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Metastasis, the spread of a tumor from its primary site to
other parts of the body, continues to be the most significant
problem in the field of cancer. Patients who present with
metastatic disease or those who develop metastases after
successful management of the primary tumor carry a uni-
versally grave prognosis. To improve treatment outcomes
for these patients a broader understanding of the biology
of metastases is necessary. The biological complexity that
characterizes metastasis requires complex experimental
systems for its study. To a large extent the modeling of
this biological complexity is only possible using animal
models. The following review will summarize the strengths
and weaknesses of available in vivo models of metastasis
including transplantable syngeneic mouse and human-
mouse xenografts, genetically engineered mice and natu-
rally occurring cancers of companion animals (pet dogs
and cats). No single metastasis model is sufficient to
answer all questions. As such, the selection of the optimal
model(s) for each biological or translational question is
necessary.

Introduction

Based on the work of several groups it has long been under-
stood that metastatic cancer cells are the ‘decathelete’ cells of
the tumor (1-3). They are able to leave the site of the primary
tumor and pass through the tumor basement membrane, either
through or between endothelial cells to enter the circulation
(intravasation) (4). While in the circulation tumor cells are able
to resist anoikis (programmed cell death associated with loss of
cellular contact) (5), evade immune recognition and physical
stress and eventually arrest at distant organs (6-8). At this
distant site the cell either leaves the circulation or proliferates
within the vessel, survives in the novel microenvironment of a
foreign tissue site (9), proliferates, creates new blood vessels
(angiogenesis), co-opts existing blood vessels or grows within
an existing vessel and then successfully grows into a clinically
relevant metastatic lesion (10,11). It is generally believed that
metastases can settle within the same organ or inhabit distinct
tertiary organs; as such the steps outlined above continue even
after the successful management of the primary tumor. A more
detailed understanding of each of the steps associated with the
metastatic process has emerged from the recent interest and
investment in a diversity of disciplines not previously active in

Abbreviations: GEM, genetically engineered mice.
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this area of cancer biology. The application of mathematic
models, bioinformatics, genomic screening, physics and phy-
sical chemistry has provided the field with unique ‘systems’
perspectives and investigative tools (12-15). The validation of
these perspectives and the use of novel tools within the field
of metastasis biology have and will require the appropriate use
of in vivo models. In the field of cancer, there is a tendency to
characterize the value of a model in terms of the similarities
shared between the animal and the human cancer that is being
modeled. This approach leads to value assignments and an
attempt to define the best model of a cancer. It is unlikely,
however, that the complexity of cancer in human patients can
be entirely modeled by one system alone. By understanding
the strengths and weaknesses of a set of models, it becomes
possible to choose the appropriate model(s) for study of indi-
vidual problems or questions. This is true in the use of animal
models in pre-clinical drug development and for studying a
complex problem like cancer metastasis. The following review
will summarize currently available in vivo models of metasta-
sis, define the limitations and advantages of each modeling
option and suggest the basis with which particular models
should be used to answer questions relating to metastasis
biology and ultimately, therapeutic interventions. These
in vivo models include transplantable cancer models com-
monly characterized in rodents, genetically engineered mice
that develop metastatic cancers and cancers that naturally
develop in outbred large animals, primarily pet dogs (often
referred to as comparative models).

Transplantable cancers that metastasize in small animals

A foundation of cancer research over the last 30 years has been
the use of cancer cell lines or tissues that can be grown in mice
or rats. Such transplantable models can be divided into two
broad groups, syngenic models or xenograft models. Syn-
geneic transplantable models most often refer to mouse or rat
(murine) cancer cell lines or tissues that result in tumors in
inbred animals of the same genetic background as the derived
cell line or tissue. Until recently syngeneic cell lines have
either been derived from carcinogen-induced tumors or tumors
that spontaneously develop in a particular mouse or rat
(16-18). The advantage of syngeneic models is that the trans-
planted tissues, the tumor microenvironment, and the host are
from the same species. This is particularly important when
considering the close interaction between tumor and host char-
acterized by the process of metastasis. However, these model
systems lack many of the important features of human tumors.
For example, they usually are derived from homozygously
inbred mice and therefore lack the genetic complexity of
human tumors. In addition, due to species-specific differences
in oncogenesis, for example differences in carcinogenic xeno-
biotic metabolism, they may not bear the same constellation of
mutations observed in human patients (19). Thus, care must be
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taken to validate observations and conclusions drawn from
these models and to confirm their relevance to human cancers.

