
Modeling Mobile Code Acceleration in the Cloud

Huber Flores, Xiang Su,
Vassilis Kostakos, Jukka Riekki

University of Oulu

firstname.lastname@oulu.fi

Eemil Lagerspetz, Sasu Tarkoma

University of Helsinki

firstname.lastname@helsinki.fi

Pan Hui

HKUST

panhui@cse.ust.hk

Yong Li

Tsinghua University

liyong07@tsinghua.edu.cn

Jukka Manner

Aalto University

jukka.manner@aalto.fi

Abstract—The quality of service of a mobile application is
critical to ensure user satisfaction. Techniques have been pro-
posed to accomplish adaptation of quality of service dynamically.
However, there is still a limited understanding about how to
provide a utility model for code execution. One key challenge is
modeling the level of quality in the code execution that can be
provisioned by the cloud. Since the allocation of cloud resources
has a cost, it is important to optimize cloud usage. We propose a
software-defined networking approach that allows modeling and
controlling code acceleration of a mobile application deployed
across multiple type of devices. By segregating the computational
requirements of the mobile application into groups, we were able
to define the acceleration needed by each group of devices. As
the computational requirements of a device can change across
time, a mobile device can be re-assigned to another group based
on demand. Our SDN approach implements a model that allows
the system to predict workload based on acceleration groups.
Evaluating our system in a real testbed showed that it is possible
to predict workload and allocate optimal resources to handle that
workload with 87.5% accuracy.

Index Terms—Software-defined; Code Offload; Mobile Cloud

I. INTRODUCTION

Nowadays, the deployment of large-scale pervasive and

mobile applications is relatively easy by relying on cloud

computing, which provides the platform and tools for cen-

tralized management. However, in these deployments, low-

power devices, e.g., smartphones, wearables, etc., are subject

to energy and performance issues. Thus, approaches for tuning

those aspects from the cloud are critical.

Meanwhile, mobile applications are released at an exorbitant

rate in the app stores. The success of a mobile application in

the market depends on many factors that are perceived by the

user [1], such as the energy drained, and the response time.

Recent studies show that 80% of the mobile applications in the

stores are installed, used for some time, and then uninstalled

from the device [1, 2]. Therefore, tuning applications on the

fly is critical for improving user perception and fostering better

application adoption. The ultimate goal is to gain competitive

advantages.

Tuning a mobile application is a complex task. In order

to fix an issue, the application has to be taken back into

the development stages and then re-deployed again across

all the devices, e.g., via application updates. Moreover, given

the variety of hardware in mobile devices, usually a mobile

application needs to be troubleshot for each type of device. For

instance, complex routines like decision making algorithms

(e.g. minimax and nqueens) can be computed easily by last

generation smartphones but can be expensive to compute on

older devices and wearables. Thus, the routine needs to be

optimized for execution based on device capabilities. This ap-

proach requires a considerable development effort and results

in high costs. Moreover, the troubleshooting of an application

can take a considerable amount of time.

Existing tools proposed for monitoring and adapting the

quality of service of applications rely on improving com-

munication protocols and optimizing data transfer for OTT

(Over The Top) applications such as video delivery, voice

over IP (VoIP) and real-time video calling [3]. While these

techniques can be successfully applied in thin clients to ensure

the quality of service across multiple devices, they cannot be

applied for thick clients that provide independent functionality

whose computation depends solely on the mobile resources.

Hence, also techniques for dynamically allocating resources

in the mobile device have been developed [4]. Unfortunately,

the computational capabilities of a mobile device are limited,

so these approaches can provide only a partial solution.

Similarly, approaches for outsourcing code to an external

server have been widely explored in the literature, e.g., cloud

and cloudlet [5]. Moreover, in practice, beta services such as

Amazon Lambda, have the potential to tune the execution of

thick applications. However, there is still a limited understand-

ing regarding how to provide a utility model for outsourcing

code to the cloud. Since a cloud can provide different quality

of service based on the computational capabilities of the

underlying resources, one key challenge is to model the level

of quality in the code execution that can be provisioned by

the cloud. This quality of execution can be expressed in terms

of acceleration or from a user point of view as quality of the

response time in the mobile application.

In this paper, we overcome the problem of tuning the per-

formance of mobile applications on the fly. We use a software-

defined approach [6] that provides the tools for modeling

and controlling the traffic of code acceleration of mobile

applications deployed across a diversity of devices in the wild.

To the best of our knowledge, our work is the first to explore

how to adjust the performance of applications dynamically

with the cloud. We make the following contributions:

First, we develop a code offloading architecture that auto-

matically accelerates a mobile application when the response

time starts to degrade. The architecture includes a cloud-based

SDN component, which dynamically routes application traffic

into the right level of acceleration, and a client-side moderator

component, which monitors the execution time of the code

in the application, and promotes the execution of code to a

higher level of acceleration when it detects that the response

time of the application starts to degrade. We find that the

SDN component introduces a very small overhead of ≈150

milliseconds in the total response time of a request, which is

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.242

1297

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.242

1294

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.242

480

a fair price to pay for tuning code execution on demand.

Second, we design and evaluate a model that abstracts the

computational resources of the cloud into levels of code ac-

celeration. Our model predicts the expected workload that the

system needs to handle per each acceleration level. Based on

this information, it optimizes the cost of allocating computa-

tional resources needed to handle that workload [7]. The model

is able to predict expected workload with 87.5% accuracy.

The rest of the paper is organized as follows. Section II

explains the terminology used in the work. Section III presents

the literature review. Section IV explains the design of the sys-

tem and defines our adaptive model. Section V describes the

technical implementation of the system. Section VI presents

the evaluation, conducted on a real testbed. Moreover, we

collected real smartphone use traces for 3 months in order

to induce realistic workload into the system. We discuss

the impact of our results in Section VII, and Section VIII

concludes the paper.

II. BACKGROUND

A. Code Offloading

Code offloading (aka computational offloading or cyber

foraging) is a technique that allows a low power device, e.g., a

smartphone, to outsource the processing of a task to a server or

the cloud [5]. A task is opportunistically [8] outsourced from a

smartphone app when the handset can reach the server at low

latency. A smartphone delegates a task to a remote server, if

and only if, the computational effort required for the device

to delegate the task is less than the actual effort required to

process the task by itself. The ultimate goal of the technique

is to reduce the overall amount of processing of the device to

extend battery life [9].

