A technical assumption in both of these models is that items
are locally independent

P(X1 = x1, ..., XI = xI | θ)

=
I∏

i=1

P(Xi = xi |θ) for all θ ∈ R. (2)

and furthermore that persons respond independently of each
other. For persons v = 1, ..., N with response vectors
X1, ..., XN , these two independence assumptions yields the
joint likelihood

L(β, θ1, . . . , θN | x1, ..., xn) =
N∏

v=1

Pr(Xv = xv|θv)

= exp[∑v θv

∑I
i=1 αixvi − ∑

i αiβix.i]∏N
v=1

∏I
i=1[1 + exp(αi(θv − βi))]

. (3)

The model is only identified if restrictions are placed on
either the item parameters or the latent variable. One option
is to assume that either

∑I
i=1 βi = 0 or

∑N
v=1 θv = 0 and∏I

i=1 αi = 1 or
∏N

v=1 θv = 1. Estimation based on the
likelihood (3) leads to inconsistent estimates (Neyman &
Scott, 1948). For this reason, either marginal maximum like-
lihood (MML) estimation (Bock & Aitkin, 1981; Thissen,
1982; Zwinderman & van den Wollenberg, 1990), or in the

special case of Rasch models conditional maximum likeli-
hood (CML) estimation (Andersen, 1973) can be used.

The longitudinal 2PL model

For time points t = 1, ..., T let X1t , . . . , XIt be a set of
dichotomous items measuring a value θt ∈ R of the latent
variable, where measurements for the same person at two
time points t1 and t2 are correlated, Corr(θt1 , θt2) > 0.
Assume that at all time point t all items i fit the 2PL-model

P(Xit = xit |θt ) = exp(xitαit (θt − βit ))

1 + exp(αi(θt − βit ))
(4)

and that the assumption of local independence (2) holds
within time point. It is tempting to further assume that
responses to any two items i and j at any two time points t1
and t2 are locally independent

P(Xit1 = xit1, Xjt2 = xjt2 | θt1, θt2) = P(Xit1 = xit1 | θt1)

×P(Xjt2 = xjt2 | θt2) (5)

Doing so would lead to the generalization of Eq. 2

P(X = x|θ) =
T∏

t=1

I∏

i=1

P(Xit = xit |θt ) (6)

where X = (Xit )i∈{1,...,I },t∈{1,...,T } and θ = (θt )
T
t=1. When

(6) in fact holds, then estimation can be done using simple
multivariate extensions of the 2PL model. Such extensions
have been considered for Rasch models (Andersen, 1985;
Embretson, 1991; Adams et al., 1997).

Unfortunately, the assumption (6) might not be justi-
fied. It seems plausible that responses to the same item
at two different time points are dependent beyond what is
explained by the underlying latent variable. Ignoring vio-
lations of Eq. 6 can lead to biased estimates of the latent
variable (Marais & Andrich, 2008a; Marais, 2009), hence
the assumption should be checked.

Formalization of local dependence across time

Henceforth, we consider the situation where responses to
item i at different time points t1 < t2 lead to a violation of
Eq. 5. In this case, all we know is that

P(Xi1 = xi1, Xi2 = xi2| θ1, θ2) = P(Xi1 = xi1| θ1)
×P(Xi2 = xi2| Xi1 = xi1; θ2) (7)

where indices 1 and 2 are short for t1 and t2, respec-
tively. Hence, taking account of the local dependence means
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finding a way of modeling the conditional probabilities in
Eq. 7. One option is to again turn to the 2PL model and
assume that

P(Xi2 = xi2|Xi1 = xi1; θ2)

= exp[xi2α
∗
i2(xi1)(θ2 − β∗

i2(xi1))]
1 + exp[α∗

i2(xi1)(θ2 − β∗
i2(xi1))] (8)

where α∗
i2(xi1) and β∗

i2(xi1) are new item parameters
depending on the response given to the item at time t1.
If no local dependence across time points is present the
parameters will coincide α∗

i2(0) = α∗
i2(1) and β∗

i2(0) =
β∗

i2(1).

