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Abstract 

Background: Above-ground biomass (AGB) is a basic agronomic parameter for field investigation and is frequently 
used to indicate crop growth status, the effects of agricultural management practices, and the ability to sequester 
carbon above and below ground. The conventional way to obtain AGB is to use destructive sampling methods that 
require manual harvesting of crops, weighing, and recording, which makes large-area, long-term measurements chal-
lenging and time consuming. However, with the diversity of platforms and sensors and the improvements in spatial 
and spectral resolution, remote sensing is now regarded as the best technical means for monitoring and estimating 
AGB over large areas.

Results: In this study, we used structural and spectral information provided by remote sensing from an unmanned 
aerial vehicle (UAV) in combination with machine learning to estimate maize biomass. Of the 14 predictor variables, 
six were selected to create a model by using a recursive feature elimination algorithm. Four machine-learning regres-
sion algorithms (multiple linear regression, support vector machine, artificial neural network, and random forest) were 
evaluated and compared to create a suitable model, following which we tested whether the two sampling methods 
influence the training model. To estimate the AGB of maize, we propose an improved method for extracting plant 
height from UAV images and a volumetric indicator (i.e., BIOVP). The results show that (1) the random forest model 
gave the most balanced results, with low error and a high ratio of the explained variance for both the training set and 
the test set. (2) BIOVP can retain the largest strength effect on the AGB estimate in four different machine learning 
models by using importance analysis of predictors. (3) Comparing the plant heights calculated by the three methods 
with manual ground-based measurements shows that the proposed method increased the ratio of the explained 
variance and reduced errors.

Conclusions: These results lead us to conclude that the combination of machine learning with UAV remote sens-
ing is a promising alternative for estimating AGB. This work suggests that structural and spectral information can be 
considered simultaneously rather than separately when estimating biophysical crop parameters.
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Background
Above-ground biomass (AGB) is a basic agronomic 

parameter for field investigation and is frequently used 

to indicate crop growth status, the effects of agricultural 

management practices, and the ability to sequester car-

bon above and below ground [1, 2]. �e conventional way 

to obtain AGB is to use destructive sampling methods 

that require manual harvesting of crops, weighing, and 

recording, which makes large-area, long-term measure-

ments challenging and time consuming. However, with 

the diversity of platforms and sensors and the improve-

ments in spatial and spectral resolution, remote sensing 
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is now regarded as the best technical means for monitor-

ing and estimating AGB over large areas [3].

Many studies have used satellite remote-sensing 

images as a data source to estimate various vegetation 

biomasses, such as grassland [3, 4], forest [5–8], crop-

lands [9–11], and wetland [7, 12]. Most research here-

tofore has focused on forest and has used the vegetation 

indices (VIs) to build models, especially the normalized 

difference vegetation index (NDVI). Although satellite 

remote sensing can be used for large-scale observation, 

it remains limited by cloud cover, satellite revisit time, 

coarse resolution [13]. Remote sensing using a low-alti-

tude Unmanned Aerial Vehicle (UAV) is more flexible 

than satellite remote sensing, thereby overcoming these 

restrictions and providing remote-sensing data with 

higher temporal, spatial, and spectral resolution. As a 

result, UAV remote sensing is becoming a promising tool 

for frequent observations [14]. �e higher spatial reso-

lution allows more accurate extraction of plant-height 

information from digital images, thereby providing an 

attractive alternative based on modeling of plant height 

to estimate biomass. Plant height can be obtained from 

the crop surface model (CSM), which is created by using 

structure-from-motion techniques. Several studies have 

already used CSM to estimate plant height and biomass 

for various crops, including maize [15–17], rice [18], bar-

ley [19, 20], cotton [21, 22], sugarcane [23], wheat [24] 

and sorghum [16, 25].  Previous studies have confirmed 

that combining spectral information and plant-height 

information can improve biomass estimates [1, 26–29].

A literature review reveals that machine-learning methods 

are more prevalent in combination with satellite remote-

sensing data. To estimate the biomass of a region, such 

approaches usually classify the vegetation first and then 

calculate the number of pixels of each class [30]. Yang, et al. 

[3] used the back propagation artificial neural network (BP-

ANN) model to estimate grassland AGB at 500 m spatial res-

olution and demonstrated that the BP-ANN model achieves 

better results than the traditional multifactor regression 

models  (R2 = 0.75–0.85 vs. 0.40–0.64, RMSE = 355–462 vs. 

537–689 kg DW/ha). Mutanga et al. [12] used random for-

est regression and WorldView-2 imagery to predict wetland 

biomass and compared the results with those of stepwise 

multiple linear regression (MLR). �e results demonstrate 

that random forest regression is more advantageous for esti-

mating high-density biomass. Zhang et al. [31] used Landsat 

data and four machine-learning regression algorithms [sup-

port vector machine (SVM), random forest (RF), k-nearest 

neighbor (k-NN), and ANN] to estimate both live and total 

sawgrass biomass. �e results indicate that ANN and SVM 

produce similar results for estimating live biomass.

