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Microtubules are highly negatively charged proteins which have been shown to behave

as bio-nanowires capable of conducting ionic currents. The electrical characteristics

of microtubules are highly complicated and have been the subject of previous work;

however, the impact of the ionic concentration of the buffer solution on microtubule

electrical properties has often been overlooked. In this work we use the non-linear

Poisson Boltzmann equation, modified to account for a variable permittivity and a

Stern Layer, to calculate counterion concentration profiles as a function of the ionic

concentration of the buffer. We find that for low-concentration buffers ([KCl] from 10

µM to 10 mM) the counterion concentration is largely independent of the buffer’s

ionic concentration, but for physiological-concentration buffers ([KCl] from 100 to 500

mM) the counterion concentration varies dramatically with changes in the buffer’s

ionic concentration. We then calculate the conductivity of microtubule-counterion

complexes, which are found to be more conductive than the buffer when the buffer’s

ionic concentrations is less than ≈100 mM and less conductive otherwise. These

results demonstrate the importance of accounting for the ionic concentration of the

buffer when analyzing microtubule electrical properties both under laboratory and

physiological conditions. We conclude by calculating the basic electrical parameters of

microtubules over a range of ionic buffer concentrations applicable to nanodevice and

medical applications.

Keywords: cytoskeleton, microtubules, counter-ions, conductivity, bio-electricity, Poisson-Boltzmann, COMSOL

1. INTRODUCTION

Microtubules (MTs) are cytoskeletal protein polymers of great interest in fundamental biological
research and nanodevice design. A single MT is a relatively stiff (flexural rigidity:≈ 2.2 ·10−23Nm2;
Gittes et al., 1993), cylindrical polymer with an outer radius of 12.5 nm and a hollow central interior,
referred to as the lumen, of radius 8.4 nm. Each MT cylinder is composed of 13 vertical stacks of α,
β-tubulin, which are slightly offset from one another to form a helical tubulin lattice. Every tubulin
monomer (either α or β) has a ≈4 nm long and ≈1 nm thick C-terminus tail which protrudes
from the outer cylinder of the MT; the structures of an MT and a tubulin heterodimer are shown
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in Figure 1. Tubulin heterodimers are unusually highly charged
compared to other proteins, with a total electric charge of ≈−53
e per dimer, ≈50% of which resides on the C-termini. While
the total tubulin charge, and the fraction of it which lies on
the C-termini, varies with the tubulin isotype, there exists a
substantial electrostatic attraction of cations in the surrounding
buffer to the MT surface. These ions (mainly cations) form
a layer of “counterions” on the MT outer surface, acting as
charge carriers along the MT length. While there have been
numerous experimental and theoretical papers written on the
resulting electrical properties of MTs (Priel et al., 2006; Van den
Heuvel et al., 2007; Priel and Tuszyński, 2008; Satarić et al., 2009;
Sekulić et al., 2011; Sekulić and Satarić, 2012; Santelices et al.,
2017; Cantero et al., 2018, 2019; Kalra et al., 2020b; Tuszynski
et al., 2020), questions about MT electrical properties remain.
In this work, a computational model is developed to calculate
the counterionic behavior around a microtubule and predict MT
conductivity and other fundamental electrical parameters.

MTs have been shown to demonstrate a number of interesting
electrical properties, including long-distance propagation of
ionic signals, signal amplification, electrical oscillations, and
memristive responses (Priel et al., 2006; Priel and Tuszyński,
2008; Satarić et al., 2009; Sekulić et al., 2011; Sekulić and Satarić,
2012; Cantero et al., 2018, 2019; Tuszynski et al., 2020). These
properties have been theorized to play an important role in
biological processes, and may be leveraged for the fabrication
of MT nanodevices in the near future (Van den Heuvel et al.,
2006; Isozaki et al., 2015; Kalra et al., 2020a, 2021). Of these
electrical properties, ionic signal propagation is the most well-
studied, and the propagation of coherent ionic signals along MTs
is a necessary component for memristive behavior and ionic
signal amplification (Freedman et al., 2010; Tuszynski et al.,

Abbreviations: CT, C-termini; MT, microtubule; SMT, subtilisin-cleaved

microtubule; PB, Poisson-Boltzmann; NLPB, non-linear Poisson-Boltzmann; LPB,

linear Poisson-Boltzmann; MD, molecular dynamics.

FIGURE 1 | A structural representation of an MT, composed of tubulin heterodimer subunits, is shown in (A). The structure of an individual tubulin heterodimer is

shown in (B). This schematic is not to the correct scale and conformation (see Supplementary Material), but the illustration highlights that the c-termini lie on and

protrude outward from the outer MT wall.

2020). Experimental measurements on isolated MTs are very
difficult, and, to our knowledge, signal propagation along an
individualMT has only been demonstrated in a single experiment
to date (Priel et al., 2006). Theoretical analyses of MTs, however,
have been more successful, and a number of authors have
analyzed the propagation of ionic signals by modeling MTs as
transmission lines. The result of this work is a model in which
ionic signals can propagate along MTs as solitons capable of
traveling intracellular distances before diminishing below the
thermal noise fluctuations (Sekulić and Satarić, 2012).