Detection of local dependence across time

Methods for detecting local dependence across time points
in longitudinal IRT models have not received much atten-
tion in the literature. One exception is a paper by Olsbjerg
and Christensen (2013a) where two tests in Rasch models
are suggested. One of the tests discussed is to consider more
general models that include interaction terms to account for
local dependence between items at different time points.
The longitudinal Rasch model can then be tested against
these using likelihood ratio tests. This test can easily be
extended to the 2PL model. The second test exploits suffi-
ciency of the sum score and use Mantel–Haenszel tests for
association between items conditioning on this. This works
only for Rasch models.

Modeling local dependence

The formalization (8) results in joint probabilities that are
products of 2PL model probabilities

P(Xi1 = xi1, Xi2 = xi2| θ1, θ2)
= P(Xi1 = xi1|θ1)P (Xi2 = xi2|Xi1 = xi1; θ2)

= exp[xi1αi1(θ1 − βi1)]
1 + exp[αi1(θ1 − βi1)]

exp[xi2α
∗
i2(xi1)(θ2 − β∗

i2(xi1))]
1 + exp[α∗

i2(xi1)(θ2 − β∗
i2(xi1))]

(9)

In the special case of Rasch, Eq. 9 looks very simi-
lar to the longitudinal Rasch models of Andersen (1985)
and Embretson (1991) where items are locally independent
across time points. Except that in Eq. 9 the item parameter
at time t2 depends on the observed response at time t1. Fit-
ting this model is a matter of including the response at time
point t1 as a covariate that requires a modification of exist-
ing IRT software. An alternative way to go about it, well
known in the framework of IRT models, is to recode (split)
the items as illustrated in section “Item splitting”.

Item splitting

Item splitting is a standard method for handling differ-
ential item functioning (DIF), where the response prob-
abilities of an item differ across subpopulations such as
males and females. The idea of splitting items was pro-
posed for Rasch models by Andrich and Kreiner (2010)
in the context of quantifying the magnitude of local
dependence.

Item splitting, used as a tool for modeling local depen-
dence, can be adapted to longitudinal IRT models as fol-
lows. A dependent time t2 item Xi2 is split into two new
items X∗

i2(0) and X∗
i2(1) representing the group of persons

with a response at time t1 of 0 and 1, respectively. Each per-
son only contributes with an observed value to one of the
new items, cf. Fig. 1.

Estimation of item parameters

Estimation of item parameters can be done using marginal
maximum likelihood (MML) estimation assuming that
θ = (θ1, θ2)

T follows a two-dimensional normal
distribution

[
θ1
θ2

]
∼ N2

( [
μ1

μ2

]
,

[
σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

])
(10)

where ρ = Corr(θ1, θ2) represents the latent correlation.
Often the main interest is to estimate changes in the mean
and variance leading to the reparameterization

[
θ1
θ2

]
∼ N2

( [
0
μ2

]
,

[
1 σ2ρ

σ2ρ σ 2
2

])
.

Let ϕμ,� denote the density of Eq. 10. Then,
for persons v = 1, ..., N with response vectors

Fig. 1 Illustration of item splitting. To the left is a response matrix
before the item splitting. To the right is the response matrix after
splitting the dependent item Xi2 into X∗

i2(0) and X∗
i2(1)
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Xv = (Xv11, ..., XvI1, Xv12, ..., XvI2), the marginal likeli-
hood has the form

LM(α, β, μ, � | x1, ..., xN)

=
N∏

v=1

∫

R2
P(Xv = xv|θ)ϕμ,�(θ)dθ (11)

where α and β denote the vectors of item discriminations
and thresholds respectively, for both split and unsplit items.
The probabilities in Eq. 11 are given by

P(Xv = xv|θ) =
I∏

i=1

P(Xvi1 = xvi1|θ1)P (Xvi2

= xvi2|Xvi1 = xvi1; θ2)

