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Modeling Methodology for Nonlinear Physiological Systems 
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Abstract--A general modeling approach for a broad class 
of nonlinear systems is presented that uses the concept of 
principal dynamic modes (PDMs). These PDMs constitute 
a filter bank whose outputs feed into a multi-input static 
nonlinearity of multinomial (polynomial) form to yield a 
general model for the broad class of Volterra systems. Be- 
cause the practically obtainable models (from stimulus-re- 
sponse data) are of arbitrary order of nonlinearity, this ap- 
proach is applicable to many nonlinear physiological systems 
heretofore beyond our methodological means. Two specific 
methods are proposed for the estimation of these PDMs and 
the associated nonlinearities from stimulus-response data. 
Method I uses eigendecomposition of a properly constructed 
matrix using the first two kernel estimates (obtained by ex- 
isting methods). Method II uses a particular class of feedfor- 
ward artificial neural networks with polynomial activation 
functions. The efficacy of these two methods is demonstrated 
with computer-simulated examples, and their relative perfor- 
mance is discussed. The advent of this approach promises a 
practicable solution to the vexing problem of modeling highly 
nonlinear physiological systems, provided that experimental 
data be available for reliable estimation of the requisite 
PDMs. 

Keywords--Principal dynamic modes, Artificial neural net- 
works, Volterra systems, Volterra kernels, Polynomial acti- 
vation functions, Nonlinear modeling. 

INTRODUCTION 

Mathematical modeling of physiological systems 

from stimulus-response data is the rigorous process by 

which knowledge acquired from experimental obser- 

vations (data) is organized in a concise form that facili- 

tates scientific articulation, interpretation, and dissem- 

ination, as well as new experiment design. In this sense, 

modeling provides the means of summarizing vast 

amounts of data into relatively compact mathematical 
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(or computational) form that allow the formulation 

and testing of scientific hypotheses by specially de- 

signed exper iments - -an  iterative process that should 

lead to successive refinement and evolution of the 

model. Thus, modeling attains a central role in the 

scientific process of generation and dissemination of 

knowledge, consistent with the credo "model  or mud- 

dle." Models can be applied to arbitrary levels of sys- 

tem decomposition or integration, depending on the 

availability of appropriate da ta - - thus  providing the 

conceptual and methodological means for integrative 

systems physiology. 

Most modeling methods and studies to date have 

focused on the limited class of linear systems, due 

to their relative simplicity of analysis. Nonlinearities, 

however, are ubiquitous in physiology and often essen- 

tial in serving critical aspects of physiological function. 

Although few will argue with the importance and ne- 

cessity of addressing the nonlinear dynamic aspects of 

physiological systems, most will view this task as a 

daunting challenge owing to its considerable com- 

plexity. 

The purpose of this paper is to present a practicable 

modeling methodology for a broad class of nonlinear 

dynamic systems (the Volterra class), using stimulus- 

response data, that extends the boundary of feasibility 

over a vast domain of physiological applications. Be- 

cause of the immense variety of nonlinear systems, 

the approach presented herein must be viewed as a 

modeling methodology suitable only for finite-memory 

Volterra systems (defined in the following section) that 

involve the nonlinear dynamic relation between a suf- 

ficiently broadband known stimulus signal and its cor- 

responding stable response signal. Thus, it cannot be 

used to model autonomous oscillatory or chaotic sys- 

tems that lack an observable input or do not satisfy 

the requirement of finite memory. 

The proposed methodology has its mathematical 

underpinnings in the theory of functional expansions 

(Volterra and Wiener series) of nonlinear dynamic 

systems operators (1,4,12-15). It was facilitated by the 

advent of an efficient kernel estimation technique that 

uses Laguerre expansions to yield accurate low-order 
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FIGURE 1. Block-structured model of the discrete-time Volt- 
erra-Wiener class of systems, The linear filter bank {Lj} has 
impulse responses {brim)} that form a basis for the system 
kernels. The nonlinear function f(.) has a multinomial (polyno- 
mial) or power series form that maps the filter-bank outputs 
(J,1 �9 vz . . . . .  vj . . . .  ) onto the output values y(n) at each discrete- 
time n. 

kernel estimates from short experimental data records, 

even in the presence of considerable noise (9). The 

advantages accrued by the use of this technique are 

realizable only in those cases where compact represen- 

tation of the system kernels by Laguerre expansions 

is feasible. Although this cannot be guaranteed in gen- 

eral and must be examined in each particular applica- 

tion, it seems likely that many physiological systems 

with exponential relaxation properties will be amena- 

ble to this treatment owing to the asymptotically expo- 

nential form of the Laguerre functions. 