Transmission line models of MTs are based on theoretical
calculations of the conductivity, capacitance, and inductance
of short sections of the MT. Positive counterions which have
condensed around the MT have a conductance, both axial
and radial to the MT surface; an inductance, due to an
MT’s inherent helical structure; and a capacitance, due to the
separation of the positive counterions from the corresponding
negative charge (Priel and Tuszyński, 2008; Satarić et al.,
2009; Sekulić et al., 2011; Sekulić and Satarić, 2012). Notably,
this capacitance has been modeled to arise across a theorized
depleted layer, which separates the counterions from bulk
solution. This depleted layer is also hypothesized to act as
a shield between the counterions and bulk solution (Priel
and Tuszyński, 2008; Satarić et al., 2009; Sekulić et al.,
2011; Sekulić and Satarić, 2012). Further work has extended
calculations of capacitance to account for non-linear effects
due to the motion of C-termini, and this is expected to
result in stable ionic solitons (Sekulić et al., 2011; Sekulić
and Satarić, 2012). However, in all transmission line models
to date, calculations of the electrical parameters have (a)
assumed the presence of a depleted layer which separates
the counterions from bulk solution and (b) analyzed the
structure of the counterionic cloud using Manning’s theory.
This work revisits these approximations in order to arrive
at more reliable parameter estimates under a range of ionic
concentration conditions.

Frontiers in Molecular Biosciences | www.frontiersin.org 2 March 2021 | Volume 8 | Article 650757

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Eakins et al. Modeling Microtubule Conductivity

2. THEORETICAL MODELS OF
COUNTERION CONDENSATION

Manning’s theory of counterion condensation has been used
extensively to analyze biological polyelectrolytes—such as f-actin,
MTs, and DNA—in ionic solutions. Importantly, Manning’s
counterion condensation theory is based on the assumptions that
the thickness of the polyelectrolyte is negligible—it is treated
as a line charge—and that the surrounding solution is highly
dilute (Manning, 1969; Lamm and Pack, 2010). Starting from
these postulates, Manning used thermodynamics to show that
polyelectrolytes have a critical charge density. If the linear
charge density is greater than this threshold, counterions will
condense along the polyelectrolyte until the effective charge of
the polyelectrolyte and condensed ions equals the critical charge
density. Therefore, the effective charge of the polyelectrolyte is
equal to the real charge divided by the screening coefficient
S = λB/b, where λB is the Bjerrum length, b = L/P, and P
is the number of charged groups over a distance L (Manning,
1969). Naturally, modeling a polyelectrolyte (particularly an MT
which has a diameter of 25 nm) as a linear charge distribution,
and assuming the surrounding solution to be highly dilute,
compromises the ability of Manning’s model to accurately predict
counterionic behavior. To address these drawbacks numerous
works have attempted to analyze polyelectrolytes, particularly
DNA, using the Poisson-Boltzmann equation instead (Chu et al.,
2007; Gruziel et al., 2008; Lamm and Pack, 2010; Kirmizialtin
et al., 2012).

Typically, the Poisson-Boltzmann (PB) equation is considered
to be a more accurate model of counterionic condensation than
Manning’s theory. A free-energy analysis by Stigter concluded
that Manning’s counterion condensation theory was artificially
constrained and should be considered an approximation of the
more accurate PB theory (Stigter, 1995). Moreover, Manning
counterion condensation is predicted by, and has been analyzed
under the framework of, the PB equation (Ramanathan, 1983;
O’Shaughnessy and Yang, 2005; Lamm and Pack, 2010). These
studies suggest that the PB equation would be a better starting
point for estimating MT electrical properties.

Another reason to not use Manning’s theory when analyzing
MTs is that it is only applicable when λD >> r where λD
is the Debye length and r is the radius of the polyelectrolyte
(O’Shaughnessy and Yang, 2005). This condition arises from the
initial assumption that the polyelectrolyte can be modeled as
a linear charge distribution. The radius of an MT is 12.5 nm,
indicating that Manning’s theory is only applicable for ionic
solution concentrations which are much <1 mM (significantly
lower than physiological ionic concentrations which are between
150 and 400 mM) (Van Eunen et al., 2010; van Eunen and
Bakker, 2014). Sekulić and Satarić (2012) justify the application
of Manning’s theory to higher ionic concentrations by analyzing
individual protofilaments in an MT which have a radius of 2.5
nm. However, analyzing protofilaments individually may not be
accurate, as Manning’s theory is designed for polyelectrolytes
in solution, not joined to other polyelectrolytes. Furthermore,
the Debye length under physiological conditions is ≈0.8 nm,

so Manning’s theory is still outside of its range of applicability
when analyzing individual protofilaments. Therefore, the PB
equation is likely a more accurate computational tool to analyze
the behavior of MTs in solution.

