
Modeling Methodology for Integrated Simulation of Embedded Systems

Akos Ledeczi, James Davis, Sandeep Neema, Aditya Agrawal

Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN, 37235

akos.ledeczi@vanderbilt.edu

Abstract. Developing a single embedded application involves a multitude of different development tools including

several different simulators. Most tools use different abstractions, have their own formalisms to represent the

system under development, utilize different input and output data formats and have their own semantics. A unified

environment that allows capturing the system in one place and one that drives all necessary simulators and

analysis tools from this shared representation needs a common representation technology that must support several

different abstractions and formalisms seamlessly. Describing the individual formalisms by metamodels and

carefully composing them is the underlying technology behind MILAN, a Model-based Integrated Simulation

Framework. MILAN is an extensible framework that supports multi-granular simulation of embedded systems by

seamlessly integrating existing simulators into a unified environment. Formal metamodels and explicit constraints

define the domain-specific modeling language developed for MILAN that combines hierarchical, heterogeneous,

parametric dataflow representation with strong data typing. Multiple modeling aspects separate orthogonal

concepts. The language also allows the representation of the design space of the application, not just a point

solution. Non-functional requirements are captured as formal, application-specific constraints. MILAN has

integrated tool support for design-space exploration and pruning. The models are used to automatically configure

the integrated functional simulators, high level performance and power estimators, cycle accurate performance

simulators and power-aware simulators. Simulation results are used to automatically update the system models.

The paper focuses on the modeling methodology and briefly describes how the integrated models are utilized in the

framework.

1 Introduction

As embedded systems get increasingly complex their development is becoming more and more difficult.

Developing a single embedded application involves a multitude of different development tools including several

different simulators. Functional simulators are used to verify that the selected algorithms do indeed results in the

desired system behavior. High-level performance estimators can be used to obtain early system-wide performance

numbers. Cycle-accurate simulators are used to get accurate performance estimates for individual system

components. They can also be used to simulate the overall system, but this can be very time consuming. Other tools

employed during the development of an embedded system may include different verification, validation and

analysis tools.

Unfortunately, most tools use different abstractions, have their own formalisms to represent the system under

development, utilize different input and output data formats and have their own semantics. Most tools were simply

not designed to work together. Using them in isolation results in replicated effort and the potential for inconsistent

results. A unified environment that allows capturing the system in one place and one that drives all necessary

simulators and analysis tools from this shared representation can alleviate these problems. Because of the

complexity of embedded systems and the wide range of different tools that need to be supported, the common

representation technology at the heart of the environment must support several different abstractions and

formalisms seamlessly.

Each of these individual formalisms is a modeling language and, as such, can be formally described by a

metamodel. The common representation methodology consisting of all the formalisms can be captured by a

composition of these metamodels. The way the composition is done determines how the individual formalisms are

integrated together to form the common modeling language. This kind of metamodel composition is the underlying

technology behind MILAN, a Model-based Integrated Simulation Framework.

MILAN is a model-based, extensible simulation integration framework that facilitates rapid evaluation of

different performance metrics, such as power, latency, and throughput, at multiple levels of granularity of a large

class of embedded systems by seamlessly integrating different widely-used simulators into a unified environment

[Agrawal et al. 2001]. MILAN is based on Model Integrated Computing (MIC) technology [Sztipanovits and

Karsai 1997].

MIC employs domain-specific models to represent the system being designed. These models are then used to

automatically synthesize the applications and/or to generate inputs to analysis and/or simulation tools. MIC is

implemented by the Generic Modeling Environment (GME), a metaprogrammable toolkit for creating domain-

specific modeling environments [Ledeczi et al. 2001]. GME employs metamodels that specify the modeling

language of the application domain. The modeling language contains all the syntactic, semantic, and presentation

information regarding the domain – which concepts will be used to construct models, what relationships may exist

among those concepts, how the concepts may be organized and viewed by the modeler, and rules governing the

construction of models. The modeling language defines the family of models that can be created using the resultant

modeling environment. The metamodels specifying the modeling language are used to automatically configure

GME for the target domain.

GME is used primarily for model-building. The models take the form of graphical, multi-aspect, attributed

entity-relationship diagrams. The static semantics of a model are specified by OCL constraints [Warmer and

Kleppe 1999] that are part of the metamodels. They are enforced by a built-in constraint manager during model

building time. The dynamic semantics are applied by the model interpreters, i.e. by the process of translating the

models to source code, configuration files, database schema or any other artifact the given application domain calls

for.

The metamodeling language is based on the UML class diagram notation [Rumbaugh et al. 1998] extended

to support metamodel composition seamlessly. Composition rules can be expressed by specifying relationships

between the original metamodels, such as equivalence or inheritance. One of the most important aspects of the

composable metamodeling environment is that original metamodels remain intact, they can be used independently

from any composition they may be part of. This ensures that models created using a formalism derived from the

original metamodels are still valid—the fact that their metamodel also participates in a composition does not affect

a model’s ability to function exactly as it did before the composition. Second, the newly composed metamodel

defines a modeling language that is capable of editing models created using the original language [Ledeczi,

Nordstrom et al. 2001].

Metamodel composition has been used extensively in the design of the modeling language of MILAN. The

four main categories of models specify the desired application functionality, available hardware resources, the

mapping between the two and non-functional requirements in the form of explicit constraints. The modeling

language capturing the application functionality is based on dataflow representation. However, it has been extended

to support hierarchy, design alternatives, multiple aspects, parameters, datatypes and both synchronous and

asynchronous dataflow semantics.

The goal of the paper is to describe how a careful composition of a variety of modeling formalisms can result

in a highly domain-specific modeling methodology that supports the unique needs of the complex application

domain of integrated simulation of embedded systems. We shall focus on the application modeling language and

how the models are used in the overall design process supported by MILAN.