The parsimonious representation afforded by this 

kernel expansion technique has also suggested the use 

of eigendecomposition of a symmetric matrix com- 

posed of the practically obtainable Laguerre expansion 

coefficients of first and second order to derive the 

principal dynamic modes (PDMs) of the system. If the 

number of selected PDMs is small, then the task of 

obtaining a complete nonlinear model is greatly simpli- 

fied. This model makes use of a filter bank comprised 

of the selected PDMs that receive the stimulus signal 

as input and produce outputs that feed into a "multi- 

input static nonlinearity" that, in turn, generates the 

response signal (Fig. 1). The mathematical and physio- 

logical bases of this modeling approach were originally 

introduced in connection with neural systems generat- 

ing action potentials (8,11). The novel contribution of 

this paper is in extending the PDM modeling approach 

to high-order nonlinear systems with continuous out- 

puts (beyond the binary outputs of neural systems) 

and in introducing the use of artificial neural networks 

for this purpose. Note that the formal decomposition 

of a nonlinear dynamic system into a linear filter bank 

(representing the dynamics) and a multi-input static 

nonlinearity is valid for all systems that have square- 

integrable kernels (5). In discrete-time representa- 

tions, this condition becomes one of square summabil- 

ity, which is satisfied by the condition of absolute sum- 

inability defining the Volterra class of systems. 

Despite the generality of this modeling representa- 

tion, its efficiency (parsimony) naturally depends on 

the characteristics of each particular system defined 

by the chosen stimulus and response variables. Thus, if 

such parsimony (i.e., small number of required PDMs) 

cannot be achieved for a given set of experimental 

data, it is advisable to search for different model repre- 

sentations or additional experimental stimulus and/or 

response locations that define component subsystems 

admitting such parsimonious representation. An ex- 

ample of this is the study of a long cascade of linear and 

static nonlinear components (e.g., a neuronal chain) 

where, although the entire long cascade may elude a 

parsimonious PDM representation, intermediate re- 

cordings along the cascade allow its segmentation into 

component subsystems, each amenable to parsimoni- 

ous representation. A class of systems that lacks effi- 

cient PDM representation is the one wherein a static 

nonlinear transformation precedes the dynamic trans- 

formations in the system (Hammerstein models) (12). 

However, this class is easily detected by the diagonal 

values of the second-order kernel estimate and can be 

modeled efficiently when it is possible to remove the 

effects of this nonlinearity by transforming first the 

input with the proper inverse static nonlinearity. In- 
ability to do this is expected to lead to a large number 

of PDMs required for adequate modeling accuracy. 

Thus, the efficacy of the proposed general PDM repre- 

sentation must be viewed in the context of feasible 

experimental measurements and appropriate prelimi- 

nary analysis of the data. 
The key practical issue is how to determine the 

minimum number of PDMs required in a given model- 

ing application and how to estimate the corresponding 

static nonlinearities (of arbitrary order) from stimulus- 

response data. This is the subject of this paper. 

Two practical methods are presented for estimating 

the PDMs of a system from given stimulus-response 

data, as well as the associated multi-input static nonlin- 

earity, leading to parsimonious models for a broad 

class of nonlinear systems. The first method is based 

on eigendecomposition of a matrix composed of the 

first- and second-order kernel estimates obtained from 

the data. The second method uses a class of feedfor- 

ward artificial neural networks with a single hidden 

layer and polynomial activation functions. This 

method yields a model form with superficial resem- 
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blance to the previously proposed "parallel cascade 

model" (3); but, it is entirely different methodologi- 

cally and conceptually (i.e., the parallel cascade model 

is composed of numerous parallel branches estimated 

sequentially via vector orthogonalization). Compari- 

sons between the two proposed methods will be made 

using simulated data that allow relative performance 

evaluation, because ground truth is available only in 

simulated examples. It must be emphasized that the 

critical value of the proposed methodology is found 

in the case of high-order systems (higher than second 

order), wherein high-order nonlinear models can be 

obtained by using static (polynomial or multinomial) 

nonlinearities of arbitrary degree. 

The methodology of nonlinear modeling of dynamic 

systems using functional expansions and kernels has 

its origin in Wiener's pivotal monograph that sug- 

gested the use of Gaussian white noise (GWN) as the 

effective test input for nonlinear system identification 

based on a hierarchy of nonlinear functionals (the Wie- 

ner series) (16). Volterra's pivotal contribution was in 

suggesting, much earlier, the use of functional expan- 

sions (the Volterra series) to represent unknown ana- 

lytic functionals implicated in studies of nonlinear 

mechanics and population dynamics (14). Wiener's 

critical contributions were: (a) placing the functional 

expansion approach in a nonlinear system identifica- 

tion context, wherein the system nonlinear dynamics 

are fully described by kernel functions of various or- 

ders; and (b) using GWN test inputs to obtain estimates 

of the (unknown) system kernels via orthogonalization 

of the functional expansion (Wiener series) and covari- 

ance computations. Numerous theoretical and practi- 

cal considerations were left as challenges to the investi- 

gative zeal of subsequent generations of scientists and 

engineers. As the Volterra-Wiener theories were grad- 

ually adapted to actual applications, discrete-time rep- 
resentations of the functionals and finite-bandwidth 

approximations of the input GWN signals became 

practically necessary. The fundamental importance of 

this problem and the generality of the Volterra-Wiener 

approach gave rise to a host of innovative variants and 

implementations of this approach; for partial review, 

see Refs. 4-7,12,13. Applications to physiological sys- 

tem modeling were among the first, commencing in 

the late 1960s and blossoming in the 1970s and beyond; 

for partial review, see Refs. 4-7. 

