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Abstract

Microbial communities play a vital role in biogeochemical cycles, allowing the biodegradation of a wide range of pollutants.

The composition of the community and the interactions between its members affect degradation rate and determine the

identity of the final products. Here, we demonstrate the application of sequencing technologies and metabolic modeling

approaches towards enhancing biodegradation of atrazine—a herbicide causing environmental pollution. Treatment of

agriculture soil with atrazine is shown to induce significant changes in community structure and functional performances.

Genome-scale metabolic models were constructed for Arthrobacter, the atrazine degrader, and four other non-atrazine

degrading species whose relative abundance in soil was changed following exposure to the herbicide. By modeling

community function we show that consortia including the direct degrader and non-degrader differentially abundant species

perform better than Arthrobacter alone. Simulations predict that growth/degradation enhancement is derived by metabolic

exchanges between community members. Based on simulations we designed endogenous consortia optimized for enhanced

degradation whose performances were validated in vitro and biostimulation strategies that were tested in pot experiments.

Overall, our analysis demonstrates that understanding community function in its wider context, beyond the single direct

degrader perspective, promotes the design of biostimulation strategies.

Introduction

Microorganisms in nature co-exit as communities. Members

in microbial communities may interact bidirectionally or

unidirectionally, leading to synergism, commensalism,

mutualism, parasitism or competition among them [1, 2].

Such interactions are in many cases derived by metabolism

—food chains, substrate competition, syntrophy, and waste

product inhibition [3], playing important roles in almost all

processes occurring on this planet. Examples include ele-

ment cycling [4], biodegradation of pollutants [5–8], food

fermentation [9, 10] and many other biogeochemical pro-

cesses essential for eco-system sustainability and human

health [11, 12]. Despite vital impacts of microbial function,

design principles that rationally promote specific metabolic

activities towards optimized performances have still

remained largely obscure.

In soil, the efficiency of community function is critical to

processes of environmental interest such as bioremediation

—the breakdown of pollutants through microbial metabo-

lism. Key bioremediation strategies include bioaugmenta-

tion—the optimization of microbial composition for
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bioremediation; and biostimulation—the optimization of

environmental conditions. Bioaugmentation practices

involve the addition of living cells capable of degradation

and biostimulation practices involve the addition of limiting

nutrients to stimulate microbial growth [13]. To date, both

bioaugmentation and biostimulation strategies are mostly

driven by intuition and rely on experience derived from trial

and error experiments [14]. Typically, enrichment cultures

from samples exposed to a specific pollutant lead to the

isolation of consortia with pollutant degrading ability.

Bioaugmentation practices based on returning such con-

sortia to soil often fail, as myriad of biotic and abiotic

factors influence the effectiveness of the treatment and in

many cases the consortia are not successful when re-

introduced to soil [15, 16]. Understanding the required

conditions for natural enhancement of desired endogenous

consortia can enhance the rate of success of biostimulation

based bioremediation treatments. New sequencing technol-

ogies allow now revealing the dynamics of community

shifts and together with modeling approaches lay founda-

tions for the educated design of community function [17].

Progress in sequencing technologies promotes the descrip-

tion of the bio-diversity and metabolic activity of micro-

organisms in ecological niches [18–21]. Parallel

advancement of computational tools such as Genome-scale

metabolic models (GSMM) and respective simulation

algorithms such as Flux Balance Analysis (FBA) further

enable in silico analysis of microbial interactions [19, 20,

22, 23]. By modeling of microbial interactions in a com-

munity, the metabolic features could be simulated and

optimal solutions can be predicted. Notably, natural com-

munities are not necessarily optimized to provide environ-

mental solutions; hence the educated directing towards pre-

defined functions is of potential to induce significant change

in efficiency.

Here, we applied sequence-based modeling approach to

explore the role of microbial function in the degradation of

the atrazine. The s-triazine herbicide atrazine is one of the

world’s most heavily applied herbicides, in particular used

on crops such as maize, sugarcane and sorghum. Atrazine

and its degradation products can be found in the soil for

decades after application [24, 25], often leading to wide-

spread contamination of both water and soils [26, 27]. Even

at very low concentrations atrazine may act as endocrine-

disrupting chemical in frogs [28], among other effects

leading to sexual transformation [29, 30]. In human, the

main target of atrazine is the endocrine system together with

considerable evidence supporting its damaging effects on

the central nervous system, reproductive system, immune

system and cardiovascular function [31]. Given the wide-

spread dispersal and long persistence of atrazine, its

removal from polluted sites is crucial for a safe and che-

mical free environment.

Is soil, microbial communities take central part in atra-

zine degradation [32–34]. In many cases, the degradation

involved a consortium rather than a single species. For

example, a consortium containing Klebsiella sp. A1 and

Comamonas sp. A2 showed very high atrazine-mineralizing

efficiency as strain A2 metabolize N-ethylammelide, a

product of atrazine degradation produced by strain A1

whose degrading activity was suppressed by N-ethy-

lammelide [34]. In another consortium, Clavibacter michi-

ganese ATZ1 and Pseudomonas sp. CN1 collectively

mineralized atrazine with a much higher degradation rate

than did C. michiganese alone [32]. These examples show

that, to a large extent, the structure of communities deter-

mines their functions, and the composition of communities

affects both the rate of the degradation process and the

identity of the final products.