I∏

i=1

(
exp[xvi1αi1(θ1 − βi1)]
1 + exp[αi1(θ1 − βi1)]

)

(
exp[xvi2α

∗
i2(xvi1)(θ2 − β∗

i2(xvi1))]
1 + exp[α∗

i2(xvi1)(θ2 − β∗
i2(xvi1))]

)
. (12)

We can not measure change in the latent variable with a
measurement instrument that changes completely. For that
reason, it is important that some of the items remains the
same, across time points, in the sense that

αi1 = α∗
i2(0) = α∗

i2(1) and βi1 = β∗
i2(0) = β∗

i2(1)

for i in some (reasonably sized) subset I0 ⊆ {1, ..., I }.
Again, restrictions on the parameters are needed in order for
the model (11) to be identified. At each time point we have
to put restrictions on either the item or population parame-
ters. One option is to require that either

∑I
i=1 βi1 = 0 and∏I

i=1 αi1 = 1, or that μ1 = 0 and σ 2
1 = 1, and similarly at

time t2.
The model (11) can be estimated in SAS using the

NLMIXED procedure for fitting nonlinear mixed mod-
els. MML estimation is carried out by maximizing an
approximation to the likelihood (11) integrating out the ran-
dom effects. The SAS macro %LRASCH MML (Olsbjerg
& Christensen, 2013b) is an implementation of the spe-
cial case of Rasch models. In this implementation, adaptive
Gaussian quadrature is used for integral approximation and
the Newton-Raphson algorithm for optimization. The SAS
macro %LRASCH MML (Olsbjerg & Christensen, 2013b)
works for incomplete data, and for this reason, local depen-
dence across time points can be modeled according to Eq. 8.
Whether the effect of local dependence is significant can be
evaluated by comparing the likelihood in Eq. 11 to the like-
lihood of the simple model based on the assumption of local
independence (6) in a likelihood ratio test.

Estimation of person location parameters

Usually, it is of interest to estimate change at the individ-
ual level. In the previous section, we described how the
item parameters can be estimated by assuming a certain
distribution for the latent vector and then maximizing an
approximation to the marginal likelihood. Estimation of the
person parameters can be carried out in a similar manner
by substituting the item parameters in Eq. 12 by their MML

estimates α̂ and β̂ resulting in the likelihood function

LM(θ | x1, ..., xN) = L(̂α, β̂, θ | x1, ..., xN) (13)

where

L(̂α, β̂, θ | x1, ..., xN) =
N∏

v=1

P(Xv = xv|θv)

is the joint likelihood with the estimated item parameters
inserted. This corresponds to assuming a distribution of
the item parameters which is degenerate in their estimated
values. Estimates of θv can be derived from Eq. 13 by
numerical optimization such as Newton–Raphson.

Thus, we can compute estimates θ̂ = (θ̂1, θ̂2) and change
scores θ̂2 − θ̂1 for each person. This can be done in the
model assuming local independence across time points and
in a model that takes local dependence across time points
into account. It is then possible to evaluate whether local
dependence across time points affects the conclusions about
individuals.

Simulation study

A simulation study was conducted to illustrate the implica-
tions of local dependence across time points and to illustrate
the advantage of splitting items. Responses were simulated
by (i) simulating person parameters from a two-dimensional
normal distribution
[

θ1
θ2

]
∼ N2

( [
0
μ

]
,

[
1 0.5
0.5 1

] )

(ii) simulating responses at time 1 from a 2PL model
given the person and item parameters, and (iii) simulat-
ing responses at time 2 from the same dichotomous Rasch
model with the exception that item thresholds for the locally
dependent items were shifted by 1. More specifically, item
thresholds for these items were given as

β∗
i2(0) = βi1 + 1 and β∗

i2(1) = βi1 − 1.

