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Abstract

We propose a novel method for estimating population-level and subject-specific effects of 

covariates on the variability of functional data. We extend the functional principal components 

analysis framework by modeling the variance of principal component scores as a function of 

covariates and subject-specific random effects. In a setting where principal components are largely 

invariant across subjects and covariate values, modeling the variance of these scores provides a 

flexible and interpretable way to explore factors that affect the variability of functional data. Our 

work is motivated by a novel dataset from an experiment assessing upper extremity motor control, 

and quantifies the reduction in motion variance associated with skill learning.
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1 Scientific motivation

1.1 Motor learning

Recent work in motor learning has suggested that change in motion variability is an 

important component of improvement in motor skill. It has been suggested that when a 

motor task is learned, variance is reduced along dimensions relevant to the successful 

accomplishment of the task, although it may increase in other dimensions (Scholz and 
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The Supplementary Materials contains the following appendices: A, containing additional results from our real data analysis; B, 
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can fit models in the form of model (5), provided that, as in our real data application and simulations, only one functional random 
effect is associated with each functional observation.
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Schöner, 1999; Yarrow et al., 2009). Experimental work, moreover, has shown that learning-

induced improvement of motion execution, measured through the trade-off between speed 

and accuracy, is accompanied by significant reductions in motion variability. In fact, these 

reductions in motion variability may be a more important feature of learning than changes in 

the average motion (Shmuelof et al., 2012). These results have typically been based on 

assessments of variability at a few time points, e.g., at the end of the motion, although high-

frequency laboratory recordings of complete motions are often available.

In this paper we develop a modeling framework that can be used to quantify motion 

variability based on dense recordings of fingertip position throughout motion execution. This 

framework can be used to explore many aspects of motor skill and learning: differences in 

baseline skill among healthy subjects, effects of repetition and training to modulate 

variability over time, or the effect of baseline stroke severity on motion variance and 

recovery (Krakauer, 2006). By taking full advantage of high-frequency laboratory 

recordings, we shift focus from particular time points to complete curves. Our approach 

allows us to model the variability of these curves as they depend on covariates, like the hand 

used or the repetition number, as well as the estimation of random effects reflecting 

differences in baseline variability and learning rates among subjects.

Section 1.2 describes our motivating data in more detail, and Section 2 introduces our 

modeling framework. A review of relevant statistical work appears in Section 3. Details of 

our estimation approach are in Section 4. Simulations and the application to our motivating 

data appear in Sections 5 and 6, respectively, and we close with a discussion in Section 7.

1.2 Dataset

Our motivating data were gathered as part of a study of motor learning among healthy 

subjects. Kinematic data were acquired in a standard task used to measure control of 

reaching motions. In this task, subjects rest their forearm on an air-sled system to reduce 

effects of friction and gravity. The subjects are presented with a screen showing eight targets 

arranged in a circle around a starting point, and they reach with their arm to a target and 

back when it is illuminated on the screen. Subjects’ motions are displayed on the screen, and 

they are rewarded with 10 points if they turn their hand around within the target, and 3 or 1 

otherwise, depending on how far their hand is from the target at the point of return. Subjects 

are not rewarded for motions outside pre-specified velocity thresholds.

Our dataset consists of 9,481 motions by 26 right-handed subjects. After becoming 

familiarized with the experimental apparatus, each subject made 24 or 25 reaching motions 

to each of the 8 targets, in a semi-random order, with both the left and right hand. Motions 

that did not reach at least 30% of the distance to the target and motions with a direction more 

than 90° away from the target direction at the point of peak velocity were excluded from the 

dataset, because of the likelihood that they were made to the wrong target or not attempted 

due to distraction. Motions made at speeds outside the range of interest, with peak velocity 

less than 0.04 or greater than 2.0 m/s, were also excluded. These exclusion rules and other 

similar rules have been used previously in similar kinematic experiments, and are designed 

to increase the specificity of these experiments for probing motor control mechanisms 

(Huang et al., 2012; Tanaka et al., 2009; Kitago et al., 2015). A small number of additional 
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motions were removed from the dataset due to instrumentation and recording errors. The 

data we consider have not been previously reported.

For each motion, the X and Y position of the hand motion is recorded as a function of time 

from motion onset to the initiation of return to the starting point, resulting in bivariate 

functional observations denoted [ P
i j
X(t), P

i j
Y (t)] for subject i and motion j. In practice, 

observations are recorded not as functions but as discrete vectors. There is some variability 

in motion duration, which we remove for computational convenience by linearly registering 

each motion onto a common grid of length D = 50. The structure of the registered kinematic 

data is illustrated in Figure 1. The top and bottom rows show, respectively, the first and last 

right-hand motion made to each target by each subject. The reduction in motion variance 

after practice is clear.

Prior to our analyses, we rotate curves so that all motions extend to the target at 0°. This 

rotation preserves shape and scale, but improves interpretation. After rotation, motion along 

the X coordinate represents motion parallel to the line between origin and target, and motion 

along the Y coordinate represents motion perpendicular to this line. We build models for X 
and Y coordinate curves separately in our primary analysis. An alternative bivariate analysis 

appears in Appendix C.