Here, we used sequence-based information on the

dynamics in soil community from atrazine-treated fields in

order to construct a corresponding imputed in silico com-

munity, and used simulations for exploring functional sig-

nificance of community dynamics and predicting possible

biostimulation strategies. First we used high-throughput

sequencing approaches for describing the structure of soil

communities exposed to atrazine treatment, showing that

atrazine treatments alter the microbial communities and that

different microbial communities are associated with differ-

ent functional performances. Then, GSMM of five species,

chosen based on the analysis of the high-throughput data

from the respective soil samples, were constructed and

manually curated. Using these GSMM we were able to

model community function. Simulations of the perfor-

mances of alternative community combinations predict

variations in atrazine degradation efficiencies and were

correlated with the observed activity profile. The simula-

tions provided functional interpretation for observed co-

occurrence patterns. The functional interpretation provided

a basis for the educated design of optimized consortia and

biostimulation strategies that were experimentally tested.

Methods

Field experiment and soil sampling

The field experiment was conducted in Newe Ya’ar

Research Center, Israel (32°42’N, 35°11’E). The soil and

climate types and properties are described in Supplemen-

tary Materials. The plot was irrigated by 300 m3 ha−1,

cultivated (by rototiller) to a depth of 12 cm, maize (var.

Royalty) was sown, atrazine (at rate of 500 active ingre-

dients per hectare, a.i. ha−1) was applied at 21.6.2015,

using a motorized sprayer equipped with Tee Jet 8001E

nozzles (Spraying Systems Co., Wheaton, IL, USA)
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operated at a pressure of 300 kPa and delivering a spray

volume of 200 l ha−1. After herbicide application, the

field was irrigated by 300 m3 ha−1. Ten sub-plots at size of

20 m2 were used for soil sampling; five atrazine treated and

five non-treated used as a control. Beginning at sowing date

and germinating irrigation, and at seven days interval up to

77 days from sowing, 500 g soil was sampled from each

plot (total of ten samples at a time) and kept in dark under

dry conditions at 4 °C until use. Soil samples were classi-

fied into two sub-samples; 400 g were taken for bioassay

(all sampling dates); tubes were filled soil for enrichment

culture (volume of 30 ml) and sequencing analysis (volume

of 40 ml), respectively.

Determining atrazine degradation in soil using a
bioassay

The design of bioassay experiments followed the experi-

ments designed in Onofri et al. [35]. Briefly, the bioassays

monitor the growth performances of atrazine-sensitive

plant. Here, wheat (cv. “Jordan”) was used as the reporter

plant based on a demonstrated dose dependent sensitivity of

shoot development performance (biomass and height) to

atrazine concentration in soil (Supplementary Figure 1),

growth performances are hence indicative of atrazine level

in soil [36]. Two bioassay experiments were carried: (i)

estimating atrazine degradation in samples delivered to pots

from treated vs. non treated field in seven days intervals (as

described above, Supplementary Figure 2); and (ii) esti-

mating atrazine degradation following soil amendment

treatments in pots with soil from a non-herbicide treated

field. The soil amendments include combinations of atrazine

and glucose at different doses. Experiments were carried in

replicates of five pots (0.5 l), 10 seeds sown in each. In

experiment ii (soil amendments), the soil was mixed with

glucose at dose of 5, 10, 15 g/Kg using a cement machine

(Shatal, 150 l), delivered into pots and sprayed with atrazine

(500 g a.i. ha−1) on soil surface. Herbicides were applied

using a motorized laboratory sprayer equipped with a flat

fan nozzle (8001E, Degania Sprayers Co. Ltd., Degania

Bet, Israel) calibrated to deliver 300 l ha−1 at 245 kPa, as

described by Eizenberg et al. [37]. Glucose free pots non-

atrazine treated served as control. In both experiments, pots

were irrigated as needed by sprinklers. Twenty days after

planting, wheat height was measured, shoots were cut and

dry biomass (60 °C for 72 h) was measured.

All experiments were arranged in a completely rando-

mized design. Effect of herbicide phytotoxicity was com-

puted by one-way ANOVA. Means were compared by

Tukey–Kramer honestly significant difference test (a, 0.05)

using JMP software (vers. 7, SAS). Non-linear regressions

were computed using SigmaPlot version 11.01 (SPSS Inc.,

Chicago, IL, USA).

Determining atrazine degradation in enrichment
cultures using HPLC and identification of atrazine-
degrading isolates

Ten gram of soil from the respective soil was suspended in

R medium (based on ATCC 2662 R) containing glucose as

carbon source and atrazine (30 mg/l) as nitrogen source

(allowing maximal solubility of atrazine in water at room

temperature). The soil was shaken (150 rpm) and incubated

at 25 °C for 7 weeks. Control (autoclaved soils) was incu-

bated as well. Periodically samples were taken from 0 to

7 weeks after incubation for atrazine residues analysis.

Atrazine in filtered (0.20 µm) supernatant of the enrichment

cultures was determined by Agilent 1100 HPLC (Wald-

bronn Germany) equipped with a DAD detector. Samples

(20 µl) were separated on a Kinetex C18 column (Phenom-

enex Torrance, CA) and the mobile phase consisted of 70%

methanol and 30% water flowing at a 1 ml/min. Detection

and quantitation of atrazine was done at 240 nm by the

external standard that was linear between 0.15 to 30 mg/l.

Isolation assays were carried by collecting serial dilutions

of the suspension of the enrichment culture using 0.85%

NaCl and spreading them on solid R-media plates amended

with glucose and atrazine (30 mg/l). Plates were incubated at

30 °C for 48 h and single colonies were picked based on

distinct colony morphology and sub cultured on ATZ-R

media plates to obtain pure isolates. Resulting isolates were

grown in 10 ml R-medium containing atrazine (30 mg/l) as

sole nitrogen source and incubated at 30 °C with shaking.

Culture suspensions were extracted in methanol to screen for

degradation potential (measuring atrazine concentrations by

HPLC) leading to the identification of two degrader-isolates.

The taxonomic characterization of the isolates is described in

Supplementary Table 1.