However, few studies have used structural and spec-

tral information provided by UAV remote sensing in 

combination with machine learning to estimate maize 

biomass. �e specific objectives of this study there-

fore include (1) comparing the performance of different 

machine-learning modeling methods to estimate maize 

AGB, (2) verifying an improved method to extract plant 

height and obtain an indicator to estimate AGB; and (3) 

to explore the potential of machine-learning modeling 

based on remote sensing to quantify AGB.

Methods
Experimental materials and �eld measurements

�e study area was located in the research station of 

Xiao Tangshan National Precision Agriculture Research 

Center of China, Changping District of Beijing City 

(115°50′17″–116°29′49″E, 40°20′18″–40°23′13″N), at an 

average elevation of 36  m. �e study area has a warm 

temperate semi-humid continental monsoon climate, 

with the rainy season lasting from June to August. �e 

average annual temperature is 11.8  °C [29]. Eight hun-

dred plots were planted at a seeding density of 6 plants/

m2 with a row spacing of 0.6  m and divided into four 

groups: mixed, TEM (temperate), TST (tropical/subtrop-

ical) and DH (doubled-haploid) according to the genetic 

background differences. �e plots were 2 m × 2.4 m, and 

72 plots were used as sampling plots for destructive bio-

mass measurements; all other non-destructive measure-

ments were made on other plots on June 28 and July 11, 

2017 (Fig. 1). All plots were seeded on May 15, 2017.

Sixteen ground control points (GCPs) distributed 

evenly within the field were used to obtain accurate geo-

graphical references and were located with millimeter 

accuracy by using a Differential Global Positioning Sys-

tem (DGPS, South Surveying & Mapping Instrument 

Co., Ltd., Guangzhou, China). �ree plants were selected 

at random in the central part of sampling plots for meas-

uring plant height and fresh biomass. �e plant height 

was measured manually with a telescopic leveling rod. 

�e mean height of the three plants was used as the 

canopy height of the given sampling plot. Next, the three 

plants were subjected to destructive biomass sampling. 

Fresh biomass was sealed in plastic bags and weighed on 

the same day. Finally, the masses were rescaled to kg/m2 

by counting the actual number of plants in each sampling 

plot. Because 14 fresh biomass samples were not avail-

able due to a record problem in the laboratory, the total 

fresh biomass sample size numbers 130. Table 1 summa-

rizes the data obtained from field measurements.

Unmanned aerial vehicle and camera setup

�e digital and multispectral imagery was collected 

over three flights with an octocopter DJI Spreading 

Wings S1000 UAV (SZ DJI Technology Co., Shenzhen, 
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China) platform equipped with two cameras. Digital 

imagery was collected by using a 20.2 megapixel Cyber-

shot DSC-QX100 (Sony Electronics, Inc., Tokyo, Japan). 

Multispectral imagery were collected with a 1.2 meg-

apixel Parrot Sequoia camera (MicaSense Inc., Seat-

tle, USA), which captures four discrete spectral bands: 

green (wavelength = 550  nm, bandwidth = 40  nm), red 

(660  nm, 40  nm), red-edge (735  nm, 10  nm), and near 

infrared (790  nm, 40  nm). �e  radiometric calibration 

images of Parrot Sequoia camera were captured on the 

ground before and after each flight by using a calibrated 

reflectance panel (MicaSense  Inc., Seattle, USA). �e 

Parrot Sequoia camera relies on a sunshine sensor to 

automatically adjust the readings to ambient light to min-

imize error during image capture [32].

Flight paths over the trial area were designed by the DJI 

ground station, yielding six strips. �e forward overlap 

was 80% and the lateral overlap was 75%. �e flight speed 

was fixed at 6 m/s. ISO and shutter speed were fixed at 

160 and 1/2000, respectively. �e flight altitude above 

ground level (AGL) on June 28 and July 11, 2017 was 

60 m. �e ground sampling distances for digital and mul-

tispectral imagery were approximately 1.3 and 5.5  cm, 

respectively. To obtain a high-precision digital elevation 

model, the flight altitude above ground level for the first 

flight on June 8, 2017 was 40 m, yielding a ground sam-

pling distance of 0.72  cm. �e details of the UAV data 

acquisition are listed in Table 2.