The PB equation is derived by assuming that the concentration
of an ionic species is given by a Boltzmann distribution

c = cs exp
−ezV

kBT
(1)

where c is the local concentration of ions, cs is the concentration
of ions in the solution at equilibrium (when no external electric
field is applied), z is the valence of the ion, e is the charge of
an electron, V is the electrostatic potential, kB is Boltzmann’s
constant, and T is the absolute temperature. The electrostatic
potential is given by Poisson’s equation

∇ · (ǫr∇V) = −
ρ

ǫ0
(2)

where ρ is the charge density, ǫr is the relative permittivity
(which is typically considered to be constant), and ǫ0 is the
permittivity of free space. Assuming that the ions are the only
charge carriers in the system, the charge density can be related to
the concentrations of ionic species by

ρ = NA

∑

i

zieci (3)

where NA is Avogadro’s constant, zi is the valence of the i’th
ion, and ci is the concentration of the i’th ion. Therefore, by
combining Equations (1) and (2), we obtain the PB equation for
electrostatic potential in an ionic solution

∇ · (ǫr∇V) = −
NAe

ǫ0

∑

i

zics,i exp
−eziV

kBT
(4)

where all quantities are as previously defined.
Because the PB equation represents a mean-field theory, it

does not take into account ion-ion interactions or ion-size. A
standard correction to account for the size of ions near the
surface of the polyelectrolyte—where the concentration is the
highest—is to enforce a distance of closest approach. We follow
the terminology used in other biophysics papers and refer to
this ion-exclusion region surrounding the polyelectrolyte as the
Stern Layer (Chu et al., 2007; Silalahi et al., 2010; Kirmizialtin
et al., 2012; Wang et al., 2014). We would like to clarify that—in
contrast to how the Stern Layer is often defined—this layer does
not contain any charge and does not account for absorption of
ion charge onto the surface (which would decrease the effective
charge of the polyelectrolyte). As defined in this work, the Stern
Layer only corrects for the size of ions next to the surface of the
polyelectrolyte. A number of studies on DNA have utilized Size
Modified Poisson-Boltzmann (SMPB) equations, which consider
the size of every ion in the system; unfortunately, the ion
size values which yield results that agree with experiment are
nonphysical. For example, the ion-sizes used in Chu et al. (2007)’s
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SMPB analysis of DNA are fit as experimental parameters and
do not correspond to known hydration radii. Other authors have
calculated the correct ion-size to use in SMPB models of DNA
using molecular dynamics (MD) simulations (Kirmizialtin et al.,
2012). Furthermore, despite the increased complexity of SMPB
theories, a comparison of the prediction of ion distributions
near a lipid membrane found that the SMPB equation was, in
general, no more accurate than the PB equation with a Stern
Layer correction (Wang et al., 2014).

The predictions of PB theory around DNA molecules have
been compared to experimental measurements and more
sophisticated theoretical models. The PB equation, SMPB
equation, and MD simulations all give similar predictions for
the total number of bound-ions (a far-field observable); the
differences arise in estimates of local ionic concentrations
(Kirmizialtin et al., 2012). Ionic concentrations near the
polyelectrolyte are difficult to investigate experimentally;
however, the surface concentrations predicted by PB have been
compared to Monte-Carlo techniques and were found to have
a relative error of 15–25% for monovalent ions and 25–30% for
divalent ions (Pack et al., 1999). The PB equation is known to
underestimate the concentration of ions at the surface of DNA;
however, this can be mostly remedied for monovalent ions by
accounting for a variable permittivity near the protein surface
(Lamm and Pack, 1997; Kirmizialtin et al., 2012).

An excellent model for the variation in relative permittivity
around a biological molecule, combining numerous known
effects, was outlined by Lamm and Pack (1997). There are three
main causes of variation in relative permittivity near a protein
surface: (a) the geometry of the surface; (b) the local electric field
of the protein (The Booth Effect); and (c) the effect of hydrated
ions, which are far more concentrated close to the surface (Lamm
and Pack, 1997). That equation is actually just accounting for the
Booth effect, the relative permittivity, ǫBE, is given by

ǫBE = 1.8+ (ǫl − 1.8)L(0.08E) (5)

where the temperature is taken to be 298 K, ǫl is the local
permittivity due to the geometry, L is the Langevin function
defined by L(x) = 3[coth(x) − 1/x]/x, and E is the electric field
in mV/Angstrom. Changes in relative permittivity due to ionic
concentration are given by

ǫ = ǫw (1− ρ + 3αρ)/(1+ ρ/2) (6)

where ǫw is the bulk permittivity (the relative permittivity of
water), α = ǫK/2ǫw, and ρ is the volume fraction of potassium
ions given by

ρ = c[K+]/
(

c[K+]+ 15.9[M]
)

(7)

where c[K+] is the concentration of potassium ions and 15.9 [M]
is the maximum concentration of potassium ions (Pack et al.,
1999). To account for all causes of relative permittivity variation
near a protein we can replace ǫw in Equation (6) with ǫBE in
Equation (5).

Extensive work has gone into predicting counterionic
condensation close to the surface of DNA molecules using PB

theory. In this paper, we use PB theory to analyzeMTs, predicting
the surrounding electrostatic potential and ionic concentrations.
The work discussed above has shown that the predictions of PB
theory are relatively accurate for DNA, and initial comparisons
between the predictions of MD simulations and PB theory
for microtubules have shown excellent agreement (Shen and
Guo, 2018). Using the predicted counterion concentrations we
calculate MT electrical properties such as ionic conductivity,
distance of electrostatic influence, and effective charge. Since
Manning’s theory is inapplicable at physiologically relevant ionic
concentrations, our work will allow—to our knowledge for the
first time—a relatively accurate determination of MT electrical
parameters over a wide range of ionic concentrations.