Multiple flavors of code offloading can be implemented in

practice. Figure 1 shows these implementation models. We

classify the models into three groups. First, in the homoge-
neous model the runtime environments (RE) of the mobile

and the server are identical, and the task code is present in

both locations (Figure 1a). The mobile can execute the task

independently when there is no network connectivity. One key

aspect of this model is the same RE in the mobile and server

that is necessary to encapsulate the application state (AS) in

the mobile, such that AS can be transferred in the network and

reconstructed in the cloud to execute the task. Second, in the

heterogeneous model, the mobile and the cloud have a different

RE (Figure 1b), and therefore a different implementation of the

task. The mobile is independent of its server counterpart and

has a simpler implementation of the task. Thus, the mobile can

execute the task without network connectivity, but the result

is not as accurate as that produced by the cloud. Moreover, in

this model, only input parameters of the code are transferred

in the communication. Finally, in the neutral model the RE is

not relevant when outsourcing a task (Figure 1c). The code of

the task is uniquely located in the server, but it can be called

from the mobile client. Hence, the mobile application cannot

provide independent functionality when there is no network

connectivity. Our work uses the homogeneous model.

Fig. 1: Implementation flavors of code offloading in practice.

B. Computational Provisioning

Cloud computing is a style of computing in which, typically,

scalable resources on demand are provided as a service (aaS)
over the Internet to users who need not have knowledge

of, expertise in, or control over the cloud infrastructure that

supports them [10]. Cloud provisioning can occur at different

levels, where each level enables the user to interact with the

service at a certain granularity. The most common levels are

the Infrastructure (IaaS), Platform (PaaS) and Software (SaaS).

Computational provisioning for smartphones happens at

Infrastructure level through instances. An instance is a physical

or virtualized server, which is associated to a type indicating

the computational capabilities, e.g., memory size, number of

processors, etc. An instance follows the utility computing

model, where consumers pay on the basis of their usage and

type preferences. The instance cost is dependent on its type.

The type of instance is important as it determines the

acceleration in which a computational task is executed, which

impacts the overall response time of the app perceived by the

user. Unfortunately, the acceleration level is not obvious. The

type of instance also defines its capacity to handle multiple

code offloading requests at once. Certainly, speeding up code

execution depends on how the code is written. However, higher

types of instances can process a task faster than lower ones

as higher types can rely on larger memory span and higher

parallelization in multiple processors.

III. RELATED WORK

Network tuning — Several past work study how cellu-

lar network operators can estimate metrics to support bet-

ter service provisioning for OTT apps. Measured impact of

bitrate, jitter and delay on VoIP call session is used along

with machine learning to estimate users’ satisfaction of the

service [11]. Session length and abandonment rate is analyzed

from collected history data to understand and troubleshoot

web browsing QoE in mobile browsers [12]. Also video

streaming has been analyzed to develop adaptive models that

improve user engagement [13]. Learning algorithms are used

on collected traffic to relate network metrics with the QoE of

arbitrary apps [3, 14]. In this work, we propose a technique to

12981295481

complement these studies. Our proposal does not focus on im-

proving the network communication, but rather on accelerating

the code of a mobile application on the fly though a software-

defined approach. Different levels of code acceleration can be

applied to mitigate high communication latency. We assume

LTE communication (Refer to section VI-C).

Mobile instrumentation — There have been several ef-

forts towards optimizing communication protocols and fixing

inefficiencies in mobile apps. These include analyzing per-

formance of different protocols [15, 16], e.g., TCP, HTTP,

intercommunication of different layers [17], and developing

better smartphone web browsers [18]. Our abstracting code

offloading into a higher software-defined layer, such that the

execution of code of a mobile application installed in multiple

devices can be dynamically managed. The ultimate goal is to

ensure that the response time of tasks that require a lot of

computational processing can be normalized across different

types of devices. The improvements in communication dis-

cussed above can be applied together with our system to speed

up both communication and computation.

Resource allocation — The response time of an app has

been modeled in terms of latency [19]. It has been demon-

strated, in turn, that an application can be adapted to multiple

levels of fidelity depending on the mobile resources allocated

for execution [4], which translates into multiple scales of re-

sponsiveness. More recent work have studied extending battery

life by outsourcing tasks to a more powerful infrastructure,

e.g., cloud. Many frameworks for code offloading have been

proposed [20–30]. Approaches for dynamic provisioning of

cyber foraging [9] have been partially explored [31]. We

provide a utility model for code execution in the cloud.

We introduce a new software-defined component in a code

offloading architecture to control code acceleration on the fly.

Besides a few works that focus on scaling up (vertical

scaling) a server to parallelize the code of computational

requests [29], we are not aware of architectures nor evalu-

ations in the literature that attempt to scale a code offloading

architecture in a horizontal fashion. This can clearly be seen

as current frameworks propose a one server per smartphone

architecture [5], which is infeasible if we consider the amount

of smartphones nowadays and the provisioning cost of con-

stantly running a server for each user. Most of the related work

to optimize resource allocation in the cloud is oriented to web

applications [7, 32]. Thus, we also complement these works by

supporting multi-tenancy in our software-defined component.

We incorporate a model that is able to predict the amount of

users that the system needs to handle each hour. Moreover, the

model also reduces overprovisioning by estimating the amount

of resources needed to handle the predicted number of users.

IV. SYSTEM DESIGN

We design our system under the following assumptions.

(a) It uses a homogeneous model for code offloading.
(b) The granularity of code migration is at method level.
(c) Communication with the cloud happens via 3G LTE.

Thus, the size of the data transferred and network latency

Fig. 2: Overview of the system for SDN code acceleration.

do not incur overhead in the offloading process (See results,
section VI-C).

(d) Our system focuses on performance, specifically moder-
ating response time.

An overview of our system is depicted in Figure 2. The sys-

tem is modeled in three parts, 1) workload, 2) SDN-accelerator

and 3) pool of computational resources. The workload contains

the active mobile users that outsource a computational task

to the cloud. The workload is dynamic, which means that

the amount of users is variable across time. Moreover, as

shown in the Figure, each mobile device in the workload can

be promoted to request a higher level of acceleration when

response times are getting longer. In this context, a promotion

means that a device offloads to a higher acceleration group.

The SDN-accelerator is the gateway or front-end that re-

ceives the workload and routes the outsourced tasks to the right

level of code acceleration requested by each mobile device.

The pool of computational resources represents the back-end.

The back-end is formed by multiple types of instances that

are allocated per hour. A provisioned instance is billed by

hour by most of the cloud vendors, e.g., on Amazon EC2 and

Microsoft Azure.