2 Model for curve variance

We adopt a functional data approach to model position curves Pij(t). Here we omit the X and 

Y superscripts for notational simplicity. Our starting point is the functional principal 

component analysis (FPCA) model of Yao et al. (2005) with subject-specific means. In this 

model, it is assumed that each curve Pij(t) can be modeled as

Pi j(t) = μi j(t) + δi j(t)

= μi j(t) + ∑
k = 1

∞
ξijkϕk(t) + εi j(t) .

(1)

Here μij(t) is the mean function for curve Pij(t), the deviation δij(t) is modeled as a linear 

combination of eigenfunctions ϕk(t), the ξijk are uncorrelated random variables with mean 0 

and variances λk, where Σk λk < ∞ and λ1 ≥ λ2 ≥ · · ·, and εij(t) is white noise. Here all the 

deviations δij(t) are assumed to have the same distribution, that of a single underlying 

random process δ(t).

Model (1) is based on a truncation of the Karhunen-Loéve representation of the random 

process δ(t). The Karhunen-Loéve representation, in turn, arises from the spectral 

decomposition of the covariance of the random process δ(t) from Mercer’s Theorem, from 

which one can obtain eigenfunctions ϕk(t) and eigenvalues λk.

The assumption of constant score variances λk in model (1) is inconsistent with our 

motivating data because it implies that the variability of the position curves Pij(t) is not 
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covariate- or subject-dependent. However, motion variance can depend on the subject’s 

baseline motor control and may change in response to training. Indeed, these changes in 

motion variance are precisely our interest.

In contrast to the preceding, we therefore assume that each random process δij(t) has a 

potentially unique distribution, with a covariance operator that can be decomposed as

Cov[δ
i j

(s), δ
i j

(t)] = ∑
k = 1

∞
λ
ijk

ϕ
k
(s)ϕ

k
(t),

so that the eigenvalues λijk, but not the eigenfunctions, vary among the curves. We assume 

that deviations δij(t) are uncorrelated across both i and j.

The model we pose for the Pij(t) is therefore

Pi j(t) = μi j(t) + ∑
k = 1

K

ξijkϕk(t) + εi j(t), (2)

where we have truncated the expansion in model (1) to K eigenfunctions, and into which we 

incorporate covariate and subject-dependent heteroskedasticity with the score variance 

model

λijk = λ
k ∣ x

ijk
∗ , z

ijk
∗ , g

ik

= Var(ξijk ∣ xijk
∗ , zijk

∗ , gik) = exp γ0k + ∑
l = 1

L
∗

γlkxijlk
∗ + ∑

m = 1

M
∗

gimkzijmk
∗ (3)

where, as before, ξijk is the kth score for the jth curve of the ith subject. In model (3), γ0k is 

an intercept for the variance of the scores, γlk are fixed effects coefficients for covariates 

x
ijlk
∗ , l = 1, . . . , L*, and gimk are random effects coefficients for covariates z

ijmk
∗ , m = 1, . . . , 

M*. The vector gik consists of the concatenation of the coefficients gimk, and likewise for the 

vectors x
ijk
∗  and z

ijk
∗ . Throughout, the subscript k indicates that models are used to describe 

the variance of scores associated with each basis function ϕk(t) separately. The covariates 

x
ijlk
∗  and z

ijmk
∗  in model (3) need not be the same across principal components. This model 

allows exploration of the dependence of motion variability on covariates, like progress 

through a training regimen, as well as of idiosyncratic subject-specific effects on variance 

through the incorporation of random intercepts and slopes.

Together, models (2) and (3) induce a subject- and covariate-dependent covariance structure 

for δij(t):
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Cov[δ
i j

(s), δ
i j

(t) ∣ x
ijk
∗ , z

ijk
∗ , ϕ

k
, g

ik
] = ∑

k = 1

K

λ
k ∣ x

ijk
∗ , z

ijk
∗ , g

ik

ϕ
k
(s)ϕ

k
(t) .

In particular, the ϕk(t) are assumed to be eigenfunctions of a conditional covariance operator. 

Our proposal can be related to standard FPCA by considering covariate values random and 

marginalizing across the distribution of random effects and covariates using the law of total 

covariance:

Cov[δ
i j

(s), δ
i j

(t)] = E {Cov[δ
i j

(s), δ
i j

(t) ∣ x
∗, z

∗, g]} + Cov {E[δ
i j

(s) ∣ x
∗, z

∗, g]E[δ
i j

(t) ∣ x
∗, z

∗, g]}

= ∑
k = 1

K

E λ
k ∣ x

ijk
∗ , z

ijk
∗ , g

ik

ϕ
k
(s)ϕ

k
(t) .

We assume that the basis functions ϕk(t) do not depend on covariate or subject effects, and 

are therefore unchanged by this marginalization. Scores ξijk are marginally uncorrelated 

over k; this follows from the assumption that scores are uncorrelated in our conditional 

specification, and holds even if random effects gik are correlated over k. Lastly, the order of 

marginal variances E λ
k ∣ x

ijk
∗ , z

ijk
∗ , g

ik

 may not correspond to the order of conditional 

variances λ
k ∣ x

ijk
∗ , z

ijk
∗ , g

ik

 for some or even all values of the covariates and random effects 

coefficients.