The analysis is presented in the following fashion. First, we
will describe theMTmodel and outline the calculations necessary
to solve the system. Second, we will analyze the impact of
different modifications to the Poisson-Boltzmann equation and
investigate the accuracy of the analytical solution produced by
linearizing the equation. Third, we will extend our calculations
to a wide range of ionic concentrations and analyze how the
local concentrations and potentials change as well as what the
conductivity and effective charge of an MT are in different ionic
concentration solutions.

3. SOLVING THE POISSON-BOLTZMANN
EQUATION

We begin by modeling an MT as an infinitely long, hollow
cylinder with two separate surface charge densities. The inner and
outer radii of the cylinder are 8.4 and 12.5 nm, respectively, and
the surface charge densities are calculated assuming a solution
pH of 7 (this assumption is made throughout our analysis, and
all charges quoted will be for tubulin in a buffer of pH 7).
The N-terminus of a tubulin dimer carries a charge of −5 e,
which corresponds to an inner MT surface charge density of
−0.025 C/m2 (calculated for the 3RYF structure of tubulin in the
Protein Data Bank; Nawrotek et al., 2011). The outer surface of
the MT has a charge of −25 e per dimer which corresponds to
a surface charge density of −0.083 C/m2. These charge values
do not include the C-termini, so they represent the physical
characteristics of a subtilisin-digested MT (SMT) (Sackett et al.,
1985; Shen and Guo, 2018).

The C-termini (CT) are modeled separately from the rest of
the MT. Each CT is approximated as a cylinder 4 nm long, 1
nm wide, and carrying an electrostatic charge of −11e. Thus, the
surface charge density of a CT is calculated to be −0.140 C/m2.
Throughout the remainder of this paper CT are modeled as
infinite cylinders with the specified surface charge density and
radius. This approach neglects the CT’s finite length; however, it
reduces computational complexity and, as we shall see, provides
results which compare well with experimental values.

The splitting of the MT structure into two cylindrical
systems (SMTs and CTs) permits the utilization of cylindrical
symmetry when solving the PB equation. In this analysis we only
consider monovalent, symmetric ionic solutions (this simplifies
calculations, but the same basic technique will apply to other
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buffers with the caveat that divalent ions are modeled more
poorly by PB), so the PB equation (Equation 4) simplifies to

1

r

d

dr

(

rǫr
dV

dr

)

=
2eNAcs

ǫ0
sinh

(

eV

kBT

)

(8)

where r is the radial distance, ǫr is the relative permittivity, V
is the electrostatic potential, NA is Avogadro’s number, cs is the
ionic concentration of bulk solution, ǫ0 is the permittivity of free
space, e is the electronic charge, kB is Boltzmann’s constant, and
T is the absolute temperature. When the electrostatic potential is
less than the thermal voltage (Vt = −e/kBT ≈ −25 mV) this
equation can be linearized, resulting in the expression

1

r

d

dr

(

rǫr
dV

dr

)

=
2eNAcs

ǫ0

eV

kBT
(9)

where all values are as previously defined. For clarity we will now
refer to Equation (8) as the non-linear PB (NLPB) equation and
Equation (9) as the linear PB (LPB) equation.

While the relative permittivity in the NLPB and LPB equations
is often assumed to have a constant value, this assumption is not
entirely accurate (as discussed in the section 2). We can account
for the variation in relative permittivity using the work of Lamm
and Pack (1997). Lamm and Pack found that, for cylinders, the
effect of surface geometry on the local relative permittivity was
negligible compared to the Booth and concentration effects, so
the relative permittivity is calculated using Equations (5) and
(6) and ǫl is taken to be the permittivity of water (Lamm and
Pack, 1997). Accounting for a variable relative permittivity is
one correction to the PB equation we consider, the other is
the application of a Stern Layer to the boundary conditions for
the equation.

We solve the PB equation both outside the MT and inside the
lumen using Neumann boundary conditions. At the center of the
lumen, the electric field is zero due to axial symmetry; the electric
field is also zero infinitely far away from the outer surface of any
cylinder (a CT or an SMT). Therefore, asymptotically:

dV

dr r=0,∞
= 0 (10)

At the surface of a charged cylinder, the electric field can be
determined using the surface charge density and electromagnetic
interface conditions. Then the electric field at the outer edge
of the Stern Layer can be found by applying Gauss’s law to
the exclusion region. Therefore, the boundary condition for the
outside of a charged cylinder (either an SMT or a CT) is given by

dV

dr r=R0+d
= −

σo

ǫrǫ0

R0

R0 + d
(11)

where Ro is the outer radius of the cylinder, σo is the charge
density of the outer surface, and d is the Stern Layer thickness
or the distance of closest approach of hydrated ions. In this
work, this value is taken to be 0.33 nm, which is the radius of
a hydrated potassium ion (Israelachvili, 2011), the most common
cation within the cytosol (Andersen, 2013). Thus, our model is

further constrained to only apply to buffers where the cation is
K+, the most abundant cation in living cells, although this is
trivially extended by changing the value of d in this equation and
the maximum concentration in Equation (7). Using the approach
outlined above for the outer boundary condition, the boundary
condition for the inside of a charged cylinder is found to be

dV

dr r=Ri−d
=

σi

ǫrǫ0

Ri

Ri − d
(12)

where Ri is the inner radius of the cylinder, σo is charge density
on the inner surface, and d is as defined.

