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In this paper, an introduction to some existing ltem Response Theory (IRT)
models for Local ltem Dependencies (LIDs) is presented together with an
application. First, four LID models introduced by Hoskens and De Boeck (1997)
are discussed and a more general model is derived. Second, it is described in
broad outline how these models can be estimated and tested statistically via a
loglinear approach. Third, responses are examined on questions that cannot be
understood by the respondents. For this purpose a Polish Questionnaire was used
in which there was no clear indication in the items of which response (yes or no)
had to be chosen. An interpretable dependency structure was found for the first
part of the test, but it could not be validated for the entire test. In conclusion, the
problems are discussed that are inherent to the classical estimation and testing
procedure when dealing with local item dependencies and some solutions are
offered.

Theories in psychology and social sciences often use unobservable concepts
like intelligence, social class or depression. Those concepts, called latent
variables, are assumed to form the underlying structure behind observable
phenomena; covariations between observations are attributed to these latent
traits. The observable phenomena, called manifest variables, are used to infer
information about the latent variables. In this paper we consider only continuous
latent variables, called latent traits, and discrete manifest variables, like items
or questions with two or more response categories. The relation between the
latent traits and the responses to items is often stated in a mathematical model.
Item response theory (previously known as latent trait theory) is a collective
term for mathematical models for the relation between latent characteristics of
persons and items on the one hand and the response of these persons on the
itemns on the other hand. An introduction to IRT models can be found in Fischer
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and Molenaar (1995), Van der Linden and Hambleton (1997) and Verhelst
(1993).

A very simple IRT model is the Rasch model (Rasch, 1980). Suppose a
person S is presented an item /, which has two possible response categories
(e.g., correct and incorrect). One could say that both the person and the item
have a position on the same latent trait and that position is characterized by a
value along the real line. The probability that the person solves the item depends
on the difference between the value of the person and the value of the item.
Suppose that the person has latent value 8 and that the item has latent value B.
then the probability of an answer x_ is

exp[x\'r' (9\- = ,3,- )]

Pr(X,;, =x,;16,.08,)= '
W A 1+exp(8, - B;)

(1)

fori=1,.kand v =1,..n (ie., a test with k items given to n persons). In
Equation (1), x, is the realization of the random variable X, and takes the value
1 if the item is solved correctly and O otherwise. Note that if X = 0, the
numerator in Equation (1) reduces to 1.

An important assumption of this and most IRT models is that given the latent
trait scores, every covariation between manifest indicators disappears. This
assumption is called local stochastic independence (LSI). The adjective “local”’
refers to the fact that the independence only holds given the value of the latent
traits. LSI is an important assumption in IRT models because it actually states
that all the covariation between the item responses can be explained by means
of a smaller set of latent variables. LSI means that once the latent trait score of
the person is known, one also knows the probability that the person answers an
item correctly, without the responses on the other items giving any additional
information for this probability. This can be formulated in the following formal
way:

Pr(xl‘t' =Xy ,g\ﬂﬂi'xvl"“"rv,i—l'xv.ifl-""'rvk)=Pr(Xl'l' =Xy igv‘ﬁi')' (2)

If the assumption of LSI is violated in a data set, then there are remaining
dependencies between the items after controlling for the latent traits. These
dependencies are called local item dependencies (LIDs). In general, there are
three possible causes for those LIDs. First, LIDs may be due to ignored
multidimensionality. By multidimensionality, it is meant that more than one
latent trait for the person is needed to explain the covariation among the items.
Suppose that for solving the questions in a test two abilities are required: a
numerical and a verbal ability. Moreover, suppose that a varying combination
of the two traits is needed over questions, that is, for some questions the
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numerical ability is the most important one for solving the question, while for
other questions it is the verbal ability. If one neglects the fact that two abilities
are necessary in the solution process and one tries to fit a unidimensional
IRT-model to data of this kind, the resulting latent trait is a combination of the
verbal and numerical abilities that is optimal in the entire set of questions. But,
this one dimension cannot account for the more complex pattern of covariation
between the items. Hence, there remains some dependency between the more
verbal and between the more numerical items even after conditioning on the
latent trait. In this paper we will not consider LIDs that are due to ignored
multidimensionality.

Second, Differential Item Functioning (DIF) can also result in LIDs. DIF
means that there is a relation between the responses and the membership of a
group and the latent trait cannot explain this relation (Mellenbergh, 1985).
After controlling for the estimated latent trait, items remain related to each
other because of group membership. Also this type of LIDs will not be studied
in this paper.

A final reason for the appearance of LIDs is that there are so-called item
dependencies. This means that there are relations between some items that do
not result from their mutual dependency on the latent trait(s). Three short
examples will be given of how LIDs can show up in different contexts.

First, suppose that in a given test, groups of items can be discerned based on
the content they refer to. For example, in a reading comprehension test, items
typically refer to a given text. The items related to a common text may show
more dependence than is expected from some standard IRT model that is used
to analyze the data. The dependency may be caused by the way a particular text
is read and understood, which affects all items referring to the text, beyond the
underlying general reading comprehension ability.

