
Modeling modern network attacks and
countermeasures using attack graphs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Ingols, K. et al. “Modeling Modern Network Attacks and
Countermeasures Using Attack Graphs.” Computer Security
Applications Conference, 2009. ACSAC '09. Annual. 2009. 117-126.
©2009 Institute of Electrical and Electronics Engineers.

As Published http://dx.doi.org/10.1109/ACSAC.2009.21

Publisher Institute of Electrical and Electronics Engineers

Version Final published version

Citable link http://hdl.handle.net/1721.1/59422

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59422

Modeling Modern Network Attacks and Countermeasures Using Attack Graphs

Kyle Ingols, Matthew Chu, Richard Lippmann, Seth Webster, Stephen Boyer

MIT Lincoln Laboratory
244 Wood Street

Lexington, Massachusetts 02420-9108
Email: kwi@ll.mit.edu

Abstract—By accurately measuring risk for enterprise net-
works, attack graphs allow network defenders to understand
the most critical threats and select the most effective coun-
termeasures. This paper describes substantial enhancements
to the NetSPA attack graph system required to model ad-
ditional present-day threats (zero-day exploits and client-side
attacks) and countermeasures (intrusion prevention systems,
proxy firewalls, personal firewalls, and host-based vulnerability
scans). Point-to-point reachability algorithms and structures
were extensively redesigned to support “reverse” reachability
computations and personal firewalls. Host-based vulnerability
scans are imported and analyzed. Analysis of an operational
network with 85 hosts demonstrates that client-side attacks
pose a serious threat. Experiments on larger simulated net-
works demonstrated that NetSPA’s previous excellent scaling is
maintained. Less than two minutes are required to completely
analyze a four-enclave simulated network with more than
40,000 hosts protected by personal firewalls.

I. INTRODUCTION

Enterprise networks are constantly under attack from a

continuous stream of threats. Some are widespread, such as

the “conficker” worm [1]; others are highly targeted, such as

the recently analyzed “GhostNet” activities [2]. Currently,

no accurate automated approach exists to predict the risk

these and other threats pose to specific networks. This is one

of the primary goals of our research. Accurate automated

risk assessments would make it possible to compare the risk

of multiple threats, select effective countermeasures, predict

the threat posed by hypothesized attacks, and determine

the effectiveness of planned and past security expenditures.

This requires accurate models of adversaries, of networks,

of vulnerabilities, and of a network’s mission or purpose.

Over the past few years we have developed a tool named

“NetSPA” that uses attack graphs to model adversaries and

the effect of simple countermeasures [3]–[5]. It creates a

network model using firewall rules and network vulnerability

scans. It then uses the model to compute network reacha-

bility and attack graphs representing potential attack paths

This work is sponsored by the United States Air Force under Air Force
Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the authors and are not necessarily endorsed
by the United States Government.

for adversaries exploiting known vulnerabilities in server

software (“server-side” vulnerabilities). This discovers all

hosts that can be compromised by an attacker starting

from one or more initial locations. Asset values assigned

to each host measure the utility of hosts to a network’s

purpose or mission. Degradation in mission capability is

then represented by the percentage of the total asset value

threatened by the attacker.

NetSPA scales roughly as O(n log n) as the number of

hosts in a typical network increases. It has been used to

analyze actual networks with more than 3,000 hosts and sim-

ulated networks with nearly 50,000 hosts. Risk is assessed

for different adversaries and countermeasures by measuring

the total assets that can be captured by an adversary and

also by measuring the attacker effort as suggested in [6].

We currently compute simple measures of attacker effort,

such as the number of hops or stepping-stone hosts, the

effort required to exploit given vulnerabilities as defined by

CVSS [7], and the number of unique exploits required to

compromise all exploitable hosts in the network.

Past research on using automated attack graphs to model

adversaries (e.g., [5], [8]) – including our own – has used

threat and countermeasure models that are now out of date.

The most common threat model used in the past is of an

attacker compromising hosts via server-side vulnerabilities,

and the primary countermeasure explored is patching these

vulnerabilities. This paper describes how we extended the

NetSPA tool to model additional modern threats and coun-

termeasures.

In the remainder of this paper we first describe the

most important new attacks and defenses and our modeling

approach. We then present the extensive changes in reacha-

bility computation required by these models, followed by

evaluations on a small real network and large simulated

networks. The paper ends with a discussion of related work,

limitations, and future work.

II. MODELING CLIENT-SIDE ATTACKS

Some of the most important modern threats are vulnera-

bilities in web browsers, e-mail clients, document viewers,

and multimedia applications running on victim machines,

2009 Annual Computer Security Applications Conference

1063-9527/09 $26.00 © 2009 IEEE

DOI 10.1109/ACSAC.2009.21

117

or “client-side” vulnerabilities (e.g., [9], [10]). There are

many potential vectors for exploiting such vulnerabilities.

We model client-side attacks in which an attacker adds

malicious content to a server that a victim then downloads

unknowingly. Additional vectors such as malicious email

and encrypted tunnels are considered as future work.

Client-side vulnerabilities must be found to be mod-

eled. Prior attack graph systems (e.g., [8], [11]) identified

only server-side vulnerabilities using network-based scan-

ners such as Nessus [12]. These scanners are unsuitable for

detecting most client-side vulnerabilities, even when login

credentials are provided, because they do not examine many

details of installed client software. Recent advances in the

Security Content Automation Protocol (SCAP) program [13]

make it possible to obtain details necessary to model client-

side vulnerabilities in a consistent manner across different

operating systems. In section VI-B we describe how we use

an Open Vulnerability Assessment Language (OVAL)-based

scanner, running on each host, to detect and collect client-

side vulnerabilities.