In our approach, we assume that the scores ξijk have mean zero. For this assumption to be 

valid, the mean μij(t) in model (2) should be carefully modeled. To this end we use the well-

studied multilevel function-on-scalar regression model (Guo, 2002; Di et al., 2009; Morris 

and Carroll, 2006; Scheipl et al., 2015),

μi j(t) = β0(t) + ∑
l = 1

L

xijlβl(t) + ∑
m = 1

M

zijmbim(t) . (4)

Here β0(t) is the functional intercept; xijl for l ∈ 1, . . . , L are scalar covariates associated 

with functional fixed effects with respect to the curve Pij(t); βl(t) is the functional fixed 

effect associated with the lth such covariate; zijm for m ∈ 1, . . . , M are scalar covariates 

associated with functional random effects with respect to the curve Pij(t); and bim(t) for m ∈ 
1, . . . , M are functional random effects associated with the ith subject.

Keeping the basis functions constant across all subjects and motions, as in conventional 

FPCA, maintains the interpretability of the basis functions as the major patterns of variation 

across curves. Moreover, the covariate and subject-dependent score variances reflect the 

proportion of variation attributable to those patterns. To examine the appropriateness of this 
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assumption for our data, we estimated basis functions for various subsets of motions using a 

traditional FPCA approach, after rotating observed data so that all motions extend to the 

target at 0°. As illustrated in Figure 2, the basis functions for motions made by both hands 

and at different stages of training are similar.

3 Prior work

FPCA has a long history in functional data analysis. It is commonly performed using a 

spectral decomposition of the sample covariance matrix of the observed functional data 

(Ramsay and Silverman, 2005; Yao et al., 2005). Most relevant to our current work are 

probabilistic and Bayesian approaches based on non-functional PCA methods (Tipping and 

Bishop, 1999; Bishop, 1999; Peng and Paul, 2009). Rather than proceeding in stages, first by 

estimating basis functions and then, given these, estimating scores, such approaches estimate 

all parameters in model (1) jointly. James et al. (2000) focused on sparsely observed 

functional data and estimated parameters using an EM algorithm; van der Linde (2008) took 

a variational Bayes approach to estimation of a similar model. Goldsmith et al. (2015) 

considered both exponential-family functional data and multilevel curves, and estimated 

parameters using Hamiltonian Monte Carlo.

Some previous work has allowed for heteroskedasticity in FPCA. Chiou et al. (2003) 

developed a model which uses covariate-dependent scores to capture the covariate 

dependence of the mean of curves. In a manner that is constrained by the conditional mean 

structure of the curves, some covariate dependence of the variance of curves is also induced; 

the development of models for score variance was, however, not pursued. Here, by contrast, 

our interest is to use FPCA to model the effects of covariates on curve variance, 

independently of the mean structure. We are not using FPCA to model the mean; rather, the 

mean is modeled by the function-on-scalar regression model (4). Jiang and Wang (2010) 

introduce heteroskedasticity by allowing both the basis functions and the scores in an FPCA 

decomposition to depend on covariates. Briefly, rather than considering a bivariate 

covariance as the object to be decomposed, the authors pose a covariance surface that 

depends smoothly on a covariate. Aside from the challenge of incorporating more than a few 

covariates or subject-specific effects, it is difficult to use this model to explore the effects of 

covariates on heteroskedasticity: covariates affect both the basis functions and the scores, 

making the interpretation of scores and score variances at different covariate levels unclear. 

Although it does not allow for covariate-dependent heteroskedasticity, the model of Huang 

et al. (2014) allows curves to belong to one of a few different clusters, each with its own 

FPCs and score variances.

In contrast to the existing literature, our model provides a general framework for 

understanding covariate and subject-dependent heteroskedasticity in FPCA. This allows the 

estimation of rich models with multiple covariates and random effects, while maintaining the 

familiar interpretation of basis functions, scores, and score variances.

Variational Bayes methods, which we use here to approximate Bayesian estimates of the 

parameters in models (2) and (3), are computationally efficient and typically yield accurate 

point estimates for model parameters, although they provide only an approximation to the 
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complete posterior distribution and inference may suffer as a result (Ormerod and Wand, 

2012; Jordan, 2004; Jordan et al., 1999; Titterington, 2004). These tools have previously 

been used in functional data analysis (van der Linde, 2008; Goldsmith et al., 2011; McLean 

et al., 2013); in particular, Goldsmith and Kitago (2016) used variational Bayes methods in 

the estimation of model (4).

4 Methods

The main contribution of this manuscript is the introduction of subject and covariate effects 

on score variances in model (3). Several estimation strategies can be used within this 

framework. Here we describe three possible approaches. Later, these will be compared in 

simulations.