The most serious obstacle to expanding applications 

has been the practical inability to identify highly non- 

linear systems--i.e., to estimate high-order kernels in 

a practical context--a limitation that this paper seeks 

to relax by using model forms incorporating static non- 

linearities of arbitrary order. The latter can be esti- 

mated from stimulus-response data. Thus, high-order 

nonlinear models can be obtained without need for 

explicit estimation of high-order kernels. Although the 

PDM approach was developed to overcome practical 

limitations in estimating high-order Volterra models, 

it has also demonstrated excellent noise resistance in 

test cases, even for low-order models--an important 

collateral benefit in practice. 

METHODOLOGY 

In discrete time, the general input-output relation 

of a stable (finite-memory) nonlinear time-invariant 

dynamic system is given by the discrete-time Volt- 

erra series: 

y(n) = ko + ~, kl(rn) x(n - m) 
m 

+ ~ ~, kz(ml, m2) x(n - ml) x(rt - -  m2) + . . . .  
m I m 2 

(1) 

where x(n) is the input and y(n) is the output of the 

system. The ith term of the series is an i-tuple convolu- 

tion of the ith-order kernel ki, with i versions of x. 

The Volterra kernels (k0, ka, k2 . . . .  ) describe the dy- 

namics of the system at each order of nonlinearity and 

constitute a complete and canonical representation 

of the system nonlinear dynamics. For a uniformly 

bounded input, the output remains uniformly bounded 

if and only if the system kernels are absolute-summa- 

ble and form a convergent series (Volterra class of 

systems). Note that k0 represents a constant value (out- 

put offset), and ka represents the linear dynamics of 

the system. Kernels of higher order represent a hierar- 

chy of system nonlinearities (of the respective order), 

and they are symmetric functions (i.e., invariant under 

permutation of their arguments). For causal systems, 

the kernels are zero for negative values of their argu- 
ments. 

Expansion of the Volterra kernels on a complete 

basis {bj(m)} transforms Eq. 1 into the multinomial ex- 
pression: 

y(n) = Co + ~ cl( j) vj(n) 
J 

+ ~, ~, c2(j,,j2) vh(n) vj2(n) + . . .  
/1 h 

= fO, , . . . .  ) 

(2) 

where, 

= Z bj(m) x(n - m), (3) 
m 

and cl(j), c2(jl, ]2), . . .  represent the expansion coeffi- 

cients of the respective kernels. Note that co = k0 and 



242 V.Z.  MARMARELIS 

the symmetries are preserved in the high-order terms 

[e.g., c2(i, j )  = c2(j, i)]. 

The unknown expansion coefficients can be esti- 

mated in practice by linear regression of the output 

data y ( n )  on the terms of the multinomial expression 

of Eq. 2, as long as the expression is finite and its terms 

do not lead to ill-conditioning of the regression matrix 

inversion. The latter condition can be secured when 

the input is sufficiently broadband. Note that for a 

white noise input and an orthogonal basis, the signals 

{~(n)} have zero covariance. This fact was used by 

Wiener in his original suggestion for kernel estimation 

using covariance computations. He also suggested the 

use of Laguerre functions as an appropriate orthonor- 

mal basis, owing to their built-in exponential term that 

makes them suitable for physical systems with asymp- 

totically exponential relaxation dynamics. This sugges- 

tion was first implemented in Ref. 15 and recently 

adapted to discrete-time for improved kernel estima- 

tion (9) allowing, for the first time, accurate estimation 

of third-order kernels from short experimental data 

records (10). 

The use of the kernel expansion basis implies that 

a general model of the Volterra class of systems can 

take the block-structured form of Fig. 1, wherein the 

basis functions {bj(m)} constitute the impulse re- 

sponses of a filter bank whose outputs are feeding into 

the multi-input static nonlinearity f ( v l  . . . . .  vj . . . .  ). 

For a selected basis (e.g., Laguerre functions), the 

modeling problem reduces to estimating the multivari- 

ate function f(.). Of course, the latter will be different 

for different bases. 

The proposed modeling methodology rests on the 

fact that, among all possible choices of expansion bases 
(orthogonal or nonorthogonal), there are some that 

require the minimum number of basis functions (i.e., 

filters in the filter bank of Fig. 1) to achieve a given 

mean-square approximation of the system output. 

Such a minimum set of basis functions is termed PDMs 

of the nonlinear system and correspond to an associ- 

ated multivariate nonlinear function f( .)  generating 

the system output. The term "principal modes" has 

been also used in linear systems analysis, but in a 

different context (i.e., to denote the eigenfunctions 

associated with the significant eigenvalues of a state- 

space formulation). No claim of uniqueness can be 

made for these PDMs, because their form depends on 

the associated nonlinearity. However the associated 

nonlinear function f( .)  is unique for a selected set of 

PDMs for a given system and vice versa. 