Image processing and data extraction

A Pix4Dmapper Pro (version 4.0, PIX4D, Lausanne, 

Switzerland) was used to produce digital surface mod-

els (DSMs), generate orthomosaics, do radiometric cali-

bration, and calculate vegetation indices. �e key steps 

of this process included image geolocation, import-

ing ground control points, aligning images, building a 

dense point cloud, building a DSM and an orthomosaic, 

Fig. 1 Maize experiment at Xiao Tangshan National Precision Agriculture Research Center, Changping, 2017. a UAV platform and sensors. b 
Experimental site. “GCPs” refers to the ground control points used to limit errors and improve the accuracy of plant-height extraction

Table 1 Basic statistics of the �eld measurements

PHobs, plant height measured by manpower. CV, coe�cient variation is used to 

describe the central tendency and dispersion of data, which is calculated with 

mean and standard error

Date Object Min Max Mean CV (%)

June 28, 2017 PHobs (cm) 57.6 109 81.1 14.4

AGB (kg/m2) 0.30 5.02 2.39 39.71

July 11, 2017 PHobs (cm) 66 213 149.9 17.4

AGB (kg/m2) 0.51 3.68 2.07 29.05
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processing and calibrating radiometric information, and 

generating vegetation indices (VIs) maps. Sixteen ground 

control points in the Pix4D project were used to georef-

erence the study area, increase the global accuracy, and 

reduce noise. �e contents listed in Table  3 were used 

to evaluate the accuracy of DSMs. Radiometric calibra-

tion was done by using radiometric calibration images 

with known reflectance values provided by MicaSense. 

�e radiometric corrections were used to improve the 

radiometric quality of the data and correct the images 

reflectance. Seven near-infrared VIs maps and four vis-

ible-band VIs maps were produced by using the index 

calculator in the Pix4D software. �e calculated VIs 

are listed in Table  4. Related computation  formulas are 

shown in Additional file 1.

In the second column, the letters represent spectral 

reflectance, such as NIR, which represents near-infrared 

reflectance in the UAV multispectral images.

Because these VIs can respond to different targets, we 

used Otsu algorithm [47] to determine thresholds and 

binarize the VIs maps, and then separated plants from 

the soil background in these VIs maps. ArcMap (version 

10.2, Esri Inc., Redlands, USA) was used to create the 

area of interest (AOI) with separated plant areas and to 

extract the average VI for each plot. �is process was also 

applied to extract plant height.

�e CSM, which is widely used to extract plant-height 

information from different crops, was used in the pre-

sent study. �e CSM can be obtained by subtracting the 

digital elevation model from the DSM by using the raster 

calculator in ArcMap. On June 8th, 2017, the maize was 

about at the growth stage 13 (BBCH-scale) [48] and had 

an average height of less than 20 cm. We extracted 1332 

elevation points from the DSM on June 8th from loca-

tions not covered with vegetation and interpolated a digi-

tal elevation model (DEM) from these data by using the 

Kriging spatial interpolation method. �us, two CSMs 

were created (one on June 28th and one on July 11th).

We propose an improved method to filter out the 

point cloud formed by the soil background and the lower 

leaves. �e method involves using image segmenta-

tion and kernel neighborhood maximal calculation (i.e., 

kernel thinning) to create a set of pixels that image the 

upper leaves of multiple plants. Resampling was used to 

control the number of pixel points involved in computa-

tion. �ese pixel points have three-dimensional spatial 

coordinates and thus have spatial distribution character-

istics. Considering spatial variation, Kriging interpolation 

was done on these three-dimensional pixel points to gen-

erate a plant-height surface. �e peak values on the sur-

face were extracted as the representative values of plant 

height at the plot scale. Using areas of interest (only cover 

vegetation), we extracted plant-height information from 

the above results by using ENVI software (version 4.5, 

Esri Inc., Redlands, USA). All the concepts and terminol-

ogy related to the above contents are illustrated in Addi-

tional file 2.

�e canopy elevation relief ratio (CRR) were calcu-

lated by using the plant-height data. �e CRR is com-

monly used in forestry studies as a metric that describes 

the relative shape of the canopy; it reflects the degree to 

which outer-canopy surfaces are in the upper (CRR > 0.5) 

or lower (CRR < 0.5) portions of the height range [49, 50]. 

Because the CRR is susceptible to outliers, we made a 

simple adjustment. �e BIOVP is the sum of pixel values 

Table 2 Details of UAV data acquisition

Flight Camera Imagery quantity GSD (cm) AGL (m)

1 Digital 120 0.72 40

2 Digital 94 1.33 60

Multispectral 110 per band 5.53

3 Digital 91 1.35 60

Multispectral 105 per band 5.54

Table 3 Processing quality report for  evaluating 

the accuracy of DSMs

Error represents the root mean square error (RMSE) of the GCPs. X represents 

longitude; Y represents latitude; Z represents altitude

Flight X error 
(cm)

Y error 
(cm)

Z error 
(cm)

Total error 
(cm)

Point 
density 
(points/
cm2)

1 0.93 1.02 0.49 1.46 47.9

2 1.15 1.72 0.64 2.17 14.2

3 1.28 1.46 0.73 2.08 13.7

Table 4 Spectral vegetation indices used in  this study 

to evaluate maize above ground biomass

VIs Formula Application References

CIgreen NIR

GREEN
− 1 Chlorophyll [33]