4.1 Sequential estimation

Models (2) and (3) can be fit sequentially in the following way. First, the mean μij(t) in 

model (2) is estimated through function-on-scalar regression under a working independence 

assumption of the errors; we use the function pffr in the refund package (Goldsmith et al., 

2016) in R. Next, the residuals from the function-on-scalar regression are modeled using 

standard FPCA approaches to obtain estimates of principal components and marginal score 

variances; given these quantities, scores themselves can be estimated (Yao et al., 2005). For 

this step we use the function fpca.sc, also in the refund package, which is among the 

available implementations. Next, we reestimate the mean μij(t) in model (2) with function-

on-scalar regression using pffr, although now, instead of assuming independence, we 

decompose the residuals using the principal components and score variances estimated in the 

previous step. We then reestimate principal components and scores using fpca.sc. The final 

step is to model the score variances given these score estimates. Assuming that the scores 

are normally distributed conditional on random effects and covariates, model (3) induces a 

generalized gamma linear mixed model for ξ
ijk
2 , the square of the scores, with log link, 

coefficients γlk and gimk, and shape parameter equal to 1/2. We fit this model with the lme4 

package, separately with respect to the scores for each principal component, in order to 

obtain estimates of our parameters of interest in the score variance model (Bates et al., 

2015).

The first two steps of this approach are consistent with the common strategy for FPCA, and 

we account for non-constant score variance through an additional modeling step. We 

anticipate that this sequential approach will work reasonably well in many cases, but note 

that it arises as a sequence of models that treat estimated quantities as fixed. First, one 

estimates the mean; then one treats the mean as fixed to estimate the principal components 

and the scores; finally, one treats the scores as fixed to estimate the score variance model. 

Overall performance may deteriorate by failing to incorporate uncertainty in estimates in 

each step, particularly in cases of sparsely observed curves or high measurement error 

variances (Goldsmith et al., 2013). Additionally, because scores are typically estimated in a 

mixed model framework, the use of marginal score variances in the FPCA step can 

negatively impact score estimation and the subsequent modeling of conditional score 

variances.
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4.2 Bayesian approach

4.2.1 Bayesian model—Jointly estimating all parameters in models (2) and (3) in a 

Bayesian framework is an appealing alternative to the sequential estimation approach. We 

expect this to be less familiar to readers than the sequential approach, and therefore provide 

a more detailed description.

Our Bayesian specification of these models is formulated in matrix form to reflect the 

discrete nature of the observed data. In the following Θ is a known D × Kθ matrix of Kθ 
spline basis functions evaluated on the shared grid of length D on which the curves are 

observed. We assume a normal distribution of the scores ξijk conditional on random effects 

and covariates:

pi j = ∑
l = 0

L

xijlΘβl + ∑
m = 1

M

zijmΘbim + ∑
k = 1

K

ξijkΘϕk + εi j

βl MVN 0, σβ
l

2 Q−1 ; σβ
l

2 IG [α, β]

bi MVN 0, σb
2((1 − π)Q + πI)−1 ; σb

2 IG [α, β]

ϕk MVN 0, σϕ
k

2 Q−1 ; σϕ
k

2 IG [α, β]

ξijk N 0, exp ∑
l = 0

L
∗

γlkxijlk
∗ + ∑

m = 1

M
∗

gimkzijmk
∗

γlk N 0, σγ
lk

2

gik MVN 0, ∑g
k

; ∑g
k

IW [Ψk, ν]

εi j MVN 0, σ
2I ; σ

2 IG [α, β]

(5)

In model (5), i = 1, . . . , I refers to subjects, j = 1, . . . , Ji refers to motions within subjects, 

and k = 1, . . . , K refers to principal components. We define the total number of functional 

observations n = ∑
i = 1
I

J
i
. The column vectors pij and εij are the D × 1 observed functional 

outcome and independent error term, respectively, on the finite grid shared across subjects 

for the jth curve of the ith subject. The vectors βl, for l = 0, . . . , L, are functional effect 

spline coefficient vectors, bim, for i = 1, . . . , I and m = 1, . . . , M, are random effect spline 

coefficient vectors, and ϕk, for k = 1 . . . , K, are principal component spline coefficient 

vectors, all of length Kθ. Q is a penalty matrix of the form ΘTMTMΘ, where M is a matrix 

that penalizes the second derivative of the estimated functions. I is the identity matrix. MVN 

refers to the multivariate normal distribution, N to the normal distribution, IG to the inverse-
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gamma distribution, and IW to the inverse-Wishart distribution. Models (3) and (4) can be 

written in the form of model (5) above by introducing into those models covariates x
i j0k
∗  (in 

model (3), multiplying γ0k) and xij0 (in model (4), multiplying β0(t)), identically equal to 1. 

Some of the models used here, like in our real data analysis, do not have a global functional 

intercept β0 or global score variance intercepts γ0k; in these models there are no such 

covariates identically equal to 1.

As discussed further in Section 4.2.3, for purposes of identifiability and to obtain FPCs that 

represent non-overlapping directions of variation, when fitting this model we introduce the 

additional constraint that the FPCs should be orthonormal and that each FPC should explain 

the largest possible amount of variance in the data, conditionally on the previously estimated 

FPCs, if any.

In keeping with standard practice, we set the prior variances σ
γ
lk

2  for the fixed-effect 

coefficients in the score variance model to a large constant, so that their prior is close to 

uniform. We set ν, the degrees of freedom parameter for the inverse-Wishart prior for the 

covariance matrices Σgk, to the dimension of gik. We use an empirical Bayes approach, 

discussed further in Section 4.2.4, to specify Ψk, the scale matrix parameters of these 

inverse-Wishart priors. When the random effects gik are one-dimensional, this prior reduces 

to an inverse-Gamma prior. Sensitivity to prior specifications of this model should be 

explored, and we do so with respect to our real data analysis in Appendix D.