The particular method of selecting (estimating) 

PDMs from given stimulus-response data determines 

the form of PDMs in each application. Selected PDMs 

are expected to capture the important dynamic charac- 

teristics of the system, but in conjunction with the 

system nonlinearities. For instance, in an action poten- 

tial-generating neuron, PDMs reflect the integrated 

effects of all axodendritic and axosomatic synaptic in- 

puts (including conduction effects) on the formation 

of the transmembrane potential at the axon hillock, 

preceding the generation of an action potential. Static 

nonlinearity f( .)  represents all of the nonlinear static 

transformations applied on the outputs of the PDMs 

to produce the action potential (8). 

Two practical methods are proposed in this paper 

for the estimation of the PDMs and the output non- 

linearity f(.)  from stimulus-response data. The first 

method uses eigendecomposition of properly con- 

structed matrices using estimated first- and second- 

order kernel values. A variant of this method using 

Laguerre expansions of the kernels in connection with 

neuronal modeling and coding has been previously 

reported (11). The second method makes use of a class 

of feedforward artificial neural networks with a single 

hidden layer and polynomial activation functions to 

accomplish the same objective by training the network 

parameters with the given stimulus-response data. 

Brief outlines of the two methods are given herein, and 

illustrative computer-stimulated examples are given in 

the following section. 

M e t h o d  I is based on previously obtained first- and 

second-order kernel estimates (in addition to k0), be- 

cause in most practical applications kernel estimation 

is limited to second order. The obtained kernel values 

up to a maximum lag M (kernel memory) can be com- 

bined to form a real symmetric (M + 2) • (M + 2) 

square matrix: 

Q = 

ko �89 �89 ~ M �9 . .  ~k,( ) 

�89 k2(O , 0) k2(O, 1) " ' "  k2(O, M) 

1 1 ~k,( ) k2(1, O) k2(1, 1) . . .  k2(1, M) 

lk~(M) k2(M, O) k2(M, 1) ka(M, M) 

(4) 

that can be used to express the second-order Volterra 

model response, y2(n) in a quadratic form: 

y2(n) =xT(n)Ox(n), (5) 

where the (M + 2)-dimensional vector xX(n) = [1 x ( n )  

x (n  - 1) . . .  x (n  - M)] is composed of the stimulus 

(M + D-point epoch at each time n and a constant 1 

that allows incorporation of the zeroth- and first-order 

kernel contributions in Eq. 5. Because Q is a real 
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symmetric square matrix, there exists always an ortho- 
normal matrix R such that Q = R r A R, leading to 

the expression: 

yz(n) =uT(n) A u(n), (6) 

where A is the diagonal eigenvalue matrix and 

u(n) = Rx(n)  (7) 

is the vector of transformed inputs by the orthonormal 

eigenvector matrix R. Inspection of the real eigenval- 

ues in A allows selection of the significant ones on the 

basis of relative magnitude (a selection that calls for 

appropriate threshold criteria) and subsequent selec- 

tion of the corresponding orthonormal eigenvectors 

that become the PDMs of this system. 

For each significant eigenvalue A~, the values of the 

corresponding eigenvector (with the exception of/&0) 

/d, T = [/d,i, 0 /d,i, 1 . . .  /d,i ,M+2] , define the ith PDM: 

M+I 

pi (m)  = s IXi,j 8(m - j + 1), (8) 
j = l  

where 8(.) denotes the discrete impulse function (Kro- 

necker delta). The obtained ith PDM generates the 

ith mode output u~(n) via convolution with the stimulus 

x(n).  Note that a constant offset value/3~ = /&o must 

be added to the ith mode output ui to express the 

second-order model response in terms of the mode 

outputs (see equivalent Eq. 6): 

yffn)  : Al[ul(n) +/31] 2 + Az[uz(n) +/32] 2 

+ AM+z[UM+z(n) + /3M+2] 2. "'" (9) 

Nonzero offset values {/3i} give rise to linear terms in 
{ui} in the model output equation. 

Equation (9) indicates that the relative importance 

of ui(n) for the second-order model response y2(n) is 

determined by the relative magnitude (absolute value) 

of the corresponding eigenvalue Ai. Note that the ma- 

trix Q is not positive definite and, therefore, negative 

and positive eigenvalues are possible. By selecting only 

those eigenvectors of the matrix R that correspond to 

eigenvalues of significant magnitude, we concentrate 

on those linear combinations of the elements of the 

stimulus vector x(n) that contribute most to the sec- 

ond-order model response. This is the essence of the 

PDM model for a second-order system, extendable to 

higher order. 

In practice, the selection of the significant eigen- 

values/eigenvectors must take into account signal-to- 

noise ratio (SNR) considerations (i.e., setting the selec- 

tion threshold higher for lower SNR) and trade-offs 

between prediction accuracy and model complexity 

(i.e., significant improvement in accuracy is needed to 

justify increasing the number of PDMs). 