As a second example suppose that solving an item correctly involves two
components and that each of the components can be operationalized in a
differentitem, called a subtask. Since the subtasks are part of the same total task
they may be expected to interact. Hoskens and De Boeck (1995, 1997) have
shown that when the subtasks are presented as separated items, the dependency
is smaller than when the subtask responses are observed within the context of
the total task.

Finally, consider a test in which the examinee gradually learns through a
positive feedback mechanism. This implies that a correct answer on an item
gives the examinee some knowledge about how to solve the subsequent items.
Also in that case, the assumption of LSI does not hold.

These three examples are not meant to form an exhaustive list of situations
in which item dependencies can show up. It should also be mentioned that
mathematically spoken, this type of LIDs can be reformulated as a special case
of ignored multidimensionality. However, looked upon from a more substantial
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pointof view, dependencies between items is something different than ignored
multidimensionality, because no different additional latent traits for the person
are brought into the model to explain the covariation among the items.

In the following sections, the issue of LIDs is further explored. First,
psychometric models are presented in which the phenomenon of LID is
translated in a formal model. Second, it is explained why these models can be
estimated with standard statistical software like SPSS and SAS. Third, an
application of the models is given for the analysis of response preferences. In
the final section, some unresolved problems are discussed together with some
suggestions for further research.

Psychometric Models for Local Item Dependencies

Itis possible to formulate IRT models that can account for violations of LSI.
Among others (e.g., Jannerone, 1986; Kelderman, 1984; Verhelst & Glas,
1993), Hoskens and De Boeck (1997) described models for LIDs, and these
models will be explored first. Next, a more general model is discussed. In the
following, the concepts “LIDs™ and “(item) interactions” are used
interchangeable. If items exhibit a form of local dependence, one could also say
that they are interacting. This can be compared with an ANOVA framework:
independent variables that do not interact, are not dependent on each other with
respect to the effect they have.

Models for LIDs from Hoskens and De Boeck (1997)

In their conceptual analysis of different types of LIDs, Hoskens and De
Boeck (1997) distinguished two classification dimensions: the type of interaction
and the modus of interaction.

With respect to the type of interaction, there is a distinction between
combination and order interaction. Combination interaction refers to the
situation in which solving two items together involves something else (i.e., it
is more easy or more difficult) than what can be expected from just solving the
separate items. An example of this type of dependency occurs when two items
in a test are linked to the same text. If one has the knowledge to solve one item,
it increases the probability of solving also the other, because the two items
partially overlap as they refer to the same text. On the other hand, if there is
order interaction, then there is an order of the items to be discerned, with items
that precede others having an effect on those others. The order can refer to the
orderof presentation, alogical order ora developmental order. Order interaction
may show up when one is learning during the test taking and this depends on
the order of presentation. In this case is solving an item informative about how
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to handle the type of items of the test and that increases the probability of
solving the following items of the same type.

With respect to the modus of the interaction, Hoskens and De Boeck (1997)
distinguish between constant and dimension dependent interaction. If the
interaction between the items is constant, this means that the strength and the
direction (positive or negative) of the interaction is the same for all persons, no
matter what their position on the latent trait is. In the dimension dependent
interaction case, the strength and the direction of the interaction depends on the
position of the person on the latent trait. Dimension dependent interaction may
forexample imply that for persons with a high latent trait value, the interaction
is very strong and positive (e.g., a correct answer on an item increases the
probability of acorrect answer on a subsequent one), but that the strength of this
interaction decreases together with the latent trait value. At a certain point on
the latent continuum, the reverse effect appears: persons with a latent trait value
lower than this point will show a negative interaction (e.g., a correct answer on
an item decreases the probability of a correct answer on a subsequent one) and
this tendency increases if the latent trait value further decreases.

Crossing the two classification dimensions results in four different models
for item dependencies (or interactions between items). In Table 1, one can find
the labels that are henceforth used to denote these four models that originate
from the crossing of the two classification dimensions.

Table 1. Four Models for LIDs

Type of the interaction

Modus of the Constant combination Constant order
interaction Dimension dependent combination Dimension dependent order

Before giving the mathematical formulation of the four interaction models,
first the probability formula for the case of independence will be given to
provide a baseline model for further comparison. If two items / and / are of the
Rasch type and they are independent, the probability of a joint response (x .x, )
of person § equals:
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Pr(X,; =x, ij = Xy Isviﬁi'ﬁ_j} =

= Pr(Xw- =Xy IB,..,&,')PT{XW: =Xy fewﬁj}'

_((explx,i(6, - B | [ explxy; (6, - B))]
1+exp(8, - B;) I+exp(8, - B;)

] exp[xw'(ev _ﬁc')+xvj(9v"ﬁj }I
 1+exp(8, - Bi)+exp(6, - B;) +exp(26, - B; - B;) (3)

From Equation (3) one sees that the joint probability (given the latent trait
values) of the responses on two Rasch items equals the product of the marginal
probabilities on the separate iterns (again given the latent trait values) and hence
that there is LS. This local independence relation holds forevery vector of joint
responses in the Rasch model.