Client-side attacks require a host-to-host reachability com-

putation that can be considered backwards from that required

for server-side attacks. For a server-side attack, we must de-

termine if an attacker can reach the victim host’s vulnerable

server. For a client-side attack, we must instead determine if

the malicious server can be reached by a vulnerable client.

Section V-D describes NetSPA’s reverse-reachability system.

III. MODELING ZERO-DAY ATTACKS

Another important modern threat is an attacker with

knowledge of an unpublished, or “zero-day,” vulnerability

[10]. Although it is impossible to predict the existence of any

specific zero-day vulnerability, it is possible to hypothesize

a zero-day vulnerability in specific software applications

to ensure that the impact of an eventual zero-day can be

understood and minimized.

We evaluate zero-day risk by hypothesizing a zero-day

vulnerability in each application on a network, one at a

time, and building an attack graph for each new vulnerability

to assess attacker effort. We then order applications by the

benefit provided to an attacker, were a zero-day available.

This allows defenders to focus on those application instances

that provide the most attacker benefit. They can uninstall,

move, limit ingress or egress, or monitor these installations

more closely with an anomaly-based intrusion detection

system (IDS).

Proper modeling of zero-day vulnerabilities requires an

inventory of server and client software on each computer.

Ideally such an inventory would use the new SCAP-based

Common Process Enumeration (CPE) standard [13], [14],

as it provides a consistent name for all applications. CPE

entries typically provide an OVAL plugin designed to detect

the software; thus a host-based OVAL scanner could gather

application information.

Until CPE matures, we model only server-side zero-day

vulnerabilities by assuming that each protocol and port

represents a different application. For example, NetSPA

posits the existence of a piece of software called “25/tcp,”

running on every device with TCP port 25 open. Although

not ideal, our current approach is automatable and provides

useful results on large networks without requiring additional

host-based scanning.

IV. MODELING MODERN COUNTERMEASURES

Many countermeasures can be deployed to defend en-

terprise networks [15]. In this section we describe how

some of the most common countermeasures have been

included in NetSPA. These include personal firewalls that

filter traffic at the host level, intrusion prevention systems

(IPSs) that block disallowed types of web content such as

ActiveX controls, and proxy firewalls that provide a common

protected outgoing client connection to the Internet for many

hosts in a network.

Personal firewalls, also called endpoint or host-based fire-

walls, are installed on individual hosts to control incoming

and outgoing traffic. In an enterprise, these firewalls are

often centrally managed and use identical rulesets. NetSPA’s

previous reachability system [4] was designed only for

inline firewalls typically used at network borders. The prior

system’s performance rapidly deteriorated with many per-

sonal firewalls because each personal firewall was modeled

separately as an inline firewall. Section V-F describes our

new system, which restores performance by grouping per-

sonal firewalls with identical rulesets together. This required

developing new software to import rules used by personal

firewalls, redesigning our reachability model, and rewriting

substantial parts of NetSPA’s reachability computation sys-

tem.

Intrusion prevention systems (IPSs) are used to protect

vulnerable hosts by blocking incoming malicious content.

Two aspects of IPSs need to be modeled: their effect on vul-

nerabilities, and their impact on reachability. Because small

changes in malicious code can often elude IPS signatures,

many IPSs block entire classes of potential attack vectors

– ActiveX controls or Java applets, for example. Modeling

this behavior requires a mapping between the blocked attack

vector and the vulnerabilities that depend on that vector for

exploitation. This mapping is currently created by automated

keyword searches on NVD vulnerability descriptions fol-

lowed by manual confirmation. Creating a mapping in this

manner is far from ideal; future SCAP standards such as

CPE may provide more automatable means of making this

connection.

IPS systems can be deployed as inline proxies, much

like inline firewalls. They can also be deployed as “non-

transparent” proxies, to which client machines must explic-

itly connect. The proxy then connects to the desired server.

Using a mapping of attack vector to vulnerabilities, NetSPA

118

can model the effect of both types of IPS systems via simple

adjustments to its reachability model. These changes are

detailed in Section V-E.

V. REACHABILITY

Attack graph generation tools require, at a minimum,

answers to two core questions: where are the vulnerabilities,

and what are the restrictions on attackers’ ability to exploit

them? Vulnerability scanners answer the first question. The

answer to the second must be inferred from the network’s

underlying topology and the firewalls and routers that dictate

traffic flow. We are thus required to model the network’s

topology and filtering devices in an efficient manner.

NetSPA’s network model supposes that an individual

host possesses one or more interfaces, each of which may

have an IP address. These interfaces have zero or more

open ports, accepting connections from other hosts. A port

has a port number and protocol. Each host and port may

have zero or more vulnerability instances, particular flaws

or configuration choices which may be exploitable by an

attacker.

A straightforward means of representing a network’s

reachability is an I − K matrix, where I represents the

number of interfaces and K represents the number of server

ports. A given cell in the matrix indicates whether traffic

from the source interface to the target port is permitted.

Although straightforward, it is often large and redundant.

The remainder of this section explores the methods used

to make reachability computation tractable in large networks.

Our previous work [3], [4] handled filtering and NAT

rules as discussed in Sections V-A and V-B, though the

ordering of rules was far less flexible than the system now

described. Section V-C discusses new rule-based branching,

used to handle devices with multiple potential egress paths

for traffic. Section V-D and V-E cover additions made to

accommodate client-side attacks, non-transparent proxies,

and IPS systems. Finally, Section V-F covers NetSPA’s

aggressive grouping strategies, designed to identify and

leverage redundancy in the I −K matrix.

A. Firewall Model

NetSPA models reachability using tuples of the

form [source IP -> target IP:portnum/
protocol]. Much like the FIREMAN [16] system, these

sets are represented as binary decision diagrams (BDDs).