Variance components {σ
β
l

2 }
l = 0

L
 and {σ

ϕ
k

2 }
k = 1

K
 act as tuning parameters controlling the 

smoothness of coefficient functions βl(t) and FPC functions ϕk(t), and our prior specification 

for them is related to standard techniques in semiparametric regression. σ
b
2, meanwhile, is a 

tuning parameter that controls the amount of penalization of the random effects, and is 

shared across the bim(t), so that all random effects for all subjects share a common 

distribution. Whereas fixed effects and functional principal components are penalized only 

through their squared second derivative, the magnitude of the random effects is also 

penalized through the full-rank penalty matrix I to ensure identifiability (Scheipl et al., 

2015; Djeundje and Currie, 2010). The parameter π, 0 < π < 1, determines the balance of 

smoothness and shrinkage penalties in the estimation of the random effects bim(t). We 

discuss how to set the value of this parameter in Section 4.2.4. We set α and β, the 

parameters of the inverse-gamma prior distributions for the variance components, to 1.

Our framework can accommodate more complicated random effect structures. In our 

application in Section 6, for example, each subject has 8 random effect vectors gilk, one for 

each target, indexed by l = 1, . . . , 8; the index l is used here since in Section 6 l is used to 

index targets. We model the correlations between these random effect vectors through a 

nested random effect structure:

gilk MVN gik, ∑g
ik

; gik MVN 0, ∑g
k

(6)
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Here the random effect vectors gilk for subject i and FPC k, l = 1, . . . 8, are centered around 

a subject-specific random effect vector gik. We estimate two separate random effect 

covariance matrices, Σgik and Σgk, for each FPC k, one at the subject-target level and one at 

the subject level. These matrices are given inverse-Wishart priors, and are discussed further 

in Section 4.2.4.

4.2.2 Estimation strategies—Sampling-based approaches to Bayesian inference of 

model (5) are challenging due to the constraints we impose on the ϕk(t) for purposes of 

interpretability of the score variance models, which are our primary interest. We present two 

methods for Bayesian estimation and inference for model (5): first, an iterative variational 

Bayes method, and second, a Hamiltonian Monte Carlo (HMC) sampler, implemented with 

the STAN Bayesian programming language (Stan Development Team, 2013). Our iterative 

variational Bayes method, which estimates each parameter in turn conditional on currently 

estimated values of the other parameters, is described in detail in Appendix E. This appendix 

also includes a brief overview of variational Bayes methods. Our HMC sampler, also 

described in Appendix E, conditions on estimates of the FPCs and fixed and random 

functional effects from the variational Bayes method, and estimates the other quantities in 

model (5).

4.2.3 Orthonormalization—A well-known challenge for Bayesian and probabilistic 

approaches to FPCA is that the basis functions ϕk(t) are not constrained to be orthogonal. In 

addition, when the scores ξijk do not have unit variance, the basis functions will also be 

indeterminate up to magnitude, since any increase in their norm can be accommodated by 

decreased variance of the scores. Where interest lies in the variance of scores with respect to 

particular basis functions, it is important for the basis functions to be well-identified and 

orthogonal, so that they represent distinct and non-overlapping modes of variation. We 

therefore constrain estimated FPCs to be orthonormal and require each FPC to explain the 

largest possible amount of variance in the data, conditionally on the previously estimated 

FPCs, if any.

Let Ξ be the n ×K matrix of principal component scores and Φ the K by Kθ matrix of 

principal component spline coefficient vectors. In each step of our iterative variational Bayes 

algorithm, we apply the singular value decomposition to the matrix product ΞΦTΘT; the 

orthonormalized principal component basis vectors which satisfy these constraints are then 

the right singular vectors of this decomposition. A similar approach was used to induce 

orthogonality of the principal components in the Monte Carlo Expectation Maximization 

algorithm of (Huang et al., 2014) and as a post-processing step in (Goldsmith et al., 2015). 

Although explicit orthonormality constraints may be possible in this setting (Šmídl and 

Quinn, 2007), our simple approach, while not exact, provides for accurate estimation. Our 

HMC sampler conditions on the variational Bayes estimates of the FPCs, and therefore also 

satisfies the desired constraints.

4.2.4 Hyperparameter selection—The parameter π in model (5) controls the balance of 

smoothness and shrinkage penalization in the estimation of the random effects bim. In our 

variational Bayes approach we choose π to minimize the Bayesian information criterion 

(Schwarz, 1978), following the approach of Djeundje and Currie (2010).
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To set the hyperparameter Ψk in model (5) (or the hyperparameters in the inverse-Wishart 

priors for the variance parameters in model (6)), we use an empirical Bayes method. First, 

we estimate scores ξijk using our variational Bayes method, with a constant score variance 

for each FPC. We then estimate the random effects gik (or gilk) using a generalized gamma 

linear mixed model, as described in Section 4.1. Finally, we compute the empirical 

covariance matrix corresponding to Σgk (or Σgik and Σgk), and set the hyperparameter so that 

the mode of the prior distribution matches this empirical covariance matrix.