This means that at time 2 the item becomes more diffi-
cult for those with a wrong response at time 1 and easier for
those with a correct response at time 1 in the case where 0
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and 1 represent an incorrect and correct response, respec-
tively. In each case we simulated data sets with no change
in the population mean across time points (μ = 0) and
data sets where a change in the population mean (μ = 0.5)
was present. We simulated 100 data sets with responses
from N = 500 persons at two time points, to 24 dichoto-
mous items with equidistant thresholds ranging from −2 to
2. We simulated data sets where the assumption of local
independence across time points was violated for two, four,
six, eight, and ten items, respectively. Furthermore, we sim-
ulated data sets with dependence for difficult items and
dependence for easy items, respectively. An overview of the
simulation setups is provided in Table 1.

For each simulated data set, we considered two ways
of splitting items, no splitting and splitting of the item(s)
with dependence. The effects of splitting an item without
local dependence across time points were studied in some
but not all simulations. Overview of the simulation study:

Table 1 Overview of the simulation study

LD Simulation setups

item 1 2 3 4 5 6 7 8 9

1 x x x

2 x

3 x x x

4 x

5 x x x x

6 x

7 x

8 x x x x

9 x

10

11 x x x x x

12

13

14 x x x x x

15

16 x

17 x x x x

18 x

19 x

20 x x x x

21 x

22 x x x

23 x

24 x x x

Setups 1 through 5 illustrate the effect of the number of affected items.
Simulation setups 6 and 7 and simulation setups 6 and 7 illustrate
the impact when the local dependence is for easy and difficult items,
respectively

setups 1 through 5 illustrate that the effect of local depen-
dence across time increases with the number of affected
items. Simulation setups 6 and 7 and simulation setups 6
and 7 illustrate the impact when the local dependence is for
easy and difficult items, respectively. Each simulated data
set was, after recoding locally dependent items (cf. Fig. 1),
analyzed in SAS using PROC NLMIXED. The results are
shown in Table 2.

The results clearly show that the latent correlation ρ

was only recovered in the rows labeled (ii), where the
dependent item(s) were split. In rows labeled (i), where the
dependent items were not split, ρ was consistently over-
estimated. When the number of dependent items increases
the extent to which the latent correlation ρ is overesti-
mated increases. In the part of Table 2 where the population
mean changes over time (μ = 0.5) the change in mean
was only recovered in where dependent item(s) were split.
In setup (i), where no items were split, the mean change
was underestimated. The extent to which the mean change
was underestimated increased with the number of depen-
dent items. There appeared to be little impact on the item
parameter estimates (results not shown). The results of this
simulation study indicate that local dependence across time
points has an impact on estimates of the mean change in the
latent variable, and on estimates of the latent correlation.
The simulation study did not provide evidence of differ-
ent impact of local dependence for difficult and easy items,
respectively.

Example

The methods proposed in this paper will be illustrated using
data collected in the Bradford Metropolitan Health Dis-
trict. A total of 113 persons with episodes of low back pain
responded to the Roland and Morris (1983) disability ques-
tionnaire, consisting of 24 dichotomous items, at two time
points. Further details about the data collection can be found
elsewhere (Waxman et al., 1998).

We first analyzed the responses by fitting the unidimen-
sional 1PL and 2PL models at each time point separately.
Likelihood ratio tests were used to compare the two models.
The results, summarized in Table 3, provide no justification
for fitting the simpler 1PL model at any of the two time
points.

To take into account the longitudinal nature of the
data, we fitted the generalized longitudinal 2PL model (9),
which handles both items with time-varying parameters and
local dependence across time points. In order to identify
items with such characteristics likelihood ratio tests were
conducted. These tests are described for the 1PL model
(Olsbjerg & Christensen, 2013a), but are easily imple-
mented in SAS for both the 1PL and the 2PL model. The
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Table 2 Simulation study results, 100 simulated data sets, N = 500 persons, 24 items (equidistant β1 = −2, . . . , β24 = 2)