Clearly, when the actual system is of higher than 

second order, the search for PDMs based on the qua- 

dratic form of Eq. 5 may be unduly confined. Nonethe- 

less, the final model (which includes the estimated 

multi-input static nonlinearity) is not limited to the 

second order of the employed quadratic form, because 

the multivariate nonlinear function of the model (re- 

ceiving as inputs the outputs of the J selected PDM 

filters) can be estimated up to any degree of nonlinear- 

ity. There is no guarantee that the PDMs selected from 

the quadratic model will be adequate for the high- 

order model; their adequacy will be assessed ultimately 

by the predictive ability of the resulting model. Thus, 

for every time instant n, we have: 

y = F ( u l , . . . ,  u j) + 8, 0o) 

where e is an error term and F(.) represents the nonlin- 

ear function of the model with the selected PDMs in 

the filter bank [i.e., an approximation of the associated 

system nonlinearity f(.), in general]. The error term e 

includes noise effects, measurement errors, and model- 

ing errors due to the omission of less significant terms 

associated with small eigenvalues or the omission of 

PDMs residing only in kernels of order higher than 

second. Estimates of F(.) can be obtained from the 

data, either analytically or graphically. 

Analytical evaluation of F(.) requires the introduc- 

tion of a postulated mathematical structure (form) for 

F, containing certain unknown parameters that are 

subsequently estimated from the data via least-squares 

fitting. For instance, a multinomial structure of speci- 

fied degree can be imposed on F (consistent with the 

modified Volterra expansion of Eq. 2), and its coeffi- 
cients can be estimated from the data through linear 

regression (because the unknown parameters enter lin- 

early in this expression). Other mathematical struc- 

tures or bases of functions of (u~ . . . . .  u:) can be used 

that are compatible with the specific characteristics of 

the system at hand (e.g., exponential, sigmoidal, etc.). 

They can be related to the multinomial (polynomial) 

forms of the nonlinearity through truncated Taylor 

expansions (if analytic) or Weierstrass approximations 

(if not analytic). 

Graphical evaluation of F(.) is feasible when there 

are only two PDMs generating the outputs (Ul, u2). 

Then, a surface can be computed in (ul, u2, y) space 

by averaging all the data y that correspond to each 

specified two-dimensional bin in the (Ul, u2) plane. 

These averaged values form the discretized surface 
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= fT(Ul, //2), where P is a discretized approximation 

of F. In the presence of noise, there are the usual 

trade-offs between spatial resolution [the bin size in 

the (Ul, u2) plane] and estimation variance or estima- 

tion bias (i.e., a larger bin size typically affords lower 

estimation variance but higher estimation bias). This 

graphical approach is particularly useful in the case 

of spike-output neural systems, where we can define 

the "trigger regions" of the system as the locus of 

points (u*,uf)  that correspond to an output spike 

(2,11). 

Method H uses a suitable class of feedforward arti- 

ficial neural networks and does not require previously 

obtained kernel estimates. The given stimulus-re- 

sponse data are used to train (via a back-propagation 

algorithm) a feedforward artificial neural network with 

a single hidden layer of K hidden units, and with a 

single output unit simply adding the outputs of the 

hidden units. A threshold may be appended to the 

output unit if the system response is binary. The net- 

work has (M + 1) input units, receiving values corre- 

sponding to the stimulus epoch at each time instant 

(tapped-delay network). The novel features of this 

class of artificial neural networks are that the activation 

functions of the hidden units are polynomial (instead 

of the conventional sigmoidal), and the output unit is 

a simple adder (i.e., it has in-bound weights fixed to 

unity). This type of network, termed polynomial arti- 

ficial neural network (PANN), has been studied in 

connection with the questions of how do Volterra mod- 

els relate to feedforward artificial neural networks and 

what is the equivalence between these two types of 

nonlinear mapping (7)? 

The PANN architecture is shown in Fig. 2 and takes 
the form of a tapped-delay fully connected feedfor- 
ward network, wherein the hidden units form weighted 

sums of the corresponding input values and then sub- 

ject them to polynomial transformations distinct for 

each hidden unit. Although the weighted-sum opera- 

tion performed by each hidden unit on the input values 

(input epoch) is equivalent to a discrete-time convolu- 

tion, it is evident that the general model of Fig. 1 

becomes equivalent to the PANN configuration of Fig. 

2 if and only if a set of PDMs can be found for which 

the associated multivariate nonlinear function f( .)  can 

be decomposed as the sum of univariate polynomial 

functions. Clearly, this equivalence remains valid 

(owing to the possibility of Taylor series expansions) 

when the polynomial form of these univariate func- 

tions is replaced by other nonlinear analytic forms 

(exponential, trigonometric, etc.) or combinations 

thereof. A special case is the traditional neural net- 

work choice of analytic sigmoidal activation func- 

tions. 

X(n) X(n-1) X(n-m) X (n-M) 

,1 ,m ,M 

/ ",, I " . ,  , , .  

1,6 

- " l  ( + ) i , , ,  l 
t(n;I I "~/ ') l  

I I 

Z K (gt) 

~y(n) 

INPUT 

HIDDEN 
LAYER 

OUTPUT 

FIGURE 2. Basic architecture of a PANN. Input units receive 
a finite input epoch [0, M]  (tapped-delay network), Hidden 
units have polynomial activation functions {pj}. The in-bound 
weights vector [wi,0, wj,1 . . . . .  Wi, M] T for each hidden unit j 
is normalized to unity Euclidean norm. The output unit is a 
simple adder. 