Human-mouse xenograft models define the other major
category of transplantable cancer models used to study meta-
stasis. Such xenograft models refer to human cancer cell lines
or tissues that can be transplanted into immunocompromised
animals and effectively grow tumors. The resultant tumors that
emerge from xenograft transplantations are a mosaic of human
cancer cells and murine stromal cells. Several lines of evidence
suggest the importance of cancer cell-stromal cell interactions
in the biology of cancer progression and metastasis. For some
pathways, species specificity does not allow this interaction to
occur across species boundaries. The impact of this more
limited tumor-stromal interaction must be considered in the
use of xenograft models (20-22). Furthermore, in order for
human tumors to grow in mice the murine host must be
immunocompromised to prevent immune rejection. This elim-
inates the ability to examine the role of the immune system in
tumor progression in xenografts. A number of immunocom-
promised murine hosts are used in the development of xeno-
grafts, including nude mice, SCID (severe combined
immunodeficiency) and mice strains with more significant
immunosuppression (i.e. SCID-Beige mice, where the beige
mutation eliminates NK cell function) (23). In addition to
immunosuppression, there are specific features of each immu-
nocompromised mouse strain that can influence the biology
and study of metastasis (24,25). Nude mice that have marked
depletion of T cells and impaired T cell and B cell function,
have been described as having impaired angiogenesis (26);
SCID mice have combined deficits in number and function
of both B and T cells; however, a high resting NK cell activity
and an age-associated ‘leakiness’ in the SCID mutation that
can lead to immune-mediated elimination of metastatic cells,
especially in longer term metastasis models. Finally, there
have been reports that significant differences exist for angio-
genesis between transplanted and autochthonous tumors,
which may reduce the predictive power of xenografts to clin-
ical tumors (27,28). These characteristics of the mouse host
need to be kept firmly in mind when interpreting data and
attempting to make clinical correlations and may potentially
be important factors that have reduced the predictive power of
xenograft models in pre-clinical testing (29).

Transplantation model approaches

The use of transplantation models, either syngeneic or xeno-
geneic, can include one of two (or both) experimental
approaches. These approaches, or assays, are referred to as
experimental metastasis assays and spontaneous metastasis
assays. These assays differ in the way that cells are
delivered to the recipient animals. The types of questions that
can be asked of each assay are distinct and in many cases
complimentary.

Experimental metastases models

The most widespread use of transplantable cancers as models
of metastasis is based on the strategy of experimental meta-
stasis. Experimental metastasis refers to the injection of tumor
cells directly to the systemic circulation. Depending on the site
of injection and tropism of the tumor cell, distant metastases
may (or may not) develop at a number of anatomic locations
throughout the body. The site of injection largely defines
the site to which metastases develop in these experimental
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systems. The most common site of tumor cell injection
employed for experimental metastasis models is the lateral
tail vein in mice. Tail vein injection results primarily in pul-
monary metastases. In contrast, intrasplenic or portal vein
injection of tumor cells is the most common site employed
for developing metastasis in the liver. Intracardiac injection of
cells may result in metastases to several sites, including bone.
The influence of injection site on end-organ target is in part
explained by the first capillary bed that tumor cells face fol-
lowing injection of cells. This first capillary bed principle
readily explains the development of lung metastases following
lateral tail vein injection and the development of hepatic
metastasis following portal vein injection; however, the devel-
opment of bone metastasis following introduction of cells to
the arterial circulation (intracardiac injection) requires
additional consideration of tumor-host interactions. These
tumor-host determinants have been described in the seed-
and-soil hypothesis, first described by Paget. This hypothesis
suggests that the eventual outgrowth of a tumor, in this case at
a metastatic site, is defined by determinants of the tumor cell
(seed) and the ability of the tumor cell to receive appropriate
growth and survival signals from its microenvironment (soil)
(3). Support for the seed-and-soil effect is provided by several
experimental metastasis models. Following intracardiac (left
ventricle) injection of tumor cells, single tumor cells or emboli
can be found in most organs in the body; however, for many
breast and prostate cancer cell systems, successful metastases
are found in the bone (30). More support follows from cell
lines that metastasize to non-lung sites following tail vein
injection, even though the lung is the first and largest capillary
bed seen by tumor cells during metastasis (31-34).