True value μ=0 True value μ=0.5

Simulation μ̂ ρ̂ μ̂ ρ̂

setup Mean SD Mean SD Mean SD Mean SD

1 (i) 0.01 0.06 0.50 0.04 0.51 0.06 0.51 0.04

(ii) 0.01 0.05 0.52 0.04 0.50 0.06 0.56 0.04

2 (i) 0.04 0.06 0.51 0.04 0.51 0.05 0.51 0.05

(ii) -0.02 0.05 0.55 0.05 0.50 0.05 0.57 0.04

3 (i) 0.00 0.06 0.51 0.05 0.50 0.05 0.50 0.05

(ii) 0.00 0.05 0.60 0.04 0.47 0.05 0.59 0.05

4 (i) 0.00 0.06 0.50 0.05 0.52 0.06 0.50 0.05

(ii) 0.00 0.05 0.62 0.04 0.49 0.06 0.62 0.04

5 (i) 0.00 0.06 0.50 0.05 0.50 0.06 0.50 0.05

(ii) 0.00 0.05 0.63 0.04 0.46 0.04 0.64 0.04

6 (i) 0.00 0.05 0.50 0.05 0.51 0.05 0.50 0.04

(ii) -0.02 0.05 0.54 0.05 0.48 0.06 0.54 0.05

7 (i) 0.00 0.04 0.50 0.05 0.53 0.06 0.50 0.05

(ii) 0.00 0.06 0.56 0.06 0.50 0.06 0.56 0.06

8 (i) 0.00 0.05 0.51 0.06 0.53 0.06 0.51 0.06

(ii) 0.00 0.05 0.60 0.06 0.51 0.06 0.60 0.06

9 (i) 0.01 0.06 0.51 0.05 0.54 0.06 0.51 0.05

(ii) -0.01 0.05 0.64 0.05 0.50 0.06 0.63 0.05

Average estimate of change in the latent mean μ and latent correlation ρ (true value 0.5). Assumption of local independence across time points is
violated for items 5, 20 (1), items 4, 8, 17, 21 (2), items 3, 8, 11, 14, 17, 22 (3), items 2, 5, 8, 11, 14, 17, 20, 23 (4), items 1, 3, 5, 8, 11, 13, 17, 20,
22, 24 (5), items 1, 6, 11 (6), items 1, 3, 5, 7, 9, 11 (7), items 14, 19, 24 (8), items 14, 16, 18, 20, 22, 24 (9), (i): correct item splitting, (ii): no item
splitting

assumption of time-invariant item parameters was first
investigated graphically using the estimates derived from
the two unidimensional models. Centralized item thresholds
at the two time points are plotted against each other in Fig. 2
and standardized item discriminations in Fig. 3.

Further investigation of the assumption of time-invariant
item parameters was done using a likelihood ratio test pro-
posed by Olsbjerg and Christensen (2013a). This test is for
DIF with respect to time based on MML estimation where,
for each person, only responses at a single (randomly cho-
sen) time point are used in order to get rid of possible local
dependence. These tests suggested that item parameters for

Table 3 Likelihood ratio tests of the 1PL model against the 2PL
model, separately at each time point

Time point Model −2 loglikelihood p-value

1 2PL 2348.3 < 0.0001

1PL 2429.3

2 2PL 2279.1 0.0003

1PL 2334.9
Fig. 2 Item thresholds at time 1 and time 2
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Fig. 3 Item discriminations at time 1 and time 2

three items (items 2, 15, and 21) change over time. How-
ever, in light of the large number of statistical tests and the

inherent risk of type I, we disregarded this evidence and we
continued the analyses assuming that all item parameters
were the same at both time points. This corresponds well
with what was observed in the plots in Figs. 2 and 3, where
the estimates were relatively evenly scattered around the
diagonal. As expected, the variation in the estimated item
discriminations across time points is noticeably larger than
for the thresholds.