Amplicon sequencing and data analysis

In total, 30 and 32 sequencing libraries were constructed for

soil and enrichment samples, respectively. The details of

sequencing library construction are described in Supple-

mentary Materials. Sequences were deposited in SRA

(SUB2541893). After filtration (Supplementary Materials),

the operational taxonomic units (OTUs) were analyzed

using the UPARSE pipeline [38]. Sequences were assigned

to OTUs at 97% identity. The RDP classifier was used for

picking representative sequences for each OTU and to

assign taxonomic data to each representative sequence at the

70% threshold [39]. Rarefaction curves were analyzed using

the QIIME pipeline [40]. The Chao1 richness index,

Shannon diversity index, Simpson diversity index, and

nonmetric multidimensional scaling (NMDS) ordination

based on Rho similarities were performed using PAST

software [41]. OTUs were sorted according to the ratio of
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reads between treated and untreated soil samples at different

time points. Significance of differential abundance dis-

tribution pattern was tested using the group significance

function in QIIME (Supplementary Table 2).

Reconstruction of single species metabolic network
models

Five species were selected for model construction based on

differential abundance pattern and isolation tests (Supple-

mentary Tables 1 & 2). Genome sequences representing the

respective species were selected based on blast search

screening and respective sequences were retrieved from

public resources. In cases where highly-scored hits were

retrieved from several species, the closest species for which

genome sequence was available were selected based on

phylogenetic relatedness as inferred from a 16S rRNA

based phylogenetic tree (Supplementary Figure 3). Differ-

entially abundant OTUs and the respective genome

sequences used for constructing the respective metabolic

networks are listed in Table 1. Model SEED was used for

constructing the initial draft metabolic models from the

genome sequence data [42]. The RAST annotation algo-

rithm was used for structural and functional annotation [43].

The genome was then imported into Kbase (www.kbase.us)

and a draft metabolic model was constructed.

After having a working draft model (that is a biomass

flux > 0 when all exchange reactions are open), each of the

models were manually curated according to literature and

other available resources such as KEGG [44], UniProt [45],

and JGI [46] to ensure that it captures the biochemical

and physiological knowledge available. Overall, manual

curation processes involved (i) the addition of new reactions

based on the literature and the additional annotations

schemes; (ii) standardization - all reactions’ Ids from the

different databases were converted to KBASE rxn con-

ventions and validation of reaction reversibility and bal-

ance; and (iii) removal of futile loops. Curation procedures

were carried iteratively vs. growth simulation ensuring that

the reconstruction version was able to produce all biomass

components in minimal mineral media (MMM: K+, Mn2+,

CO2, Zn
2+, SO4

2−, Cu2+, Ca2+, HPO4
2−, Mg2+, Fe2+, Cl−)

with alternative C and N sources. The different C and N

sources that the species can grow on were determined based

on literature reporting performances of the selected species

[47–50]. The final GSMM were consistent with the

experimental knowledge on the nutrients required for cul-

turing each species.

The GSMM of each species (k) was represented in a

mathematic format in a stoichiometric matrix (Sk). In the

assumed pseudo-steady-state, the model can be represented

as: S × v= 0, where vector v signifies the reaction flux. Flux

balance analysis (FBA) was used for predicting activity.

The objective of the optimization was maximizing the flux

thorough the biomass objective function. Constrains for the

optimization include upper and lower bounds (LBk and

UBk) for selected uptake reaction fluxes [51, 52]. FBA was

performed using COBRAToolbox-2.0 [53] in MATLAB,

with GLPK as the linear programming solver.

Community network model construction

The five single species models were combined into a

single dynamic model and analyzed following

Table 1 General features of metabolic network models constructed for species with differential abundance following atrazine treatment

Features Arthrobacter

aurescens TC1
Cesiribacter andamanensis

AMV16
Halobacillus sp.
BAB-2008

Halomonas stevensii

S18214
Bacillus

pseudofirmus OF4

Accession NC_008711 NZ_AODQ01000227 ANPF01000133 AJTS01000000 NC_013791

Identitya 98% 99% 99% 99% 96%

Genome feature

Genome size (Mb) 5.23 4.76 3.78 3.69 4.25

Total proteins 4627 3816 3697 3252 4064

Metabolic model

Genes in model 960 743 896 832 830

Total reactions 2308 1528 1483 1752 2108

Biochemical
reactions

2023 966 1211 1479 1825

Transport
reactions

158 480 147 148 157

Exchange
reactions

127 82 125 125 126

Metabolites 2387 1542 1358 1686 2048

aSimilarity between 16s of the OTU and of respective sequence in the genome sequence
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conventions described for COMETS [54] with some

revisions detailed below. Briefly, like COMETS, our

algorithm of community dynamic modeling uses dynamic

flux balance analysis (dFBA) for simulating the growth of

multiple species in a given media across time. The model

is updated after each time tick. The amount of biomass of

each species is changed after each time tick based on the

biomass reaction flux of the given species in that time

tick; uptaken metabolites are then removed from the

media and secreted metabolites are added to it. Whereas

COMETS simulations occur on a spatially structured

lattice of interacting metabolic subsystems (“boxes”)

[14], our simulations assume a simplistic single-box

world with no spatial differentiation and equal accessi-

bility of all organisms to all nutritional sources. This

simplification reflects our lack of knowledge of the con-

ditions in soil and corresponds to conditions in in vitro

experiments. As in [14], we define the initial conditions

of the community dynamic model by setting initial con-

centrations (at time 0) of each substrate k (Xk(0)) in the

media and the setting of the initial biomass of each spe-

cies (Bk
biomass). Each reaction is limited by lower and

upper bounds (LB and UB respectively), set to −1 mmol/

(gDW*hr), respectively.