A BDD is an efficient way to represent a Boolean equation

like x∧ (z∨y), such that evaluating the equation on a set of

variable assignments can be evaluated in time proportional

to the number of Boolean variables, rather than to the

length of the Boolean expression. The variables are the bits

of the reachability tuple – for example, the source IP in an

IPv4 network can be represented as 32 bits, or 32 Boolean

variables. Because the number of variables is fixed, we

can traverse the BDD in constant time. Like FIREMAN,

NetSPA implements BDDs via the BuDDy library [17].

NetSPA models firewalls via rules, rulegroups, and chains.

A rule matches a subset of reachability and acts upon it;

these actions include allowing and denying the traffic. The

specific dispositions are discussed later. Every rule belongs

to a rulegroup. A rulegroup consumes a set of reachability

as input and produces three output sets < A,D, R >. The

A, D, R notation, adapted from FIREMAN, refers to the set

of allowed traffic (A), denied traffic (D), and traffic that

was not acted on by an allow or deny rule (R). A chain
points to a rulegroup and dictates the next step for traffic in

each of the rulegroup’s three output sets.

Each interface in the network is assigned an inbound and

an outbound chain to adjudicate traffic passing through it.

Inbound chains are used to explicitly designate how traffic

moves through a host. Traffic that is given the default

disposition, but refers to the inbound interface’s listening

address, is assumed to go to the host, i.e., to a port on the

firewall itself. Outbound chains apply only to traffic from
the host itself, not to traffic passing through the host but

originating elsewhere.

To traverse a rulegroup, we take the input source set S
of reachability and traverse the rules, in order, one at a time.

For rule number i, we consider < A,D, Ri >, where A is

the traffic that has already been accepted, D is the traffic

that has already been denied, and Ri is the traffic that was

not accepted or denied by a rule prior to rule i. For a set

of n rules, we begin with < A, D, R1 >=< ∅, ∅,S >; the

final result is < A,D, Rn+1 >. We write Rn+1 as simply

R.

Filtering rules are the easiest to model, as they sim-

ply accept or deny traffic. For example, the rule [*
-> 10.0.0.1:25/tcp]: ALLOW permits any avail-

able traffic targeting port number 25, protocol tcp, address

10.0.0.1 to pass (i.e., go to the A output). To evalu-

ate an allow rule i, we use the FIREMAN method of

assigning it a match set Pi, a BDD representing what

the rule itself matches. For this example, Pi is [* ->
10.0.0.1:25/tcp]. Of the reachability not yet acted

upon (Ri), we must take what the rule matches and move

it to A:

Ri+1 = Ri − Pi

A = A ∪ (Ri ∩ Pi)

A deny rule is handled similarly.

A rulegroup with only filtering rules need only be eval-

uated once; the result can be reused for multiple potential

source sets. It is sufficient to start with < ∅, ∅, ∗ >, compute

< A, D,R >, and then, for any source set S, compute

< A ∩ S, D ∩ S, R ∩ S > as the output.

119

B. Network Address Translation
The FIREMAN system is very powerful and handles

filtering rules very well, but it does not consider network

address translation (NAT) rules. NAT rules modify the

contents of Ri, usually by manipulating either the source

address (source NAT, or SNAT) or the target address or port

(destination NAT, or DNAT). NetSPA’s reachability system

models both.
NetSPA’s handling of NAT rules via BDDs uses BuDDy’s

exist function. exist(X,Y) takes all variables used in

Y and removes them from X , essentially resetting those

variables to a “do not care” state. For example, exist(y ∧
x∧(z∨y), y) = x∧z. This can be used to remove restrictions

on sections of the reachability tuple.
For example, consider the NAT rule [

192.168.0.0/24 -> 10.0.0.1:25/tcp] :
SNAT to 10.5.17.36. This rule changes the source IP

address of matched reachability to 10.5.17.36, while the

destination address, protocol, and port remain unchanged.
We model a NAT rule using three BDDs. Recall that a

filtering rule has only Pi, the traffic matched by the rule.

For a NAT rule, we build Pi as well. We also require

Mi, the mask set representing the information that the rule

changes – every bit changed is set to one, and all other

bits are left unset. Lastly, we require Ti, the transform
set, representing the translated value imposed by the rule.

For the example rule, Pi is [192.168.0.0/24 ->
10.0.0.1:25/tcp], Mi is [255.255.255.255
-> *], and Ti is [10.5.17.36 -> *].

To process a NAT rule, we first isolate traffic that the rule

matches. This, like a filtering rule, is computed as (Ri∩Pi).
Second, we compute the modified reachability by using the

exist function to remove the values to be changed (Mi).
Finally, we use Ti to insert the changed values, taking care to

not manipulate traffic that the rule does not match (Ri−Pi).

Ri+1 = (Ri − Pi) ∪ (exist(Ri ∩ Pi, Mi) ∩ Ti)

NAT rules, by themselves, do not permit or deny traffic; A
and D are unaltered.

Consider as an example the rulegroup shown in the left-

hand side of Figure 1. For this example we drastically sim-

plify reachability by ignoring destination port and protocol,

and restricting the source and destination addresses to the

sets (1, 2, 3, 4) and (a, b, c, d), respectively – doing so allows

us to visually depict the resulting I→K reachability matrix,

shown in the upper left of the figure. In the matrix, a gray

cell represents true, and white represents false.
For illustrative purposes, we begin with S = (1, 2, 3) →

∗. The first rule accepts only traffic from 1 to a (shown

as 1 → a), thus adding Pi ∩ Ri = 1 → a to the accept

disposition A and passing the remainder Ri−Pi to the next

rule.
The second rule is a NAT rule, translating reachability

from source address 1 to the source address 4. As a result,

Accept 1 a

Accept 4 b

Chain 1

+

-

?