The first model for LIDs that will be discussed is the constant combination
interaction model. According to this model, the probability of a joint response
(x_,x ) given the latent trait values is

vt

Pr(X,; =xw'-xvj = Xyj Ieu»ﬁhﬁ_j-ﬁl‘j)=

= exp{xw'(ev'ﬁf}+xvj{8v_ﬁj)'*xvixvj(_ﬁl} )]
l+exp(9,, -ﬂ,-)+exp{9, —ﬁj}+ﬁlp(26v —ﬁ,' -ﬂj _ﬁl:,l)

*Pr(xw:xw'lev'ﬁi)l)r(xvj =xvj|9v-ﬁj)- (4)

As can be seen from Equation (4) in comparison with Equation (3), an
interaction parameter ﬂu‘ is inserted in the probability formula. The parameter
B, quantifies the interaction or local dependence between the items / and /. If
ﬂ.-,- is negative, this means that, for every 6, the probability of a joint response
(X,,=1,X =1) will increase in comparison to the probability of the same joint
response under the Rasch model. In this case, one could say there is positive
interaction or dependence, because the covariation between the two items is
higher than under the independence model. The reverse happens if ﬁ,, is
positive: for every 6, the probability of a joint response (X, = 1.X, = 1) will
decrease in comparison to the probability of the same joint response under the
Rasch model. In panel (a) of Figure | the probability for each possible joint
response on two items /, and 7, is drawn as a function of the latent trait value
for the Rasch model and for the constant combination interaction model. The



ITEM DEPENDENCIES

Probability
o o
a -

=3
Lt

o o
o @

Probability
L
&

0.2

theta

paqel (e)

=2
L]

0o
0o

Probability
(=]
s

o
o

01

theta

B
@

Probability
o
o

o
=

67

theta

o o o
a o @

Probability

o
n

pansl (d)

a2
-]

Probability
o
o

o
FY

1
';ann{ ]
11

00 11

155 1B

00

01

theta

Figure 1. The probability of joint responses for (a) the constant combination interaction
model (), (b) the constant order interaction model (-), (¢) the dimension dependent
combination interaction model (-), (d) the dimension dependent order interaction model
(=), (e) the constant alternation model () and (f) the dimension dependent alternation
model (=) and in all panels (a)-(f) the Rasch model (...).
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item parameters were chosen as follows: 8, =-1, B, = | (this is true for both
models) and [3 = -2 (for the interaction model) The interaction is positive
(because f3, is ‘negative) and it is seen that the probability of two correct
responses ofl the two items is increased in comparison with the Rasch model.
From Equation (4), it is also clear that the property of LSI does not hold
anymore for the constant combination interaction model, except when j3,,
equals 0 as the models then become equal to each other.

A second model for LIDs is the constant order interaction model. According
to this model, the probability of a joint response (x ,x, ) given the latent trait
values equals

Pr(X,; =x,;, X,; =x,;186, ﬂ,ﬁ ,BU)-

explx,i(8, = B;)+x,,(8, - B,) + x,, (=)' (= )]
" 1+exp(8, - B, + B +exp(8, - B;) +exp(26, - B, B, - B)

(5)

The primes for the item parameters in Equation (5) are used to denote that
the same values for the parameters in this model and the constant combination
interaction model do not lead to the same probabilities. Although, in the two
item case, the constant order interaction model is only a reparametrization of
the constant combination interaction model. Hoskens and De Boeck (1997)
show that by equating Formulas (4) and (5), the following holds: 8’ = 8 +
B/2. B =B and B’ =B /2.

Equation (5) closely resembles Equation (4) except for the last term in the
numerator. This term equals 0 when X, =0, but when X, =1, the interaction
parameter plays a role. However, ﬁ'; affects the probability of the joint
responses (X, = l.Xj- I)and (X = I.X =0) in an opposite direction. lfﬁ is
negative, the probability of the response (X 1.X, =1)goesupand [hatof(X

= 1.X =0) goes down. The reverse happens when )3 is positive. A graphlcal
illustration of this constant order interaction model is shown in panel (b) of
Figure |. The parameters have exactly the same numerical values as in panel
(a), but because of the differences between Equations (4) and (5), the form of
the curves has changed. The negative interaction parameter implies that the
probability of the joint correct response (X, = 1.X , = 1) goes up for all latent
trait values at the cost of the probability of the (X , = 1.X , =0) response, which
becomes very small. (Inthis particular case the probability functions of the joint
responses (X  =1X ,=0)and (X =0, X ,=1) are the same for constant order
interaction model.)