Since the workload of incoming users is dynamic, the SDN-

accelerator is equipped with an adaptive model that estimates

the size of the workload at the end of each provisioning

hour. Moreover, since the allocation of instances has a cost,

the model uses the predicted workload to determine the

combination of instances that need to be allocated in order

to reduce the provisioning cost of the cloud. Naturally, the

allocated instances contain enough computational resources to

satisfy the acceleration demand of the workload.

A. Adaptive model

The model consists of two parts, workload prediction and

dynamic resource allocation. The aim of the prediction is to

estimate the number of incoming mobile users to the system

during an interval of time t. The goal of the allocation is to

minimize the cost of allocated cloud resources while handling

the predicted workload during the interval.

Our model learns to predict users’ workload based on

previous observations extrapolated from the logs of the system.

12991296482

The logs store information about each request processed by

the system as a trace, which contains the following parame-

ters as a key-value pairs, <timestamp, user-id, acceleration-
group, battery-level, round-trip-time>. The traces are sorted in

chronological order and transformed into a set of time slots.

Let T be a set of time slots T = {ti ∈ T : 1 ≤ i ≤ H}, where

ti are of equal length, and H is the amount of stored history

available. The model supports any length of a time period,

defined in (fractions of) hours.

Each time slot ti ∈ T consists of a set of acceleration

groups. Let A represent the set of acceleration groups A
= {an ∈ A : 1 ≤ n ≤ N}. The model encapsulates the

servers of the cloud into acceleration groups. Each an is

mapped to a set of servers that provide a specific level of code

acceleration. For instance, the level of acceleration of a1 can

be provisioned by instances, m1.micro and m1.small, and the

level of acceleration of a2 can be provisioned by m1.large and

m2.medium. The level of acceleration of a particular server is

determined via benchmarking, discussed in subsection VI-A.

Let U depict the load of incoming mobile users. U =
{um ∈ U : 1 ≤ m ≤ N}. Each user is assigned to

an acceleration group an. Initially, each user um is located

in the group that provides the lowest acceleration of code.

A user um is gradually promoted in a sequential manner

to a higher acceleration group each time the mobile detects

lower quality of response time in the mobile application. As

a result, each acceleration group at a time period t contains

a certain number of users or an empty set. Thus, an =

{∅|Wan
⊆ U : 1 ≤ n ≤ N}, where Wan

depicts the workload

in terms of number of users in the system that require a level

of acceleration an.

B. Prediction

T provides the evidence for the knowledge base �P that is

used for workload prediction. Given an input of a time slot

th that models the current workload of the system, the model

predicts the next time slot t′h that represents the expected

workload that the system needs to handle for the next period.

Let �P = { �pk ∈ �P : 1 ≤ k ≤| T |}, where �pk is the edit
distance [33] between tk and each ti ∈ T .

1) Distance Metric: Given two timeslots, i.e., tx, tz ∈ T ,

where tx = {(ax1), ..., (axn)} and tz = {(az1), ..., (azn)}, we

define the distance δ between two acceleration groups (axr)
and (azr), where 1 ≤ r ≤ N , as

δ((axr), (a
z
r)) =

{
0, if((axr) = (azr))

D, otherwise

where, D > 0 is the edit distance between (axr) and (azr)
based on the assigned users um, respectively. Accordingly, we

define the edit distance Δ between two time slots tx, tz ∈ T ,

as �pk

�pk = Δ(tx, tz) =
n∑

r=1

δ((axr), (a
z
r))

2) Approximation: Once �P is computed, t′h is approxi-

mated to the timeslot tk that has the minimum Δ ∈ �P .

Note that since tk is chosen from the history, dramatically

growing loads are only ever matched to the largest load seen

in the near history. This makes allocation more conservative.

Figure 8 in section VI-B shows how our system behaves when

a quickly growing load is introduced.

C. Allocation

Given an input th that defines the expected incoming work-

load to the system, the model minimizes the cost of allocating

cloud resources to handle it. The dynamic amount of allocated

resources is estimated using Integer Linear Programming
(LP) [34]. The parameters of the model include:

- cs, cost of an instance of type s. The cost of the instance

is a pre-defined price that is set by the cloud vendor for

one hour of usage1.

- Ks, capacity of the instance of type s in requests per

minute. This value is found via benchmarking the cloud

servers. The results in section VI-A show a method to

classify cloud servers into different levels of acceleration

based on dynamic workload. We validate this finding with

experiments using a static workload. In a real deployment,

Ks can be determined from the request traces (logs) of

the server.

- CC, number of instances that the cloud can launch for a

single account. Amazon allows a maximum of 20 in-

stances a standard level account. Generally, public clouds

such Amazon AWS can launch at most 20 instances on

demand, if more than 20 instances need to be launched

the customer has to fill a form requesting the extra

resources.

- W , the value of the workload to which the system needs

to adapt. W is approximated by the prediction model

presented in IV-B. W can be expressed in terms of

sub workloads Wan
, which represent the workload for

a particular acceleration group an ∈ A. Hence, W =∑k
i=1 Wai

, where k is the number of acceleration groups

in A.

To optimize the number of instances to be allocated, we

denote the number of instances of type s to be allocated in

the back-end xs. We assume the front-end is provided by the

cloud vendor, e.g. Amazon Autoscale.

The model tries to minimize the cost of all instances xs of

type s of cost cs. The objective function is defined as the sum

across all the instances types s ∈ S.

Min
n∑

i=1

xsicsi (1)

Lastly, the model comprises the following constraints:

- The workload constraint ∀ acceleration groups an ∈ A:

k∑
n=1

n∑
i=1

xsiKsi > Wan
(2)

1https://aws.amazon.com/ec2/instance-types/

13001297483

- The cloud service’s maximum number of instances:

n∑
i=1

xsi < CC (3)

The workload constraint states that the sum of all the ca-

pacity Ks across all the instances from xsi must be enough to

satisfy the workload Wan
requiring acceleration an. The cloud

service’s maximum number of instances limits the number of

running instances of type s to the allocation capacity CC.

1) Software-defined Code Acceleration: Since our adaptive

model abstracts the cloud resources into acceleration groups,

it is possible to define on the fly, e.g., by the administrator,

the minimum level of code acceleration provisioned in as a
service fashion by the SDN component. This minimum level

is modeled in terms of response time of the request, which is

determined through a performance-based characterization over

each instance available for allocation. This minimum value

also influences the acceleration groups of the SDN-accelerator.