Inherent in these boundary conditions, Equations (11) and
(12), is an assumption of lumen electroneutrality. When applying
the interface condition to the surfaces of the MT, we assume that
the electric field inside the protein is zero, which is equivalent to
assuming that the net charge of the lumen (the −5 e per dimer
plus the charge of the counterions) is zero. The electroneutrality
of charged cylindrical nanopores (which are modeled identically
to our model of the lumen) has been verified by previous work,
but only if the decrease in electric field over the Stern Layer
is accounted for Lo and Chan (1994). As we have accounted
for this factor, we assume electroneutrality and the validity of
Equations (11) and (12)—this assumption was verified at the end
of all calculations.

In this work, calculating the solution of the cylindrical NLPB
Equation (8) is done numerically in COMSOL Multiphysics
5.5 (see Supplementary Material for details); however, the LPB
equation (Equation 9), with a constant relative permittivity,
can be solved analytically in cylindrical geometries. When the
permittivity is constant Equation (9) can be re-written as a Bessel
equation which has the standard solution

V

(

r

λD

)

= CiI0

(

r

λD

)

+ CkK0

(

r

λD

)

(13)

where I0 is the zeroth modified Bessel function of the first kind;
K0 is the zerothmodified Bessel function of the second kind; λD is
the Debye length, which is given by λD =

√

(ǫ0ǫrkBT)/(2NAcse2);
and Ci and Ck are arbitrary constants. We can solve for Ci and Ck

by applying the boundary conditions 10, 12, and 11. Doing so
gives the following solution for the potential inside a cylinder of
radius R and surface charge density σ

V(r) =
σλD

ǫ0ǫr

R

R− d

I0(r/λD)

I1((R− d)/λD)
(14)

where I1 is the first modified Bessel function of the first kind and
d is the distance of closest approach of the ions to the surface.
The solution for the potential outside a cylinder of radius R and
surface charge density σ is

V(r) =
σλD

ǫ0ǫr

R

R+ d

K0(r/λD)

K1((R+ d)/λD)
(15)

where K1 is the first modified Bessel function of the second
kind and all other quantities are previously defined. Therefore,
when Equation (8) can be linearized to Equation (9) there
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FIGURE 2 | The counterionic concentrations and electrostatic potentials surrounding a microtubule when the buffer ionic concentration is 160 mM KCl. (A) Shows the

potential profile near the inner and outer surfaces of an SMT; the radial distance is measured from the center of the microtubule, and the insets show the electric field

strength as a function of the same radial distance. (B) Shows the potential profile near a single, isolated CT; the radial distance is measured from the center of the CT,

and the inset shows the electric field strength as a function of the same radial distance. (C,D) Show the concentrations of anions and cations and the insets show the

relative permittivity. The radial distances in (C,D) are the same as in (A,B), respectively.

is an analytical solution given by Equations (14) and (15).
However, if V ≥ Vt then Equation (8) needs to be solved
numerically. Numerical solutions were produced in COMSOL
Multiphysics 5.5, and the requisite simulations are discussed in
the Supplementary Material.

4. CALCULATING LOCAL POTENTIALS
AND CONCENTRATIONS

The local conditions around and inside an MT in a solution of
KCl (or any other monovalent, symmetric buffer where K+ is the
cation) with a concentration of 160 mM (the ionic strength of
BRB80; Van den Heuvel et al., 2006) were calculated using the
NLPB Equation (8) modified to account for the Stern Layer and
the variable permittivity. Figure 2 presents the local electrostatic
potentials, electric fields, anion and cation concentrations, and
relative permittivities in the lumen, around the outer surface

of an SMT, and around an isolated CT. As expected the local
conditions differ dramatically from those of the buffer, and due
the comparatively low charge density of the inner MT surface,
the counterion condensation on the lumen is less extensive than
that on the outer surface or the C-termini.

In this work we considered two modifications to the PB
equation, the Stern Layer and the Lamm and Pack model
of variable permittivity. The Stern Layer modification is
incorporated into all analyses presented in the paper. Not only
is this modification computationally simple, but not including it
results in significant differences to the calculated CT counterion
concentration profiles as shown in the Supplementary Material.
In contrast, the calculation of a variable permittivity is not
computationally simple, and assuming a constant permittivity
would simplify the analysis considerably. Therefore, we have
analyzed the affect that accounting for a variable permittivity
has on the solution, and these results are presented in Figure 3.
Although the changes in permittivity shown in Figure 2 initially
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FIGURE 3 | This figure demonstrates the effects of linearizing the PB equation and accounting for a variable permittivity. The curves labeled α are the predictions of

the NLPB equation with a variable relative permittivity; the β curves are the NLPB equation with a constant relative permittivity; and the γ curves are the LPB equation

with a constant relative permittivity. (A–C) Are for SMTs in a background ionic concentration of 160 mM KCl, while (D–F) are for a background ionic concentration of

10 mM. The SMT radial distance is the distance from the center of an SMT and the CT radial distance is the distance from the center of a CT.

suggest that incorporating the variable permittivity is necessary
for accurate results, assuming the permittivity to be constant does
not result in a significant change in the predicted potential as
seen in Figure 3. To increase the accuracy of our analysis we
will consider the permittivity to be variable for the rest of this
paper but assuming the permittivity to be constant is a completely
acceptable approximation for future analyses.