The total time period of each simulation cycle was sub-

divided into predefined discrete time intervals (Δt). For each

time interval, the following three steps were executed:

(1) the substrates were divided equally between the

species based on the relative abundance of each species

(biomass). The amount of metabolites that can be uptaken

by each species in a given time tick follows:

LBk
i tþ 1ð Þ¼ Xk

i tð Þ�Bi
biomass tð Þ=Btotalbiomass tð Þ

LBk
i tð Þ � Vk

i tð Þ � UBk
i tð Þ

Where:

LBk
i (t+1) is the amount of metabolite (k) that can be

uptaken (uptaken values are negatives) at time (t+1) by

species (i)

Xk
i (t) is the amount of metabolite Xk for species (i) at

time tick (t)

Bi
biomass (t) is the amount of biomass of species(i) in

time-tick (t)

Xtotal biomass defines the sum of Xk
biomass of all the species,

UBk
i (t) is the amount of metabolite (k) that can be

secreted (secreted values are positives) at time (t). This

value was set to be 1000.

(2) At each time point we optimized the biomass flux for

each species using the standard FBA optimization:

Maximize : Vi
biomassðtþ ΔtÞ

Subject to : Si�Viðtþ ΔtÞ ¼ 0

(3) Following each time tick, media uptake bounds and

species biomass are updated to reflect secretions and

uptakes & biomass fluxes.

Xkðtþ ΔtÞ ¼ Xk tð Þ þ Σi V ex½ �ki

� �

ðtþ ΔtÞ

Where:

Xk (t+Δt) is the amount of metabolite (k) available in the

media at time (t+Δt)

V [ex]i
k is the flux of the exchange reaction for meta-

bolite (k) in the metabolic model of species (i),

This value can be negative (uptaken) or positive (secre-

ted)

Bi
biomassðtþ ΔtÞ ¼ Bi

biomass tð Þ þ Vi
biomass tð Þ

Where:

Bi
biomass (t+Δt) is the amount of biomass of species (i) at

time (t+Δt)

Vbiomass
i (t) is the flux of the biomass reaction at time (t)

The new concentrations were then used as a starting

point for the next iteration. Simulations assumed an

equal initial biomass for each species (Xk
biomass= 1),

aimed at gaining a qualitative prediction for the nature

of interaction (e.g., enhancing vs. repressing degrada-

tion), rather the quantitative description of activity in

soil.

Co-culture experiments and metabolomics profiling

The isolates Arthrobacter sp. AT5 (MG763151), Halomo-

nas sp. N8 (MG763150), and Halobacillus sp. NY15

(MG763149) from the Agricultural Culture Collection of

China (ACCC) were used for testing experimentally the

computational predictions. In vitro experiments were

designed to correspond to simulation conditions considering

growth media and species ratio. Atrazine degradation car-

ried by two- (combination of N8 or NY15 with AT5, 1:1)

and three-member consortia (combination of N8, NY15,

and AT5, 1:1:1) were measured. In addition to combina-

tions based on species selected according to differential

abundance following atrazine application, two arbitrary

bacterial species were used for constructing reference con-

sortia: Mycobacterium sp. S8 (MG763148), a soil species

whose abundance in soil is not effected by atrazine, and the

model microorganism Escherichia coli. The isolate S8 was

abundant in soils (>6.5% on average), representing endo-

genous species that is not effected by atrazine treatments.

The two negative controls were combinations of AT5 and

S8 (1:1), and AT5 and E. coli (1:1). The similarities

between 16s of the OTUs and the used isolates were 97%,

98%, 99%, and 98% for AT5, N8, NY15, and S8 respec-

tively. All strains were grown in Luria-Bertani (LB)
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medium at 30 °C. To measure the atrazine degradation, the

single strain and consortia were separately grown in R

media supplemented with atrazine or both atrazine and

glucose for 36 h in 50 ml flasks. In addition R media were

supplemented with predicted exchanged metabolites (EM):

for NY15 R medium was supplemented with atrazine,

aminoethanol, ethylamine and hypoxanthine (EM1); for N8

R medium was supplemented with atrazine, aminoethanol,

ethylamine, hypoxanthine and urea (EM2); for AT5 R

medium was supplemented with atrazine, leucine and NH4

(EM3). As in simulations, all compounds were added in

equal concentration (30 mg/l). The concentration of atrazine

in each culture was measured every 6 h by HPLC as

described above. All treatments were carried out in

triplicates.

To test secretion of EM by the three species, consortia

(combination of AT5, NY15, and N8) were initially grown

in R media supplemented with atrazine as a sole carbon and

nitrogen sources for 30 h, and then we screened for the

hypothesized EM by liquid chromatography–mass spec-

trometry (LC–MS). Pure compounds, including amin-

nethanol, ethylamine, glycerol, urea, hypoxanthine, leucine,

and mannitol were used as reference standards. To facilitate

the separation of the small molecules (including amin-

nethanol, ethylamine, glycerol, and urea) by liquid chro-

matography, a derivatization step was performed before

analysis. A C18 reverse phase column (2.1 × 100 mm, 1.7

μm particles, ACQUITY UPLC BEH, WATERS) was used

for liquid chromatography. Mass spectrometry was per-

formed using electrospray ionization in positive or negative

ion mode with MSe acquisition mode, with a selected mass

range of 50–1200m/z. The details of derivatization and LC-

MS analysis are described in Supplementary Materials.

Results

Functional assays for biodegradation activity
following introduction of atrazine to agriculture soil

To study the role of bacterial communities in atrazine bio-

degradation in agricultural land, corn fields were treated

with atrazine. Based on a bioassay, we detected a 90%,

50%, and 0 decrease in phytotoxicity following 35, 49, and

77 days from treatment, respectively (Supplementary Fig-

ure 2). To further determine biodegradation activity and

community structure, soil samples from 0, 49, and 77 days

from atrazine application were taken for direct degradation

assay and bacterial community analysis.