2 MILAN Overview

The architecture of MILAN is depicted in Figure 1. GME is configured to support the complex modeling

language of MILAN. It is utilized to build and store the system models. Different model translators use the models

to drive the different tools, mainly simulators. There are several levels of tools. The ones exploring the design space

of the application are located at the top of the architecture. The models typically specify an exponentially large

design-space. However, only a subset of this space satisfies all the constraints specifying requirements. One of the

tools applies a symbolic constraint satisfaction methodology to explore and prune the design-space [Neema 2001

(technical report)].

Once a single design has been selected, different functional simulators can be used to verify the desired

functionality. Currently, Matlab (http://www.mathworks.com), SystemC (http://www.systemc.com) and

ActiveHDL (http://www.aldec.com), a VHDL simulator, are supported. The latter two are used for functional

simulation of components that are implemented in configurable hardware, i.e. FPGAs or ASICs. (Note that the

VHDL code synthesized by MILAN is used only for functional simulation at this time.)

The High-Level Performance Estimator (HiPerE), developed at USC, is able to provide an estimate of overall

performance metrics very rapidly. It implements a course trace-level simulation of the system under development

[Mohanty, Prasanna et al. 2002]. HiPerE depends on accurate component level performance metrics. If these are

not readily available, then cycle-accurate simulators can be applied. Single components at any level of the

hierarchy, an adjacent group of components or even the whole system can be automatically configured for

simulation by any of the supported simulators. Currently, these are SimpleScalar (http://www.simplescalar.org),

CodeComposer Studio (http://www.ti.com), PowerAnalyzer [Shiasi and Grunwald 2000], Armulator, and

SimplePower (http://www.cse.psu.edu/~mdl/software.htm). Simulation results need to be incorporated back in the

models. For some simulators this will necessarily be a human-in-the-loop process, while for most the procedure is

automated in MILAN.

When the simulation results show the desired results, the system synthesis component is used to generate the

final system. Note, however, that currently MILAN only supports software synthesis.

Model translator
driving simulators/toolsiModel translator

feeding-back results
i

System
Generation and
Synthesis Tools

GME 2000

Resource
Models

Application
Models

Constraints

Mapping
Models

Target System

i

Functional
Simulators

High-level
Performance
Estimators

Cycle-Accurate
Performance
Simulators

Design Space
Exploration

Tools

Functional
Simulators

High-level
Power

Estimators

Cycle-Accurate
Power

Simulators

Design Space
Exploration

Tools

ii

i

Figure 1 MILAN Architecture

3 Modeling Methodology

The primary application area of a significant portion of embedded systems is signal processing. The most

natural, and, hence, widely used formalism for signal processing systems is arguably dataflow. Consequently, the

MILAN application modeling language is based on a dataflow representation. The unique requirements of the

domain, namely the need to support a wide variety of applications, many existing simulators and multi-granular

simulation, lead to several extension to the basic dataflow representation. The MILAN application modeling

language supports hierarchy to help handle system complexity, and explicit design- and implementation alternatives

to capture the design space of the application as opposed to a point solution.

 Furthermore, different additional formalisms were incorporated to extend the baseline modeling language

using metamodel composition. These are:

• data type modeling to support strongly typed dataflow,

• a formalism related to dataflow, but specifically tailored to modeling application functionality that is to be

implemented in configurable hardware, i.e. FPGAs or ASICs,

• parameter modeling to enable parametric dataflow,

• constraint representation to guide the design space exploration process that identifies the candidate solutions.

Finally, both asynchronous and synchronous dataflow, as well as their composition are supported. In the

following section we show how the formalism for data type modeling and the composition of asynchronous and

synchronous dataflow are done in MILAN. Parametric dataflow, constraint representation and the other related

formalism are integrated into the baseline dataflow language utilizing metamodel composition in a similar manner.

3.1 Dataflow

A dataflow graph consists of a set of compute nodes and directed links connecting them representing the

flow of data. A flat graph representation does not scale well for complex systems, so we extended the basic

methodology with hierarchy. We also added the capability to capture explicit design or implementation alternatives.

Figure 2 shows the metamodel of the basic MILAN dataflow modeling language using UML class diagram

notation.

Component and CompoundBase are abstract base classes that help capture common characteristics of the

three main concrete dataflow classes: Primitive, Compound and Alternative. Compounds are the composite

dataflow nodes; they contain dataflow graphs themselves. Alternatives contain other dataflow components, but they

represent alternative designs or implementations for the given functionality. Only one of them will be chosen for

system instantiation.

Primitives are the leaf nodes in the hierarchy. They have scripts associated with them representing their

implementation. A script is a function written in a traditional programming language such as C, Java or Matlab.

Notice that Compounds and Alternatives can also have scripts since it is the Component class that contains the

ScriptBase abstract base class. (The little curved arrow in the lower left corner of ScriptBase indicates that it is a

class proxy, i.e. a class that is defined elsewhere in the metamodels. In this case, ScriptBase has several concrete

subclasses, one for each programming language supported. They are specified in a different metamodel sheet.)

Compounds and Alternatives having scripts support one form of multi-granular simulation. When a certain

subsystem does not need to be simulated in its entirety, a simple script can substitute a whole subtree of the system.

Figure 2 Hierarchical dataflow language with alternatives

Ports capture the input and output interfaces of components. Compounds contain DFConn connections that

are associations between ports representing the flow of data. Notice that connecting an output port of a Primitive to

an output port of another Primitive does not make sense, yet the metamodel allows it. On the other hand, notice that

because of the hierarchy it is not true that the only kind of dataflow connection needed is one connecting output

ports to input ports. For instance, each input port of Compounds must be connected to at least one input port of a

contained component. The modeling approach we selected allows the generic Port to Port dataflow connection in

UML and uses a set of OCL constraints to specify the precise static semantics of it, i.e. the well-formedness rules of

models containing dataflow connections. For example, the constraint

connections("DFConn")->forAll(c |

 c.source.kind = c.destination.kind implies

 c.src.parent <> c.dst.parent)

is attached to Compounds. It specifies that no dataflow connection may connect two ports of the same kind (output

or input) of the same component.