NAT 4 b to d

Chain 3

+

-

?

Chain 2

+

-

?

2 b: Goto eth1

eth2

eth0

NAT * b to d

Accept * b

accept disposition
deny disposition
default disposition

+
-
?

NAT 1 * to 4

Figure 2. Example Arrangement of Three Chains with Three Interfaces

1 → (b, c, d) is removed from Ri+1, as it’s been translated

to something else, and 4 → (b, c, d) is added; this value

proceeds to the next rule.

The final rule is another filtering rule, accepting traffic

from 4 to b. It adds Ri∩Pi = 4→ b to the accept disposition

A and removes Pi from Ri+1. The final result is A = (1→
a, 4 → b), D = ∅, R = ((2, 3) → ∗, 4 → (c, d)).

C. Branching between chains

Transitioning between chains is accomplished via chain

dispositions, which determine the destination of traffic from

each of the three answers < A,D, R >. For example,

consider the three chains shown in Figure 2. Here, the accept

set of chain 1 becomes the input to chain 3, and the accept

set of chain 2 exits the firewall via interface eth1.

In addition to chain-to-chain branching, it is sometimes

desirable to branch to another chain from within a rule.

NetSPA supports two rule dispositions for this purpose: goto
and plusgoto. In both cases, the traffic matched by the rules

(Ri ∩ Pi) is sent to another chain as its input S . A goto

rule prevents the matched traffic from continuing in the

original rulegroup (Ri+1 = Ri − Pi); a plusgoto rule does

not (Ri+1 = Ri). NetSPA uses plusgoto rules extensively to

model routing where multiple valid routes exist; via plusgoto

rules, NetSPA can explore all of the possible routes in order

to perform a worst-case evaluation.

The combination of chains and the edges between them

creates a directed acyclic graph, e.g., the graph shown in

Figure 2. We refer to a chain that directly receives traffic

from a given interface as that interface’s entry node, and

any chain that directly sends traffic to an interface as one of

the interface’s exit nodes.

D. Reverse Reachability

To support client-side attacks, NetSPA’s reachability sys-

tem has been extended to efficiently compute reachability

backwards, starting at the malicious server and working

backwards to the vulnerable clients. This could be ac-

complished by computing forward reachability from every

host on the network. However, on networks with solid

restrictions on outbound traffic, it is more efficient to traverse

reachability chains, and their rules, backwards.

To compute reverse reachability through a firewall, we

must posit a set of reachability T that we wish to run

120

Accept 1 a
+ - ?

NAT 1 * to 4

+ - ?

Accept 4 b
+ - ?

INPUT

Overall
ACCEPT

Overall
DENY

Overall
DEFAULT

Accept 1 a
+ - ?

NAT 1 * to 4

+ - ?

Accept 4 b
+ - ?

INPUT

Overall
ACCEPT

Overall
DENY

Overall
DEFAULT

1
2
3
4

a b c d

fro
m

to

Fo
rw

ar
d

R
ea

ch
ab

ili
ty

S =

R
ev

er
se

 R
ea

ch
ab

ili
ty

T ,< >= ,

ac
ce

pt
 d

isp
os

iti
on

de
ny

 d
isp

os
iti

on
de

fa
ul

t
di

sp
os

iti
on

+ - ?

Figure 1. Simplified Example Reachability Flow Through a Rulegroup: Forward and Reverse

backwards from a given subnet, through all interfaces con-

nected to that subnet. For a given interface, we identify the

interface’s exit nodes and walk the chain graph backwards

from them to all other interfaces’ entry nodes. Within a

rulegroup, we walk the rules in reverse as well.

Each rule disposition is handled differently. An allow rule

must remove from Ri+1 everything that the rule matches,

because such traffic would never have been sent to Ri+1 by

the rule. It must also add to Ri everything in A that the rule

matches, as it would have flowed through the rule to A:

Ri = (Ri+1 − Pi) ∪ (A ∩ Pi)

Deny rules are similar.

NAT rules are more complicated. Mi is unchanged,

but we must use a new P ′
i , the reachability after the

NAT rule was applied, and T ′
i , the altered reachabil-

ity before the NAT rule makes its changes. For ex-

ample, consider the NAT rule we evaluated in Sec-

tion V-B: 192.168.0.0/24 -> 10.0.0.1:25/tcp
: SNAT to 10.5.17.36. Mi remains the same, P ′

i

becomes 10.5.17.36 -> 10.0.0.1:25/tcp, and T ′
i

becomes 192.168.0.0/24 -> *. We do not remove the

NAT rule’s output from Ri, as it could have occurred on its

own; a NAT rule that translates X to Y does not prevent Y
from occurring in the absence of X. We process the NAT

rule as follows:

Ri = Ri+1 ∪ (exist(Ri+1 ∩ P ′
i , Mi) ∩ T ′

i)

Goto rules remove what they match, because that reach-

ability would have been sent to some other chain: Ri =
Ri+1 − Pi. Plusgoto rules have no effect: Ri = Ri+1.

However, goto and plusgoto rules are treated differently

when we branch back to them from another chain: in this

case, evaluation of the rulegroup begins at the goto or

plusgoto rule, not at the end of the rulegroup. We therefore

begin at the goto/plusgoto rule i with everything that the rule

could have sent to the chain that we’re now coming from:

< A,D, Ri >=< ∅, ∅, Pi ∩ S >.

For example, consider again the chain graph of Figure 2

and hypothesize traffic traveling backwards through eth2.