The third interaction model is the dimension dependent combination
interaction model. The probability of a joint response (x ,x_ ,) given the latent
trait values is
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Pr(X,; =x,. X\'; = Xy 19\--ﬁr'ﬁyﬁr} )=

o exp[xw' (89 = ﬁ!’ )+ -rn-j [81- = ﬁj Y& -t\'rtl-; (8\- = ﬁ;j )l
1+exp(6, - B;)+exp(6, - B;)+exp(36, - B, - B; - B; )’ (6)

In this model, it is not the value of ﬁu anymore that matters solely, but the
difference 6 - B . Hence, the direction and the magnitude of the item interaction
varies depending both on the sign and on the absolute value of the difference
6 - Bu. For some persons the probability of (X = 1.X = 1) will increase and
the probability of the other response patterns will decrease, while for other
persons the reverse happens. Panel (¢) of Figure | shows the probability curves
for a dimension dependent combination interaction model with parameters
B,=-1,B,=1and B,,=0. It can be seen that the probability line for the joint
response (X, = 1,X, = 1) under the dimension dependent combination
interaction model crosses the one from the Rasch model. This means that for
the model with these particular parameter values the high ability persons have
a larger probability of two correct responses than under the Rasch model, while
the low ability students have a lower probability of two correct responses than
under the Rasch model.

The fourth and last model is the dimension dependent order interaction
model:

Pr(X,; =x\'f'xl'j = Xy lev'ﬁi'ﬁyﬁy )=

- exp['rrr'(sv = ﬁi )+ xv_j (81- = ﬁ; )+ xw'(_l }l_ * (9,. = ﬁ:_,- )]
I+ exp(-ﬂ; + ﬁt:; )+ BKP(B‘. = ﬁ; )+ exp(38\. = )8; =7 ﬁ; = ﬁr:; ) . (7)

As for the constant order interaction model in Equation (5), the probability
of the joint responses (X = 1.X =1)and (X = 1.X =0)are affected in an
opposite way for the same ﬁ'u value in comparison with the Rasch model, but
the amount and the direction of change of the probabilities now depends on the
latent trait value of the person. If 6 > B’ , the probability of (X = 1.X, = 1) will
increase and the probability of (X = 1.X =0) will decrease, with the amount
of change dependent on the exact value of the difference, whereas the reverse
happens when 6, < B’ . It should be noticed that in the dimension dependent
case, combination and order interaction are not just reparametrizations of each
other (even not for two items). Panel (d) of Figure | contains the probability
curves of the four answer patterns for this model with the same parameter
values as in the dimension dependent combination interaction case. The most
salient feature from panel (d) is that the probability of (X, = 1.X, = 0) is
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proportional to the probability of (X , = 0,X , = 0). The consequence is that
under the dimension dependent order interaction model, giving a response
equal to (X = 1.X , =0) is a sign of a low ability. For low ability persons, the
response pattern (X, = 1,X, = 0) is much more probable than the response
pattern (X =0,X , =0) according to the dimension dependent order interaction
model with these parameter values.

The concept of dimension dependent interaction is new in the literature.
Although it can have a clear substantial interpretation for real data (examples
can be found in Hoskens & De Boeck, 1995, 1997), it could be questioned
whether dimension dependent interaction can be statistically differentiated
from constant interaction, that is, whether the statistical tests have enough
power to distinguish both types of interactions. This question can be formulated
as the question under which conditions a true dimension dependent interaction
model can be found back with data from a sample of finite size. To address this
question, Tuerlinckx and De Boeck (in press) set up a simulation study. They
showed that when the interaction parameter ﬂq (from the dimension dependent
interaction model) is not too extreme, the dimension dependent interaction
model can be distinguished very well from the constant interaction model.
However, when ﬂjj is very small or very large, most persons have a latent trait
value that is respectively larger or smaller than the interaction parameter,
meaning that the persons do not differ anymore with respect to the direction of
the interaction, but only with respect to the relative magnitude of the interaction.
Suppose for instance that in a dimension dependent combination interaction
model f3,, is -5 and 6, follows a standard normal distribution. Then for most 6,
values, the difference between 8 and B, is positive, making the probability of
(X,, = 1LX, = 1) more probable than under the Rasch model for practically
everyone. Hence, the data generated by this model will resemble the data
generated by a constant combination interaction model. This is not the case
when B, has a moderate value. The same line of reasoning holds for a large
positive value of j3,,.

A Generalization of the Models of Hoskens and De Boeck (1997)

A more general model for LIDs, of which the previous ones are special cases
is the following

Pr(Xy; = xyi. Xyj =%, 16,.B;.8;.B;) =

.. exp[xvi(ev == ﬂi) ¥ Ivj(av = ﬁ_;) +f(xw'-x\;i }(09\. E )8;'_,-‘ )]
N D ' (8)
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with

D = expl f(0,0)(a€ - B;)]+explB, - B; + f(1,0)(ab, - B,,)]

+ expl, - B; + f(0,1)(ab, - B;)]+exp[26, - B; - B; + f(1,1)(ab, - B;)).