Finally, Alternatives contain AltConn connections that describe how the Ports of the given Alternative need

to be mapped to the Ports of each of its contained components.

3.2 Synchronous and Asynchronous Dataflow

There is extensive literature on various dataflow representations. At the two ends of the spectrum are

synchronous and asynchronous dataflow. With synchronous dataflow, the exact number of data tokens produced

and consumed at all input and output ports of every node is fixed and known. Consequently, all valid synchronous

dataflow graphs have static schedules [Lee and Messerschmidt 1987]. However, the expressive power of the

synchronous dataflow graph model is limited; not all systems can be described with it. The asynchronous dataflow

model has no such limitation. The number of tokens produced and consumed is not known until runtime and can

vary over time. Hence, asynchronous dataflow graphs can only be scheduled dynamically at runtime causing some

overhead.

There have been many extended dataflow models proposed [Bhattacharya et al. 2000]. Most of them are

more general than the basic synchronous dataflow, but are still statically schedulable. However, none of these

solutions has been widely adopted. Instead of choosing one of them, we decided to support the two basic solutions

both with precisely defined interaction semantics (described later).

MILAN has separate metamodels for the synchronous and the asynchronous dataflow languages. They both

look almost identical to the one shown in Figure 2. The only difference between the two from a syntactical

perspective is that synchronous input and output ports have token attributes specifying the number of data tokens

consumed and produced respectively, while asynchronous ones do not. Since there is only a small difference

between the two metamodels, we use inheritance; the synchronous dataflow metamodel as a whole is inherited from

the asynchronous dataflow metamodel. A single new attribute, the token, is added to the synchronous port

metamodel. Not only do we reuse the whole asynchronous dataflow metamodel avoiding duplication of effort, but

we also ensure consistency. Any subsequent changes to it automatically propagate to the synchronous dataflow

metamodel. This is a good example for metamodel composition at the macro level.

MILAN also allows composing asynchronous and synchronous dataflow graphs together according to the

rules captured in the metamodel shown in Figure 3. Note the use of class proxies that refer to existing classes

defined in different metamodel sheets. This is the preferred way of doing metamodel composition in GME. The

original metamodels are unchanged and a new metamodel sheet is introduced where the original concepts from

multiple metamodels are referred to by class proxies. New concepts are introduced here, as well as new associations

that compose the metamodels together. For the composition in Figure 3, it is done the following way.

Figure 3 Asynchronous and synchronous dataflow composition

It is allowed for an asynchronous dataflow graph (ACompoundBase, i.e. Compound or Alternative) to

contain a synchronous Component (SyncComponent), i.e. a subgraph (refer to Figure 2). Similarly, a synchronous

dataflow Alternative (SyncAlternative) can contain an asynchronous component (AsyncComponent). The ports of

the synchronous alternative have the number of tokens specified. These ports are then mapped to the appropriate

ports of the asynchronous component. Having the port mapping information is the reason that it is only

synchronous Alternatives that can contain asynchronous components. Otherwise, no token information would be

available. In order to be able to connect the synchronous and asynchronous components in a composed dataflow

graph, two new kinds of connections are also introduced in Figure 3 (A_to_S_ALT and APort_to_SPort).

In addition to the syntactical definitions, the composition of synchronous and asynchronous dataflow

requires a careful definition of dynamic semantics. A synchronous component embedded in an asynchronous model

has its own static schedule, so it behaves just as a single node would from the containing asynchronous graph’s

scheduler’s point of view. However, it needs to be scheduled when all of its inputs have at least the number of

token specified. (It can have more since it will just leave the surplus for the next scheduling round.) To ensure this,

an asynchronous “wrapper” is generated around the synchronous component of the model. This will obtain the

necessary input data and call the synchronous script whenever enough data is available at the inputs. It is also the

wrapper’s responsibility to pump the output data into the dataflow using the appropriate API calls of the

asynchronous runtime system.

The other case, a synchronous dataflow model containing an asynchronous component, is more involved.

The boundary conditions of the contained asynchronous component are specified by the synchronous Alternative

container and its port mappings. The contained asynchronous component needs to have its own scheduler. It is its

responsibility to satisfy the boundary conditions, i.e. that it consumes and produces exactly the number of tokens.

The static schedule of the synchronous dataflow graph contains the appropriate calls the asynchronous component’s

scheduler that, in turn, runs the graph until it produces the appropriate number of output tokens. The strict

requirements of the boundary conditions can be relaxed somewhat. It is enough to consume no more tokens than

what is specified on the input and on the output side, at least the specified number of tokens needs to be produced.

However, the asynchronous scheduler itself needs to implement the buffering. Furthermore, the average number of

tokens consumed and produced over a longer period needs to equal to the boundary conditions, to ensure that no

buffer overruns or underruns occur. It is the user’s responsibility to satisfy these requirements when designing the

asynchronous subsystem.

Hierarchical composition of different models of computation (MOC) has been extensively studied in the

Ptolemy project [Davis et al. 2001]. Ptolemy allows mixing MOC-s freely, even though some such heterogeneous

models may be semantically incorrect. MIC, as illustrated by MILAN, takes a more conservative approach.

Composition is controlled by precise rules captured in the metamodels. These define the syntax and static semantics

of the composite modeling language. Dynamic semantics are implemented similarly in both systems. Ptolemy uses

directors, while MIC employs model interpreters; both are software components written in a traditional

programming language.