The response time of code execution of an instance depends

on the capacity of the instance Ks to process concurrent

requests (Refer to results in VI-A). Thus, when the minimum

level of acceleration is defined, e.g., 500 milliseconds, all

the available instances are sorted in an ascending manner

based on their capacity to handle that response time, e.g.,

a small instance handles a maximum of 30 users under 500

milliseconds while a large instance handles a maximum of

90 users under 500 milliseconds. Once sorted, an acceleration

group is created for each capacity. Instances with the same

capacity are assigned to the same group.

V. IMPLEMENTATION

The components implemented in the system are depicted in

Figure 3. To emulate a large number of smartphones offloading

at the same time, we develop a simulator. The simulator

instruments client code at method level using Java reflection,

and generates different requests of mobile devices offloading

code to cloud (aka workload).

The simulator creates workload in two different operational

modes, 1) concurrent and 2) inter-arrival rate. In the concurrent

mode, the simulator creates n concurrent threads that offload

a random computational task loaded from a pool of common

algorithms found in apps, e.g., quicksort, bubblesort. Each

thread represents a mobile device offloading a task. This mode

is utilized to benchmark cloud instances. In an inter-arrival rate

mode, the simulator takes as parameters the number of devices

(workload), the inter-arrival time between offloading requests

and the time that the workload is active. This mode is utilized

to produce a realistic time-varying workload.

The SDN-accelerator contains a Request Handler (RH) that

is the entry point to process code requests from the workload.

When the RH receives a request, it creates a new thread to

handle that request via the Code Offloader (CO). The CO

determines the level of acceleration required and routes the

request to the corresponding group of instances. The CO also

logs information about each request processed into a MySQL

Fig. 3: Components of the system.

database. The Workload Predictor (WP) implements the pre-

diction model described in IV-B. The model is implemented

in R using the RecordLinkage package. Lastly, the predicted

workload obtained by WP is passed to the Resource Allocator
(RA) that runs the allocation model described in subsec-

tion IV-C. Similarly, the allocation model is implemented by

relying on the lpSolveAPI of R.

Since our system implements the homogeneous model for

code offloading, each instance in the back-end contains a

customized Dalvik-x86 (Released as public in Ireland region

of Amazon EC2 as ami-ac8813df) that can be launched on

demand. It is built from the source code of Android Open

Source Project (AOSP) over the instance to target a x86 server

architecture, and removing the Applications and Application
Framework layers from the Android software architecture.

Dalvik-x86 is necessary to characterize the processing level

of each cloud server when facing a large number of offloading

requests. This is not possible to achieve solely with Android-

x86 as the mobile operating system imposes restrictions, e.g.,

not allowing multiple instances of the same application. Our

Dalvik-x86 is lighter when compared with other surrogates

used by others, e.g., Android-x86. This reduced the storage

size required by our Dalvik-x86 surrogate by 40%. Moreover,

it does not active any default processes of the OS, e.g., Zygote

or GUI Manager, which are not needed by the surrogate.

The surrogate creates a dalvikvm process in the host machine

per each offloading request that needs to be handled. This

approach enables troubleshooting problematic requests by

process id without restarting or stopping the system.

Dalvik-x86 implements an executable script wrapper at the

core of libraries that boot the compiler. The wrapper provides

an interface to push APK files into the virtual machine, such

that the code inside of the APK can be executed. When

the server initiates, the available APK files (in a OS folder)

are pushed into the Dalvik-x86 as the process is waiting for

a request. Each APK can be instantiated multiple times in

different ports.

VI. EVALUATION

In this section, we evaluate our proposed approach, which

is implemented and deployed in a real testbed in Amazon

EC2 (Ireland). We used general purpose instances for our

deployment (t2.nano, t2.micro, t2.small, t2.medium, t2.large

13011298484

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 1: t2.nano

(a)

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 0: t2.micro

(b)

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 1: t2.small

(c)

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 2: t2.medium

(d)

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 2: t2.large

(e)

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 3: m4.10xlarge

(f)

Fig. 4: Cloud-based servers are grouped by acceleration level, determined by performance degradation as more users are added.

 0
 500

 1000
 1500

 5000

 1 10 20 30 40 50 60 70 80 90 100

R
es

p
o

n
se

 t
im

e
[i

n
 m

il
is

ec
o

n
d

s]

Number of concurrent mobile users

Acceleration 1
Acceleration 2
Acceleration 3

 0

 500

 1000

 1 10 20

Fig. 5: Differences between the levels of acceleration.

and m4.10xlarge). We equipped our simulator with a pool of

10 independent tasks for creating computational workload. The

simulator is configured in different operation modes with each

experiment to evaluate different aspects of the system, e.g., the

concurrent mode is used for characterizing the cloud servers

and inter-arrival mode to analyze load distribution.

A. Cloud Provisioning and Acceleration Levels

Past work demonstrated the offloading potential in lab

setups, where one device offloads to one server (without heavy

workload). However, in the wild, heavy workload caused by

multiple active users impacts the system’s throughput. Thus,

to characterize the execution of code in the cloud, first we

answer the question: what is the effect of code execution when
outsourced to the cloud by multiple devices?

1) Setup and methodology: We configure our simulator in

concurrent mode to stress the instances with a heavy load of

 0
 500

 1000
 1500

 5000

 1 10 20 30 40 50 60 70 80 90 100

R
es

p
o

n
se

 t
im

e
[i

n
 m

il
is

ec
o

n
d

s]

Number of concurrent mobile users

t2.nano - average
t2.micro - average

t2.nano - SD
t2.micro - SD

Fig. 6: Anomaly between t2.nano and t2.micro.

requests. In this experiment, each request that is created by the

simulator is taken randomly from the pool. The processing

required for each task is also determined randomly. The

random nature of the experiment is important to verify all

possible cases that can influence the processing of a task by a

server. We conduct a 3 hours experiment per server to ensure

coverage. We verify this characterization by relying on static

load. We evaluate the influence of increasing users’ load by

configuring the workload from 1 to 100 in intervals of 10 users

for each server (load levels 1,10,20,30,40,50,60,70,80,90 and

100). Concurrent load is generated with an inter-arrival rate of

1 minute. This means that the maximum load (load=100) used

for characterizing a server is ≈ 18000 (3*60*100) requests and

the minimum load (load=1) is ≈ 180 requests. The purpose

of the 1 minute inter-arrival is to give the server enough cool

down time before stressing it again.