Two new things appear in Equation (8). First, the constant a is included, which
can vary between O or 1. The two boundary values 0 and | correspond with
constant and dimension dependent interaction, respectively. The smaller the a,
the less dimension dependent the interaction is. Of course one could turn this
constant a into a parameter & which has to be estimated from the data. This is
not done in the present paper because it would make the estimation process
much more complicated since & has to lie between 0 and 1. Second, Equation
(8) contains the function f with arguments x,_ and x , being the responses given
on the items / and / by person § . In the case of combination interaction, this
function is the conjunction or product of x and x , in the case of order
interaction, it is defined as x_ (-1)". (Although the status of the f§ parameters
changes with the exact definition of the function f, we did not indicate this in
the formula.)

Of course, other functions than the ones just presented may be chosen. For
instance, in the application section, a model will be estimated for which the
function fis defined as

Sl x )= XOR( = x %) = 1= xy, + Xyp =201 = X%y 9)

The function XOR denotes the exclusive ‘or’ and its arguments are binary
valued variables. The value of the XOR function equals 1 only for the response
patterns (X = l.X” =1and (X = O.XW = (), and O for the other two response
patterns. The model with this particular function for the interaction term is
called the alternation model, because if a=0and f is positive, the probabilities
of the jointresponses (X, = 1.X =0)and (X, =(].X‘J = 1) increase in comparison
with the Rasch model and the probabilities of the joint responses (X =0,X =
0)and (X =1.X =1)godown. Ifaperson would answer exactly according to
a constant alternation model with a large 3 , his or her response patterns would
consist of alternating responses. It can be shown that a constant alternation
model is just a reparametrization of the previously presented constant interaction
models. Furthermore, if @ = 1, one has a dimension dependent alternation
model for which some persons (if 6, - ﬁu < 0) alternate between the responses
and other persons (if 9‘_ - ﬁu > () answer more consistently with the same
response. In both cases, the degree of showing one or the other response
tendency depends on the difference between the latent trait value of the person
and that of the item. For the case of dimension dependent alternation, the model
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is not equivalent anymore to the previous presented dimension dependent
models.

In Figure 1 panel (e), one can see the probability curves of the constant
alternation model for the joint responses in case there are two items and with
item parameters equaling: 8, =-1, B,= 1 and f,,= I. Itis clear from the graph
in panel (e) that the probability of the alternating responses go up in comparison
with the Rasch model. Panel (f) of Figure | shows the dimension dependent
alternation model. The probability curves of the joint responses (X = 1LX,=
0)and (X, = 0.X ,= 1) are proportional to the one of (X, =0,X ,=0), meaning
that persons with a low latent trait value will tend to give relative more
alternation responses (of both types) in comparison with the Rasch model.
Persons with a high latent trait value will tend to give more X, =1X,=1)
responses than under the Rasch model.

Estimating and Testing the Models for Item Dependencies

Although the presented models look complex, they can be estimated and
tested rather easily in standard statistical software packages like for example,
SPSS or SAS. In this section it will be explained why standard statistical
software can be used rather than showing how it can be done. Details about the
latter subject can be found in Tuerlinckx (1996). In the discussion section, a
number of disadvantages of this classical approach of estimating and testing the
models are given together with some solutions.

The most natural way to estimate the parameters of the models would be to
maximize the likelihood which is a function of all the parameters in the model
(item parameters as well as person parameters); this likelihood is called the
jointlikelihood. When one increases the number of examinees that take the test,
one would expect to have an estimate of the item parameters that comes closer
to its true value. However, this property of consistency does not hold when one
maximizes the joint likelihood: increasing the number of persons also increases
the number of parameters as every person brings one parameter along, and this
destroys the property of consistency. Consistency is an important property of
estimators and therefore, this way of handling the estimation problem has been
abandoned.

A nice feature of the models above is that the sum score of a person (i.e., the
total number of correct responses) is a so-called minimal sufficient statistic for
the ability parameter. This means that all the information about the ability
parameter is captured in this sum score and no other function of the data (even
not the data themselves) will give more information about the ability parameter
than the sum score. A consequence is that conditional on the sum score of the
person, the probability of a correct response is only a function of the item
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parameters and not of the person parameters anymore, because everything that
can be known about the subject parameters is known through the conditioning
on their (minimal) sufficient statistics. Since it is our purpose in the first place
to gain knowledge about the dependencies between items, we are not interested
in the ability parameters, and hence, dropping the person parameters by
conditioning on the sum score is not a problem. If one wants to make inferences
about the person parameters, they can be estimated after the item parameters are
estimated.

Because the probabilities of the response patterns given the sum score are
only function of the item parameters, one can estimate those item parameters
and test the model with a loglinear analysis. An explanation of the theory of
loglinear models can be found in Agresti (1990), but a grasp of it can be given
by drawing an analogue with the well-known ANCOV A model. Inan ANCOVA
framework, the expected value of the continuous dependent variable is
decomposed into main effect parameters (one for each independent variable)
and interaction parameters, while also a continuous covariate is inserted to
adjust the expected value of the dependent variable for non-manipulated but
measured continuous effects that are assumed to have an influence on the
dependent variable.