3.3 Data types

Data type models in MILAN are used for several purposes. First of all, to accurately simulate communication

performance, the amount of data exchanged needs to be captured. Furthermore, as data type models are attached to

dataflow components, or more precisely to their input and output ports, they define the interface of those

components. When the components are attached using dataflow connections, their interfaces are checked to ensure

that only compatible components are connected. Finally, the data type models are also used to generate the

corresponding definitions in the target programming language ensuring consistency.

The MILAN data type modeling language allows the specification of both simple and composite types.

Simple types, such as floats and integers, specify their representation size, i.e. the number of bits used. Composite

types can contain simple types and other composite types. Attributes of the fields specify extra information such as

array size or signed/unsigned type. All data types supported by the C programming language can be modeled in

MILAN. Preexisting data types, specified in a DSP library for example, can also be modeled. Their name and size

in bytes are the only information MILAN requires.

To describe the entire type system of a given application, all the necessary data types and their relations need

to be modeled. If a given simple type can be converted to another without loss of precision (or with a loss of

precision that is acceptable for the given application), they need to be connected with a directed connection. If a

given simple or composite type can be converted to another with a conversion function, then they need to be

connected together through a converter model that specifies the conversion function in the target programming

languages. This way, the data type models form a directed, possibly disconnected, graph. A directed path from a

node to another one means that there is a valid conversion from the source data type to the destination one. The

model interpreters when parsing the dataflow graph of the application insert the necessary conversion functions

automatically. Furthermore, correct typing is enforced during model building time. This is accomplished by a set of

constraints that only allow connecting ports whose types are compatible.

The Ptolemy system employs a similar technique [Lee and Xiong 2000]. They define a type lattice to capture

what simple types can be losslessly converted to another. Our approach allows composite types as well.

Furthermore, we allow the insertion of explicit converters to provide user-defined, application-specific type

conversions.

The synchronous and asynchronous dataflow and the data type modeling languages are composed together

according to the metamodel in Figure 4. The only new concept is the TypeConnection connection between dataflow

Ports and the TypeRefBase abstract base class. Both this connection and the TypeRefBase itself can be inserted into

both synchronous and asynchronous components. TypeRefBase represents a reference to data type models defined

elsewhere in the MILAN application models. TypeConnection assigns the referred type to the given port. OCL

constraints ensure that every port has exactly one type specification and that dataflow connections are only allowed

between ports having compatible data types.

Figure 4 Composing data typing with the dataflow languages

3.4 Multiple-aspect modeling

Notice that the MILAN application modeling language is quite complex. However, the dataflow, data type

specification and parameter modeling are largely orthogonal concepts. Therefore, they can be separated into three

different aspects. In the Dataflow aspect, only Components, Ports, dataflow- and alternative connections are shown.

In the Type aspect, Ports, Parameters, ParameterPorts and data type references are displayed. Finally, Components,

Parameters, ParameterPorts and their corresponding connections are visible in the Parameter aspect. Multiple-

aspect modeling is a natural way to implement separation of concerns.

3.5 Resource and Mapping Models

The resource modeling language allows the description of the target hardware architecture at a coarse

granularity in order to allow the configuration of lower level simulators such as SimpleScalar [Burger and Austin

1997]. The resource models are also utilized by the High-Level Performance Estimator [Mohanty et al. 2002]. The

main concepts include compute nodes (processor cores, FPGAs, ASICs), memory (cache, main memory) and

interconnects. Each of these has several attributes capturing performance characteristics. Resource modeling is

beyond the scope of this paper. More details can be found in [Mohanty et al. 2002].

The dataflow needs to be mapped to the available hardware resources. In MILAN this is modeled using

references; each dataflow component can contain one or more references to compute nodes. Multiple references

imply a choice extending the design space of the application. The mapping model is important since this is where

the performance attributes of individual dataflow nodes, such as worst case execution time, power consumption,

throughput, etc., need to be captured. The justification for this is simple; a given algorithm will have significantly

different performance running on a 100MHz DSP, a 1.5GHz RISC processor or an ASIC, for example.

4 Simulation Integration

MILAN simulations fall primarily into four categories: design space exploration tools, functional

simulations, high-level performance and power estimations, cycle accurate performance and power simulations.

Functional simulators are used to verify the correctness of the modeled system (typically without regard to the

resources used) and its algorithms. High-level estimators are used to quickly estimate performance, energy, and

power characteristics of the modeled system. They use the results provided by cycle accurate and power aware

simulations of subsystems in calculating the system level performance and power estimates.

4.1 Design space exploration and pruning

Given the flexibility in defining design alternatives and configuration parameters, the design spaces for the

systems represented can be extremely large. However, it is expected that only a subset of these designs will satisfy

all the constraints and, hence, meet the design goals. Thus, a design space exploration method is desired to be able

to rapidly navigate, and prune this large design space to select feasible design alternatives, and configuration

parameters, that satisfy the user-defined constraints. Given the size of the design space, and the complexity of the

analysis, a powerful, scalable analytical method was developed previously [Bapty et al. 2000]. We are extending

this basic approach to add support for parametric constraints, and exploration in the parameter space. Next we give

a brief overview of the Ordered Binary Decision Diagram-based (OBDD) [Bryant 1986, Bryant 1992] design space

exploration.

The design space exploration method relies on a symbolic Boolean representation of the space. A binary

encoding is defined over the member elements of this space. Given this binary encoding every element can be

represented with a Boolean function. The entire space can be symbolically represented as a conjunction over the

Boolean representations of individual elements. OBDD-s represent Boolean functions as directed acyclic graphs in

a memory efficient format. The operations over these functions are implemented as graph algorithms, thus

rendering “manipulation” of the space fast and efficient. Logical (compositional) constraints can be solved with

ease with this symbolic Boolean representation. The logical relation expressed in the constraint over the elements

of the design space is simply transformed to a logical relation between the Boolean representations of these

elements. The resultant expression represents symbolically the “constrained” design space. Performance

constraints can also be solved, however the mapping is non-trivial [Neema 2001].