13021299485

2) Benchmark: Figure 4 shows the results of the experi-

ments. We can observe how the response time of the requests

is distributed through the interpercentile range of the processed

load. The slope of the mean response time becomes less steep

as we use more powerful instances. This suggests that the

response time of a request is defined by the type of the server.

Based on this property, we characterize each server into an

acceleration group. We find that servers can be classified to 3

acceleration groups. This is important as servers with different

costs provide the same level of acceleration. Thus, server

selection needs analysis a priori.

3) Acceleration Levels: It is well known that an outsourced

task gets accelerated as a cloud server can process a task faster

than a mobile device. Our results also confirm that statement.

However, is it possible to determine how fast a task can be
executed?. We answer this question by analyzing the levels

of acceleration of static load. We use a minimax algorithm

with static input as load. Figure 5 presents the results: we can

observe the differences between acceleration levels. A task

is executed ≈1.25 times faster by a server of level 2 when

compared with one of level 1. Similarly, a task is accelerated

≈1.73 times by a server of level 3 compared with level 1. The

difference between levels 3 and 2 is also significant (≈1.36

times acceleration).

4) Cloud Vendor: While the characterization shows that the

response time of a request stabilizes as the capabilities of the

server increase, we found out that this is not the case of a

particular instance (t2.nano). Figure 6 shows this anomaly.

The resources of a nano server are lower than a micro server

according to Amazon. However, a nano server provides better

performance to handle load than a micro server. Since there is

no information about how Amazon allocates its resources, it

is difficult to deduce the cause of this anomaly. Interestingly,

a micro server is provided as free tier eligible, while a nano

server is not in this category. Consequently, we assigned a

micro server in a lower acceleration level (group 0).

B. Mobile Performance and SDN Routing
1) Setup and Methodology: Our system introduces an extra

front-end component (SDN-accelerator) in the architecture.

We explore how SDN-accelerator influences the total response
time of a request. As a result, timestamps are taken across the

system as the request is processed in each of its components.

We configure our simulator to generate a concurrent load of

30 users to the SDN-accelerator. In addition, we analyze the

effect of dynamic workload processed by a server (t2.large).

We explore how drastic changes in inter-arrival rate of requests

impact in the throughput of the server. We configure our

simulator to produce dynamic load that increments the inter-

arrival rate of requests each 5 minutes from 1 to 1024 Hz.

2) Dynamic Forwarding: Figure 7a models the response

time Tresponse of a computational request. The response time

considers the time it takes to connect from the mobile to the

front-end Tm−f , the time to route the request to a particular

instance in the back-end Tf−b, the execution time of the code

in the instance Tcloud, the time to send the result back to the

front-end Tb−f , and finally, the time for the result to arrive at

the mobile device Tf−m. We assume that Tm−f = Tf−m and

Tf−b = Tb−f are equal as the same communication channel

remains open both ways until the operation finishes. In this

context, we define T1 = Tm−f+Tf−m and T2 = Tf−b+Tb−f .

Thus, the response time Tresponse = T1 + T2 + Tcloud.

Figure 8a shows the routing time of load by the SDN-

accelerator. We can observe that the overhead introduced by

the front-end is ≈ 150 milliseconds. We explore the influence

of each component in the total response time using its average

processing time. Figure 7b shows the timestamps taken across

the system. We can see that the total communication time

T1+T2 is less than a second. Naturally, higher latency can in-

crease the communication time and vice versa, which impacts

T1. On the other hand, T2 is less likely to change drastically

as the latency results from the internal cloud communica-

tion, between servers in the same private network. Lastly,

the diagram shows that Tcloud is the most time consuming

operation. Fortunately, the total time of the code invocation in

the cloud can be decreased by adjusting the tradeoff between

utilization price and computational capabilities of the instance.

Figure 7c shows how stability of code execution speed based

using the standard deviation of each group of acceleration.

To corroborate the veracity of this statement, we allocate an

additional c4.8xlarge instance, a memory optimized server

with higher performance than the other instances. This instance

surpassed our previous acceleration levels, so we classified it

as Acceleration level 4.

3) Overwhelming Workload: Figure 8b shows the average

response time of the workload as request arrival rate is doubled

every 5 minutes. We can observe that when the server reaches

its maximum capacity to handle a particular inter-arrival rate

(32Hz in our case study), each consecutive increment in

workload will dramatically reduce server performance and

cause worse response time. If we assume that the system is

static and not dynamic, then we can also observe that the

server continues degrading performance as workload increases

until it collapses. Saturating the server also leads to dropped

requests, shown in Figure 8c. Beyond 32 Hz, an increasing

amount of requests is dropped. The results show that a severe

increase in workload (from 2 Hz to 128 Hz) is needed to bring

down the system. Fortunately, such changes in the offloading

workload are easily detected, as its effect can be directly

seen in the response time of applications [35]. Thus, it is

possible to adapt with minimal loss of performance without

the need to over-provision the system. We can see the effect of

dynamic workload adjustment in Figure 9b, compared with no

adjustment in 9c. These are discussed in detail in Section VI-C.

C. Model Evaluation

In addition to simulated load, we were interested to analyze

the influence of real patterns of smartphone usage in large

scale scenarios. Hence, we developed a mobile application,

which tracked and recorded the sessions of the mobile appli-

cations initiated in a particular mobile device.

13031300486

(a)

 0

 500

 1000

 1500

 2000

 2500

Tresponse T1 T2 Tcloud

T
im

e
[i

n
 m

il
li

se
co

n
d
s]

Acceleration 1
Acceleration 2
Acceleration 3
Acceleration 4

(b)

 0

 500

 1000

 1500

 1 10 20 30 40 50 60 70 80 90 100

R
es

p
o

n
se

 t
im

e
[i

n
 m

il
is

ec
o

n
d

s]

Number of concurrent mobile users

Acceleration 1
Acceleration 2
Acceleration 3
Acceleration 4

(c)

Fig. 7: System performance. (a) Timestamps taken across the system in each of its components, (b) Actual times to handle

the request in each component, (c) Standard deviation of the each acceleration level.