According to Method II, the PANN with the small- 

est number of hidden units, trained successfully with 

the given stimulus-response data, yields a set of nonor- 

thogonal PDMs of the system in the form of the in- 

bound weight vectors of the hidden units. Note that 

the latter are normalized to unity Euclidean norm by 

convention of our method to make them comparable 

in scale with the eigenvectors of Method I. This ap- 
proach can yield accurate estimates of the desired 

PDMs when the number of hidden units and the degree 

of the polynomial activation functions are correctly 

specified. These parameters can be determined in prac- 

tice by successive trials with various polynomial de- 

grees and increasing number of hidden units or by 

rank evaluation of the matrix composed by the in- 

bound weight vectors of a large number of hidden 

units. The use of PANN offers an attractive alternative 

for obtaining PDM estimates through back-propaga- 

tion training without requiring any kernel estimation. 

The use of these two method for PDM estimation is 

illustrated in the following section, with data obtained 

from computer simulations. 

EXAMPLES 

The efficacy of the methodologies presented in the 

previous section is illustrated herein with computer- 

simulated examples. To this purpose, we begin with 
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FIGURE 3. Impulse responses of the two 
nonorthogonal modes {gl, g2} used in the 
simulation example, 

a two-mode, second-order system described by the 

output equation: 

y(n) = 1 + vl(n) + vz(n) + vl(n) vz(n), (11) 

where y(n) is the system output and (v~, v2) are the 

convolutions of the system input x (n ) - -a  1,024-point 

GWN signal in this simulation, with the two impulse 

response functions, gl and g2, respectively, shown in 

Fig. 3. The first- and second-order kernels of this sys- 

tem are shown in Fig. 4 and can be precisely estimated 

from these data via the Laguerre expansion technique 

(7). As anticipated by theory, these kernels can be 

expressed as (note that ko = 1): 

ka(rn) = gl(m) + gz(m) (12) 

kz(ml, m2) = �89 + gl(mz)g2(ml)]. (13) 

Equation 11 can be viewed as the static nonlinearity 

of a two-mode system with nonorthogonal PDMs gl 

and g2 (and their corresponding outputs ul and v2) 

having a bilinear cross-term: Ul �9 v2. This nonlinearity 

can be also expressed without cross-terms using the 

"decoupled" orthogonalPDMs: (g~ + g2) and (& - g2), 

and their corresponding outputs: Ul = (ul + u2) and 

U 2 = ( V  1 - -  /22) , with offsets fll = 2 and /~2 = 0 ,  respec- 

tively (see Eq. 9) as: 

y = � 8 8  2 1 2 =  1 2 1 2 (14) 
- z u 2  1 + u l  + ~u~ - ~ u 2 .  

Note that, owing to the convention of normalizing the 

PDMs to unity Euclidean norm, the resulting normal- 

ized PDMs are: pl = 0.60(gl + g2) ,  P2 = 0.92(gl - g2) ,  

in this case, and have an associated nonlinearity: 

y = 1 + 1.67Ul + 0.69u~ - 0.30u 2. (15) 

Application of the eigendecomposition approach 

(Method I outlined in the previous section) yields the 

two orthogonal PDMs shown in Fig. 5. Note that the 

first PDM (solid line) has the same form as the first- 

order kernel in this case. As indicated previously, these 

two PDMs are the normalized sum and difference of 

gl and g2 of Fig. 3. After the linear regression method 

outlined previously, the estimated nonlinear function 

for these PDM estimates is precisely the one given by 

Eq. 15. 

Using the same data, we now train a PANN with 

two hidden units having quadratic activation functions 

(Method II outlined previously) and obtain PDM esti- 

mates that are precisely the same as the PDMs ob- 

tained via eigendecomposition (not shown in the inter- 

est of space). This coincidence of resulting PDMs will 

not hold in a case where the cross-terms cannot be 

avoided in the nonlinear output function via linear 

combinations of the PDM outputs. Inclusion of a third 

hidden unit in this PANN results in a "redundant"  

in-bound weight vector associated with a negligible 

activation function (i.e., negligible polynomial coeffi- 

cients) that does not affect the model response or pre- 

diction accuracy. Nonetheless, it was observed that 

the inclusion of the third "redundant"  hidden unit 

facilitated considerably the convergence of the training 

algorithm (back-propagation) in this example, requir- 
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2ND-ORDER KERNEL OF SIMULATED SYSTEM 
F IGURE 4. First-order (top) and second- 
order (bottom) kernels of the simulated 
system described by Eq, 11. 

X-MIN= 0.0 Y-MIN= 0.0 Z-MIN= -0 .04543  
X-MAX= 25 Y-MAX= 25 Z-MAX= 0.2165 

ing less than 100 iterations for satisfactory conver- 

gence! 

The presence of contaminating noise may introduce 

considerable estimation errors (random fluctuations) 

in the obtained PDMs. This point is illustrated by add- 

ing independent GWN to the output signal for an SNR 

of 6 dB and, subsequently, estimating the PDMs using 

both Methods I and II. The results are shown in Figs. 

6 and 7, for Methods I and II, respectively, and show 

comparable effects of noise in the two cases. We ob- 

serve slightly better noise resistance of the eigende- 

composition approach (Method I) for the first PDM 

(solid line) that corresponds to the highest eigenvalue. 