However, using the NLPB equation is necessary to
produce accurate predictions of the potential. As can be
seen in Figure 3 the linear solutions are only approximately
accurate when the buffer ionic concentration is 160 mM as
the potential is already greater than Vt . When the buffer
ionic concentration decreases to 10 mM, the potential

increases because the MT is less screened by ions and the
linear solutions become completely inaccurate. Therefore,
it is not possible to apply the approximations which
lead to analytical solutions, and this system needs to be
solved numerically—particularly at low (< 10 mM) buffer
ionic concentrations.

5. EFFECTS OF VARYING BUFFER
CONCENTRATION

The local ionic concentration profiles around an MT in a
physiological ionic concentration buffer (100–500 mM) are
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FIGURE 4 | The local counterionic concentration—as a function of buffer ionic concentration—in the lumen (A), around the outer SMT surface (B), and around a CT

(C). The radial position in (A,B) is measured from the center of the SMT while the radial position in (C) is measured from the center of the CT. (D–F) Show the similarity

of the counterionic concentration profiles—near the lumen, outer SMT surface, and CT surface, respectively—for MTs in 10 µM and 10 mM ionic buffer solutions. (G)

Shows the conductivity of the bulk solution, an SMT-ion complex, and an MT-ion complex as a function of bulk solution ionic concentration.

dramatically different (Figure 4) to those around MTs in lower
ionic concentration buffers (10 µM to 10 mM; typically used
in experiments investigating MT electrical properties and MT
nanodevice applications). The calculated ionic concentrations
(the system was solved using the NLPB equation with the Stern
Layer and variable permittivity both accounted for) near the

surface of the protein are approximately constant for buffer ionic
concentrations ranging from 10 µM to 10 mM. However, as the
buffer ionic concentration increases further it reaches the same
order of magnitude as the counterion concentration and large
changes in counterion concentration are observed. Therefore, we
can make a clear distinction between two types of buffers: low

Frontiers in Molecular Biosciences | www.frontiersin.org 8 March 2021 | Volume 8 | Article 650757

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Eakins et al. Modeling Microtubule Conductivity

ionic concentration buffers and physiologically relevant (high
ionic concentration) buffers.

Since ionic conductivity is proportional to the number of
charge carriers, the local conductivity can be equated with the
local ionic concentration. Because the local ionic concentration
remains relatively constant for low ionic concentration buffers,
the ratio between local and buffer conductivity will increase as
the concentration decreases below 10 mM (see Figure 4). When
the buffer ionic concentration is 10 µM there is a five orders-
of-magnitude difference between the ionic concentration at the
outer surface of the MT and in the buffer. This means that the
MT-ion complex can be clearly distinguished as a separate system
from the buffer, a highly conductive “wire” in a non-conductive
medium. However, as the buffer ionic concentration increases by
almost four orders of magnitude from 10 µM to 500 mM, the
surface concentration only increases by a factor of≈2. Therefore,
at physiological ionic concentrations, there is much less of a
distinction between the conductivity of the counterionic layer
and the buffer.

To calculate the mean conductivity of an MT, we need to
determine which counterions are considered part of the MT-
ion complex. We begin by assuming that ions, both outside the
MT and inside the lumen, with an electrostatic potential which
is less than the thermal potential are “bound” to the MT. This
assumption has been used successfully in work on DNA (Pack
et al., 1999). We also assume that the molar conductivity of
an ion along a equipotential surface is equal to the bulk molar
conductivity (7.352 S · m2/mol for K+ ions and 7.634 S ·

m2/mol for Cl− ions). Therefore, the axial MT conductivity can
be calculated by integrating the local ionic conductivity over
these “bound” ions and normalizing by the area. For SMTs we
calculate the conductance of the counterionic layers “bound” to
both the inner and outer surfaces and normalize by the total
cross-sectional area of the MT and the bound ionic layers. When
CTs are included in the calculation, we make the approximation
that they can be treated as 13 infinite cylinders (C-termini are
≈ 4 nm long and separated by ≈ 4 nm along a protofilament)
in parallel with the SMT and calculate the total conductance
accordingly; this conductance is normalized in the same way.
The calculated values of mean MT conductivity are plotted in
Figure 4.

The size of, and number of charges in, the bound ionic layer
(where |V| < Vt) are shown in Figure 5. When the buffer ionic
concentration is low, 10 µM, the counterionic layer extends 95
nm away from the outer SMT surface. In contrast, this value
decreases to 0.22 nm at bulk ionic concentrations of 500 mM.
When the buffer ionic concentration is large, the number of ions
bound to the lumen is zero, as the magnitude of the potential at
the Outer Helmholtz Plane is <25 mV. This is in stark contrast
to the scenario at low buffer concentrations when the entire
lumen is at a potential where the ions can be considered bound
to the MT. These predictions raise interesting questions about
the effective charge of an MT in solution. Figure 5 shows that at
ionic concentrations below 10 mM, the net charge of the MT-ion
complex has a stable value of ≈−15 e per heterodimer, whereas
the net charge of the complex increases to−36 e per heterodimer
at 501 mM. Therefore, the distinction we have already made

between low and physiological ionic concentration buffers on the
basis of ionic concentrations and conductivity is also meaningful
when considering the net charge of the MT-ion complex.