CIrededge NIR

REDEDGE
− 1 Chlorophyll [33]

CVI NIR ∗
RED

GREEN2
Chlorophyll [34]

NDRE NIR−REDEDGE

NIR+REDEDGE
Chlorophyll [35]

RVI NIR

RED
LAI, biomass [36–38]

NDVI NIR−RED

NIR+RED
Biomass [39, 40]

WDRVI 0.1NIR−RED

0.1NIR+RED
LAI, biomass [41]

GLI 2∗GREEN−RED−BLUE

2∗GREEN+RED+BLUE
Chlorophyll [42, 43]

VARI GREEN−RED

GREEN+RED−BLUE
LAI, biomass [44, 45]

ExG 2 ∗ GREEN − RED − BLUE Canopy coverage [46]

NGRDI GREEN−RED

GREEN+RED
Canopy coverage [39]
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(i.e., plant height) in the CSM without soil background 

and after resampling (Additional file 2). �e definitions of 

these three variables appear in Table 5.

CRR is the canopy elevation relief ratio with a simple 

adjustment. �e maximum  (PH10%max) and minimum 

 (PH10%min) values are calculated by using the top 10% 

and bottom 10% plant-height data in a plot, respectively. 

PHkri is the plant height calculated by using a Kriging 

interpolation. BIOVP is a volume metric used to estimate 

crop biomass within a plot. S represents the area covered 

by plants after resampling and image segmentation, PHi 

indicates the plant height represented by the ith pixel, 

and N is the number of pixels within S.

Selecting predictor variables

A high Pearson’s correlation was found between AGB 

and some predictors, such as BIOVP, PHkri, VARI, CRR, 

and NGRDI. However, multi-collinearity is also present 

between these continuous predictor variables (Fig.  2). 

Data redundancy and multi-collinearity can increase 

model complexity and seriously affect regression perfor-

mance [51]. �e goal of selecting predictor variables is to 

find the optimal subset from the input, thereby reduc-

ing the effect of noise or uncorrelated variables, improv-

ing prediction performance, and reducing runtime [52, 

53]. �e recursive-feature-elimination (RFE) algorithm 

provides a way to automatically select predicator vari-

ables by repeatedly creating a model and removing pre-

dictors with low weights. �is study uses the R package 

“caret” (version 6.0-80) [54] to implement this algorithm, 

which is based on the Gini criterion with repeated ten-

fold cross validation within the context of a random for-

est model [55, 56]. �e subset of the recursive results 

with the smallest error served as the subset of predictors. 

�e importance of the selected predictor variables was 

quantified based on the percent increase in mean square 

error (IncMSE%) and total increase in node purities (Inc-

NodePurity) [28, 57].

Modeling and resampling

To obtain the most suitable model for estimating maize 

AGB by comparative analysis, we adopted three mod-

eling strategies and created four models (Table 6). SVM 

and ANN models are strict in requiring predictor vari-

ables with a common scale, so data pre-processing tech-

niques should be performed on the training set before 

modeling [57]. In this study, these pre-processing tech-

niques contained data standardization and skewness 

transformations.

�e cost-penalty parameter C indicates the tolerance to 

error. When C is large, the model cannot tolerate large 

error and becomes more flexible, which leads to over-

fitting. When C is small, the model becomes rigid and 

is more prone to underfitting. Sigma is a parameter of 

the radial basis function: a smaller sigma corresponds 

to fewer support vectors, which affects model training 

and prediction accuracy [58]. H is the number of hidden 

units that are linear combinations of some or all predic-

tors, lambda is weight decay that restricts overfitting, 

and mtry is the number of randomly selected predictors 

at each split.

Because the 130 samples were each composed of two 

subsamples corresponding the two different observa-

tion dates, the stratified random sampling method was 

used to divide total samples into training set and test 

set with a split ratio of 70:30. �e tenfold-repeated 

cross-validation resampling method was used to train 

and tune models. In this method, the training set was 

partitioned randomly into 10 subsets of approximately 

equal size. Each time, 90% of all samples was used to 

fit the model and the remaining 10% was used as a test 

set to estimate performance metrics. �e 10 resampled 

performance estimates (i.e., the evaluation metrics of 

the model’s predictive capabilities) were summarized 

to analyze the relationship between the tuning param-

eters and model utility. For one modeling strategy, this 

procedure was repeated 10 times, yielding 10 random 

partitions of the training set and 100 training models. 

With the exception of the MLR model, each model had 

at least one tuning parameter. �e grid-search method 

with a set of greedy search parameters was applied to 

find the optimal parameters [59].

To examine how the resampling method affected 

the training model, a modified bootstrap resampling 

(632 + boostrap) [60] method was used for compari-

son. �is method consists of repeatedly and randomly 

selecting a sample from the training set.