For degradation assays, soil samples were incubated in

an atrazine containing R medium. Rapid atrazine degrada-

tion was detected only in samples taken from the atrazine-

treated soil (T49 & T77 in Fig. 1). In comparison, no

degradation or minor degradation was observed in samples

from time 0 (T0), samples from untreated soil (U0, U49,

U77), or autoclaved samples (U and T control), precluding

the possible contribution of abiotic reaction to the degra-

dation of atrazine.

The degradation assay together with the bioassay point at

enhanced biodegradation activity in atrazine-treated soil.

The application of atrazine to soil followed the common

agricultural practices. Despite the relatively low amounts

and the complexity of agricultural soil, both analyses sug-

gest that the application of atrazine triggered functional

modification in the soil community associated with

increased degradation rate. We next examined whether a

corresponding change in community structure can be

detected.

Fig. 1 Atrazine degradation in enrichment cultured samples taken from
agricultural soil. T, soil treated with atrazine; U, untreated soil (con-
trol); T control, autoclaved treated soil of T0; U control, autoclaved
untreated soil of U0; 0/49/77, soil samples collected 0/49/77 days after
atrazine applied in the field experiment. X axis show time of inocu-
lation in minimal R medium. The results are average of duplicates.

ANOVA of the regression, coefficients and significance of log logistic
regression for T0, T49, and T77 are provided in Supplementary
Table 5. All three regressions are significantly different according to F
test (P value < 0.01). For all other treatments, regression coefficients
and ANOVA were not significant and were omitted from the table
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Bacterial community dynamics and structure

Community structure in the atrazine-treated and untreated

soil was determined using Illumina MiSeq (Supplementary

Materials). Multidimensional scaling of community simi-

larity points at a clear separation between treated and

untreated soil samples in both soil and enrichment samples

(Fig. 2). Unlike samples from untreated soils, samples from

treated soil diverge with time and show a growing distance

from untreated soil, or treated soil at day 0. The analysis

points at a shift in community structure that corresponds

with the shift in community function, induced by the

application of atrazine.

To identify species that are effected by the application

of atrazine, we screened for OTUs whose abundance

differentiated following treatments. The three OTUs with

the highest fold-change following atrazine application

were classified as Halobacillus_unclutrued, Bacillus

decolorationis, and Cesiribacter sp. JJ021 (Supplemen-

tary Table 2). These three species were barely detected in

T0 and in any of the untreated soil samples (Supple-

mentary Table 3). Surprisingly, none of the ten OTUs

with highest fold-change was assigned to a genus that

includes species with atrazine degradation activity. In

parallel to the genomic survey (16S rRNA analysis), we

carried independent isolation screens for atrazine degra-

ders from the respective atrazine-treated field samples

resulting in the identification of two isolates classified as

Sinorhizobium and Arthrobacter that were confirmed as

atrazine degraders (Supplementary Table 1). OTU that can

potentially represent the Sinorhizobium isolate (identity in

16S rRNA sequences > 97%) was detected in relatively

low and stable abundances across all time points and do

not show a quantitative response to the application of

atrazine (Supplementary Table 1). The OTU with the

highest sequence similarity to the 16S rRNA of the

Arthrobacter degrader-isolate (99% identity, Supplemen-

tary Table 1) is OTU2327. OTU2327 was detected in a

relatively high abundance (~6-15 times more abundant in

atrazine-treated samples in comparison to OTU repre-

senting the other isolate with degradation activity, Sup-

plementary Table 1), supporting a potential role in the

degradation of atrazine in the soil samples.

OTU2327 showed an approximately two fold increase in

abundance following exposure to atrazine (P value 0.065,

below significance threshold, Supplementary Table 2).

In order to explore functional modification in microbial

activity in the respective soil samples following atrazine

application we chose to focus on five species including the

potential atrazine degrader Arthrobacter_unclassified

(OTU2327), three species whose respective OTUs show

significant increase in abundance following atrazine appli-

cation— Halobacillus_unclutrued, Bacillus decolorationis,

and Cesiribacter sp. JJ021 and Halomonas stevensii—a

species whose respective OTU (OTU1826) demonstrates a

reverse pattern—a significant decrease following atrazine

treatment.

Predicting performances of different bacterial
combinations in atrazine only vs. glucose
supplemented media

GSMM were constructed for the five species whose partial

abundance was affected following atrazine application

(Table 1). In order to compare atrazine degradation effi-

ciencies of different consortia, we constructed 16 multi-

Fig. 2 Non metric multidimensional scaling (NMDS) ordination of diversity profiles of bacterial communities in soil (a) and enrichment samples
(b). The two-dimensional stress values for the NMDS were 0.114 and 0.160, respectively, based on Rho similarity measure
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species models representing all possible combinations that

contain Arthrobacter, the only atrazine degrader (Supple-

mentary Table 4). Performances were simulated using

constraint-based modeling (CBM). A single species of

Arthrobacter was used as a reference point, allowing pre-

dicting positive or negative contribution of species

interactions.

For each combination we initially measured two para-

meters of community performances: total biomass and

atrazine degradation efficiency (Fig. 3). Simulations were

carried in a medium containing atrazine as a sole nitrogen

and carbon source and in a medium containing an equal

amount of atrazine (acting as a sole nitrogen source) sup-

plemented by glucose as the major carbon source. As

expected, supplementing the medium with glucose, in

comparison to atrazine only medium, improved perfor-

mances—in the rich-nutritional medium (glucose contain-

ing) total biomass increased in 2–5 fold and atrazine

degradation was about twofold faster. Based on simulation

results we repeated pot bioassays while supplementing the

soil in glucose in different concentrations. In support of the

simulations, we find that in high glucose concentrations,

atrazine degradation in soil was expedited in comparison to

non-treated control (Fig. 3d).