 50
 150
 250

 0 50 100 150 200 250

[m
s] A1

 50
 150
 250

 0 50 100 150 200 250

[m
s] A2

 50
 150
 250

 0 50 100 150 200 250

[m
s] A3

 50
 150
 250

 0 50 100 150 200 250

[m
s] A4

(a)

 0

 1000

 2000

 3000

1 2 4 8 16 32 64 128 256 512 1024

R
es

p
o
n
se

 t
im

e
[m

s]

Arrival rate [Hz]

 0

 25

 50

 75

 100

1 2 4 8 16 32

(b)

 0

 25

 50

 75

 100

1 2 4 8 16 32 64 128 256 512 1024

[%
]

Arrival rate [Hz]

Success
Fail

(c)

Fig. 8: Workload management. (a) Routing time of SDN-accelerator by acceleration level. (b) Response time of requests in

terms of server throughput when speeding up arrival rate. (c) Amount of requests processed by a server based on arrival rate

(success vs fail).

1) Setup and Methodology: The application was deployed

in the smartphone of 6 participants during 3 months. The data

from this study was used to detetermine a realistic inter-arrival

rate that can be used by the simulator to produce load. By

combining the data of these 6 participants, we find that an

inter-arrival rate between (100−5000) milliseconds. Naturally,

we removed long inactive periods of a user (during night)

from the data. We used this time-varying inter-arrival rate to

create a load of 100 users. The goal of this experiment is

to answer the question, is it possible to control the level of
code execution dynamically?. For this experiment, we rely on

3 acceleration groups, 1, 2, and 3, handled by instance types

t2.nano, t2.large, m4.4xlarge, respectively. We conduct an 8-

hour experiment, which produced ≈4000 incoming requests

to the SDN-accelerator. Figure 9a depicts the setup. Each

request is the same static task (minimax) used previously

for the benchmarking of the servers. Additionally, to ensure

demonstrating the stability of acceleration performance, we

induced a load of 50 concurrent users in each server in the

back-end. This concurrent load is created each 2 seconds

during the 8-hour experiment.

2) Prediction Accuracy: To determine the accuracy of

the model to predict workload, we perform a 10-fold cross

validation of the model over history traces produced by a

workload of 16 hours using the same inter-arrival rate found

from the smartphone usage experiment. Figure 10a shows the

results, we can observe that our model requires a bootstrap

time before producing high accuracy results. All in all, our

model predicts workload with ≈ 87.5% accuracy.

3) User Perception: One key aspect of our approach is

that a user is assigned to an acceleration group based on

the decision of the mobile client. This opens a wide range

of possibilities to improve perceived response time of an

application depending on different events sensed by the device.

For instance, if the processing of a task in certain device

requires more than t milliseconds, then the mobile promotes

the user to higher acceleration level. Moreover, by using this

method, the SDN-accelerator is released from the overhead of

monitoring and tracking users. In this paper, we rely on a static

probability of 1/50 to promote a user. We plan to develop a

context-based decision model as future work.

Figures 9b and 9c show the results of the experiment. To

demonstrate how the perception changes dynamically, from

the load of 100 users, we selected two users, user 32 that was

not promoted throughout the experiment (Figure 9b) and user

8 that was promoted to each available level of acceleration

(Figure 9c). We can observe that user 32 perceived a stable

response time of ≈ 2.5 seconds on average, while user 8

13041301487

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of request by id

Acceleration 1
Acceleration 2
Acceleration 3

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of request by id

Acceleration 1
Acceleration 2
Acceleration 3

(c)

Fig. 9: Dynamic acceleration changes in mobile application performance. (a) System deployment to evaluate the dynamic

acceleration of the code, (b) Response time perceived by user 32 whose acceleration group remains the same throughout the

experiment, (c) Response time perceived by user 8 whose acceleration group changed from level 1 to 3.

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

A
cc

u
ra

cy
 [

%
]

Size of the data

(a)

"output.csv" using 4:2:3

 0 1000 2000 3000 4000

Number of requests

 1

 2

 3

A
cc

el
er

at
io

n
 g

ro
u

p

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

(b)

"output.csv" using 1:2:3

 0 10 20 30 40 50 60 70 80 90

Number of users by Id

 1

 2

 3

A
cc

el
er

at
io

n
 g

ro
u

p

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

(c)

Fig. 10: (a) Accuracy of the prediction model to estimate the number of users in each acceleration group. Since the accuracy

depends on the amount of data available for learning, it is also shown the minimal amount of data to predict workload. (b)

Response time perceived by 100 users. (c) Promotion rate of the workload of 100 users.

perceived a shorter response time with each promotion.

Lastly, Figure 10b summarizes how the perception of the

100 users was dynamically changed during the experiment.

As we increase the number of requests, the response time

rises until more resources are dynamically allocated. Then

response time quickly decreases and stays relatively low as

prediction keeps up with increasing load. Figure 10c shows the

promotion rate of users. We observe that as users are promoted

to higher acceleration groups, overall response time decreases.

This result is also confirmed by Figure 10b.

4) Results: communication latency (3G/LTE): — Commu-

nication latency is a key factor for the adoption of offloading

in the wild. Thus, we analyze 3G and LTE as a means for

accessing remote clouds. We rely on the dataset provided

by NetRadar [36]. The dataset is collected from 2015 and

includes measurements from multiple regions of Finland.

Since the latency in the cellular network also depends on

the quality of service provided by the vendor, we analyze

three different mobile providers α (Samples, 3G=205762,

LTE=182549), β (Samples, 3G=448942, LTE=493956), and

γ (Samples, 3G=191973, LTE=152605), anonymized for im-

partiality. Figures 11a (α), 11b (β) and 11c (γ) show

the average latency of the communication (RTT) for each

provider, respectively. From the results, we can observe that

the average RTT using 3G for each cellular operator is

about 128 milliseconds for α (SD≈362, median≈51), about

141 milliseconds for β (SD≈376, median≈60) and about

137 milliseconds for γ (SD≈379, median≈56). We also can

observe that the average RTT using LTE is about 41 mil-

liseconds for α (SD≈56, median≈34), about 36 milliseconds

for β (SD≈70, median≈25) and about 42 milliseconds for γ
(SD≈84, median≈27). While there is a notable difference be-

tween 3G and LTE, both provide high latency communication

to achieve offloading support. In our system, we assume that

offloading happens using LTE.

VII. DISCUSSION

Based on our testbed results, we present in this section the

benefits, limitations, and lessons learned of our approach.