The power of this approach is the fact that it obviates the need for exhaustive combinatorial enumeration of

all design choices. The entire design space can be symbolically evaluated without enumerating individual design

points, thus rendering the approach highly scalable and desirable for exploring large design spaces. In general, the

approach scales well, however, in large design spaces with many constraints simultaneously applied an exponential

explosion of the OBDD can occur. To address this problem, hierarchical constraint processing is supported. The

constraint processing is done hierarchically with constraints scoped to a particular level; i.e. constraints are applied

to sub-spaces first, pruning them to the extent possible and then progressing upwards in the hierarchy. This

technique is very effective when there are a large number of constraints with a limited scope.

The design space exploration step, progresses by iteratively applying the constraints. Each constraint

application results in a pruning of the space. Moreover, the pruned design space contains only the designs that are

“correct” with respect to the applied constraints. When the initial design space is reduced to a manageable number

of designs, the designer can progress to the next step of design simulation. Notice that some conflicting constraints

may result in the elimination of the design space altogether, i.e. no design satisfies all the constraints

simultaneously. In this case, some of the constraints must be relaxed.

4.2 Simulators

Functional simulators that are used with MILAN include using MATLAB as a simulation engine [Eames

2001] and SystemC [Ruf et al. 2001]. MATLAB or SystemC code can be generated from a selected system

configuration to allow verification of the implemented algorithms. Integration of multiple functional simulators

allows the user to utilize her language of choice when verifying the algorithms.

HiPerE [Mohanty et al. 2002] is a high level performance estimator developed along with and integrated into

MILAN. HiPerE is used to provide rapid estimation of performance, power, and energy for a given system

configuration. The primary purpose to HiPerE is to allow a user to rapidly estimate system performance, power,

and energy without the computational time required by a cycle accurate simulation. HiPerE can utilize results from

more accurate simulators of subsystems through the feedback mechanism discussed in section 4.4. As there is a

tradeoff between accuracy of the simulation and the time required to perform the simulation, HiPerE is not intended

as a substitute for cycle accurate simulations.

SimpleScalar [Burger and Austin 1997] is one of the cycle accurate simulators integrated into MILAN.

SimpleScalar supports superscalar architectures and produces detailed performance data. Since SimpleScalar takes

straight C code as its input, the generated code can also be compiled and natively executed. In that sense, driving

SimpleScalar is very similar to system synthesis (refer to Figure 1). Due to the time complexity of running a

simulation, SimpleScalar is primarily used to accurately simulate a subsystem and feed these results back into the

models for use by high-level simulations.

One of the power and energy simulators integrated into MILAN is PowerAnalyzer [Shiasi and Grunwald

2000]. It is an extension of SimpleScalar targeted at power and energy usage estimation.

4.3 Model translation

Dynamic model semantics are assigned to the models by model interpreters. They are effectively translators

that map the design models to executable models that are, in turn, executed by the different simulation engines or

runtime systems. Model interpreters traverse the application and resource models and generate the information

necessary to drive the individual simulators or runtime kernels. The information takes many forms: source code,

configuration files, static schedules, etc.

Several different types of interpretation can be performed on each set of models. A full simulation takes a

full system specification and produces a simulation. A multi-granular simulation allows the user to specify high-

level functions for selected Compound or Alternative models. These high-level functions are then deployed in the

generated simulation instead of executing the details of the subsystem models. This scenario is useful when a full

system simulation is desired, but there are some selected subsystems that are of particular interest. The rest of the

components can be substituted so that they fulfill their responsibility in consuming and producing realistic data, but

do not waste valuable simulation resources. Isolated simulation is a similar concept. When the user wants to

simulate only a single subsystem, the selected sub-graph is treated in a similar manner to a full simulation, but any

nodes feeding data to or receiving data from the sub-graph are simulated using a simulation script. This script acts

as a data producer or consumer and should be lightweight in complexity with respect to the rest of the model since

it will be part of the simulation. The simulation scripts are simulated along with the sub-graph of the model that is

of interest.

Interpreters typically produce native code for both asynchronous and synchronous dataflow models as well

as hardware models. This generated glue code ensures that the components, whose implementation is provided by

the user in the form of the scripts, are correctly used. For example, the data type models are used not only to insure

that dataflow connections are type consistent but also to generate data type definitions in the target language

ensuring consistency. For synchronous dataflow models, a static schedule is also generated along with the source

code.

The hardware application interpreter interprets the hardware application models to generate hardware

description code. Currently, SystemC and VHDL is supported. Since both allow hierarchy, the hardware interpreter

doesn’t flatten the models. Unlike the dataflow interpreters, it maintains the hierarchy in the generated code.

Heterogeneous simulation is another form of multi-granular simulation. It allows the concurrent simulation

of hardware and software, i.e. dataflow. In this case, a dataflow node is generated for each hardware-dataflow

connection to facilitate communication between the heterogeneous components. Since these nodes use TCP/IP for

communication, distributed simulation is transparently supported.

4.4 Feedback of simulation results

Another type of interpreter MILAN requires is the feedback interpreter. These interpreters are always

simulator-specific as they must deal with the simulator output. They are used to interpret simulation results,

manipulate the produced data, and insert the required performance, power, and energy estimates back into the

models in the form of performance attributes of the mapping models (refer to section 3.5). See Figure 1 to see how

these interpreters fit into the MILAN architecture.