In order to identify items with local dependence across
time points, likelihood ratio tests were conducted. These
tests were proposed by (Olsbjerg and Christensen 2013a) for
Rasch models but can easily be extended to the 2PL model.
A total of eight out of the 24 items showed significant evi-
dence of local dependence across time points. The results
are summarized in Table 4.

We chose as our final model the 2PL model that incor-
porates local dependence for the eight items with p-values
below 5%. Estimates from this model can then be compared
to the estimates from the simpler 2PL model that ignores
the dependence and where all items have equal parameters
at the two time points. In Table 5, estimates of the popula-
tion mean change and the latent correlation derived from the
two models are displayed. The estimated population mean
change differs only slightly between the two models. The

Table 4 Item wording, estimated item parameters, and likelihood ratio tests for local independence across time points

no Item wording α (s.e.) β (s.e.) χ2 DF p-value

1 stay at home 2.66 (0.61) 1.56 (0.21) 4.1 4 0.3926

2 change position 0.59 (0.20) -2.13 (0.73) 15.8 4 0.0033

3 walk more slowly 1.96 (0.35) 0.57 (0.14) 6.6 4 0.1586

4 not doing jobs 2.39 (0.46) 0.96 (0.16) 8.7 4 0.0691

5 use handrail 1.58 (0.32) 1.40 (0.22) 5.5 4 0.2397

6 lie down 1.77 (0.33) 0.89 (0.17) 14.0 4 0.0073

7 hold on 1.43 (0.28) 1.20 (0.21) 3.6 4 0.4628

8 other people 2.49 (0.52) 1.36 (0.19) 10.5 4 0.0328

9 dressed more slowly 1.75 (0.33) 0.84 (0.16) 5.7 4 0.2227

10 stand up short periods 1.32 (0.25) 0.58 (0.17) 16.8 4 0.0021

11 try not to bend 1.59 (0.29) 0.55 (0.15) 2.0 4 0.7358

12 get out chair 1.54 (0.30) 1.20 (0.20) 4.2 4 0.3796

13 painful all the time 1.17 (0.23) 0.14 (0.16) 7.4 4 0.1162

14 turn over in bed 1.14 (0.23) 0.75 (0.19) 6.5 4 0.1648

15 appetite not good 0.98 (0.31) 3.33 (0.84) 18.9 4 0.0008

16 trouble putting on socks 1.25 (0.24) 0.56 (0.17) 18.6 4 0.0009

17 walk short distances 2.09 (0.40) 1.16 (0.18) 9.6 4 0.0477

18 sleep less well 0.94 (0.20) 0.08 (0.18) 8.4 4 0.0780

19 dress with help 1.55 (0.46) 2.88 (0.55) 3.0 4 0.5578

20 sit down most the day 2.77 (0.64) 1.58 (0.21) 0.8 4 0.9385

21 avoid heavy jobs 1.54 (0.28) 0.25 (0.15) 19.8 4 0.0006

22 more irritable 1.30 (0.25) 0.93 (0.20) 31.3 4 0.0000

23 upstairs more slowly 1.71 (0.33) 1.13 (0.19) 3.5 4 0.4779

24 stay in bed 1.93 (0.57) 2.61 (0.44) 5.2 4 0.2674
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Table 5 Population parameter estimates for Model 1, the simple
model where no items are split for dependence and Model 2, the final
model where eight items are split for dependence

Parameter Model Estimate SE

Population mean change μ2 − μ1 1 0.231 0.09

2 0.229 0.11

Latent correlation ρ 1 0.71 0.06

2 0.65 0.07

estimated latent correlation decreases when items are split
for dependence and this corresponds well with what was
observed in the simulation study.

To get a sense of how it might affect the individual
respondents to ignore local dependence as compared to
modeling it, we investigate the estimated person locations
in the simple model and in the model taking local depen-
dence across time into account. Keeping the item parameters
fixed at their estimated values, we consider person location
estimates and estimates of the change


 = θ2 − θ1

in the latent variable for Model 1 and Model 2. The results,
presented in Table 6, reveal that generally the difference
between the two models is not that big.