Loglinear models can be compared with an ANCOVA model, given some
necessary adaptations. In three points these necessary adaptations will be given
and applied directly to the special case of item dependencies in IRT. (1) Itis the
logarithm of the expected frequency of a response pattern given a sum score
that serves as the dependent variable and will be decomposed in a similar way
as forthe ANCOV A model. The expected frequency is obtained by multiplying
the probability of a response pattern (given the sum score) by the number of
persons n. (2) The experimental conditions (or main effects) are the items. In
the case of binary items, each condition has two levels, and hence, one free
parameter is brought into the model by a condition or item. This free parameter
is the item parameter. The interaction parameters stem from the interaction
between experimental conditions. (3) The sum score is not used as such in the
model butitis transformed into binary valued variables and the number of those
variables equals the number of possible sum scores. These binary variables
function as covariates.

An example of such a decomposition for three items is shown in Table 2 and
it is the loglinear equivalent of a constant combination interaction model for
items /, and /, and a Rasch model for item /.. The y parameters correspond to
the B parameters of the original IRT model, but they differ from the original B
parameters by a linear transformation. It can be seen that the sum score (which
varies from O up to 3) is transformed into 4 binary variables (s, 5, s, and s,)
which are present in the decomposition if the sum score corresponds with their
index and are left out otherwise. In Table 2 there is also a general constant that
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is added to all decompositions. This constant term denotes the grand mean (of
the logarithm of expected frequencies). A mathematical derivation of the
loglinear formulation of the Rasch model and of the interaction models foritem
dependencies can be found in Kelderman (1984) and in Tuerlinckx (1996),
respectively.

Table 2. An Example of a Loglinear IRT Model

Response pattern Sum score Decomposition
000 0 Hts,
100 1 H+ Y +5,
010 1 HE Y, + 5
001 1 H+ Y +5
110 2 BY, + Y+ T,
101 2 H+ Y + Y +5,
011 2 H+ Y, + ¥, +5,
111 3 H+ Y+ Y+ L+ T, +5

Three additional things have to be noted with respect to Table 2. First, an
interaction term is included between items /, and /,, but the interaction term
only appears when X and X , are both one. Actually, there are four different
interaction terms, one for each possible combination of X | and X . But like in
an ANCOVA model, only one of those interaction terms is a free parameter;
hence, the other can be put to zero and they disappear from the decomposition
formulas (dummy coding). Second, the set of parameters as shown in Table 2
cannot be estimated because the model is not identified. Some additional
restrictions have to be put on the parameters: ¥, =0 (¥, is the parameter for item
I,)and s, =0 (s, is the parameter for sum score 3), for example. We will not go
into details about the exact nature of these restrictions. The interested reader is
referred to Tuerlinckx (1996). Finally, since the model presented in Table 2 is
the loglinear equivalent of a constant combination interaction model for items
I and I, and a Rasch model for item /,, no interaction terms are included for
interactions between /, and I, between /, and [, and between all three items.

After estimating the parameters of a model, the next step in the process of
applying a statistical model, is checking how well it fits the data. If, as outlined
above, the models are set up within a loglinear framework, measures of
badness-of-fit are the usual Pearson chi-square and likelihood ratio chi-square
test statistics (Agresti, 1990). Under the null hypothesis (“the tested model is
true”), the distribution of these statistics is asymptotically chi-square with
degrees of freedom equal to the number of free cells minus the number of free
parameters in the model.
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An Application: Examining the Structure of the Polish Questionnaire

As an illustration of the above modeling approach. we will apply the general
model to a situation that pertains to the issue of response preferences. In his
overview article, Tune (1964) showed that in different research areas in
psychology a sequence of responses given by persons generally showed the
same characteristics, namely that sequences are nonrandom but contain
interdependencies. This is for example the case when persons have to judge
whether they perceive a sequence of stimuli when those stimuli are in fact not
present, or below the absolute threshold, or when persons are asked to generate
sequences of random numbers, the output does not coincide with what is
generally seen as random (Wagenaar, 1972). The same is also found when
people are performing in probability learning tasks (Tune, 1964) in which
people have to predict the next outcome of a stochastic process.

The main feature of these non-random sequences is that there is a tendency
to alternate too much between the possible outcomes in comparison with what
can be expected if the sequence were really random. In the literature about
generating random numbers this phenomenon is called the negative recency
effect, in the gambling literature it is called the gambler's fallacy. Gamblers
believe that there exists some self-correcting mechanism in the generation
process of random numbers so that if the same event has occurred for some
time, the probability of the other non-occurred events will increase. In other
contexts this phenomenon is called the contrast effect. Budescu (1987) reports
individual differences in that tendency to alternate, that is, some persons
alternate, others just a little bit while some do the reverse and respond quite
consistently. For the latter ones, there is a positive dependency or a positive
correlation between subsequent responses.