Feedback is required to ensure that results from low-level, accurate simulators can be used by the high-level

performance and power estimators, such as the HiPerE, to perform system level performance, power, and energy

estimates. By increasing the accuracy of its inputs, HiPerE can provide a more accurate system level estimate.

Integrating these results into the models and then utilizing them at higher levels of the architecture is referred to as

Vertical Simulation, another form of multi-granular simulation. It provides accurate system level performance

estimates without requiring detailed and time consuming low-level simulation of the entire system.

5 Example Application

Embedded image processing systems and specifically, embedded missile Automatic Target Recognition

(ATR) systems face many challenges due to extremely large computational requirements and physical, power, and

environmental constraints [Nichols and Neema 1999]. Thus, ATR is a good example to demonstrate some of the

capabilities of MILAN. The ATR algorithm is based on correlation filtering [Mahalanobis et al. 1996]. Figure 5

shows the signal flow of the ATR algorithm. Each image of the input image stream is sequentially preprocessed

then transformed into the frequency domain. The copies of this spectral image are then multiplied by the filter

correlation matrices for multiple classes of targets of interest in parallel. The results for each of the classes are then

inverse frequency domain transformed to give the correlation surface maps associated with each of the classes. The

strongest correlation peaks for each image class are compared with the reference classes to yield the closeness

measures. These measures are used to determine the class for the object in the image associated with the correlation

peaks.

Input Image
Stream

Preprocessing 2D FFT Multiply

Class
Filter
Banks

2D IFFT
Class

Distance
Calculation

Class
Determination

Display
Result

Peak
Detection

Figure 5: ATR application block diagram

Typically, the design of a system using the MILAN framework begins with the definition of the application

models. In this phase, the user determines the algorithm to be implemented and how to represent the algorithm

with MILAN. Given the size of the ATR application and the large number of design choices, both hierarchy and

alternatives are used extensively in modeling this algorithm. Figure 6 shows a model of one section of the ATR

algorithm. Each of the individual components have implementations specified in Matlab code (for functional

simulation), and eventually, in C code.

Figure 6: Peak detection model of the ATR application

After completing the application models, the user can employ a functional simulator to ensure the

application is functionally correct. Individual modules can be tested using the isolated simulation capabilities of

MILAN. In isolated simulation, the user supplies data source and sink scripts for a given model and then utilizes

the model interpreters to create a functional simulation of only the component being investigated. This allows the

user to run a functional simulation on any component, or set of components, in the application models. The user

can use the model interpreters to generate a functional simulation of the entire system once the individual

components are verified. For the ATR example, MATLAB was used to functionally verify both the individual

components and the entire application. Figure 7 shows a functional simulation of the ATR.

After the algorithm has been verified through functional simulation, the next step in the ATR design is

resource modeling. In this step the target resources are modeled as per the resource-modeling language. This

modeling phase ends with capturing non-functional requirements as constraints both in the application- and the

resource models. Application models and resource models are mapped in a Configuration model that is used to

capture which application sections will be executed on which resources.

Once the application mapping has been examined, the user needs to implement the individual components

in the required languages. If a component can be realized on many different hardware platforms, several

implementations may be required. However, users can utilize the library features of GME to reuse existing

application and resource models. Once an application model has been functionally verified, it may be reused in

other projects, eliminating the need for re-verification of that model.

Figure 7: Simulation of ATR

The design space exploration (DSE) tool can be used to evaluate the user-specified constraints and to prune

the design space, resulting in a few design configurations. The overall design space of the ATR application

included 160 possible configurations. After DSE was applied, the design space shrank to only 2 viable options (due

to an iterative process of fine-tuning both models and constraints). Note also, that DSE has been used on systems

with large (10,000+) configuration spaces. At this point in the design cycle, the user can employ HiPerE for

performing system level estimation for the valid system configurations. Both DSE and HiPerE make use of the low

level performance and power parameters in calculating system level performance and power properties – their

results are only as accurate as the individual performance and power parameters supplied.

Once the configurations are selected, the user can progress to detailed simulation or to system synthesis.

(note that for system synthesis, the application software, VHDL code, and target-runtime specific configuration

scripts are generated). This requires the invocation of one of many simulation interpreters, based on the desired

simulation target. The output of the simulation interpreter is fed to the target simulator. The ATR application was

executed under SimpleScalar to discover more accurate performance characteristics. Since the ATR was targeted

for a MIPS architecture and no instrumented hardware was available, the SimpleScalar system simulation was used

to verify HiPerE’s results. Table 1 shows the results from the ATR system design. Also included in this table are

the individual latencies of several of the ATR components from cycle accurate simulation with SimpleScalar.

 C67 hardware HiPerE SimpleScalar
(MIPS @ 600MHz)

%
Error

Image_cvt 7 ms 1142202 cycles
2DFFT 20 ms 5034249 cycles
2DIFFT 20 ms 5428790 cycles
Calc_psr 17 ms 2794058 cycles
Calc_dist 28 ms 1342254 cycles
Mulitply 7 ms 3549552 cycles

Calc_mean_std 2 ms 2150194 cycles

ATR
Application

 6.8768 E7 cycles 7.2206 E7 cycles 5.0

ATR
Application

133.9 ms 102.3 ms 30.9

Table 1: MILAN ATR Simulation Results

MILAN was also used for system analysis and synthesis of the ATR application on a multiprocessor TI

C67 DSP system. Table 1 also contains performance information about the ATR application and components

targeted for the C67 platform. Individual components and the full application were developed with MILAN and

executed on the hardware. HiPerE was used to estimate the overall system performance based upon the component

latencies.

These experiments were preformed to evaluate the MILAN approach and components for system design.

The relatively large error between HiPerE and the hardware for the multiprocessor system can be attributed to the

network latencies not being included in the component latency values. Further work is planned so that HiPerE can

include the message passing overhead in system level estimation. This should eliminate much of the error present

in the current experiment.