�ree types of regression diagnostics plots were 

used to check if the model works well for samples. �e 

tuning-parameter plot shows how to determine the 

optimal parameter configuration when retaining an 

evaluation metric during the resampling procedure. 

Table 5 De�nitions of  three plant height-related metrics 

this study used for biomass estimation

Variable Formula (method) Description References

CRR CRR =
PHmean−PH10%min

PH10%max−PH10%min

Metric to describe the 
relative shape of the 
canopy in forestry 
studies

[19, 20]

PHkri kernel thinning and 
Kriging spatial inter-
polation

Plant-height metric

BIOVP BIOVP =

∑
N

i
S ∗ PHi

Volume metric to esti-
mate crop biomass 
within certain spatial 
ranges
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�e plot of observed values versus predicated values 

shows outliers or areas where the model is not cali-

brated and allows us to assess the proximity of the pre-

dictions to the actual values. �e plot of residual values 

versus predicated values allows us to check whether a 

phenomenon appears with a different variance. If the 

plot shows that residuals do not appear to be randomly 

scattered about zero with respect to the predicted val-

ues, major predictors may be missing from the model. 

In this plot, marginal rugs were used to visualize the 

distribution of data with respect to each axis [61].

�e coefficient of determination  (R2), RMSE, and 

mean absolute error (MAE) were used as evaluation 

metrics to quantify the performance of the regression 

model and to determine how well the model predicts 

new data and whether the model is too complicated. 

Equations  (1)–(3) are used to calculate  R2, MAE, and 

RMSE:

(1)R
2

= 1 −

∑N
i=1

(

yi − ŷi
)2

∑N
i=1

(

yi − ȳi
)2

(2)MAE =
1

N

N
∑

i=1

∣

∣yi − ŷi
∣

∣

Fig. 2 Pearson’s correlation among predictor variables

Table 6 Modeling strategies and  methods implemented 

in this study

Model Strategy Method Tuning parameters

MLR Linear regression Multiple linear 
regression

–

SVM Nonlinear regres-
sion

Radial basis func-
tion SVM

Sigma and C

ANN Nonlinear regres-
sion

Averaged artificial 
neural networks

H and lambda

RF Regression trees Random forest mtry
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where N is the total sample size, yi is the ith measured 

AGB of the sample, ŷi is the ith predicted value, and ȳi is 

the ith mean measured value.

Comparison analysis was done for both the training 

set (during cross validation) and the test set. Random-

number seeds were set before training each model to 

ensure that each model had the same data partition and 

repeats. �e results included evaluation metrics from 

the final model, and we applied a statistical hypothesis 

to check whether a statistically significant difference 

existed in the results. More specifically, the student T 

test was applied if the results were normally distributed 

and the Wilcoxon rank sum test was applied if the dis-

tribution was unknown. �e importance to a model of 

the various predictor variables was evaluated by chang-

ing the input value and comparing the sensitivity of the 

output of the training model, and importance scores 

are scaled to have a maximum value of 100 and a mini-

mum value of 0.

�e Caret package was used to create these machine-

learning models in R (version 3.5.1, R Development 

Core Team, 2018), which created a comprehensive 

framework for building and evaluating predictive mod-

els [57]. �e R package ggplot2 and its extension were 

used to draw figures. A schematic diagram of the meth-

odology appears in Fig. 3. Relevant R code were shown 

in Additional file 3.

Results
Model evaluation and comparison

Repeated cross validation was used to determine the opti-

mal number of predicator variables required to minimize 

the RMSE. Figure 4 shows that the RFE algorithm found 

a minimum RMSE (0.472) where a subset contained six 

predictor variables. Sorted in terms of decreasing impor-

tance of variables, these selected predictors were BIOVP, 

PHkri, NGRDI, VARI, CRR, and NDVI, which were used 

for training models and obtaining optimal parameters. 

For the ANN model, three different weight-decay values 

were evaluated (lambda = 0.001, 0.01, and 0.10) along 

with a single hidden layer with sizes ranging from one 

to six hidden units. �e optimal model was the average 

of five different neural networks created by using dif-

ferent initial values for parameters and used two hid-

den units with a medium degree of regularization (i.e., 

lambda = 0.01). For the SVM model, the kernel param-

eter was estimated analytically to be sigma = 0.3592 and 

the model was tuned over ten cost values between 0.25 

(3)RMSE =

√

√

√

√

1

N

N
∑

i=1

(

yi − ŷi
)2

and 128 on the  log2 scale. A cost parameter C = 2 for 

the optimal model minimized the RMSE. As the cost 

parameter continued to increase, the error also began 

to increase and the model underfit. �e RF model was 

numerically optimal at mtry = 2, which is also a recom-

mended value (i.e., one third of the number of predictors) 

[62]. Figure 5 shows how to use the grid-search method 

to evaluate the optimal parameters of these models.