The obtained normalized output nonlinearities associ- 

ated with the PDMs estimated via the two methods 

are: 37 -- 1.02 + 1.66ul + 0.70u~ - 0.32u~ (Method I); 

37 = 0.99 + 1.68ul + 0 .7lug-  0.29u~. (Method II); 

demonstrating the robustness of both methods by com- 

paring with the precise output nonlinearity of Eq. 15. 

Although these estimates are somewhat affected by 

the noise in the data, the estimation accuracy of the 

resulting nonlinear models in the presence of consider- 
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FIGURE 5. Two orthogonal PDMs ob- 
tained via eigendecomposition (Method I) 
using the first two kernel estimates. They 
correspond to the normalized functions: 
0.60(gl + g2)and 0.92(gl - g2), associated 
with the nonlinearity of Eq. 15 (see text). 

able noise (SNR = 6 dB) represents a notable demon- 

stration of efficacy for the proposed approach, even 

for low-order systems. 

Next, we examine the efficacy of this approach for 

high-order systems by considering first the fourth-or- 

der system described by the output nonlinearity: 

1 1 4  ( 1 6 )  
y = U 1 "~  U 2 - F  / J l U 2  31~1 - ~  4 / J 2 ,  

where (ul, u2) are as defined previously. This example 

serves to demonstrate the relative performance of the 

two methods in a high-order case where it is not feasi- 

ble to estimate all of the system kernels, whereas the 

proposed methods may yield a complete model (i.e., 
one containing all nonlinear terms present in the 

system). 

Note that the quadratic part of Eq. 16 is identical 

to the output nonlinearity of the previous example 

given by Eq. 11. The addition of the third- and fourth- 

order terms will introduce some bias into the first- 

and second-order kernel estimates obtained for the 

truncated second-order model with existing estimation 
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FIGURE 6. Estimated PDMs from noisy 
data (SNR = 6 dB) using Method I (eigen- 
decomposition). 
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FIGURE 7. Estimated PDMs from noisy 
data (SNR = 6dB) using Method II 
(PANN). 

methods (9). This bias is likely to prevent precise esti- 

mation of the previous orthogonal PDMs [(gl + g2) 
and ( & -  g2)] via eigendecomposition based on the 

first two kernel estimates. Furthermore, more than two 

PDMs will be required for a model of this system 

without cross-terms in the output nonlinearity (i.e., 
for a representation consistent with a precise PANN 

model of fourth degree). For instance, the use of three 

PDMs corresponding to gl, g2 and a linear combination 

(gl + ~g2) should be adequate, because g~ and g2 give 

rise to 1,1 and u2, respectively, and the cross-term (~,1 •2) 

can be expressed in terms of these three PDMs as: 

1/2c~[(Ul + c~u2) 2 - ~1 - azv~]. Thus, the three polyno- 

mial activation functions corresponding to these three 

PDMs are: [v~ - 1 / 2 c ~  - 1/3~], [v2 - cd2v~ + 1/4v4], 

and [1/2a(vL + av2)2]. The results of eigendecomposi- 

tion based on the first two kernel estimates cannot be 

anticipated with the same clarity, owing to the afore- 

mentioned kernel estimation bias introduced by the 

practically imposed truncation of the Volterra model. 

These issues are explored with the simulated data. 

Use of the eigendecomposition method (based on the 

first two kernel estimates) still yields two PDMs corre- 

sponding to two significant eigenvalues: A1 = 2.38, 

A2 = -0.65 (with the subsequent eigenvalues being 

A3 = 0.14, A4 = -0.12, etc.). Note that the sign of the 

eigenvalues signifies how the respective PDM output 

contributes to the system output (excitatory or inhibi- 

tory). The obtained PDMs for A~ and/~2 a r e  shown in 

Fig. 8, and resemble the PDMs of the previous exam- 

ple, although considerable distortion (estimation bias) 

is evident due to the aforementioned influence of the 

high-order nonlinearities. These two PDMs corre- 

spond to a two-mode output nonlinearity that only 

yields an approximation of the system output. This 

problem can be overcome by using the PANN ap- 

proach that does not limit the order of estimated non- 

linearities and allows estimation of nonorthogonal 

PDMs. 

To this purpose, a PANN with four hidden units 

having fourth-degree polynomial activation functions 

is trained with these data. The error diminished below 

0.5% after 5,000 iterations, yielding the three PDMs 

shown in Fig. 9 that correspond to gl, g2 and a linear 

combination of & and g2 that is close to their sum; the 

fourth hidden unit had negligible activation function 

(i.e., polynomial coefficients on the order of 10-4). 

These results corroborate our theoretical expectations 

discussed earlier. Note that any linear combination of 

gl and g2 is admissible for the third PDM, leading to 

appropriate adjustments in the second-degree coeffi- 

cients of the activation functions of all PDMs (see 

previously described data). The computational burden 

associated with Method II (PANN) is considerably 

heavier than Method I ( -50  times more in this exam- 

ple), but still remains within the capabilities of a pen- 

tium-based PC. 