In this section, a new research method is used to investigate the tendency to
alternate. Persons had to fill out a so-called Polish questionnaire. In the
instructions they were told that they had to answer yes or no to 10 questions from
a Polish intelligence test to see whether common language structures between
Polish and Dutch had an influence on the accurateness of their responses.
However, the questions were not intelligence questions, but they were
non-sentences consisting of only parts of different Polish sentences pasted
together. We believe that this situation has some resemblance with situations
where one has to judge whether an auditory signal is present when there is none,
or predicting whether a light will go on or not (at least when there is no feedback)
and therefore, that the paradigm can be used to study response preferences.

IRT models for item dependencies were used to analyze the data, given that
we expected to find differences in the generated sequences and dependencies
among the responses. From a theoretical point of view, the dimension depen-
dent alternation model with interactions between subsequent items seems a
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plausible and quite simple model. First, it explains the alternation and
interindividual differences of two kinds (in alternation -as found by Budescu,
1987- and in proportion yes responses). Suppose we are in the situation that is
shown panel (f) of Figure 1. Persons with a large positive 8 -value will tend to
give consistent (X, = 1,X, = 1) response patterns that also result in a high
proportion of yes responses. On the other hand, persons with a large negative
6, -value will tend to give mostly inconsistent (or alternating) (X = 1.X  =0)
response patterns that result in a moderate proportion of yes responses. Second,
if the model fits, this means that if a certain response is given on item / it
implies a lower chance of giving the same response on item / for persons with
6, - ﬁu < 0 (see also Figure 1, panel (f)). It is also assumed this is the case for
the majority of the persons (consequently ﬁu. has to be large enough) and that
only a few show the reverse effect, since it is expected that most persons show
a negative recency effect. The latent trait can be seen as a kind of
alternation-consistency response trait where persons with a low latent trait
value alternate a lot, while persons with a high latent trait value have consistent
response patterns.

Participants

The participants were 465 first year law students from a Flemish university.
They had to fill out the Polish questionnaire. For 26 participants, one or more
responses were missing and the responses of these persons were not included
in the analysis. Sixteen participants indicated they spoke Polish, however none
of them remarked the fact that non-sentences were presented. Therefore, these
persons were nevertheless included in the analysis.

Method

The IRT models for item dependencies were fitted to the data by means of
aloglinear model analysis with SPSS. However, in using loglinear analysis one
is restricted with respect to the numbers of items. Analyzing all 10 items
together using loglinear models would make the estimation and testing proce-
dures unreliable due to a large amount of low and zero frequencies in the table.
Hence, the analyses were done separately for the first five and last five items.
We will come back to this problem in the discussion section.

Results

Descriptive summary. Before showing the results of the IRT analysis, some
more classical statistics are computed for the ten items. The proportion of yes
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responses per person has a distribution with mean 0.525 (§D =0.150). Table 3
shows the frequency distribution of proportion yes responses. Some persons
responded O or | to every item: probably, they used a strategy to obtain a good
score at the so-called intelligence test. The probability Pr(A) is the probability
of alternation and it is computed as the actual number of alternating pairs of
adjacent responses (01 or 10) divided by the maximum number of pairs of
adjacent responses in the sequence of 10 responses. The obtained valueis 0.61 1
(SD =0.217), which is a rather high value. Such a high value is consistent with
the findings of other authors in the literature. For example, Falk and Konold
(1997) report the probability of alternation from nine different studies in which
people had to generate a random sequence; the mean value of Pr (A) over the
nine studies is 0.593.

Table 3. Summary Statistics

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N 12 2 4 9 64 161 132 43 3 1 8

Psychometric analysis. The fitted models for the firstfive items are presented
in Table 4. An identification number for the different models is shown in the
first column. The second column contains labels for the fitted models; these
labels will be clarified further on in the paper. The third column has in its rows
the two proposed test statistics. the likelihood ratio chi-square (L?) and the
Pearson chi-square statistic (X*), and the next column indicates the degrees of
freedom for both test statistics. Their p-value is shown in the fifth column and
in the last column, one finds the A/C (Akaike’s information criterion; Akaike,
1977). The AIC is a badness-of-fit value that can be used to compare the fit of
non-nested model. Two models are called non-nested models when none of
them can be derived from the other by restricting one or more parameters to
zero. For instance, the dimension dependent and the constant interaction
models are non-nested models. The A/C adds a penalizing function for the
number of parameters to the likelihood ratio chi-square statistic.