Regression diagnostic plots with marginal rugs from 

four models all showed that the distribution between the 

predicted values and the residuals appears to be random 

about zero, which infers that the six selected variables 

can adequately replace the other variables (Fig. 6). �e RF 

model had the narrowest residual interval, whereas the 

MLR model had the widest residual interval. In the train-

ing set, the RF model was the most accurate of the four 

models, with  R2 = 0.944 (RMSE = 0.495, MAE = 0.355). 

Overall, the nonlinear model performed significantly 

better than the linear model (i.e., the MLR model, with 

RMSE = 0.986, MAE = 0.714,  R2 = 0.757), which revealed 

a nonlinear relationship between response variable (i.e., 

AGB) and predictors. Compared with the training set, 

the prediction ability of the four models in the test set 

was, to varying degrees, worse. �is result may be caused 

by the small sample size of the test set, which leads to 

unstable results. �e ANN and RF models had a larger  R2 

(i.e., 0.691 and 0.699, respectively) and a smaller RMSE 

(i.e., 1.210 and 1.200, respectively) with the test set, 

and so were better than other models. �e two outliers 

located in the upper-right corner occurred with the test 

set and may be due to measurement errors. �erefore, 

poor-quality data was also one reason for the degraded 

performance of the model with the test set.

Figure  7 shows the difference between performance 

metrics calculated by using the training-set data and by 

using the test-set data. Longer lines represented a larger 

performance difference between the two sets of data. 

Random forest model was not sensitive to outliers, so it 

performed best in training set with a relatively large sam-

ple size. However, the performance advantages of ran-

dom forest model in test set with a small sample size are 

not fully demonstrated in this study. In other words, pro-

portion and distribution of outliers and small sample size 

narrowed the performance difference between models in 

the test set, because the advantages and disadvantages of 

the model were not fully exposed. Overall, the RF model 

performed best with both the training set and the test set 

and was thus selected for this study to produce the AGB 

maps for June 28 and July 11, 2017.

At the 5% significance level, the Wilcoxon test accepted 

the null hypothesis that two sets of performance metrics 

calculated by using two different resampling methods 
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were drawn from the same distribution (Fig. 8). From this 

we inferred that the two resampling methods have no sig-

nificant difference on creating the optimal model.

Mapping above-ground biomass of maize

We estimated the spatial distribution of the AGB at the 

plot scale based on the selected RF model (Fig.  9a, b). 

During the period from June 28 to July 11, 2017 strong 

winds and heavy rainfall lodged maize in some plots, 

which resulted in abnormal fluctuations in both plant 

height and spectral information. �is was the main 

reason that the predicted values of some plots decreased 

instead of increasing (Fig. 9b). In some plots, maize grew 

rapidly because of abundant rain, causing the AGB to 

increase significantly in the short term. Most of the lodg-

ing plots were planted with TST group (Fig.  9c). Han 

et  al. [63] provides in-depth analysis of the underlying 

association between maize lodging and the selected fea-

ture factors in this study area. �ese factors  included 

but not limited to genetic backgrounds, terrain and plant 

height.

Fig. 3 Schematic diagram of methodology used in this study. The red rectangular box contains all predictors extracted from the UAV images, and 
the blue rectangular box contains modeling methods and analysis procedures
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ANOVA  overall had a  p value < 0.05, so we further 

compared the differences in the mean AGB between 

each group and all plots without grouping. When Wil-

coxon signed-rank test was significant, it was found that 

DH group was significantly low-AGB compared to all 

(i.e., without grouping) and TST group was high-AGB 

compared to all. Because the test was not significant, 

there was no significant difference in the AGB between 

Mixed group and all (Fig. 10).

Importance of predictors and BIOVP

Although the predictor variables were the same, the 

importance of the predictors differed between the four 

models (Fig. 11a). We summed up the importance scores 

of predictors and found that the BIOVP scores were the 

highest (Fig.  11b). In this study, BIOVP can retain the 

largest strength effect on the AGB estimate, even if differ-

ent modeling strategies were used to estimate the AGB. 

Figure  11 also shows that plant height exerts a more 

direct effect than the VIs for estimating maize AGB. As 

a volume metric, BIOVP’s bottom area is the sum of 

all pixel areas imaged by vegetation. Bottom area is the 

product of image segmentation using vegetation index 

(i.e., NGRDI). �us, BIOVP includes implicit  spectral 

information.

To discover the effect of using the BIOVP to estimate 

AGB, we developed a bivariate linear regression (BLR) 

model based on the BIOVP (Fig.  12). �e performance 

of the BLR model was even worse than the worst MLR 

model of the four models mentioned above. �e BLR 

model based on the training set explained 71.7% of the 

variations in maize AGB, with a RMSE of 1.06 kg/m2 at 

the plot scale. �e residuals-analysis plot revealed a dif-

ferent variance in the BLR model. Because the residuals 

do not appear to be randomly scattered about zero with 

respect to the predicted values, some predictors may 

have been missing from the BLR model. �is result 

also showed that AGB estimates with a single predictor 

BIOVP were less effective in this study than with multiple 

predictors.