An important result of experimental metastasis models
employing direct injection of cells into the circulation has
been the development of clonally related variants that differ
in metastatic potential. Based in the hypothesis of tumor het-
erogeneity, Fidler er al. developed cell lines from the same
parent tumor that were characterized by progressively higher
metastatic potential through successive collection of meta-
stases from the lung and re-injection in the tail vein (35,36).
The best characterized of these models is the B16 melanoma
model. The B16F1 parental cells are capable of forming
experimental metastases at a rate of ~1.3 x 10> per cell per
generation while BI6F10 cells, generated by successive tail
vein metastasis had an effective metastasis rate of 5 x 10> per
cell per generation (37,38). Comparative investigations of
paired cell line clones that differ in metastatic potential
have been particularly helpful in defining both metastasis-
associated and metastasis-suppressing genes in several cancer
histologies. Table I lists pairs of clonally related cells that
differ in experimental metastatic potential.

Experimental metastasis models provide several advantages
for investigation. The time course for model maturity is gen-
erally rapid, the biology of metastasis is reproducible and
consistent, and the user has control of the number and type
of cells that are introduced to the circulation. This control of
‘input’ has been used by Chambers et al. to define important
features of the steps involved in the cascade of metastasis and
the process of cellular extravasation and survival at distant
metastatic sites (39). However, the fact that the early steps in
the metastatic cascade are eliminated through experimental
metastasis modeling is a potential disadvantage. It is believed
that many tumor cells metastasize within emboli consisting of
tumor cells that break free from a primary tumor and become
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Table I. Examples of murine cancer cell lines useful in transplantable metastasis assays

Histology Name Syngeneic Experimental Spontaneous Variants with Select references

strain metastasis metastasis distinct metastasis

biology

Mammary 4T1/4T07 BALB/c Yes: TV Yes: Orth - MFP Yes: 4T1; 4T07; 67NR 80
Mammary D20R/D2A1 Yes: TV 81
Mammary Pei-1 Cmyc/VEGF bitransgenic FVB Yes: TV Yes: Orth - MFP, SQ
Mammary EMT-6 BALB/c Yes: TV Yes: EMT-6], EMT-6H 82
Mammary LM3 BALB/c Yes: TV Yes: Orth - MFP 83
Mammary M6C FVB Yes: SQ Yes M6; M28 84
Melanoma B16 C57BL/6  Yes: TV Yes: Orth - FP, ear Yes: B16F10, B16bl6, others 37,85
Osteosarcoma K7M2 BALB/c Yes: TV Yes: Orth - Limb Yes: K12, K7, K8, others 48
Rhabdomyosarcoma INK4a KO/HGF TG Mixed Yes: TV Yes: Orth - Limb Yes 86
Colon CT26 C57BL/6  Yes Yes, Orth - caecum 87,88
Colon MCA38 C57BL/6  Yes 89
Prostate Pr14C FVB Yes Yes Yes: Prlll, Pr117, Pr14 90
Lung Lewis Lung BALB/c Yes: TV Yes: Orth - lung Yes 91-93
Kidney RENCA BALB/c  Yes: TV Yes: Orth - renal No 94
Lung TC-1 C57BL/6  Yes: TV No No 95
Hepatic Hca/163-F(F) C3H Yes: SQ Hca/A2-P(P) and Hca/163-F(F) 96