6 Related Work

Several different research topics deal with individual areas addressed by MILAN. It is important to note

that while others are performing research on synthesis of embedded systems, co-design environments and tools,

design space exploration, and simulation tools, none of these efforts have the same goals as MILAN. MILAN aims

to develop an open, extensible, simulation integration environment. By making the tools infrastucture user

extensible, MILAN has the ability to integrate other researcher’s results into the environment, thereby extending its

capability.

At first glance, MILAN application models look similar to Simulink models. Simulink

(http://www.mathworks.com) is a tool-suite included in MATLAB for graphical system modeling and functional

simulation. However, with MILAN the user can construct models using a richer set of modeling capabilities.

Simulink models cannot be used to represent asynchronous system behavior or the hardware resources available for

system implementation. MILAN does make use of some of the same concepts as Simulink, as it is a well

understood and widely used graphical modeling formalism.

Ptolemy [Davis 2001] is a toolset to provide for the modeling and simulation of embedded systems. It

makes use of several “models of computation” and allows the user to compose systems from models constructed

using the various supported modeling formalism. Ptolemy does not focus on the performance or power

characteristics of the modeled systems, which is a major focus of MILAN. The use of “domain heterogeneous”

models is a thrust in Ptolemy, where MILAN models are domain specific. Ptolemy utilizes many different

embedded system modeling technologies such as dataflow, discrete-event, process networks, synchronous/reactive,

and finite-state machine to represent embedded systems. The MILAN data flow modeling language is similar to

Ptolemy’s with the exception that MILAN supports both asynchronous, synchronous, and mixed asynchronous and

synchronous data flow models.

Polis [Blarin 1997] provides a hardware software co-design environment for embedded micro-controllers.

The design environment also supports the synthesis of the modeled systems. A single modeling formalism, the co-

design finite state machine model [Chiodo 1993], is used for designing both the hardware, software, and

partitioning of the resulting system in the toolset. By supporting multiple modeling formalisms and multiple

simulation engines, MILAN potentially appeals to a wider set of users.

There are several different ongoing research projects focusing on design space exploration. One of these

efforts focuses on utilizing genetic algorithms [Givargis 2002] to determining the optimal parameter settings for the

components of a SoC hardware. In the future, MILAN may make use of similar techniques, but currently

parameter optimization is not a goal of MILAN. Other techniques focus on topics ranging from hardware and

software partitioning in embedded systems [Azzedine 2002] to utilizing simulation environments for design space

exploration [Middha 2002] of VLIW processors. The MILAN design space exploration focus is on allowing the

user to model a large set of possible design alternatives and to then apply user-supplied constraints to ensure these

constraints are met. In MILAN, design space exploration is the automatic elimination of system configurations that

will not meet the power or performance constraints from consideration.

Another area of research that MILAN is often compared to involves co-design environments and tools. Co-

design environments are utilized to develop and synthesize hardware and software systems in synergy. In MILAN

simulation engines are utilized to evaluate design options for further study and implementation. Hardware systems

are not designed, but are rather only represented. While system synthesis is a feature of MILAN, only the system

software components and VHDL code segments (for functional simulation) are generated. Once the capability is

available with the SystemC tools, we will be able to synthesize VHDL for implementation using the SystemC

models. MILAN is primarily an extensible simulation integration platform and not a co-design environment.

[Cortes 1999] provides an excellent survey of co-design modeling techniques and a comparison of their

various features and advantages. While many of the described modeling languages are not supported in MILAN, it

is important to note the significance of dataflow graphs in their survey. Due to the extensibility of MILAN, other

modeling languages could be integrated in the future.

7 Conclusions

The framework described in this paper attempts to fulfill an important void in the area of embedded

systems design – that of simulation integration. There is a large body of research in developing simulators for

several properties of interest for embedded systems. Most of these are architecture specific, domain-specific, have

different levels of simulation granularity, have their own proprietary interfaces, and specific input/output formats.

The challenge arises when there is a desire to simulate the same target system with different simulators. The

system designer is faced with issues of maintaining consistency, when presenting the same system design to

different simulators in their specific formats, interpreting the results of the simulator and incorporating those back

in the design.

Our research demonstrates the potential of Model-Integrated Computing in providing a unified

environment for multi-granular simulation of embedded systems. Driving different simulators using automated

model interpreters from the same set of models representing a system design, helps maintain consistency and

improves design flexibility. Deriving simulations at multiple-levels of granularity helps the system designer in

performing rapid trade-off decisions and helps elevate time-to-market pressures. Further, there is a potential of

automatically synthesizing systems from the models.

Specifically, in this paper we have attempted to illustrate many issues in computer automated multi-

language modeling, using the Model-based Integrated Simulation Framework (MILAN) project as a vehicle. We

illustrated the use of UML class diagram-based metamodels along with OCL constraints to define the syntax and

static semantics of a highly domain-specific modeling language. Metamodel composition techniques were used to

combine different modeling formalism, such as synchronous and asynchronous dataflow, data type systems,

hardware architecture and behavior modeling. We also demonstrated separation of concerns with multiple aspects,

and how it could be utilized effectively in managing design complexity.

The framework presented here has been applied to several small-to-medium design projects with significant

success. While metrics have not yet been collected, experience indicates improved designer productivity, and

higher design efficiency. As a final concluding note, significant efforts are required to transition the framework

from a research prototype to a commercial quality, widely accepted design and simulation framework.

8 Acknowledgements

The research described in this paper is sponsored by the DARPA ITO Power Aware Computing and

Communications program. The MILAN project is a joint effort of Prof. Viktor Prasanna’s group at the University

of Southern California and the Institute for Software Integrated Systems at Vanderbilt University.