5 Simulations

We demonstrate the performance of our method using simulated data. Here we present a 

simulation that includes functional random effects as well as scalar score variance random 

effects. Appendix F includes additional simulations in a cross-sectional context which 

demonstrate the effect of varying the number of estimated FPCs, the number of spline basis 

functions, and the measurement error.

In our simulation design, the jth curve for the ith subject is generated from the model

Pi j(t) = 0 + bi(t) + ∑
k = 1

4

ξijkϕk(t) + εi j(t) (7)

We observe the curves at D = 50 equally spaced points on the domain [0, 2π]. FPCs ϕ1 and 

ϕ2 correspond to the functions sin(x) and cos(x) and FPCs ϕ3 and ϕ4 correspond to the 

functions sin(2x) and cos(2x). We divide the curves equally into two groups m = 1, 2. We 

define x
i j1
∗  to be equal to 1 if the ith subject is assigned to group 1, and 0 otherwise, and we 

define x
i j2
∗  to be equal to 1 if the ith subject is assigned to group 2, and 0 otherwise. We 

generate scores ξijk from zero-mean normal distributions with variances equal to

Var(ξijk ∣ xi j
∗ , gik) = exp ∑

l = 1

2

γlkxijl
∗ + gik (8)

We set γ1k for k = 1, . . . , 4 to the natural logarithms of 36, 12, 6 and 4, respectively, and 

γ2k for k = 1, . . . , 4 to the natural logarithms of 18, 24, 12 and 6, respectively. The order of 

γ1k and γ2k for FPCs (represented by k) 1 and 2 black is purposely reversed between groups 

1 and 2 so that the dominant mode of variation is not the same in the two groups. We 

generate the random effects gik in the score variance model from a normal distribution with 

mean zero and variance σ
g
k

2 , setting σ
g
k

2  to 3.0, 1.0, 0.3, and 0.1 across FPCs. We simulate 

functional random effects bi(t) for each subject by generating 10 elements of a random effect 

spline coefficient vector from the distribution MVN [0, σ
b
2((1 − π)Q + πI)−1], and then 

multiplying this vector by a B-spline basis function evaluation matrix. We set 
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π = σ
b
2 = 1/2000, resulting in smooth random effects approximately one-third the magnitude 

of the FPC deviations. The εij(t) are independent errors generated at all t from a normal 

distribution with mean zero and variance σ2 = 0.25.

We fix the sample size I at 24 and set the number of curves per subject Ji to 4, 12, 24 and 48. 

Two hundred replicate datasets were generated for each of the four scenarios. The simulation 

scenario with I = Ji = 24 is closest to the sample size in our real data application, where for 

each of 8 targets we have I = 26 and Ji ≈ 24.

We fit the following model to each simulated dataset using each of the three approaches 

described in Section 4:

p
i j

= Θβ0 + Θb
i
+ ∑

k = 1

4
ξ
ijk

Θϕ
k

+ ε
i j

ξ
ijk

N 0, exp ∑
l = 1

2
γ
lk

x
ijl
∗ + g

ik
.

Here pij is the vectorized observation of Pij(t) from model (7). We use 10 spline basis 

functions for estimation, so that Θ is a 50 × 10 B-spline basis function evaluation matrix. For 

the Bayesian approaches, we use the priors specified in model (5), including N [0, 100] 

priors for variance parameters σ
γ
lk

2 . We use the empirical Bayes approach discussed in 

Section 4.2.4 to set the scale parameters for the inverse-gamma priors for the variances σ
g
k

2

of the random effects gik.

Figures 3, 4 and 5 illustrate the quality of variational Bayes (VB) estimation of functional 

random effects, FPCs, and fixed and random effect score variance parameters. The top row 

of Figure 3 shows the collection of simulated curves for two subjects and includes the true 

and estimated subject-specific mean. The bottom row of this figure shows the true and 

estimated score variances across FPCs for a single simulated dataset, and suggests that fixed 

and random effects in the score variance model can be well-estimated.

The top row of Figure 4 shows estimated FPCs across all simulated datasets with Ji = 24; the 

FPCs are well-estimated and have no obvious systematic biases. The bottom row shows 

integrated squared errors (ISEs) for the FPCs across each possible Ji. As expected, the ISEs 

are smaller for the FPCs with larger score variances, and decrease as Ji increases. For 12 and 

especially for 4 curves per subject, estimates of the FPCs correspond to linear combinations 

of the simulated FPCs, leading to high ISEs and to inaccurate estimates of parameters in our 

score variance model (examples of poorly estimated FPCs can be seen in Appendix F).

Panels in the top row of Figure 5 show that estimates of fixed effect score variance 

parameters are shrunk towards zero, especially for lower numbers of curves per subject and 

FPCs 3 and 4. We attribute this to overfitting of the random effects in the mean model, 

which incorporates some of the variability attributable to the FPCs into the estimated 
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random effects and reduces estimated score variances. Score variance random effects, shown 

in the bottom row of Figure 5, are more accurately estimated with more curves per subject.