1) Levels of code acceleration: While we demonstrated that

it is possible to control the response time of a task at multiple

levels of acceleration using the cloud, the processing of a task

also depends on how the code is written for execution. A

task may be unable to take advantage of the computational

resources of a particular server, e.g., multiple cores and large

memory span. Therefore, there is an acceleration limit that

a task can achieve. Naturally, this limit can be surpassed by

13051302488

 0

 50

 100

 150

 200

 250

00:00 04:00 08:00 12:00 16:00 20:00 23:59

R
T

T
 [

in
 m

il
li

se
co

n
d
s]

3G
LTE

(a)

 0

 50

 100

 150

 200

 250

00:00 04:00 08:00 12:00 16:00 20:00 23:59

R
T

T
 [

in
 m

il
li

se
co

n
d
s]

3G
LTE

(b)

 0

 50

 100

 150

 200

 250

00:00 04:00 08:00 12:00 16:00 20:00 23:59

R
T

T
 [

in
 m

il
li

se
co

n
d
s]

3G
LTE

(c)

Fig. 11: Network communication latency and number of collected samples by mobile operator for 3G and LTE technologies.

From left to right, a: α, b: β, and c: γ, respectively.

applying techniques of code parallelization [25, 29]. In such

a case, other issues arise when modeling the acceleration of

code, e.g., optimal splitting and result merging. We leave code

parallelization for future work.

2) Offloading to save battery life: Several work have

demonstrated that offloading code to cloud can increase the

battery life of the mobile device [5]. The effect of offloading

in cellular networks (3G/LTE) and WiFi networks has been

widely explored [37]. Moreover, we conduct a large-scale

analysis under 3G and LTE technologies. As consequence, we

assume stable LTE communication that provides a cloudlet-

like latency. Thus, by cloudlet definition [20], there is no

overhead from drastic changes in communication or size of

the data transferred. We focus on a specific problem: dynamic

moderation of mobile application performance. Hence, the

trade-off between latency and energy is out of scope.

3) Code acceleration based on policies: Notice that our

work is not ruled by a fixed and simple load balancing

algorithm, e.g., round-robin. Our work highly differs from

these techniques, as we consider the users’ perception when

optimizing resources. One key advantage of our approach is

that a mobile device can promote itself to a higher acceleration

group based on its response time requirements. Naturally, this

approach can be generalized to adjust mobile support based

on any contextual need. For instance, as the battery level of

a device gets lower, it needs to reduce the effort to handle

network communication. Thus, it can promote itself to higher

acceleration level in order to decrease the amount of time

that the connection needs to be open waiting for a result.

However, to consider new policies, our model needs to be

slightly modified to consider energy measurements. This is

necessary to keep the prediction accuracy high.

4) Code acceleration as a service (CaaS): The possibility

of accelerating the execution of an application at a specific

level opens new opportunities to monetize software. For

instance, a user can acquire from the cloud a service to

improve the response time of a game instead of buying a new

higher capability device. This way, by using our approach, the

lifespan of the mobile hardware can be extended.

Naturally, CaaS differs from existing SaaS. In short, SaaS is

not optimized for consumption by mobile devices. This is clear

as many resource allocation models for cloud applications have

been proposed [7, 32]. However, these models do not take into

account how the processing time of a cloud service influences

the perception of the user. Thus, cloud models for resource

allocation in SaaS applications cannot be applied in the context

of mobile offloading. For instance, results in section VI-A

show that a cloud server is able to handle a large amount

of requests from different mobiles. However, as the workload

increases, the processing time of the server also increases.

Thus, to keep a suitable response time for users, the amount

of workload needs to be moderated.

VIII. CONCLUSIONS

The analysis of code execution during runtime is a tough

challenge as the code by nature is non-deterministic. Thus,

it is hard to determine the expected time of a task’s execu-

tion. While static methods can provide an approximation, the

accuracy of those methods is low. In addition, the type of

acceleration that can be obtained in the cloud is not simply

determined by a server’s capabilities. In this paper, we mod-

eled the different levels of acceleration that can be achieved

by outsourcing code to cloud. We found that cloud servers can

be classified into different groups to provide multiple levels of

acceleration as a service. We analyzed general purpose servers,

but a wide variety of servers can be benchmarked using the

same method. Our work advances the art by proposing a

SDN approach to model and control the level in which a

task is processed. By using SDN, no extra instrumentation

nor modification in software is required to tune the response

time of an application. Our work opens a wide variety of

opportunities to monetize the acceleration of code in the cloud.

Lastly, we provide the source code, Dalvik-x86, model and

case study in GitHub2.

IX. ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their

insightful comments. This work is partially funded by

the Academy of Finland (Grants 276786-AWARE, 286386-

CPDSS, 285459-iSCIENCE, 304925-CARE), the European

Commission (Grant 6AIKA-A71143-AKAI), and Marie

Skłodowska-Curie Actions (645706-GRAGE).

2https://github.com/mobile-cloud-computing/ScalingMobileCodeOffloading

13061303489

REFERENCES

[1] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan,

“What do mobile app users complain about?,” IEEE
Software Magazine, vol. 32, no. 3, pp. 70–77, 2015.

[2] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Ma-

hanti, “Your installed apps reveal your gender and

more!,” ACM SIGMOBILE Mobile Computing and Com-
munications Review, vol. 18, no. 3, pp. 55–61, 2015.

[3] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman,

and H. Yan, “Prometheus: toward quality-of-experience

estimation for mobile apps from passive network mea-

surements,” in Proceedings of the 15th ACM Workshop
on Mobile Computing Systems and Applications (Hot-
Mobile 2014), (Santa Barbara, California, US), February

26–27, 2014.

[4] M. Satyanarayanan and D. Narayanan, “Multi-fidelity

algorithms for interactive mobile applications,” Wireless
Networks, vol. 7, no. 6, pp. 601–607, 2001.

[5] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and

R. Buyya, “Mobile code offloading: From concept to

practice and beyond,” IEEE Communications Magazine,

vol. 53, no. 4, pp. 80–88, 2015.

[6] K. Kirkpatrick, “Software-defined networking,” Commu-
nications of the ACM, vol. 56, no. 9, pp. 16–19, 2013.

[7] M. Mazzucco, D. Dyachuk, and R. Deters, “Maximizing

cloud providers’ revenues via energy aware allocation

policies,” in IEEE 3rd International Conference on Cloud
Computing (CLOUD 2010), (Miami, Florida, USA), July

5–10, 2010.

[8] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, J. Shao,

and A. Srinivasan, “Mobile data offloading through

opportunistic communications and social participation,”

IEEE Transactions on Mobile Computing, vol. 11, no. 5,

pp. 821–834, 2012.

[9] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamo-

hideen, and H.-I. Yang, “The case for cyber foraging,” in

Proceedings of ACM SIGOPS European Workshop 2002,

(Saint-Emilion, France), July 01, 2002.