The two models do not differ with respect to the esti-
mated time 1 person locations, but there appears to be more
variability in the incorrect Model 1. Regarding the person
locations at the second time point, there is a difference in
that Model 1 appears to underestimate the values. Again,
there is more variability in the incorrect model. The differ-
ence between the person time 2 person location estimates
from Model 1 and Model 2 were larger than the differences
between time 1 person location estimates.

Regarding change scores there was more variability when
using the more correct model. A substantial variation in the
difference between 
 values assigned to individuals was
observed. A consequence of this variation is that the two
models did not agree about who had a significant change

score. This occurred for five out of the 113 people respond-
ing: 3 (2.7 %) who were considered to have a significant 


value by Model 2, but not by Model 1 and 2 (1.8 %) who
were considered to have a significant 
 value by Model 1
only.

Discussion

The assumption of local independence in unidimensional
IRT models has been the focus of much research (Hoskens
& De Boeck, 1997; Douglas et al., 1998; Ip, 2000, 2001,
2002; Scott & Ip 2002). In unidimensional IRT models,
violations of this assumption can be resolved by chang-
ing the wording or the response categories of the items.
Another solution is to use the sum of the dependent items as
a so-called ’subtest’ (Andrich, 1985). Alternatively, a test-
let model (Bradlow et al., 1999; Wang & Wilson, 2005) or
other models taking account of local dependence (Hoskens
& De Boeck, 1997; Ip, 2002) can be applied. In Rasch mod-
els, a simple way of quantifying local dependence has been
proposed (Andrich and Kreiner, 2010).

In longitudinal studies where the same instrument is used
at several occasions to measure change in a latent variable,
the assumption of local independence across time points
may well be violated. In that case, there is usually no desire
to change the item content, and collapsing items across time
points does not make sense in the context of measuring
change.

This paper described how local dependence across time
points can be modeled in longitudinal IRT models. Based
on the method of item splitting by Andrich and Kreiner
(Andrich and Kreiner (2010)), which has so far only been
used for quantification of local dependence in unidimen-
sional models, we proposed a general method that can be
used to test for and model local dependence across time
points. It should be noted that in the Andrich and Kreiner
approach, the first item is discarded after recoding the sec-
ond item, but that in the method proposed here we keep the
time 1 item along both versions of the time 2 item. Because
the method is based on item splitting, a concept well known

Table 6 Summary of the estimated person locations (θ1 and θ2) and of the individual change scores 
 = θ2 − θ1 for the 113 persons in the data
example. Model 1 is the simple model where no items are split for dependence and Model 2 the true model where the eight items showing signs
of local dependence are split

Model 1 Model 2 Difference

Mean SD Mean SD Mean (95 % ref. interval)

θ̂1 0.003 1.09 0.021 1.06 −0.02 (−0.32 to 0.15)

θ̂2 0.145 1.13 0.347 1.04 −0.02 (−0.51 to 0.47)


̂ 0.214 1.03 0.289 1.10 −0.01 (−0.554 to 0.488)

% significant 17 % 18 %
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for resolving differential item functioning (DIF), it can be
used in existing software such as RUMM (Andrich et al.,
2010)

The simulations incorporated local dependence in a way
that made it more likely for a person to give the same
response to an item at the two time points, than it would
have been in the case of local independence. By fitting
the simple model assuming local independence across time
points for all items, we demonstrated some of the effects
of ignoring local dependence, one of them being that the
dependence was mistakenly accounted for by the latent
correlation ρ, which as a result was overestimated. These
patterns were visible in simulations with only a single
dependent item and became even more pronounced when
more items were dependent. Estimation of the change in
the mean of the latent variable was also affected by local
dependence across time points. Results suggest that when
local dependence occurs for items located in the middle
of the latent continuum (as was the case in the simula-
tion study) the change in the mean of the latent variable
is underestimated, whereas dependence for items located in
one end of the continuum (as in the simulation study) lead
to overestimation of the change in the mean of the latent
variable. This finding corresponds well with Marais (2009)
who found that in certain circumstances local dependence
will exaggerate changes and in other circumstances it will
mask them.