Figure 6 and Table 1 show results from a comparison of the VB estimation procedure to the 

sequential estimation (SE) and Hamiltonian Monte Carlo (HMC) methods described in 

Section 4. We ran 4 HMC chains for 800 iterations each, and discarded the first 400 

iterations from each chain. We assessed convergence of the chains by examining the 

convergence criterion of Gelman and Rubin (1992). Values of this criterion near 1 indicate 

convergence. For each of our simulation runs the criterion for every sampled variable was 

less than 1.1, and usually much closer to 1, suggesting convergence of the chains. In general, 

performance for the VB and HMC methods is comparable, and both methods are in some 

respects superior to the performance of the SE method. Figure 6 compares the three 

methods’ estimation of the score variance parameters. Especially for FPC 4, the SE method 

occasionally estimates random effect variances at 0; these are represented in the lower-right 

panel of Figure 6 as points where the correlation between simulated and estimated score 

variance random effects is 0. Table 1 shows, based on the simulation scenario with Ji = 24, 

the frequentist coverage of 95% credible intervals for the VB and HMC methods, and of 

95% confidence intervals for the SE method, in each case, for the fixed effect score variance 

parameters γlk. For FPCs 3 and 4 especially, the SE procedure confidence intervals are too 

narrow. The median ISE for the functional random effects is about 30% higher with the VB 

method than with the SE method. This results from the relative tendency of the VB method 

to shrink FPC score estimates to zero; when the mean of the scores is in fact non-zero, this 

shifts estimated functional random effects away from zero. Other comparisons of these 

methods are broadly similar.

The HMC method is more computationally expensive than the other two methods. Running 

4 chains for 800 iterations in parallel took approximately 90 minutes for Ji = 24. On one 

processor, by comparison, the SE method took about 20 minutes, almost entirely to run 

function-on-scalar regression using pffr. The VB method took approximately six minutes, 

including the grid search to set the value of the parameter π, which controls the balance 

between zeroth and second-derivative penalties in the estimation of functional random 

effects.

6 Analysis of kinematic data

We now apply the methods described above to our motivating dataset. To reiterate, our goal 

is to quantify the process of motor learning in healthy subjects, with a focus on the reduction 

of motor variance through repetition. Our dataset consists of 26 healthy, right-handed 

subjects making repeated motions to each of 8 targets. We focus on estimation, 

interpretation and inference for the parameters in a covariate and subject-dependent 

heteroskedastic FPCA model, with primary interest in the effect of repetition number in the 

model for score variance. We hypothesize that variance will be lower for later repetitions due 

to skill learning.

Prior to fitting the model, we rotate all motions to be in the direction of the target at 0° so 

that the X axis is the major axis of motion. For this reason, variation along the X axis is 
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interpretable as variation in motion extent and variation along the Y axis is interpretable as 

variation in motion direction. We present results for univariate analyses of the P
i j
X(t) and 

P
i j
Y (t) position curves in the right hand and describe a bivariate approach to modeling the 

same data.

We present models with 2 FPCs, since 2 FPCs are sufficient to explain roughly 95% of the 

motion variability (and usually more) of motions remaining after accounting for fixed and 

random effects in the mean structure. Most of the variability of motions around the mean is 

explained by the first FPC, so we emphasize score variance of the first FPC as a convenient 

summary for the motion variance, and briefly present some results for the second FPC.

6.1 Model

We examine the effect of practice on the variance of motions while accounting for target and 

individual-specific idiosyncrasies. To do this, we use a model for score variance that 

includes a fixed intercept and slope parameter for each target and one random intercept and 

slope parameter for each subject-target combination. Correlation between score variance 

random effects for different targets for the same subject is induced via a nested random 

effects structure. The mean structure for observed curves consists of functional intercepts βl 

for each target l ∈ {1, . . . , 8} and random effects bil for each subject-target combination, to 

account for heterogeneity in the average motion across subjects and targets. Our 

heteroskedastic FPCA model is therefore:

pi j = ∑
l = 1

8

�(tari j = l) (Θβl + Θbil) + ∑
k = 1

K

ξijkΘϕk + εi j (9)

ξijk N 0, σξ
ijk

2 = exp ∑
l = 1

8

�(tari j = l) (γlk, int + gilk, int + (repi j − 1)(γlk, slope + gilk, slope))

gilk MVN gik, ∑g
ik

; gik MVN 0, ∑g
k

(10)

The covariate tarij indicates the target to which motion j by subject i is directed. The 

covariate repij indicates the repetition number of motion j, starting at 1, among all motions 

by subject i to the target to which motion j is directed, and (·) is the indicator function. To 

accommodate differences in baseline variance across targets, this model includes separate 

population-level intercepts γlk,int for each target l. The slopes γlk,slope on repetition number 

indicate the change in variance due to practice for target l; negative values indicate a 

reduction in motion variance. To accommodate subject and target-specific effects, each 

subject-target combination has a random intercept gilk,int and a random slope gilk,slope, and 
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each subject has an overall random intercept gik,int and overall random slope gik,slope, in the 

score variance model for each functional principal component. This model parameterization 

allows different baseline variances and changes in variance for each target and subject, but 

shares FPC basis functions across targets. The model also assumes independence of 

functional random effects bil, l = 1, . . . , 8 by the same subject to different targets, as well as 

independence of functional random effects bil and score variance random effects gilk for the 

same subject. The validity of these assumptions for our data are discussed in Appendix D.