[10] H. Flores and S. Srirama, “Mobile cloud middleware,”

Journal of Systems and Software, vol. 92, pp. 82–94,

2014.

[11] P. Brooks and B. Hestnes, “User measures of quality

of experience: why being objective and quantitative is

important,” IEEE Network Magazine, vol. 24, no. 2,

2010.

[12] A. Balachandran, V. Aggarwal, E. Halepovic, J. Pang,

S. Seshan, S. Venkataraman, and H. Yan, “Modeling web

quality-of-experience on cellular networks,” in Proceed-
ings of the Annual international conference on Mobile
computing and networking (MobiCom 2014), (Maui,

Hawaii), September 7–11, 2014.

[13] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Sto-

ica, and H. Zhang, “Developing a predictive model of

quality of experience for internet video,” vol. 43, no. 4,

pp. 339–350, 2013.

[14] M. Volk, J. Sterle, U. Sedlar, and A. Kos, “An approach

to modeling and control of qoe in next generation net-

works,” IEEE Communications Magazine, vol. 48, no. 8,

2010.

[15] V. N. Padmanabhan and J. C. Mogul, “Using predictive

prefetching to improve world wide web latency,” ACM
SIGCOMM Computer Communication Review, vol. 26,

no. 3, pp. 22–36, 1996.

[16] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and

R. H. Katz, “A comparison of mechanisms for improving

tcp performance over wireless links,” IEEE/ACM Trans-
actions on networking, vol. 5, no. 6, pp. 756–769, 1997.

[17] R. Hsieh and A. Seneviratne, “A comparison of mecha-

nisms for improving mobile ip handoff latency for end-

to-end tcp,” in Proceedings of the 9th ACM annual
international conference on Mobile computing and net-
working (MobiCom 2003), (San Diego, California, USA),

September 14–19, 2003.

[18] L. A. Meyerovich and R. Bodik, “Fast and parallel

webpage layout,” in Proceedings of the 19th ACM inter-
national conference on World wide web (WWW 2010),
(Raleigh, NC, USA), April 26–30, 2010.

[19] D. Narayanan, J. Flinn, and M. Satyanarayanan, “Using

history to improve mobile application adaptation,” in

IEEE Workshop on Mobile Computing Systems and Ap-
plications, (Monterey, CA, USA), December 7–8, 2000.

[20] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,

“The case for vm-based cloudlets in mobile computing,”

IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23,

2009.

[21] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt,

“Cloudlets: Bringing the cloud to the mobile user,” in

Proceedings of ACM MobiSys Workshop 2012, (Low

Wood Bay, Lake District, United Kingdom), June 25–

29, 2012.

[22] H. Flores and S. Srirama, “Adaptive code offloading

for mobile cloud applications: Exploiting fuzzy sets

and evidence-based learning,” in Proceedings of ACM
MobiSys Workshop 2013, (Taipei, Taiwan), June 25–28,

2013.

[23] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,

S. Saroiu, R. Chandra, and P. Bahl, “Maui: making

smartphones last longer with code offload,” in Proceed-
ings of the ACM International Conference on Mobile
systems, applications, and services (MobiSys 2010), (San

Francisco, CA, USA), June 15–18, 2010.

[24] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,

“Clonecloud: elastic execution between mobile device

and cloud,” in Proceedings of the Annual Conference on
Computer systems (EuroSys 2011), (Salzburg, Austria),

April 10–13, 2011.

[25] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,

“Thinkair: Dynamic resource allocation and parallel ex-

ecution in the cloud for mobile code offloading,” in Pro-
ceedings of the Annual IEEE International Conference on
Computer Communications (INFOCOM 2012), (Orlando,

13071304490

Florida, USA), March 25–30, 2012.

[26] H. Flores and S. Srirama, “Mobile code offloading:

should it be a local decision or global inference?,” in

Proceedings of the ACM International Conference on
Mobile Systems, Applications, and Services 2013 (Mo-
biSys 2013), (Taipei, Taiwan), June 25–28, 2013.

[27] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik,

and E. Zegura, “Cosmos: Computation offloading as a

service for mobile devices,” Procedings of the ACM
International Symposium of Mobile Ad Hoc Networking
and Computing (MobiHoc 2014), August 11–14, 2014.

[28] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao,

and X. Chen, “Comet: code offload by migrating ex-

ecution transparently,” in Proceedings of the USENIX
Conference on Operating Systems Design and Implemen-
tation (OSDI 2010), (Hollywood, CA, USA), October

08–10, 2012.

[29] M.-R. Ra et al., “Odessa: enabling interactive perception

applications on mobile devices,” in Proceedings of the
ACM International Conference on Mobile systems, ap-
plications, and services (MobiSys 2011), (Washington,

DC, USA), June 28 – July 1, 2011.

[30] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and

D. Milojicic, “Adaptive offloading for pervasive comput-

ing,” IEEE Pervasive Computing, vol. 3, no. 3, pp. 66–73,

2004.

[31] M. D. Kristensen and N. O. Bouvin, “Scheduling and

development support in the scavenger cyber foraging

system,” Pervasive and Mobile Computing, vol. 6, no. 6,

pp. 677–692, 2010.

[32] M. Mazzucco and M. Dumas, “Achieving performance

and availability guarantees with spot instances,” in Pro-
ceedings of the International Conference on High Perfor-
mance Computing and Communications (HPCC 2011),
(Banff, Canada), September 2–4, 2011.

[33] A. Marzal and E. Vidal, “Computation of normalized

edit distance and applications,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 15, no. 9,

pp. 926–932, 1993.

[34] H. A. Taha, Operations research: an introduction,

vol. 557. Pearson/Prentice Hall, 2007.

[35] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscal-

ing in the cloud using predictive models for workload

forecasting,” in Proceedings of the IEEE International
Conference on Cloud Computing (CLOUD 2011), (Wash-

ington DC, USA), July 4–9, 2011.

[36] S. Sonntag, J. Manner, and L. Schulte, “Netradar-

measuring the wireless world,” in Proceedings of IEEE
International Symposium on Modeling & Optimization
in Mobile, Ad Hoc & Wireless Networks (WiOpt 2013),
(Tsukuba Science City, Japan), May 13–17, 2013.

[37] H. Flores, R. Sharma, D. Ferreira, V. Kostakos, J. Man-

ner, S. Tarkoma, P. Hui, and Y. Li, “Social-aware hybrid

mobile offloading,” Pervasive and Mobile Computing
Journal, vol. 36, pp. 25–43, 2017.

13081305491