To examine the accuracy of the estimated models 

in the two cases, we can compare the overall predictive 

accuracy of the two nonlinear models (PDMs and their 

respective output nonlinearities) for a segment of data 

that was not used in obtaining the models. Results are 

shown in Fig. 10, corresponding to prediction-normal- 

ized mean-square errors of 2.4% and 0.3% for Methods 
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FIGURE 8. Estimated PDMs for the 
fourth-order system described by Eq. 16 
using Method I (eigendecomposition). 
Only two PDMs are still obtained, corre- 
sponding to two significant eigenvalues: 
,~1 = 2.38, A2 = - 0 . 6 5 .  Considerable dis- 
tortion relative to the previous two PDMs 
is evident, due to the influence of the 
higher order terms (third and fourth 
order). 

I and II, respectively. Although the prediction of the 

Method I model is better than the corresponding PDM 

estimates might have suggested, the first- and second- 

order kernel estimates are considerably worse than 

their counterparts obtained by Method II. 

These results are extendable to multimode systems 

of arbitrary order of nonlinearity, endowing this ap- 

proach with unprecedented power for modeling appli- 

cations of highly nonlinear systems. An illustrative ex- 

ample is provided by the infinite-order Volterra system 

described by the output nonlinearity: 

y = exp[ul]sin[(u] + v2)/2], (17) 

where vl and v2 are as defined previously. This Volterra 

system has kernels of all orders, with declining magni- 

tudes as the order increases. This becomes evident 

when the Taylor expansions of the exponential and 

trigonometric functions are used in Eq. 17. Application 

of Method I yields only two PDMs (i.e., only two sig- 

nificant eigenvalues: hi = 1.86 and ~2 = 1.09, with the 

remaining eigenvalues being at least one order of mag- 

nitude smaller). The prediction of the fifth-order PDM 
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FIGURE 9. Estimated PDMs for the 
fourth-order system described by Eq. 16 
using Method II (PANN). Three nonor- 
thogonal PDMs are obtained correspond- 
ing to gl, g2, and a linear combination of 
gl and g2, as anticipated by theory. 
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FIGURE 10. Model predictions bythetwo 
methods for the fourth-order system. The 
actual system output (trace 1) and the 
predicted outputs by the models obtained 
via Method I (trace 2) and Method II 
(trace 3), 

model (based on two PDMs obtained by use of PANN) 

is shown in Fig. 11, along with the exact system output. 

Note that the corresponding normalized mean-square 

error of the model prediction is 6.8% for the fifth-order 

PDM-based model, demonstrating the benefits of the 

PDM approach in this case of an infinite-order Volt- 

erra system. 

Although the efficacy of Method I cannot be guar- 

anteed, in general, because it depends on how well 

the PDM estimates (obtained from the second-order 

model) extend to higher order models, the efficacy of 

Method II is ensured whenever successful training of 

a high-order PANN is possible via the back-propaga- 

tion technique. 

CONCLUSIONS 

The study of highly nonlinear physiological systems 

can benefit from the presented general modeling ap- 

SYSTEM RESPONSE & MODEL PREDICTION FOR HIGH-ORDER SYSTEM 
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FIGURE 11. Actual output of infinite-or- 
der Volterra system (trace 1) and model 
prediction by a fifth-order PANN-based 
model using two PDMs (trace 2). 
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proach that uses PDMs to obtain accurate models of 

nonlinear systems of the Volterra class in a practical 

context (i.e., from relatively short input-output data 

records contaminated by noise). The key to the suc- 

cessful application of this new approach is the ability 

to represent adequately the system dynamics with a 

small number  of PDMs. This paper presents two practi- 

cable methods by which this may be accomplished: 

one base on eigendecomposition of low-order kernel 

estimates (typically of first and second order) and the 

other using feedforward artificial neural networks with 

polynomial activation functions. The quality of the 

obtained kernel estimates and of the associated nonlin- 

ear predictive models is demonstrated for short data 

records (1,024 data points), even under significant data 

contaminating noise (SNR = 6 dB). 

The presented simulation examples demonstrate 

rough parity between the two methods for low-order 

systems. However,  for high-order systems, Method II 

(which is based on a new class of artificial neural net- 

works) seems to yield superior results and to render 

solvable a class of problems that have long been viewed 

as nearly intractable. 

It is hoped that this approach may provide the effec- 

tive tools for modeling complex nonlinear physiologi- 

cal systems that cannot be adequately modeled by use 

of the first two or three kernels. In the context of 

physiological system modeling, the obtained PDMs 

may also afford greater scientific insight and interpret- 

ability of the obtained nonlinear models (e.g., the ob- 

tained PDMs may represent distinct pathways of dy- 

namic transformations of the stimulus into the 

response signal, corresponding to distinct physiologi- 

cal mechanisms). 

Conceptual forerunners of the proposed approach 

were first introduced in the study of spike-output neu- 

ral systems (8,11). By extending this approach to cover 

the broader  class of continuous-output systems, it is 

hoped that the range of applications of nonlinear mod- 

eling to biomedical systems will be expanded and gen- 

erate new scientific insights by proper  physiological 

interpretation of the obtained PDMs and associated 

models. 
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