Based on simulations results, we compared the perfor-

mances of different species combinations (Fig. 3). In both

media types, variations between combinations were recor-

ded for both performance parameters. The reference com-

munity— containing only the atrazine degrader

Arthrobacter (red, Fig. 3a, b), had the worst performances

considering both growth (community biomass) and atrazine

degradation. Multi-species combinations improve perfor-

mances almost in all cases. All top performing combina-

tions contain Halobacillus (blue and orange, Fig. 3a, b),

followed by four combinations containing Halomonas

(green). To test predicted performances in the lab we cre-

ated artificial consortia of Arthrobacter, Halomonas and

Halobacillus isolates. Experimental results provided vali-

dation to simulation outputs. First, no atrazine degradation

was detected by Halomonas or Halobacillus (Fig. 3c).

Second, performances of all consortia were better than the

Arthrobacter alone on both glucose amended and non-

amended media (Fig. 3c). Halobacillus best supported the

atrazine degradation followed by the combination Haloba-

cillus and Halomonas, and then Halomonas. In comparison,

control consortia composed of Arthrobacter and a random

bacterium, not associated with the original community (E.

coli), or an endogenous soil bacterium, non-differentially

abundant after atrazine application in the original commu-

nity (S8), did not show enhanced performances in com-

parison to the performances of Arthrobacter alone (Fig. 3c).

Third, atrazine degradation efficiencies of all combinations

were higher on rich-nutritional medium compared to poor-

nutritional medium, showing the degradation enhancement

by glucose (Fig. 3e).

Characterization of interactions and exchange
fluxes

Within each combination, we looked at the individual

growth of each member according to biomass mass pro-

duction in the corresponding compartment. Plots in Fig. 4

indicate the individual growth of Arthrobacter, Haloba-

cillus and Halomonas in different combinations (Fig. 4 top,

middle and bottom, respectively). Growth pattern of

Arthrobacter differ between the two media types: in the

relatively rich, glucose-supplemented medium, Arthro-

bacter grows best as a single species; in the poor medium

(atrazine only), Arthrobacter growth as a single species is

the worst in comparison to all combinations. Reliance of

species on community members for improved growth is

typical of minimal media and is likely to reflect dependency

in exchange fluxe,s which are masked in rich media [22,

55]. Unlike the pattern observed for Arthrobacter, improved

growth in all combinations in the poor media, an antag-

onistic growth pattern is predicted between Halobacillus

and Halomonas, both species performs better in mutual

exclusive combinations in comparison to combinations

containing both species. This antagonistic pattern corre-

sponds with the dynamics in community structure in soil

where an increase in the level of Halobacillus was asso-

ciated in reduction in the abundance of Halomonas (Sup-

plementary Table 3).

In order to suggest patterns of metabolic interactions that

might explain co-occurrence patterns in both simulations

and soil we predicted the mutual exchange fluxes in the

three-species in silico consortia. Simulations predicted that

Arthrobacter secretes aminoethanol, ethylamine and

hypoxanthine during atrazine degradation, that are con-

sumed by both Halobacillus and Halomonas (Fig. 5a). The

antagonistic association in their relative abundance can

hence be related to co-dependency on these secretion pro-

ducts. In return, Halobacillus and Halomonas secret

ammonium (NH4
+) and leucine (Halobacillus only) that are

consumed by Arthrobacter. In glucose amended medium,

though secretion pattern of Arthrobacrer remains the same

(Fig. 5a), mutual exchanges are conserved only with

Halobacillus and not with Halomonas. To provide experi-

mental support for the predicted exchange fluxes we

examined growth and degradation of atrazine in mono-

cultures of the three species (Halobacillus. Halomonas and

Arthrobacter) grown on minimal media, each supplemented

by the relevant exchange metabolites (EM1, EM2 and EM3,

respectively, Fig. 5a). In agreement with predictions,

Halobacillus and Halomonas growth was recovered in the

supplemented media in comparison to no growth in an
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atrazine only media; Arthrobacter growth and atrazine

degradation was enhanced in the supplemented medium

(Fig. 5b). We further screened for the presence of the eight

predicted exchange metabolites in the atrazine only media

(Fig. 5a, left). Reassuringly, six metabolites—aminnetha-

nol, ethylamine, glycerol, urea, hypoxanthine and
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ammonium—were detected in a co-culture of the three

species (Supplementary Figure 4). Two exchange metabo-

lites, leucine and mannitol were not detected, possibly due

to a rapid turnover. Finally, quantitative screens of ammo-

nium in mono and co-cultures are consistent with model

predictions: When grown in atrazine-only medium,

Arthrobacter is predicted to consume ammonium secreted

by Halobacillus and Halomonas (Fig. 5a, left). In accor-

dance with predictions, ammonium concentrations in co-

cultures (Arthrobacter- Halobacillus and Arthrobacter-

Halomonas) are much higher than concentrations detected

in the mono-cultures of Halobacillus and Halomonas that

are un-capable of growing alone on atrazine as a sole carbon

and nitrogen source or in the mono-culture of Arthrobacter

that does not secret ammonium in atrazine only medium

according to model predictions (Fig. 5c). Supplementing the

medium with glucose, is predicted to induce ammonium

secretion of Arthrobacter (Fig. 5a, right). In accordance

with predictions, ammonium concentrations in a mono-

culture of Arthrobacter are much higher in glucose sup-

plemented vs. non-supplemented medium (Fig. 5c).