Discussion
Estimating maize height from UAV images

Plant height is an important crop architecture that 

is highly correlated with biomass yield, and several 

researchers have highlighted plant height to be a key con-

tributor to biomass yield [64–66]. Because of the small 

planting area and low planting density in this study, rela-

tively fewer vegetation pixels were contained in the CSM 

of a plot. In this scenario, if the average method was 

used to extract the height information from the CSM, 

the plant-height information would be disturbed by the 

soil background noise, thus causing an obvious underes-

timate of plant height. Previous studies have confirmed 

this result [1, 14, 20, 24, 25, 67, 68]. To tackle this issue, 

various researchers have suggested using quantiles and 

maximum statistics to represent plant height at the plot 

scale. However, these statistics were susceptible to out-

liers and lack explanatory power. Taking the maximum 

statistic as an example, from the view of digital photo-

grammetry technology, plant height is actually just the 

value of a single pixel after imaging in the CSM. �us, 

the value of one pixel represents the height of multi-

ple plants in a plot, which is not appropriate, especially 

in the case where the size of the plot is small and there 

are few plants. �e most appropriate method is to calcu-

late the plant height at the plot scale by using the pixels 

representing the upper leaves of multiple plants, which 

Fig. 4 Cross-validated RMSE by recursive feature elimination (RFE) algorithm. RMSE is minimized with six predictor variables
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requires considering the spatial distribution of multiple 

plants in a plot. �e approach we propose herein differs 

from previous approaches in that it considers the spa-

tial distribution of crops and has a good mathematical 

interpretation. Upon comparing the plant heights calcu-

lated by the three methods with manual ground-based 

measurements, we found that the proposed method 

increased the ratio of the explained variance  (R2 = 0.85 

Fig. 5 Tuning parameters when using grid-search method and cross validate. The RMSE was used to select the optimal model using the smallest 
value. a Artificial neural network model. The optimal ANN model used a medium degree of regularization (i.e., lambda = 0.01) and a single hidden 
layer with two hidden units. b Support vector machine model. When using the radial basis function, the SVM model was numerically optimal at 
sigma = 0.3592 and C = 2 on the  log2 scale. c Random forest model. The RF model was numerically optimal at mtry = 2



Page 11 of 19Han et al. Plant Methods           (2019) 15:10 

Fig. 6 Regression diagnostics plots based on four modeling methods. a Multiple linear regression model. b Support vector machine model. c 
Artificial neural network model. d Random forest model. The horizontal axis represents the predicted AGB obtained from the model, and the vertical 
axis represents the AGB measured manually at ground level. Marginal rugs in the residuals-analysis plot were used to visualize the distribution of 
data on each axis. The solid cyan line represents a 1:1 relationship. In the training set, the four models tended to underestimate the AGB, whereas in 
the test set they tended to overestimate the AGB
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vs 0.61) while reducing the error (RMSE = 14.61  cm vs. 

27.59  cm, MAE = 12.36  cm vs. 20.68  cm), which shows 

that the proposed method is feasible and effective 

(Fig. 13).

Limitations and implications of study

For this study, predictor variables used for estimating 

maize AGB were collected rapidly and non-destruc-

tively by UAV. �e UAV remote-sensing data contained 

uncertainties associated with multiple sources of error, 

which affected the accuracy of the estimate of maize 

AGB. Predictors measured by UAV remote sensing 

were all at the canopy scale and are affected by obser-

vation angle, illumination conditions, canopy structure, 

and leaf-morphology characteristics [69]. Because the 

VIs are susceptible to the confounding influences of 

canopy greenness and soil reflectance [70], the accu-

mulation of maize AGB is more directly associated with 

changes in the physical structure of maize. When calcu-

lating the ground-based measurements of AGB on the 

plot scale, the growth difference between maize plants 

in a given plot was not considered. For destructive sam-

pling, simply multiplying the average biomass by the 

number of plants may lead to systematic errors and the 

Fig. 7 Difference between performance metrics calculated by using cross-validation and test-set data. Longer lines represent a larger performance 
difference. ANN and RF models had a higher  R2 and a lower RMSE both in the training set and test set, which indicates that they performed better 
than other models

Fig. 8 Test of significant difference of two resampling methods. For a p value > 0.05, the Wilcoxon test accepted the null hypothesis that two sets of 
performance metrics calculated by using two different resampling methods were drawn from the same distribution
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appearance of outliers in the data. �is study thus used 

a small number of spectral predictor variables because 

of the limitation of the four-narrow-band multispec-

tral sensor. In fact, when the UAV platform is equipped 

with a hyperspectral sensor, more spectral features can 

be used to estimate AGB [29, 71], which can reduce the 

collinearity and redundancy of spectral predictors that 

is caused by similar calculation formulas [28].