TV, tail vein; s.c., subcutaneous; Orth, Orthotopic; MFP, mammary fat pat; FP, foot pad.

associated with platelets and other host cells before arresting at
distant sites. Following tail vein injection, cells circulate, often
in high numbers, as single cells or small clusters of platelets.
These single cells may not arrest or interact with target tissues
at distant sites in the same ways as tumor cells that sponta-
neously metastasize (as emboli). Furthermore, the process of
spontaneous metastasis from a primary site may be associated
with selection events that yield a distinct profile of successful
metastasis. As a result, experimental metastases have often
been described as multiple primary tumors developing in the
lung. Yamamoto et al. demonstrated differences in the expres-
sion of matrix metalloproteinase enzymes in the metastasis
that result from experimental metastases and those that
develop from spontaneous metastases (40). Related to concern
of the relevance of experimental metastasis is the fact that
many experimental metastasis models have been selected for
metastatic propensity. It is important to also consider features
of metastatic biology that are selected against through this
same process. These critical features include metastatic dor-
mancy and metastatic inefficiency. Furthermore, the com-
pressed time course of metastasis seen in these experimental
metastasis models often precludes their use in defining agents
active against established metastatic cancers.

Spontaneous metastasis

Historically, transplantable tumor models were characterized
by and selected for rapid primary tumor growth at subcuta-
neous (s.c.) (heterotopic) sites. In this setting, it was uncom-
mon to observe spontaneous metastasis to distant sites. As such
transplantable models were often labeled as ‘non-metastatic’.
Application of the ‘seed and soil” hypothesis to transplantation
modeling resulted in the use of orthotopic transplantation of
tumor cells into mice (41-47). Orthotopic transplantation
refers to the delivery of cancer cells to the anatomic location
or tissue from which a tumor was derived. The use of ortho-
topic injection transplantation has resulted in tumor models
that may more closely resemble human cancers including
tumor histology, vascularity, gene expression, responsiveness
to chemotherapy and metastatic biology (47,48). As more has
been learned about the importance of host-microenvironment
interactions it is understandable why orthotopic tumors are

preferred over more conventional flank (s.c.) models. That
orthotopic models are more frequently associated with meta-
stasis than s.c. tumor injection of cells, lends support to the
value of providing more relevant host-tumor interactions.
Similarly, the fact that spontaneous metastases arise from a
primary transplanted tumor provides an opportunity to study
the metastatic process and many aspects of the metastatic
cascade that are bypassed using experimental metastasis mod-
els. Orthotopic transplantation of cancer cells may come from
direct injection of tumor cells or the surgical implantation of
intact fragments of tumor. For many orthotopic models the use
of surgical implantation of fragments improves the reproduci-
bility and metastatic outcome within the model (46,48). For
those orthotopic models where primary tumor growth is rapid,
the use of surgery is often necessary to control morbidity
associated with excess primary tumor burden (47,48). In
some cases, it may be argued that the removal of the primary
tumor contributes to the metastatic phenotype of the model;
however, primary tumor removal has been shown to both
enhance and suppress metastasis depending on the model
studied. Examples of commonly used transplantable tumor
models characterized by spontaneous metastasis are presented
in Table I. Examples include spontaneous metastasis from the
favored orthotopic and heterotopic implantation sites.