In the data example, an effect on the latent corre-
lation, similar to those of the simulations, was found
when dependence was ignored, but regarding the esti-
mated mean change of the latent variable, no difference
was found when splitting the items with signs of local
dependence.

In the data examples and in the simulation study,
estimation was done PROC NLMIXED estimating item
parameters and the two-dimensional latent distribution by
MML estimation. For the special case of the Rasch (1PL)
model, estimation can also be carried out in RUMM
(Andrich et al., 2010) by splitting dependent items, fit-
ting the model at each time point and then compar-
ing person estimates. We considered dichotomous items
administered at two time points. The proposed method
is easily generalized to polytomous items because it is
based on the simple concept of item splitting. For that
reason, it can also be adapted to other IRT models.
In principle, it is also straightforward to make exten-
sions to accommodate more than two time points. How-
ever, estimating the latent correlation matrix can become
computationally challenging. Moreover, the splitting pro-
cedure can potentially become quite complex and lead
to situations with sparse data if we allow for depen-
dence structures that go beyond items at two consecutive
time points.

Differential item functioning identified in relation to time
is another phenomenon that occurs in longitudinal studies
(Specht et al., 2011). This is often called item parame-
ter drift (Wells et al., 2002; Miller & Fitzpatrick, 2009)
and the assumption that item parameters are stable over
time should also be tested. Different methods for detection
of item parameter drift exist (Donoghue & Isham, 1998;
DeMars, 2004; Galdin & Laurencelle, 2010). In the data
example and in the simulation study, we assumed that item
parameters were stable over time, but for the special case of
Rasch models, the SAS macro %LRASCH MML (Olsbjerg
& Christensen, 2013b) can be used to test this assumption
using likelihood ratio tests. Since local response dependence
formulated using item splitting is also implemented, this
yields a modeling framework where items that change over
time and items with local dependence across time points can
be included. This model can be fitted using two-dimensional
MML including three types of items: items with local
dependence across time points, items with DIF across time
points, and items with neither. Items with local dependence
across time points are included by splitting the time 2 item
and estimating (α∗

i2(0), β
∗
i2(0)) and (α∗

i2(1), β
∗
i2(1)), items

with DIF across time points are included by the restriction
α∗

i2(0) = α∗
i2(1) and β∗

i2(0)) = β∗
i2(1)), and items with

neither can be included by the further restriction α∗
i2(0) =

α∗
i2(1) = αi1 and β∗

i2(0) = β∗
i2(1) = βi1.

For investigating local dependence across time points for
a single item, the proposed methodology yields a likelihood
ratio test. In a realistic situation with many items in a test,
care must be taken to control the type I error rate by adjust-
ing for multiple testing using e.g., the Benjamini–Hochberg
(1995) procedure.

The methodology outlined in this paper is a simple
way of accounting for local item dependence, while local
person dependence was not discussed. However, this can
also occur, and quite general methods for handling this
using a four-level IRT model to simultaneously account
for dual local dependence due to item clustering and per-
son clustering have been proposed by (Jiao et al. 2012).
The simple approach of taking dependence into account
using item splitting proposed in this enables researchers
to include local dependence in simpler multilevel mod-
els (Kamata, 2001). However, when an item Xi2 is split
for local dependence, fewer persons will contribute to
the estimation the new item parameters β∗

i2(0) and β∗
i2(1)

than to the original parameter β2i . Hence, splitting items
is at the cost of precision of the item parameter esti-
mates and should only be done when there is evidence
of local dependence. In the data analysis, the sample
size was 113 and the 2PL model was fitted to the data,
but the proposed methods were able to disclose evidence
of local dependence across time points, and to model
these. However, the proposed methodology should not
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uncritically be used in applications with small sample
sizes.
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