Discussion

Manipulating bacterial communities is a key emerging

challenge in microbial ecology with potential applications

for medical, agricultural and environmental practices [56–

58]. Especially, the “in situ microbiome engineering” could

be a new paradigm of community-scale microbial engi-

neering [57]. Microbiome’s activities and capacities are to a

large extent determined by complex networks of metabolic

interactions and exchanges [59–62]. Traditionally, the study

of bacterial interactions required the use of laboratory

experiments such as growth and co-culture assays [59, 63].

Major obstacles are difficulties in isolation and culturing of

all community members and the complexity of the micro-

biome’s interactions. Furthermore, the composition of taxa

and their interactions in the microbiome can vary sub-

stantially over short time scales and nutrient environment

modification. In order to detect metabolic interactions,

methods able of capturing species identity, dependencies

and the nature of exchanged metabolites are needed, and

thus multiple combinations of diverse techniques, such as

metagenomics, mass spectrometry, and isotope labeling are

required [64]. Although multi-technique strategies have

been successfully applied for some model systems such as

enrichment cultures and synthetic communities [3, 65], their

application for the study of natural communities is far from

trivial [63]. Mathematical models of bacterial community

expand the toolbox for detecting metabolic dependencies in

natural bacterial consortia [14, 17, 62].

Here we aimed at applying mathematical modeling

approaches for an “in situ microbiome engineering” tar-

geted for accelerating pollutant degradation in soil con-

taminated with the herbicide atrazine. Our results first

demonstrate that atrazine applications in soil triggers a

compositional shift of bacterial communities (Fig. 2), and

that the shift is associated with functional modification,

atrazine-degrading ability of the corresponding commu-

nities (Fig. 1). Despite the functional shift, the predicted

atrazine degrader, Arthrobacter, was detected in both her-

bicide treated and untreated soil and significant abundance

modifications were detected for non-degrading species.

These non-intuitive observations, where abundance shift

cannot provide a straightforward justification for the func-

tional modification, can be related to community interac-

tions. In order to reach a system-level view of the activity in

soil, we first made use of the information of the composi-

tional shifts associated with the degrading ability. Then, we

applied dynamic modeling methods and explored the per-

formances and exchanges in a range of environmental

microbial consortia. The modeling aimed at charactering

performances (atrazine degradation efficiencies) and

exchanges in different consortia in a range of simulated

media. Simulation results demonstrated the importance of

Fig. 3 Simulations and experimental validations of atrazine degrada-
tion and bacterial growth performances. a–c Performances of bacterial
combinations. Line colors are indicative of the combinations as
indexed on the right grid (grey/white cells indicate species included/
not included in the combination, respectively. I – 16 combinations
formed by species represented by GSMM. All combinations include
Arthrobacter aurescens TC1 (atrazine degrader) together with all
possible combinations of the species modeled (chosen based on dif-
ferential abundance). Red, A. aurescens TC1 only; Blue, combinations
with Halobacillus sp. BAB-2008 but without Halomonas stevensii

S18214; Orange, combinations with both H. sp. BAB-2008 and H.

stevensii S18214; Green, combinations with H. stevensii S18214 but
without H. sp. BAB-2008, Dark grey, combinations without H. sp.
BAB-2008 or H. stevensii S18214. II, combinations used as control in
the experimental validation. Purple, A. aurescens TC1 (atrazine
degrader) with an exogenous strain (Escherichia coli) or an endo-
genous strains whose abundance was not affected by the application of
atrazine (Mycobacterium sp. S8). Light grey—Halobacillus sp. NY15
and Halomonas sp. N8 without A. aurescens AT5 (atrazine degrader);
Black—autoclaved strains. In both simulations (a, b) and in vitro
experiments (c) performances were tested in two media: medium that
contains atrazine as the sole carbon and nitrogen source (left) and
medium with atrazine and glucose as carbon and nitrogen sources
(right). a Predicted relative increase in biomass (1/h). The relative
increase values indicate biomass(t)/biomass(0) -biomass(0). b Pre-
dicted atrazine degradation (mmol/gDW) due to degradation activity.
c In vitro decrease in atrazine (mg/l). d Experimental validation of
simulations by pot experiments following supplementing the soil with
glucose. Fraction of atrazine left was estimated according to a bioassay
(Supplementary Figure 1). T1, no atrazine; T2, atrazine only; T3,
atrazine and 0.5% glucose; T4, atrazine and 1.0% glucose; T5, atrazine
and 1.5% glucose. Different letters indicated statistically significant
differences (P < 0.05) according to the Tukey test. e In vitro atrazine
degradation in media with atrazine and supplemented/not supple-
mented with glucose (+glucose/-glucose, respectively). C1, AT5 only;
C2, combinations of AT5 and S8; C3, combinations of AT5 and E.

coli; C4, combinations of AT5 and NY15; C5, combinations of AT5
and N8; C6, combinations of AT5, NY15 and S8
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the non-degraders species to the degradation process, pro-

viding functional interpretation to the observed composi-

tional shifts. Simulations predicted an exchange of

metabolites between the atrazine degrader (Arthrobacter)

and non-degrader (Halomonas and Halobacillus). Exchange

metabolites include aminoethanol and ethylamine—pro-

ducts of atrazine degradation by Arthrobacter [65], pro-

viding carbon and nitrogen sources for the non-degrader.