Genetically engineered mouse models of metastasis

While in vitro and in vivo experimental or ‘spontaneous’
transplantable models have yielded many important insights
into the potential molecular mechanisms of metastasis, a num-
ber of important caveats remain. Introduction of cells into the
circulatory system bypasses a number of important events
thought to be major roadblocks in metastatic dissemination,
including escape from the primary tumor, invasion into adja-
cent tissue and extravasation into the hematopoetic system.
Ectopic or orthotopic implantation, while potentially reintro-
ducing a more natural setting for the process, still suffers from
potential problems. The past decades have revealed that
tumorigenesis is not simply the result of proliferative
activation of a mutated cell, but rather is a complex interaction
between neoplastic tissue and the stromal and organismal
environment in which it arises (49). Implantation models do
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not necessarily recapitulate all of the interactions and
microenvironmental components that may play important
roles in tumor dissemination. In addition, mechanical disrup-
tion of the target tissue during the implantation process may
permit escape of tumor cells into the circulatory system at
the time of implantation, thus seeding distant sites at the
onset of the experiment rather than subsequent to tumor
growth, as is the intent. Since the work of Folkman et al. has
shown that transplanted tumors can suppress the growth of
secondary tumors via diffusible factors (50), it is possible
that ectopic or orthotopic implantation, through suppression
of secondary lesions, may not always permit the analysis of the
earliest phases of the metastatic process.

A further common caveat of both systems is their reliance on
cultured cells. Since the pioneering work of Fidler, most meta-
static cell lines and variants have been generated by serial
passage and selection (36,51). During the selection process
and/or subsequent cell culture, the resulting cell lines and
clones have been passaged in vitro. Thus, the cells used in
experimental or spontaneous metastases assays have been
adapted to growth on a two-dimensional rather than a normal
three-dimensional matrix platform, in an artificial or foreign
milieu. The adaptations that permit perpetual growth in tissue
culture may have significant impact on the pathways and
mechanisms by which autochthonously arising metastases
subsist. While these experimental systems may imply some
of the mechanisms and biological processes that function in
tumor dissemination, they only partially represent those steps
in the metastatic process that can be successfully targeted for
intervention.

To complement experimental and spontaneous metastasis
models, investigators need access to autochthonously arising
tumors capable of completing the entire metastatic process.
Ideally this would consist of naturally occurring or chemically
induced tumors in animal models, more truly replicating the
normal initiation and progression observed in humans. Unfor-
tunately the majority of the spontaneously arising tumors, at
least in mouse models, do not metastasize, metastasize with a
very long latency or are characterized by intravascular meta-
stases alone, precluding easy and efficient analysis. Fortu-
nately a number of genetically engineered models have been
developed that produce bona fide metastatic disease (see
Table II). These encompass a variety of tissue types, with
differing degrees of penetrance and different latencies. While
it is possible that the constitutive activation or loss of a gene in
these models may not completely replicate native metastasis,
the tumors do arise in their normal context, more closely
replicating the clinical setting and in a system possessing a
functional immune system.

Genetically engineered animal models of metastasis also
permit the investigation of important determinants of cancer
that are difficult or impossible to address using cell culture and
transplant systems including the influence of genetic hetero-
geneity on tumor phenotype. Genetic heterogeneity is known
to have a profound impact on the expression of oncogenic
mutations. For example, in spite of mutations in the tumor
suppressor gene BRCAI1, only 50-60% of carriers in the
Ashkenazi population develop breast cancer, presumably due
to the influence of polymorphic modifier genes segregating in
the population (52). Genetic polymorphisms can have a pro-
found impact on phenotypes for every trait tested to date, even
rescuing prenatal lethal mutations (53,54). Thus, it should
come as no surprise that the efficiency of metastasis might
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also be significantly influenced by genetic background.
Introduction and evaluation of genomic polymorphism,
however, is not feasible using cell culture-based systems.
It requires the meiotic segregation that animal models of meta-
stasis provide to investigate.

That genomic polymorphism plays a major role in metastasis
has been demonstrated using one of these genetically engi-
neered models. Using the polyoma middle-T mammary tumor
model and a breeding scheme, metastatic efficiency was
shown to vary significantly according to the strain combina-
tion (55). Since all of the metastatic tumors were induced by
the same primary neoplastic event, expression of the trans-
gene, the most likely explanation is the influence of the genetic
background. This finding has several important implications.
First, it suggests that individuals might be predisposed to
efficient metastatic involvement before tumor induction,
based on their polymorphic profile. In addition, it suggests
that there may be high-risk metastasis-families in the human
population, analogous to the families at risk for various tumor
syndromes (56). Most importantly, if a significant portion of
their metastasis risk is based on polymorphic profile, rather
than on tumor initiating mutations or subsequent metastasis-
promoting events, then it should be feasible to identify those
individuals at high risk for disseminated disease at the time of,
or preceding, primary tumor diagnosis. This would enable
clinicians to identify those patients who would most benefit
from aggressive neo-adjuvant therapy, reducing subsequent
morbidity and mortality, and sparing low-risk patients from
unnecessary treatment.