6. DISCUSSION

In this paper, we analyzed the basic electrical properties of
MTs in different ionic concentration buffers. Previous studies—
which calculated MT electrical parameters using Manning’s
theory of counterionic condensation—may not be accurate at
physiological ionic concentrations, where the Debye length is
low and the assumptions behind Manning’s theory are more
strained. Manning’s theory is also limited by the fact that it only
predicts properties which are observable in the far-field, such as
net charge, and does not predict the structure of the condensed
counterionic layer close to the MT surface. These limitations
can be avoided by using the PB equation to predict counterion
concentration. In this work, we numerically solve the NLPB
equation, accounting for a variable permittivity and Stern’s Layer,
and are able to predict the counterion concentration profiles for
MTs in buffers with a wide range of KCl concentrations, from
10 µM to 500 mM. These results allow us to investigate how
MT electrical properties change with buffer ionic concentration.
We then explicitly calculate the mean conductivity of, and total
charge bound to, an MT as a function of ionic concentration.
Our results demonstrate that the ionic concentration of the
buffer is a critical parameter and that conclusions of theoretical
and experimental papers which use a particular buffer ionic
concentration should only be extended to other buffers with care.

As shown in Figure 4 there is a distinct difference between
counterion profiles in low concentration (10 µM to 10 mM
KCl) and physiological concentration (100–500mMKCl) buffers.
In low ionic concentration buffers, the counterion profiles are
approximately invariant with respect to changes to the buffer
concentration. In future work, this could be experimentally
verified with the use of concentration sensitive fluorophores;
however, this result is not unexpected. In low ionic concentration
buffers, the Debye length is large enough for Manning’s
theory to be more applicable, and one of the predictions of
Manning’s theory is that counterion condensation is invariant
to changes in the buffer ionic concentration. As we see in
Figure 5, far-field parameters are also invariant at low bulk
ionic concentrations, and the total number of ions bound
to the MT is approximately constant when the buffer ionic
concentration is lower than 10mM. As buffer ionic concentration
increases above 10 mM, there are drastic changes in local
counterion concentration profiles and the total number of bound
counterions. This observation has important implications for
both medical research and nanodevice applications where ionic
concentrations may vary either due to pathophysiology or in a
controllable fashion, respectively.

The computed counterion condensation profiles were also
used to calculate the mean conductivity of an MT as a function
of bulk ionic concentration, and the results are presented in
Figure 4. We can compare these predictions to measurements
of single MT conductivity (Minoura and Muto, 2006). By
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FIGURE 5 | The potential profiles—as a function of buffer ionic concentration—in the lumen (A), around the outer SMT surface (B), and around a CT (C). The radial

position in (A,B) is measured from the center of the SMT while the radial position in (C) is measured from the center of the CT. (D–F) Show, respectively, the distance

from the lumen, outer SMT surface, and CT surface to the thermal voltage. The maximum value in (D) is the radius of the lumen and at these points the entire lumen

has a potential greater than the thermal potential. (G) Shows the total ionic charge within the thermal voltage potential, which can be considered the charge “bound”

to the microtubule.

approximating MTs as elliptical nanoparticles, Minoura and
Muto (2006) used electroorientation measurements to determine
that MT conductivity was 150 mS in a symmetric, monovalent
solution with a KCl concentration of 10 µM and that CT
cleavage (using Subtilisin) caused the conductivity to decrease

by 36%. Notably, our calculated MT conductivity in a 10 µM
solution is 14 mS, with a 66% decrease when the CT are not
included in the model. These values are roughly consistent with
the experimental measurements. Furthermore, we expect our
calculated conductivity to be lower than that measured in an
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electroorientation experiment because we consider ions out to
the thermal voltage radius to be part of the MT-ion complex.
However, during electroorientation the MT-ion complex would
be defined by the zeta potential (corresponding to the slip-plane).
The zeta potential would likely have a greater magnitude than the
thermal voltage and occur closer to the protein surface; thus,
the mean conductivity of the MT-ion complex defined by the
slip plane would be greater. Therefore, the model of mean MT
conductivity presented here is consistent with measurements
made in low ionic concentration buffers.

Our model also predicts an experimentally-observed change
inMT conductivity as the buffer ionic concentration increases. As
seen in Figure 4 there is a “crossover” ionic concentration, where
MTs transition from being more conductive than the buffer, to
being less conductive. This is due to the buffer conductivity
increasing and the number of bound counter-ions decreasing
while the total MT-ion complex cross-sectional area approaches
a set value (the cross-sectional area of the MT). At the crossover
ionic concentration, the size of the conductive counter-ionic
cloud decreases such that the total MT conductivity is lower than
that of bulk solution (this analysis assumes that any electronic
conductivity of the protein is negligible compared to the ionic
conductivity). Notably, experimental work appears to mirror this
trend; measurements by Santelices et al. (2017) of MTs in a 20-
fold diluted BRB80 buffer (with an ionic concentration of 8 mM)
found the presence of MTs to increase conductivity. However,
measurements by Kalra et al. (2020b) in a non-diluted BRB80
buffer (with an ionic concentration of 160 mM) demonstrated
the opposite, with the presence of MTs decreasing sample
conductivity. The results of this paper are consistent with these
experiments, predicting that the addition of MTs should increase
solution conductivity when the buffer ionic concentration is less
than≈ 100 mM (with greater differences being observed at lower
ionic concentrations) and decrease solution conductivity when
the buffer ionic concentration is greater. The corresponding
crossover concentration for SMTs is predicted to be ≈ 70mM.
Interestingly, constructing nanodevices based on MTs immersed
in a solution with a variable ionic concentration could lead to
controllable ionic conduction flows.