9 References

AGRAWAL, A. ET AL. MILAN: A Model Based Integrated Simulation Framework for Design of Embedded

Systems, Workshop on Languages, Compilers, and Tools for Embedded Systems (LCTES 2001), Snowbird, Utah,

June 2001.

AZZEDINE, ET AL., Large Exploration for HW/SW Partitioning of Multirate and Aperiodic Real-Time Systems,

Proceedings of the 10th International Symposium on Hardware/Software Codesign, Colorado, May, 2002.

BAPTY, T. AND ABBOTT B., Portable Kernel for High-Level Synthesis of Complex DSP-Systems, Proceedings

of the International Conference on Signal Processing Applications and Technology, Boston, MA, May, 1995.

BAPTY, T., ET AL., Model-Integrated Tools for the Design of Dynamically Reconfigurable Systems, VLSI

Design, 10, 3, pp. 281-306, 2000.

BHATTACHARYA, B. AND BHATTACHARYYA, S. S., Parameterized dataflow modeling for DSP systems.

IEEE Transactions on Signal Processing, 49(10):2408-2421, October 2001.

BLARIN, ET AL., Hardware-Software Co-Design of Embedded Systems: The POLIS Approach”,

Kluwer Academic Publisher, Massachusetts, 1997.

BRYANT, R. E., Graph-based algorithms for Boolean function manipulation, IEEE Transactions on Computers, C-

35(8), 1986.

BRYANT, R. E., Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams, Technical Report

CMU-CS-92-160, School of Computer Science, Carnegie Mellon University, June 1992.

BURGER, D. AND AUSTIN, M., The SimpleScalar Tool Set, Version 2.0, Computer Architecture News, 25 (3),

pp. 13-25, June, 1997.

CHIODO, ET AL., A Formal Specification Model for Hardware/Software Codesign, Proceedings of the

International Workshop on Hardware-Software Codesign, October, 1993.

CORTES, ET AL., A Survey on Hardware/Software Codesign Representation Models, SAVE Project Report,

Department of Computer and Information Science, Linkoping University, Sweden, June 1999, available at

http://www.ida.liu.se/labs/eslab/publications/pap/db/SAVE99.pdf.

DAVIS, J., ET AL., Overview of the Ptolemy Project, Technical Memorandum UCB/ERL M01/11, 2001

EAMES, B., Integrating High-level Simulation into a Model-Integrated Embedded System Design Toolset,

Master's Thesis, Vanderbilt University, Department of Electrical and Computer Engineering, May 2001.

GIVARGIS AND PALESI, Multi-Objective Design Space Exploration Using Genetic Algorithms, Proceedings of

the 10th International Symposium on Hardware/Software Codesign, Colorado, May, 2002.

HELBIG, J., KELB, P., An OBDD Representation of Statecharts, Proceedings of the European Conference on

Design Automation, pp. 142-151, Paris, France, 1994.

LEDECZI, A., ET AL., Composing Domain-Specific Design Environments, Computer, pp. 44-51, November,

2001.

LEDECZI, A., NORDSTROM, G., ET AL., On Metamodel Composition, Proceedings of the IEEE CCA 2001,

CD-Rom, Mexico City, Mexico, September 5, 2001.

LEE, E. A. AND MESSERSCHMIDT, D. G., Static scheduling of synchronous data flow programs for digital

signal processing. Transactions on Computers, C36 (1):24 --35, January 1987.

LEE, E. A. AND XIONG, Y., An Extensible Type System for Component-Based Design, Sixth International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'2000) March 2000,

Berlin, Germany

MAHALANOBIS, A., KUMAR, B. V. AND SIMS S. R. F., Distance-classifier correlation filters for multi-class

target recognition, Applied Optics, Vol. 35, No. 17, pp3127-3133, 10 June 1996.

MIDDHA, ET AL., A Trimaran based framework for exploring design space of VLIW ASIPs with coarse grain

Fus, Proceedings of the 15th International Symposium on System Synthesis, Kyoto, Japan, October, 2002.

MOHANTY, S., ET AL., HiPerE: A Framework for Rapid System Level Power and Performance Estimation of

Embedded Applications on SoC/SoP Architectures, submitted to Design, Automation, and Test in Europe (DATE

2002), March 2002.

MOHANTY, S., PRASANNA, V., ET AL., Rapid Design Space Exploration of Heterogeneous Embedded Systems

using Symbolic Search and Multi-Granular Simulation, Workshop on Languages, Compilers, and Tools for

Embedded Systems (LCTES), Berlin, Germany, June, 2002.

NEEMA S., System Level Synthesis of Adaptive Computing Systems, Ph. D. Dissertation, Vanderbilt University,

Department of Electrical and Computer Engineering, May 2001.

NEEMA, S., Design Space Representation and Management for Model-Based Embedded System Synthesis, ISIS

Technical Report #ISIS-01-203, February, 2001.

NICHOLS, K. AND NEEMA, S., Dynamically Reconfigurable Embedded Image Processing System, Proceedings

of the International Conference on Signal Processing Applications and Technology, Orlando, FL, November, 1999.

RUF, J., ET.AL., The Simulation Semantics of SystemC, Proceedings of Design, Automation, and Test in Europe

(DATE 2001), pp. 64-70, March 2001.

RUMBAUGH, J., JACOBSON, I. AND BOOCH, G., The Unified Modeling Language Reference Manual,

Addison-Wesley, 1998

SHIASI, S. AND GRUNWALD, D., A Comparison of Two Architectural Power Models, Proceedings of Power

Aware Computer Systems Workshop, November 2000.

SZTIPANOVITS, J. AND KARSAI, G., Model-Integrated Computing, Computer, Apr. 1997, pp. 110-112

WARMER, D. G. AND KLEPPE, A. G., The Object Constraint Language : Precise Modeling With UML,

Addison-Wesley, 1999