�is study explored four machine-learning regression 

algorithms (MLR, SVM, ANN, and RF), all of which pro-

duced acceptable accuracy. �e RF model yielded the best 

results with low error and a high ratio of the explained 

variance. In this study, nonlinear regression models per-

formed significantly better than the MLR model because 

the former could fit the nonlinear relationship existing 

within the data. However, a distinct advantage of the 

MLR model is that it is highly interpretable [57]. �e 

MLR model can thus be used to determine the strength 

of the effect that one or more predictor variable may have 

on a response variable by using the standardized partial 

regression coefficient [72].

Note also that limitations exist in the comparison of 

models. Because the sample size is small, the advantages 

and disadvantages of using different modeling strate-

gies are not fully demonstrated. For example, the ANN 

model requires a lot of repeated training to obtain an 

optimal neural network, which requires more computer 

time. �e inner workings of the ANN and SVM are dif-

ficult to understand, which leads to their being treated as 

black-box models [63]. �e RF model has been applied 

in a wide variety of scientific areas because of its ability 

to resist overfitting and deal with high-dimensional data 

[73].

�e BIOVP is a volumetric indicator for estimating 

maize AGB. Because image segmentation is a prerequi-

site for obtaining the BIOVP, this leads to an increase in 

the correlation between this indicator and certain spec-

tral indices (e.g., NGRDI and VARI). Because BIOVP 

includes both spectral and plant-height information, 

both affect the accuracy of BIOVP calculations. In this 

study, the BIOVP was calculated by using point clouds 

based on digital images; point clouds based on LiDAR 

(light detection and ranging) are also applicable. �us, 

further research is required to determine how BIOVP 

affects AGB estimate for different crops, scale plots, 

and in other scenarios.

Fig. 9 Spatial distribution of maize AGB (kg/m2) at the plot scale from RF model estimation. a On June 28, 2017. b On July 11, 2017. c Distribution of 
maize plots with four genetic backgrounds
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Fig. 10 Genotypic differences in maize AGB (kg/m2). a On June 28, 2017. b On July 11, 2017. DH, Mixed, TEM and TST represent four genetic 
backgrounds of maize. The dashed black line indicates the mean biomass from all plots (i.e., baseMean). The black plus sign indicates the mean 
biomass from each genetic background (i.e., group). ANOVA is used to determine the existence of differences among four-group means. The 
Wilcoxon signed-rank test is used to perform comparison of each group against all without grouping (i.e., baseMean). The following convention 
for symbols indicates statistical significance: p > 0.05 (ns); p ≤ 0.05 (*); p ≤ 0.01 (**); p ≤ 0.001 (***); p ≤ 0.0001 (****). When the test is significant, it is 
found that DH group is significantly low-AGB compared to all and TST group is high-AGB compared to all. Because the test is not significant, there is 
no significant difference in the AGB between Mixed group and all
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Conclusions
�is study used multispectral and digital images collected 

by a UAV system to estimate maize AGB by using four 

machine-learning algorithms (MLR, SVM, ANN, and 

RF). �e RF model gave the most balanced results, with 

low error and a high ratio of the explained variance for 

both the training set and the test set. We proposed herein 

an improved method for extracting plant height from 

UAV images and an indicator (BIOVP) to evaluate crop 

AGB. �e BIOVP considers both structural and spectral 

information and contributes significantly to improving 

estimates of maize AGB. �e suitability of this approach 

still needs to be verified for different crops and on differ-

ent scales. �us, this work suggests that structural and 

spectral information can be considered simultaneously 

rather than separately when estimating biophysical crop 

parameters.

Fig. 11 Importance scores for predictor variables. a The importance scores difference of predictors in different models. Predictor variables 
importance scores are the same in the ANN and SVM model. Because NDVI had a very small importance score in the MLR and RF models, removing 
it from the two models will be taken into consideration and then re-modeled. CRR can also be removed from ANN and SVM for the similar reasons. 
b The importance scores of predictors are aggregated based on four model types and are displayed on the x axis
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Fig. 12 Bivariate linear-regression model based on the BIOVP. Residuals were not randomly scattered about zero with respect to the predicted 
values

Fig. 13 Plant height extracted from CSM versus manual ground-based measurements made with a telescopic leveling rod. PHkri, mean, and 
maximum are three methods to calculate plant height extracted from CSM. PHobs represents manually measured plant height
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Additional �les

Additional �le 1. Method for calculating total error of estimating GCPs 
location in UAV images.

Additional �le 2. A schematic illustration for explaining the concepts of 
BIOVP and PHkri.

Additional �le 3. Running R scripts for machine learning modeling and 
diagnostic plots.
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