Notably, there are two types of MT conductivity to distinguish
here: one is the mean conductivity of the entire MT, which
defines how MTs change the conductivity of a solution and
has been discussed in the previous two paragraphs; the other
is the local conductivity of the counterionic cloud, which
would effect the propagation of theorized, and previously
mentioned, ionic solitons along the MT (Priel and Tuszyński,
2008; Satarić et al., 2009; Sekulić et al., 2011; Sekulić and Satarić,
2012). As seen in Figure 4 and discussed in section 5, the
counterionic concentration—and, therefore, the conductivity—
profiles remain stable at low solution concentrations, but
change at higher ones. Therefore, it is conceivable that signal
propagation along MTs in cells could vary significantly with
changes in intracellular ionic concentration, which could
occur locally, e.g., near the cell nucleus or the mitochondria.
However, in experiments at low ionic concentrations—and in
nanodevices operating in low ionic concentration buffers—
signal propagation would be relatively immune to changes in

the buffer ionic concentration. There are too few experimental
measurements of ionic signal propagation to make any
comparisons, but we predict significant differences between
signal propagation along MTs in low and physiological ionic
concentration buffers.

Our results provide—to our knowledge for the first time—
insight into the behavior of MT counterions at physiologically
relevant ionic concentrations. When the ionic concentration
of the buffer is low, there is a difference of several orders
of magnitude between the bulk ionic concentration and the
ionic concentration in the vicinity of the MT surface (see
Figure 4). Thus, on the basis of conductivity, we can clearly
distinguish between bulk solution and the MT-ion complex.
However, at physiologically relevant ionic concentrations, the
MT counterion concentration is only a few times that of
bulk. Notably, we do not see any evidence of a “depleted
layer” separating condensed counterions from the solution as
was postulated in previous works where it was argued that a
depleted region would contain ionic signals which propagated
along the MT (Priel and Tuszyński, 2008). Note that we
have not calculated the radial conductivity of the counterionic
cloud (the conductivity “seen” by signals traveling radially
to the MT) as it is unclear what the molar conductivity
would be for ions which are moving across equipotential
lines. This calculation, and an analysis of signal propagation
along MTs at higher concentrations, should be a thrust
of future work. Because our results do not support the
assumption of a depleted layer separating counterions from
the solution, ionic signal propagation along MTs may not be
as stable as predicted by previous transmission line models
(which assumed the presence of a depleted layer). Thus, a
rigorous analysis of the radial conductivity is required to
analyze how propagating ionic signals will interact with the
surrounding buffer.

Further measurements of MT electrical properties should
be a focus of future experimental work. Direct experimental
measurements of the counterion condensation around MTs
would also be useful to confirm or refute the predictions in this
paper and, more generally, the accuracy of PB theory as applied
to MTs. One known flaw in PB theory is that it does not account
for ion-ion interactions. Modifications to the PB equation to
account for ion-ion interactions have been proposed (Forsman,
2004) and should be incorporated into future work. We also
suggest further theoretical work investigating how MT electrical
properties will differ when anMT is interacting with an interface.
Previously studied effects of buffer ionic concentration changes
on polyelectrolyte adsorption to the interface would need to
be accounted for de Carvalho et al. (2016) and Cherstvy and
Winkler (2012), but a greater understanding of MT electrical
properties on interfaces would pave the way for new experimental
possibilities. A theoretical analysis of radial conductivity is also an
important component of future work necessary to improve our
model ofMT electrical properties. Finally, signal propagation due
to synchronous CT oscillation should be investigated. As seen
in Figure 2, the potential well of a single CT overlaps with that
of the nearest adjacent CT at buffer ionic concentrations of 160
mM, raising the possibility of coordinated CTmotion, whichmay
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give rise to synchronized electro-mechanical waves propagating
along the MT surface involving CT motion. Our work did
not consider interactions between multiple CT or between CT
and the MT body, nor did it extend current transmission
line models of MTs to higher buffer ionic concentrations.
In the future, these extensions would be important for the
development of a dynamic model of the electrical properties of
a single MT.

7. CONCLUSION

The results in this work illustrate the influence of the
buffer on the electrical properties of MTs. Counterionic
condensation around MTs is strongly dependent on the
buffer ionic concentration, which can be divided into two
distinct regimes: the low concentration regime (10 µM to
10 mM), and the physiological concentration regime (100–
500mM). MTs in these regimes have marked differences in
local and far-field counterionic condensation parameters which
have been explored here in depth and should be considered
in future biological and nano-device research. We used the
counterion condensation to calculate the conductivity of an
MT as a function of buffer concentration and compared our
results with previous experimental work. Importantly, our
work predicts that MTs increase solution conductivity when
the buffer ionic concentration is <100 mM but decrease it
otherwise. These results demonstrate that the buffer ionic
concentration is a critical parameter in determining MT
electrical characteristics. Thus, our work provides insight into
the bioelectrical properties of MTs and the biophysical properties
of the cell.
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