The improved atrazine-degrading efficiency and increase in

the biomass of community suggested mutual benefits

associated with cross-feeding. Based on simulation we

designed bacterial communities and validated in vitro

improved performances of selected vs. control combina-

tions. Relevant exchange fluxes, predicted by simulation

were also supported by experimental results. Simulations

supported the amendment of the medium in additional

carbon source, here glucose, as previously reported [66],

and also validated in our experimental system. Moreover,

Halobacillus was not detected in the enrichment samples,

possibly because the culture condition do not support and

maintain the composition of the source sample community,

and pointing at the importance of genomic approaches and

genomic-driven analysis for studying soil microbial func-

tion, circumventing the need to isolate. Our analyses

provide a comprehensive mechanistic description that

explains community dynamics leading to enhanced degra-

dation, not only through affecting Arthrobacter perfor-

mances but through affecting community function. Hence

the analysis paves the way for the educated design of

biostimulation strategies. Glucose, the carbon source used

here is not common in soil, and its application to agri-

cultural practice is questionable. Further research will focus

on the simulation-based examination of alternative carbon,

sources that are present in soil [66], and can act as specified

biostimulation agents of selected bacterial combinations.

Limitations of the analysis should be acknowledged, to a

large extent reflecting current state of technology. First,

genome sequences for model construction and simulations

were retrieved from available public resources based on

similarity in 16S rRNA gene, rather than assembled directly

from the soil sample. Similarly, isolates for in vitro vali-

dation were chosen from public resources based on 16S

rRNA. It is important to acknowledge that the genome of

bacteria with close phylogenetic proximity (inferred by

similarity in the 16S rRNA) can vary substantially in their

genomes, and hence simulations and validation represent an

approximation of the in situ combinations. Such an

approximation, despite its obvious limitations, is applied

Fig. 4 Simulation of biomass of
each species within different
combinations. Relative increase
in biomass of specific species in
different combinations on
defined media with atrazine,
either as the sole carbon and
nitrogen source (left) or
supplemented by glucose (right).
The relative increase shows
biomass(t)/biomass(0) -biomass
(0). Line colors are indicative of
the combinations as indexed in
the right grid and are identical to
these in Fig. 3

504 X. Xu et al.



here as in many other recent explorations of microbial

function and interactions in complex environments, relying

on a demonstrated overall correlation between phylogeny

and function in tightly associated species [67–71]. Such

approximations allow a relatively straightforward approach

to circumvent the difficulty in isolating and supporting

growth in culture for most endogenous soil species.

Sequencing technologies advance rapidly, and pioneering

projects demonstrate that the full assembly of abundant

species based on direct sequencing from the sample is

possible even in complex communities [72]. Whereas future

projects are expected to make use of the genomes that were

directly sequenced in the relevant environment, phylogeny-

based approximations are currently significantly less costly

Fig. 5 Prediction and validation of potential exchange fluxes in com-
binations. a Predicted exchange fluxes in media with atrazine as the
only carbon and nitrogen sources (left) and atrazine and glucose
nutrition (right). EM1, EM2 and EM3 represent directional exchanges
in a specific combination. b In vitro measurements of growth (right)
and fraction of atrazine left (left) in medium containing atrazine as a

sole nitrogen and carbon source vs. the same medium supplemented by
exchange metabolites. Experiments were carried in monocultures of
Halobacillus sp. (top), Halomonas sp. (middle) and Arthrobacter sp.
(bottom). c Levels of NH4

+ concentrations in media. Species in (b, c)
were represented by the same isolates as in Fig. 3 (NY15, N8 and AT5,
respectively). Bars represent the standard errors of the three replicates
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and more feasible and can hence provide a realistic bridge

between microbial ecology and system biology and allow to

study ecosystem-level function and dynamics [14, 17, 62].

Here, all approximations require at least 97% identity in the

16S rRNA between OTUs and representative species, fol-

lowing the common practice in the large majority of eco-

logical surveys of co-clustering sequences above this degree

of similarity into a common taxonomic unit. An alternative

approach to looking for the most closely related sequence

species (above a threshold) is to define a set of core genes

that are conserved between all species of a wider corre-

sponding phylogenetic group. However, such pan-genome

approaches have their own cones where the set of shared

genes is heavily dependent on the number of species con-

sidered and the variability in lifestyle and genomes sizes

[73–75]. In particular, soil samples were demonstrated to be

poorly represented in genome depositories in comparison to

the relatively high coverage of sequenced species in the

human microbiome and mammalian gut datasets, creating a

bias against the inclusion of soil-associated functions [71].

Finally, due to the complexity of model construction

process, we limited the analysis to five soil species.

Advances in sequencing technologies together with

improvement in platforms for genome annotation and

model construction [42, 76–79] are expected to lead to in

silico representation of complex microbial communities

[70]. In parallel to the advent of sequencing technologies,

metabolomics technologies are now rapidly emerging and

in the very near future a growing number of ecosystems will

be subject to an extensive profiling [78, 80, 81]. Simulations

accuracy is expected to improve when based on a detailed

description of the metabolic environmental conditions.

Though the current analysis is based on species and envir-

onment approximation, representing only a sub-set of the

original community, it demonstrates the strength of

metabolic-modelling in producing testable hypotheses that

were supported by in vitro and pot experiments. In the near

future, where new technologies will reduce the need in

approximations and will facilitate model construction and

analyses, reliability and success rate of genomic driven

predictions are likely to increase and make them an integral

part of microbial community engineering.

Conclusion

Modeling of microbial communities from atrazine-treated

soils allows predicting community performances consider-

ing growth, atrazine degradation, and specific exchange

fluxes. Both simulations and experimental results indicated

that adding Halobacillus, and/or Halomonas to the com-

munity remarkably improve atrazine-degrading efficiency.

The efficiency of each community could also be clearly

enhanced by adding to the media additional carbon sources

such as glucose. The outcome of this study can assist to

reduce atrazine contamination in soil and water. This

methodology will be addressed to reduce the soil con-

tamination of other herbicide families.
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