Recently, microarray technology has been used to identify
metastatic predictive gene expression signatures in tumor
tissue (57,58). If the metastasis-modifying role of genomic
polymorphism is carried to its logical conclusion, theoretically
it should be possible to obtain a predictive signature from more
easily obtained normal tissues (e.g. peripheral blood or buccal
cavity swab). Using microarray technology and meiotically
segregating metastasis animal models it has recently been
demonstrated that at least some high and low metastatic
genotypes can be distinguished based on expression of a
small set of signature genes, using two normal tissue types
(K.Hunter, L.Lukes and M.Lancaster, submitted for pub-
lication). Whether this holds true in human populations
remains to be seen.

Thus, while genetically engineered models of metastastic
involvement represent only a fraction of the tumor types
requiring investigation, they provide a valuable conduit
into important metastasis-determining factors that cannot
be easily accessed in less expensive, more reproducible
transplant-based systems. A significant disadvantage of
these systems, however, is the expense. While transgenic
tumors metastasize at a higher frequency than spontaneously
arising or chemically induced tumors, the latency for meta-
stases for most is still measured in months. In addition, the
relative penetrance for metastatic disease is often signifi-
cantly lower than that of tumor incidence. As a result
large numbers of animals are often required to be held for
long periods of time in order to generate enough population-
based data for analysis. In addition, due to the variability in
tumor dissemination and penetrance of metastatic disease it
is difficult if not impossible to stage animals or detect the
presence of metastatic disease before death. While recently
developed imaging technologies may help alleviate some of
these problems they are expensive and labor intensive.
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Table II. Examples of genetically engineered animal tumor models with metastatic progression

Rat
Transgene Tumor type % Animals with metastases Latency Site of metastasis Reference
Probascin-Tag Neuroblastoma 64 20 weeks Lymph node 97
Spinal cord
Lung
Mouse
Transgene Tumor type Tumor incidence % Animals Latency Site of Reference
with metastases metastasis
S100A4/MMTV-neu Mammary 50% 12 months Lung 98
Antithrombin III_Tag Liver Reported 8 months Lung 99
Alpha-Amylase-Tag Brown adipose Reported >12 months Liver 100
Lung
Spleen
Heart
Adrenal
Cryptdin2-Tag Prostate 40 6 months Lymph node 101
Lung
Liver
Bone
Ck19-Tag Bladder 20 3 months Lung 102
T7-Pkc Squamous cell 40% 50 6 months Lymph node 103
carcinoma
Mt-Met Mammary Reported 10 months Lung 104
Lymph node
Kidney
Heart
Cecum
MMTV-Wntl Mammary 50% >50% 6 months Lymph node 105
Lung
Nf-2 KO Various 50% 22.4 months Lung 106
Liver
Spleen
Rip-VEGEF-C/RipTag Pancreatic 100% 37% 12-15 weeks Lymph node 107
C3(1)Tag Mammary 100% 10% 7 months Lung 108
C3(1)Tag FVB/129 hybrid Mammary 100% 62% 7 months Lung 108
MMTV-neu Mammary 100% 2% 3 months Lung 109
Wap-ras Salivary/Mammary 100% 14% 6 months Lung 110
MT-HGF/SF Melanoma 22% 21% 15 months Liver 111
Spleen
Skin
H19-1gf2 Mammary 50-100% 38% >9 months Spleen 112
Lung
Liver
Probascin-Tag Prostate 66-88% 6-9 months Lymph nodes 113
Lung
Liver
MMTV-PyMT Mammary 100% >85% 3 months Lung 114
MTB/TAN Mammary 100% 92% Lung 115
Kras/Ink4aKO Pancreas 100% 7-11 weeks Liver 116
Lymph node