We begin on Chain 3 with T =< ∅, ∅, ∗ >. Processing

backwards, we would arrive at the start of Chain 3 with

S = ∗. This propagates to the accept disposition of Chain 1,

and also to the goto rule in the middle of chain 2’s rulegroup.

Upon arrival at the goto rule, we compute Pi ∩ ∗, yielding

Ri = 2 → b; the only traffic that could have been sent to

Chain 3 by this goto rule is Pi = 2 → b, so that is all that

could be propagated backwards. From chain 2, the result

2 → b becomes the input to the default disposition of Chain

1.

We can now traverse Chain 1’s rulegroup backwards, as

shown in the right-hand side of Figure 1. The input is T =<
∗, ∅, 2 → b >.

The last rule in the rulegroup, “Accept 4 → b,” computes

Ri = (Ri+1−Pi)∪(A∩Pi); as a result, Ri = ((2, 4) → b).
The NAT rule manipulates the contents of Ri in reverse,

121

translating 4 → ∗ back to 1 → ∗ but not removing 4 → ∗.
The resulting Ri = ((1, 2, 4) → b).

Finally, the first filtering rule acts on < ∗, ∅, (1, 2, 4) →
b >. From this, Pi∩Ri = (1→ a), so it’s added to the final

answer, R1 = ((1, 2, 4) → b, 1 → a). This is the sum total of

reachability that could enter eth0 and emerge from eth2
as part of our originally hypothesized set T =< ∗, ∅, ∅ >.

The discussion above focuses on traffic through firewalls.

Addressing traffic from a victim host that has its own rules,

or to a malicious server that has not disabled its own firewall,

uses similar principles. If the traffic is from a victim host

with address X, we start at the interface’s outbound chain

with T =< X, ∅, ∅ > and travel backwards as before.

Traffic to a firewalled malicious server, however, is more

complicated, because there are no explicit exit nodes –

any chain reachable from the inbound chain could provide

reachability to the host itself. The NetSPA system therefore

computes forward reachability via S =< ∅, ∅, ∗ >, keeping

track of all chains reached, and then performs reverse

reachability from all of those chains as potential exit nodes.

E. Non-Transparent Proxies and IPS Systems

Transparent proxies look just like inline firewalls. To use

a non-transparent proxy, however, a client machine must be

configured to explicitly connect to the proxy host, which

then makes the connection on the client’s behalf. From

a reachability perspective, the client only connects to the

proxy, but the proxy can then connect to anywhere else on

behalf of the client.

We model this situation in NetSPA via destination NAT.

We add a NAT rule of the form [* -> X : DNAT to

*], where X is the proxy server’s own IP and port number.

Other target values, such as protocol and port number, could

be wildcarded as desired. IPS systems that then restrict the

servers that can be contacted could be modeled by adding

deny rules after the DNAT rule.

NetSPA uses a similar trick to model the effect of an IPS.

Assuming a mapping from attack vector to vulnerabilities

exists, NetSPA models the IPS by treating it like a firewall.

NetSPA’s filtering model has been extended to permit block-

ing traffic based on vulnerability, adding vulnerability to the

normal tuple of source IP, destination IP, destination port,

and protocol.

F. Grouping Hosts and Firewalls

An I K matrix for representing reachability is typically

highly redundant; on typical networks, groups of interfaces

are treated identically by the firewalls and other filtering

devices. Interfaces within such a group will have identical

rows in the matrix, as they will all be able to reach the same

ports. NetSPA identifies these forward reachability groups
and computes only one row for each, saving both time and

space.

To do this, NetSPA collects the set N of all IP address

singletons and ranges used in all firewall rules. Two inter-

faces on the same subnet with identical rules can be grouped

together if their listening addresses are in the same subset

of N ; reachability for one is identical to reachability for the

other. The grouping operation on a network with I interfaces

and L rules is O(IL + I log I), but the savings obtained

by running the algorithm is substantial. In the ideal case

of a network with one interconnected internal subnet and

a firewall that does not differentiate between the network’s

hosts, the factor of I in the I K matrix size can effectively

drop out and be replaced by a constant. In the pathological

case of a network where each interface is treated differently,

then no savings are achieved. In practice, we’ve found that

real networks typically receive a substantial benefit from this

approach. In the first case explored in Section VI-B2, we

dropped from 65,025 cells to 3,825 – a factor of 17 savings

in time and memory.

NetSPA can use a similar approach to create reverse
reachability groups, combining redundant columns in the

I K matrix.

In addition, NetSPA groups hosts with identical personal

firewall rulesets by forming target reachability groups. Two

single-homed hosts are in such a group if they are on

the same subnet and their inbound chains are isomorphic;

that is, they use the same rulegroup and all of the chains’

dispositions are isomorphic. NetSPA’s reachability engine

can then traverse a target reachability group’s common rules

once to attempt reachability to every host in the group.

However, the extra context means that the system also knows

to traverse their chains, outbound and inbound, when traffic

moves between members of the group.

VI. PERFORMANCE

To evaluate the scalability of the new system, we con-

ducted a number of measured tests on various synthetic

networks. All tests were executed on a 2.4GHz Pentium 4

computer running Linux with 1GB of RAM. Peak memory

measurements were done via Linux’s libmemusage.so
library. We measured runtime via wallclock. For timing

tests, the system was run five times, discarding the first

result and averaging the remaining four. In all cases the

system posited an external attacker, computed reachability

as needed, constructed the attack graph, and computed

recommended remediation steps.