The first two rows in Table 4 refer to the results of fitting two standard
loglinear models. Model 1 is an independence model for which it is assumed
that the five items are independent. Model 2 assumes first order interactions of
the alternation type between subsequentitems, but without individual differences.
Allfitindices indicate that these models do not fit. Some improvement in fit was
achieved by including the sum score as a variable in the independence model,
which boils down to fitting a Rasch model (Model 3). The fit of the latter model
was not sufficient, however. The better fit of Model 3 indicates that an
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Table 4. The Firted Models for the First Five ltems

Nr. Maodel Test statistic df p-value AlC

| Independence 1?=258.950 26 0.000 270.950
X2=270.810 26 0.000

2 Subsequent interactions L}=123.447 22 0.000 143.447
X =157.465 22 0.000

3 Rasch model LP=109.730 22 0.000 129.730
X'=116.352 22 0.000

4 Constant alternation L*=31.105 18 0.028 59.105
(free) X =129.397 I8 0.044

5 Constant alternation L'=34.110 21 0.035 56.110
(restr.) X =133.501 21 0.041

6 Dimension dependent L* = 102946 18 0.000 126.946
alternation (free) X'=142874 18 0.000

7 Constant alternation L'=21.172 18 0271 49172
(Model § + lag 2 - free) X?=22.132 18 0.226

8 Constant alternation 1}=22254 20 0.327 46.254
(Model 5 + 1, x 1) X=23522 20 0.264

interindividual difference variable (here the sum score) was needed to account
for the variance in the data, hence, also the following models took into account
individual differences with respect to the proportion of yes responses.

Model 4 is a constant alternation model with interactions between the
subsequentitems. The term “free” between parentheses means that the magnitude
of the interactions parameter were allowed to vary over item pairs. Including
interactions in the model improved the fit quite drastically, but it was still not
very good. The constant alternation model (Model 5) with equal interactions
between subsequent items did not have a worse fit; the AIC was even smaller.
However, the actual absolute fit of the model to the data was not satisfying
enough to complete the analysis. But also the dimension dependent alternation
model (Model 6) did not have a good fit to the data, and in fact the fit was even
worse than for the constant alternation models.

Because all the previous simple models failed to fit the data, the models were
expanded. Taking the constant alternation model with equal interactions
(Model 5) as a starting point, three extra interactions were added. These
interactions are between items that are at one item distance from each other:
items / and /,, I, and /, and /, and /.. This means that the lag of the interaction
is increased with one unit from 1 to 2. In Model 7 these interactions were taken
to be free and this gave a good fit to the data. The parameter estimates of this
model showed that the common lag | interaction parameter was quite large
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(B,.,=0.630). Two of the three lag 2 interaction parameters did not differ very
much from zero (8, = 0.073 and 8, = -0.067), only the interaction parameter
between the items /, and /, differed significantly from zero (,, = 0.390).
Leaving the two non-significant interactions out, the resulting model had a
quite good fit (see Model 8). The remaining parameters of this model were
almost equal to the ones of the previous model (Model 7). A model selection
procedure based on the A/C pointed at this model too as the best fitting one.

Fitting the constant alternation model with the smallest A/C value to the last
remaining five items that were not used in the previous analysis resulted in a
bad fit to the data (L? = 92.155 and X* = 89.068, df = 18, p = 0.000). The
interaction structure for the last five items of the test was very complex and we
will not present the results of these analyses. Interactions between three and
four items had to be included and those higher order interactions made the
model difficult to interpret. Also, the interactions did not show anymore a clear
preference for alternation between responses.

Conclusion

The hypothesis that the dependency relations for the first five items could be
explained by a dimension dependent alternation model with subsequent
interactions (Model 6) was rejected. Instead a constant alternation model with
interactions between subsequent items and one lag 2 interaction fitted (Mo-
del B) the first part of the data very well. This model indicates that there are no
interindividual differences in the alternation tendency but only in the proportion
of yes responses.

We suggest that the complex interaction pattern for the second half of the test
is the result of the fact that a lot of people will adapt their response strategy to
end up with approximately 50% of yes responses. Some indirect evidence for
this post hoc explanation can be found by looking at the raw data. As a first
indication, one sees from Table 3 that most of the participants ended up with
an observed proportion of yes responses around 0.5 (for 8 1% of the participants
the proportion of yes responses was between 0.4 and 0.6). Second, the
correlation between the sum score on the first half of the questionnaire and the
sum score on the second half was only 0.365. Moreover, the correlation
between the number of alternations for the first five items and the number of
alternations for the second five items was only 0.367. These two low correlations
indicate that the persons change their way of answering in the second half
compared to the first one and this could be a factor in the genesis of the complex
interactions for the last five items.
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Discussion

The analyses on the Polish Questionnaire indicated some deficiencies in the
way the models are estimated and tested. These deficiencies can be called
structural deficiencies as they result from reformulating the models for LIDs to
loglinear models to make them estimable and testable.

A firstdrawback from the estimation procedure is that only a limited number
of items can be used in the analysis. The computer programs that estimate
loglinear models store all possible response patterns, together with their
frequencies as a basis for the calculations. Many items require an enormous
amount of computer memory, which is not available to most computers. For
instance, with 20 binary items a total of 2% = 1, 048, 576 different response
patterns must be stored in the computer memory.

A second drawback of loglinear models pertains to the global test statistics,
L? and X?, that are used to give an indication of the fit of the model to the data.
The interpretation of both statistics relies on an asymptoti