A second potential obstacle to the use of genetically engi-
neered mice (GEM), particularly in drug development
relates to patent law. These patent concerns focus on Onco-
Mouse technology, which was issued to Harvard University
and exclusively licensed for most purposes to DuPont Inc
(US Patents 4,736,866, 5,087,571 and 5,925,803). These
patents claim rights in: (i) mice or reagents developed
from any non-human mammal containing any activated
oncogene sequence; (ii) cell lines isolated from the above
mouse model; and (iii) the use of such a mouse model for
drug testing. DuPont has executed agreements with some
academic institutions, the United States Public Health
Service and pharmaceutical and biotechnology companies
(for reference: http://ott.od.nih.gov/textonly/oncomous.htm).
The potentially restrictive effect of these patents on the

use of GEM has been discussed extensively in the scientific
and lay press (59,60). The limited use of GEM by the
pharmaceutical and biotechnology industry may reflect
DuPont exercising its rights under these patents, which
may include claims for ‘reach through’ rights to discovered
therapeutic agents.

Imaging metastasis in the mouse

Several novel imaging strategies including bioluminescence,
magnetic resonance imaging or positron enhanced tomography
scan have been developed for use in mice (61-64). Imaging
studies for metastasis have included the use of biolumines-
cence and fluorescent imaging techniques to evaluate the fate
of single metastatic cells within the mouse. These single-cell
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imaging studies have shed new light on the biology of
metastasis and the interactions of metastatic cells with their
microenvironment early in the process of metastasis (9). The
option to detect metastatic cell clusters and gross metastases
within the whole animal, using imaging, has improved our
understanding of organ-specific targeting of metastases and
has facilitated the inclusion of metastasis endpoints in the
pre-clinical development of new drugs (65,66). In general,
transplantation models of cancer offer greater flexibility for
imaging strategies. Tumor cells may be transfected to
express targets for imaging (e.g. green fluorescent protein,
luciferase) or may be labeled immediately before delivery to
mice (e.g. quantum dots, CMFDA) (9,67,68). GEM that
have imaging constructs included in their design are increas-
ingly available. The expression of ‘foreign proteins’ in
mouse cells (e.g. green fluorescent protein, luciferase) has
been shown to be immunogenic in some syngeneic mouse
models and can influence the biology of cancer models by
both immune and non-immune mechanisms (69). As such,
validation of a model’s metastatic biology is necessary
following labeling modifications.

Comparative models of metastasis

A significant and at present under utilized group of cancer
models are the naturally occurring cancers seen in companion
animals (pet dogs and cats) (70-72). The significant anatomic
and physiologic similarities that exist between dogs and
humans have been the basis for their use in biomedical
research for over 70 years. Dogs continue to be used to define
safety profiles for novel cancer agents destined for use in
human phase I clinical studies. A paradigm shift is now under-
way to include tumor-bearing pet dogs in efforts to understand
the biology and treatment of cancer and cancer metastasis.
Cancer in the companion animal (pet) population is a spon-
taneous disease. In many cases these spontaneous cancers
share many features with human cancers. Companion animal
owners, motivated by the hope of prolonging quality of their
animals’ life, frequently seek out specialized care and treat-
ment from veterinary oncologists at private referral veterinary
hospitals and veterinary teaching hospitals. It has been esti-
mated that there are ~55 million dogs and 60 million cats at
risk for developing cancer in the US. Cancer is the number one
cause of death from disease in dogs. Using crude estimates of
cancer incidence, there are roughly 4 million new cancer
diagnoses made in dogs and a similar number in cats each
year (70,72). This large population of companion animals with
cancer provides an opportunity to include them in studies of
cancer biology and therapy. Examples of such spontaneous
models are listed in Table III and include non-Hodgkin’s
lymphoma (NHL), prostate carcinoma, lung carcinoma, head
and neck carcinoma, mammary carcinoma, melanoma, soft
tissue sarcoma and osteosarcoma. Many factors contribute to
the value of these spontaneous cancers as relevant models for
human cancer and cancer metastasis. These animals share
many environmental risk factors with their human owners
suggesting their value as sentinels of disease (73,74). The
strong genetic similarity between dogs and humans, as evid-
enced by the recent draft of the canine genome project, has
allowed dogs with spontaneous cancers to be used in the
identification of cancer-associated genes (75,76). These can-
cers share tumor biology and behavior with human cancers,
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including metastatic propensity. In most cases the prevalence
of these cancers is sufficient for pre-clinical trials and
biological studies. Furthermore, the lack of ‘gold standard’
treatments allows early and humane testing of novel therapies
and the more rapid progression (compared with humans) and
metastatic failure seen in these pet dogs allow timely comple-
tion of clinical trials.