A. Full- and Partially-Synthetic Networks

We begin by comparing the new system’s ability to

aggregate personal firewalls to the previous system’s costly

workaround. We use a set of test data from a small 251-host

network. We placed identical synthetic personal firewalls

on 52 of the hosts and varied the number of rules in the

common ruleset from 0 to 10,000; these results are shown

in the top of Figure 3. We then varied the number of hosts

122

T
im

e
(s

ec
on

ds
)

M
em

or
y

U
sa

ge
(Δ

M
B

)

Number of rules

Performance vs. Personal Ruleset Size

Old System (time)
New System (time)
Old System (memory)
New System (memory)

T
im

e
(s

ec
on

ds
)

M
em

or
y

U
sa

ge
(Δ

M
B

)

Number of personal firewalls

Performance vs. Number of Personal Firewalls

Old System (time)
New System (time)
Old System (memory)
New System (memory)

Figure 3. NetSPA Performance with Personal Firewalls; Old System of
[4] vs. New System

with personal firewalls from 0 to 52, fixing the common

ruleset at 250 rules. These results are shown on the bottom

of Figure 3. In both cases we show the total time consumed,

as well as the change in memory consumption from the zero

point of the X axis. We show only the change in memory

so scaling effects can clearly be seen between the two

systems, as the differences in baseline memory requirements

are comparatively unimportant.

The benefit of the new system is clear: adding additional

personal firewalls with a shared ruleset causes almost no

impact. Adding rules to the ruleset causes a roughly linear

increase, though this is difficult to see because the system

remains very fast throughout the test. In practice, we would

not expect personal firewall rulesets to exceed 2,000 rules.

We conducted additional scalability experiments on the

synthetic network shown in Figure 5. As shown, the network

T
im

e
(m

in
ut

es
:

se
co

nd
s)

M
em

or
y

(M
B

)

Number of rules per firewall

Performance vs. Number of Firewall Rules (4 Enclaves)

Time
Memory
Time (w/ Personal FW)
Memory (w/ Personal FW)

16,384 rules

T
im

e
(m

in
ut

es
:

se
co

nd
s)

M
em

or
y

(M
B

)

Number of hosts

Performance vs. Number of Hosts (4 Enclaves)

Time
Memory
Time (w/ Personal FW)
Memory (w/ Personal FW)

40,960 hosts

Figure 4. NetSPA Performance with Enclave, Rule, and Host Scaling;
New System

Outside

DMZ

Internal

Enclave 1

Enclave 2

Enclave 3

Enclave 4

Figure 5. Synthetic Network Structure Used for Scaling Experiments

includes a border firewall, a DMZ, an internal network, and

four additional enclaves, each with its own border firewall.

An attack path from the outside, to the DMZ, to the inside,

and finally to each enclave was established. Ten ports were

assigned to each host, half of which were assigned one

vulnerability each.

In the first case, shown on the top of Figure 4, we kept the

number of rules constant at 250 per firewall and varied only

the total number of hosts in the network. We show results

123

with and without personal firewalls, where the personal

firewalls used common per-enclave rulesets of 250 rules.

The graph’s scale is log-linear and shows the tool’s ability

to handle large numbers of hosts in seconds.

In the second case, shown on the bottom of Figure 4, we

leave the number of hosts constant at 1,250 and vary the

number of rules on each firewall. We again show results

with and without personal firewalls; here, the number of

rules on the personal firewalls equals the number on the

infrastructure firewalls. The graph’s scale is log-linear and

shows that running time remains under two minutes in the

typical 100 to 2,000 rules per firewall expected in practice.

B. Evaluation on a Real Network

We also evaluated the system using a real network of

85 hosts behind a Juniper Netscreen firewall. We began by

collecting typical data, consisting of a Nessus scan and the

Juniper firewall ruleset. We then collected additional host-

based data, discussed in Section VI-B1, and then evaluated

several scenarios on the network in Section VI-B2.

1) OVAL Scanning: We deployed the OVAL scanner on

the target network’s Windows-based hosts and collected

vulnerability scan data every time a user logged into the

Windows domain.

Over the course of a month, we obtained 155 scans of 43

hosts, logging a total of 402 unique vulnerabilities over that

time. The NVD database categorized 233 of them as client-

side vulnerabilities (the NVD entries have the user_init
flag set). The remainder were classified as locally exploitable

(26) or remotely (server-side) exploitable (143); of those

143, 25 are said to yield root access when exploited.

We randomly chose ten of the 25 remote-to-root vul-

nerabilities identified as remotely exploitable and evaluated

them by hand, examining the NVD entries and additional

references. The ten CVE IDs and their evaluations appear

in Table I. Based on our evaluation, eight of the ten were

incorrectly classified as server-side vulnerabilities.

This result makes us hesitant to trust NVD’s otherwise

solid data when evaluating a vulnerability that is suspected

to be client-side. Until this is addressed, we suggest miti-

gating the risk of false negatives in the attack surface by

considering all vulnerabilities discovered by OVAL to be

client-side vulnerabilities and additionally using a network-

based scanner to discover server-side vulnerabilities.

2) Experiments: Data in hand, we began evaluating the

results with NetSPA. In all cases we hypothesized an adver-

sary on the outside of the firewall.

The results of this and all other experiments on the real

network are shown in Figure 6.

Figure 6a clearly shows that the situation is dire; all 169

of the server-side vulnerabilities and 51 of the 84 hosts

can be exploited directly, through the perimeter firewall.

We investigated the reachability traces provided by NetSPA

and identified three rules which were permitting the majority

of the inbound traffic. All three were intentional, allowing

traffic from an asset management server and a handful of

machines that belonged behind the enclave but weren’t phys-

ically located there. As a hypothetical hardening measure,

we removed these rules. The adversary could now only

directly compromise 69 vulnerabilities as shown in Figure

6b. Once past the firewall, of course, the other 100 can

still be exploited from an initially compromised host, as

shown by the light gray squares. All 51 vulnerable hosts are

exploited, although only 22 are exploited in the first step.

We then discovered an omission in the Juniper ruleset: a

server called “MS-WINS” was used in an allow rule, but

the port number was not defined. NetSPA models the worst

case, so it assumed the rule allowed traffic to any destination

port number. When redefined with the appropriate WINS

port number of 1512, as shown in Figure 6c, the network

became impervious to attack – as shown, the vulnerabili-

ties are known but cannot be exploited, and no hosts are

compromised.

At this point we introduced the OVAL scans from Section

VI-B1, adding knowledge of 514 client-side vulnerabilities

to the network. As shown in Figure 6d, the adversary could

immediately take advantage, compromising even more hosts

than before – 65 instead of 51 – as we are now aware

of client-side vulnerabilities on hosts that had no server-

side vulnerabilities. First, the client-side vulnerabilities are

compromised, and then the server-side vulnerabilities can be

attacked from any of those initially compromised hosts.

We next added available data on personal/endpoint fire-

walls on the network, but they did not impede the adversary,

as they did not restrict traffic from the adversary’s starting

location or from hosts within the enclave itself. As a final

step, we hypothesized an inline IPS capable of blocking

exploits against Microsoft Office. We assumed, for example,

that an adversary relying on a vulnerable client downloading

a corrupt Word document would be thwarted. Note that

we are neglecting simple attacker workarounds, such as

convincing the client to use an encrypted connection, but

for the sake of example we assume the adversary is using

unobfuscated transmission methods. Figure 6e shows the

impact such an IPS could have; 267 of the client-side

vulnerabilities are no longer immediately compromisable

from the outside, though the same number of hosts (65)

are still eventually compromised. What-if experiments such

as these could help defenders decide if potential changes are

worthwhile investments.

VII. RELATED WORK

To the best of our knowledge, no other commercial or

research tools that use attack graphs to assess network risk

include explicit models of personal firewalls, intrusion pre-

vention systems, or modern client-side attacks. A compre-

hensive review of past attack graph research is presented in

[8]. More recent approaches include [11], [18], and [19]. The

124

CVE ID Description Client-side?
CVE-2004-0963 Buffer overflow in Microsoft Word 2002 ... in a .doc file yes
CVE-2004-1153 vulnerability in Adobe Acrobat Reader 6.0.0ETD document yes
CVE-2006-2372 overflow in the DHCP Client service for Microsoft Windows 2000 yes
CVE-2006-4691 Workstation service (wkssvc.dll) ... via NetrJoinDomain2 RPC no
CVE-2007-0065 (OLE) Automation in Microsoft Windows ... remote attackers ... via a crafted script

request (from Microsoft: “could allow remote code execution if a user viewed a
specially crafted Web page.”

yes

CVE-2007-1204 Universal Plug and Play (UPnP) service ... crafted HTTP headers no
CVE-2008-0082 An ActiveX control ... is marked as safe for scripting yes
CVE-2008-0102 Microsoft Office Publisher ... via crafted .pub file yes
CVE-2008-3009 Windows Media Player 6.4 ... replies to authentication requests yes
CVE-2008-3010 Windows Media Player 6.4 ... credential-reflection attacks, by sending an authen-

tication request
yes

Table I
EVALUATION OF TEN ALLEGEDLY REMOTE-TO-ROOT VULNERABILITIES FOUND BY OVAL

Figure 6. Order of Vulnerability Instance Compromise in Six Scenarios. The upper bar represents compromised hosts: white is uncompromised; light gray
is compromised via a “stepping-stone” host; dark gray is compromised immediately. The lower graphic represents vulnerability instances: white squares
indicate known but uncompromisable vulnerabilities; light gray squares indicate vulnerabilities that can only be compromised via a “stepping-stone” host;
dark gray squares indicate an immediately exploitable vulnerability.

Topological Vulnerability Analysis (TVA) system [20] used

in [11] does not explicitly model any type of firewall or ana-

lyze firewall rules. Instead, a subset of the network’s host-to-

host reachability is estimated using exhaustive host-to-host

vulnerability scans. This introduces quadratic complexity,

scales poorly to large networks, and complicates firewall

modeling. This system also relies on a network vulnerability

scanner and does not gather information about client-side

attacks. The MulVAL system [21] used in [18] also does

not explicitly model firewalls but assumes reachability is

provided. Research in [19] uses our prior NetSPA system

and thus scales well, but like our prior research, modern

attacks and countermeasures are not modeled. Commercial

attack graph products such as RedSeal [22] and Skybox [23]

model firewalls and compute reachability from firewall rules

but neither product’s website mentions the ability to model

personal firewalls, IPSs, or client side attacks.

There are many papers on firewall ruleset analysis and

a few companies that analyze rulesets. Wool et al. [24]

provides typical sizes for rulesets and confirms that fire-

wall configuration errors are very common. Systems like

FIREMAN [16], FANG [25] and a few companies (e.g.,

AlgoSec [26], RedSeal [22], Skybox [23]) detect different

types of firewall misconfigurations such as overlapping or

contradictory rules. Some also compute reachability and

determine if firewalls enforce an overall policy. We use

BDDs from [16] for efficient rule application which are

similar in purpose to Michigan State’s Firewall Decision

Diagrams (FDDs) [27]–[29].

VIII. LIMITATIONS AND FUTURE WORK

The current NetSPA tool includes many countermeasures

and attacks, but these need to be supplemented and im-

proved. Some additional countermeasures we plan to add

include the Federal Desktop Core Configuration (FDCC) for

Windows, application white listing on hosts, and filtering

provided by IPSs for exploits related to specific vulnera-

bilities. We also plan to model additional threats such as

conficker [1] that use restricted exploit sets and propagation

vectors. We additionally plan to model adversaries exploiting

trust relationships between hosts, for example by using open

Windows shares or shares protected by weak or common

passwords. We also plan to explore more complex client-side

attacks and model attacks specific to web sites and database

125

servers such as SQL injection and cross-site scripting. Vir-

tual machines offer another exploit vector that should be

considered, as access to the host OS allows compromise of

all guest OS images. Improved modeling of zero-day attacks

will involve capturing the application inventory on clients

using OVAL and adding the ability to insert hypothetical

zero-day vulnerabilities into the applications discovered.