The biology of cancer in companion animals, as is the case in
human cancers, is dependent on the specific cancer and
has been summarized recently (63). In general, for any given
cancer histology in dogs, the progression can be expected to be
slower than the same cancer in a murine model, however, more
rapid than for the same human cancer. Whereas most murine
models of metastasis are characterized by rapid progression of
metastatic disease; the more expanded ‘investigational win-
dow’ provided by dog cancer models makes them particularly
important for defining agents active against metastasis.
Table III includes a list of naturally occurring canine cancers,
a brief description of each cancer model, its natural biology
and metastatic behavior. For each canine cancer model there
are important similarities and differences from the human
disease. An understanding of both is necessary such that
appropriate questions are asked within a model system and
so that rationale combinations of models are used to answer
more complex problems.

Until recently a significant weakness in the study of cancer
biology in canine cancer models has been the availability of
reagents. The development of novel technologies for molecu-
lar reagents, antibody development, protein expression and
protein-purification has lowered the hurdle for developing
canine-specific reagents to study spontaneous disease. A sig-
nificant advancement in our ability to characterize companion
animal models has and will come from the efforts of the canine
genome project (77,78). A recent report by Kirkness et al.
suggests greater homology between dogs and humans ‘by
several measures’ than either species and the mouse (79).
This genetic similarity and the relatively outbred nature of
companion animals provide a strong rationale for the use of
dogs in biomedical research and more importantly dogs with
spontaneous disease (including cancer). For the more com-
monly studied canine cancers, strong similarities with the
same human cancers (e.g. canine osteosarcoma and canine
NHL) have been shown. Efforts to validate reagents and
further characterize models using more sophisticated techni-
ques have been ongoing within several comparative oncology
laboratories around the world. Contributing to this effort, the
intramural program of the National Cancer Institute’s Center
for Cancer Research has recently launched the Comparative
Oncology Program. The goals of this program will be to facil-
itate the use of companion animal cancers in the process of
cancer research through the characterization of these models
and the design and implementation of pre-clinical translational
trials (http://ccr.nci.nih.gov/resources/cop/).

In vivo models have served as important vehicles to explore
a variety of phenotypes associated with metastatic progression.
They will continue to do so until the time comes when an
in vitro system is developed that faithfully replicates all of the
myriad steps and challenges that disseminating tumor cells
face. Because of the complexity of the metastatic process and
the changing microenvironmental cues and interactions that
a disseminated cell experiences, the development of such an
in vitro assay system is unlikely in the near future. In vivo
models, therefore, must continue to be an important workhorse
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in metastasis research. Selection of an in vivo model must be
tailored to the nature of the question being asked and with full
knowledge of the caveats and inadequacies of each model
system. These models, in conjunction with in vitro modeling
and manipulation of tumor cells, have enabled and will
continue to enable investigators to explore the critical ques-
tions that remain, including the true nature of metastatic dor-
mancy, the role and identity of the microenviromental cues and
the development of agents that can be used to prevent or treat
overt metastatic disease.
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