Field tests of the tool are always highly instructive; they

generally involve importing rules from additional types of

firewalls and performing further tests on actual networks.

The tool’s usability will also be improved via further refine-

ments to the attack graph GUI [5].

REFERENCES

[1] P. Porras, H. Saidi, and V. Vegneswaran, “An analysis of
conficker’s logic and rondezvous points,” SRI International,
Tech. Rep., February 2009.

[2] S. Nagaraja and R. Anderson, “The snooping dragon: social-
malware surveillance of the tibetan movement,” University
of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-
TR-746, Mar. 2009.

[3] R. Lippmann et al., “Validating and restoring defense in
depth using attack graphs,” in IEEE Military Communications
Conference (MILCOM), 2006.

[4] K. Ingols, R. Lippmann, and K. Piwowarski, “Practical attack
graph generation for network defense,” in ACSAC. IEEE
Computer Society, 2006, pp. 121–130.

[5] L. Williams, R. Lippmann, and K. Ingols, “GARNET: A
graphical attack graph and reachability network evaluation
tool,” in Visualization for Computer Security (VizSEC), ser.
Lecture Notes in Computer Science, J. R. Goodall, G. J.
Conti, and K.-L. Ma, Eds., vol. 5210. Springer, 2008, pp.
44–59.

[6] D. L. Buckshaw et al., “Mission oriented risk and design
analysis of critical information systems,” Military Operations
Research, vol. 10, pp. 19–38, 2005.

[7] P. Mell, K. Scarfone, and S. Raomanosky, “A complete guide
to the common vulnerability scoring system version 2.0,” in
Forum of Incident Response and Security Teams (FIRST),
2007.

[8] R. P. Lippmann and K. Ingols, “An annotated review of past
papers on attack graphs,” MIT Lincoln Laboratory, Project
Report IA-1, 2005.

[9] “IBM Internet Security Systems X-Force 2008 trend and risk
report,” IBM Global Technology Services, Tech. Rep., 2009.

[10] D. Turner et al., “Symantec internet security threat report,
trends for July - December 07,” Symantec, Tech. Rep., 2008.

[11] S. Noel and S. Jajodia, “Optimal IDS sensor placement and
alert prioritization using attack graphs,” Journal of Network
and Systems Management, vol. 16, no. 3, pp. 259–275, 2008.

[12] Tenable. Nessus security scanner. [Online]. Available:
http://www.nessus.org

[13] R. Martin, “Making security measurable and manageable,”
in IEEE Military Communications Conference (MILCOM),
2008.

[14] Common platform enumeration. MITRE. [Online]. Available:
http://cpe.mitre.org

[15] R. Ross et al., “Recommended security controls for federal
information systems and organizations,” National Institute of
Standards and Technology, NIST Special Publication 800-53,
Revision 3, February 2009.

[16] L. Yuan et al., “FIREMAN: A toolkit for FIREwall modeling
and ANalysis,” in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2006, pp. 199–213.

[17] J. Lind-Nielsen et al. BuDDy, a binary decision diagram
library. [Online]. Available: http://buddy.sourceforge.net/

[18] R. E. Sawilla and X. Ou, “Identifying critical attack assets
in dependency attack graphs,” in 13th European Symposium
on Research in Computer Security (ESORICS), S. Jajodia and
J. López, Eds., vol. 5283. Springer, 2008, pp. 18–34.

[19] N. Pham, L. Baud, P. Bellot, and M. Riguidel, “A near real-
time system for security assurance assessment,” in 3rd Inter-
national Conference on Internet Monitoring and Protection
(ICIMP), 2008, pp. 152–160.

[20] S. Jajodia, S. Noel, and B. O’Berry, Topological Analysis of
Network Attack Vulnerability. Kluwer Academic Publisher,
2003, ch. 5.

[21] X. Ou, S. Govindavajhala, and A. Appel, “MulVAL: A logic-
based network security analyzer,” in Proceedings of the 14th
USENIX Security Symposium, 2005, pp. 113–128.

[22] RedSeal. (2009, April) Redseal systems. [Online]. Available:
http://www.redseal.net

[23] Skybox. (2009, April) Skybox security, inc. [Online].
Available: http://www.skyboxsecurity.com/

[24] A. Wool, “A quantitative study of firewall configuration
errors,” Computer, vol. 37, no. 6, pp. 62–67, June 2004.

[25] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis
engine,” in IEEE Symposium on Security and Privacy, 2000,
pp. 177–187.

[26] Algosec. [Online]. Available: http://www.algosec.com

[27] A. Liu, E. Torng, and C. Meiners, “Firewall compressor: An
algorithm for minimizing firewall policies,” in 27th Confer-
ence on Computer Communications (INFOCOM). IEEE,
2008, pp. 176–180.

[28] C. Meiners, A. Liu, and E. Torng, “TCAM Razor: A sys-
tematic approach towards minimizing packet classifiers in
TCAMs,” in 15th IEEE International Conference on Network
Protocols (ICNP), 2007, pp. 226–275.

[29] A. Khakpour and A. Liu, “Quarnet: A tool for quantify-
ing static network reachability,” Michigan State University,
East Lansing, Michigan, Tech. Rep. MSU-CSE-09-2, January
2009.

126