Throughout, fixed effects γlk,int and γlk,slope are given N [0, 100] priors. Random effects 

gilk,int and gilk,slope are modeled using a bivariate normal distribution to allow for correlation 

between the random intercept and slope parameters in each FPC score variance model, and 

with nesting to allow for correlations between the random effects for the same subject and 

different targets. We use the empirical Bayes method described in Section 4.2.4 to set the 

scale matrix parameters of the inverse-Wishart priors for gilk and gik. Appendix D includes 

an analysis which examines the sensitivity of our results to various choices of prior 

hyperparameters.

We fit (9) and (10) using our VB method, with K = 2 principal components and a cubic B-

spline evaluation matrix Θ with Kθ = 10 basis functions.

6.2 Results

Figure 7 shows estimated score variances as a function of repetition number for X and Y 
coordinate right hand motions to all targets. There is a decreasing trend in score variance for 

the first principal component scores for all targets and for both the X and Y coordinates, 

which agrees with our hypotheses regarding learning. Figure 7 also shows that nearly all of 

the variance of motion is attributable to the first FPC. Baseline variance is generally higher 

in the X direction than the Y direction, indicating that motion extent is generally more 

variable than motion direction.

To examine the adequacy of modeling score variance as a function of repetition number with 

a linear model, we compared the results of model (10) with a model for the score variances 

saturated in repetition number, i.e., where each repetition number m has its own set of 

parameters γlkm in the model for the score variances:

ξijk N 0, σξ
ijk

2 = exp ∑
l = 1

8

∑
m = 1

24

�(tari j = l, repi j = m)γlkm . (11)

The results for these two models are included in Figure 7. The general agreement between 

the linear and saturated models suggests that the slope-intercept model is reasonable. For 

some targets score variance is especially high for the first motion, which may reflect a 

familiarization with the experimental apparatus.

We now consider inference for the decreasing trend in variance for the first principal 

component scores. We are interested in the parameters γl1,slope, which estimate the 

population-level target-specific changes in score variance for the first principal component 
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with each additional motion. Figure 8 shows VB estimates and 95% credible intervals for the 

γl1,slope parameters for motions by the right hand to each target. All the point estimates 

γl1,slope are lower than 0, indicating decreasing first principal component score variance 

with additional repetition. For some targets and coordinates there is substantial evidence that 

γl1,slope < 0; these results are consistent with our understanding of motor learning, although 

they do not adjust for multiple comparisons.

Appendix C includes results of a bivariate approach to modeling motion kinematics, which 

accounts for the 2-dimensional nature of the motions. In this approach, the X and Y 
coordinates of curves are concatenated, and each principal component reflects variation in 

both X and Y coordinates. For curves rotated to extend in the same direction, the results of 

this approach suggests that variation in motion extent (represented by the X coordinate) and 

motion direction (represented by the Y coordinate) are largely uncorrelated: the estimate of 

the first bivariate FPC represents variation primarily in the X coordinate, and is similar to the 

estimate of the first FPC in the X coordinate model, and vice versa for the second bivariate 

FPC. Analyses of score variance, then, closely follow the preceding univariate analyses.

Appendix B includes an analysis of data for one target using the VB, HMC and SE methods. 

The three methods yield similar results.

7 Discussion

This manuscript develops a framework for the analysis of covariate and subject-dependent 

patterns of motion variance in kinematic data. Our methods allow for flexible modeling of 

the covariate-dependence of variance of functional data with easily interpretable results. Our 

approach allows for the estimation of subject-specific effects on variance, as well as the 

consideration of multiple covariates.

By applying these methods to our motivating dataset, we have demonstrated that motion 

variance is reduced with repetition. Results in Appendix A additionally show that the 

baseline level of skill of subjects is correlated across targets and hands, and that baseline 

variance is considerably greater in the non-dominant than the dominant hand. Further 

applications of these methods in scientifically important contexts could focus, for example, 

on whether motion variance is reduced with training faster in the dominant hand, or on 

whether training with one hand transfers skill to the other hand. Further research could also 

investigate target-specific differences in improvement of variance with training. Movements 

to some of the targets require coordination between the shoulder and elbow, whereas others 

are primarily single-joint motions; the effectiveness of training may depend on the 

complexity of the motion.

We have provided three different estimation approaches for fitting heteroskedastic functional 

principal components models. Given its computational efficiency and comparable accuracy 

to the HMC and SE methods, we recommend use of the VB approach for exploratory 

analyses and model building. However, because of its approximate nature, we advise that 

any conclusions derived from the VB approach be confirmed with one of the other two 

methods, perhaps with a subset of the data if required for computational feasibility.
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An alternative approach to the analysis of this dataset could treat the target effects γlk,int and 

γlk,slope in model (10) for the score variances as random effects centered around parameters 

μk,int and μk,slope, representing the average across-target baseline score variance and change 

in score variance with repetition. Some advantages of this approach would be the estimation 

of parameters that summarize the global effect of repetition on motion variance and 

shrinkage of the target-specific score variance parameters. However, with only 8 random 

target effects, the model would be sensitive to the specification of priors. Moreover, as 

discussed above, motions to different targets impose different demands on coordination and 

skill, which may reduce the interpretability of the parameters μk,int and μk,slope.

Our analysis here is of curves linearly registered onto a common time domain, although our 

method could be applied to curves with different time domains, or to sparsely observed 

functional data. Our research group is currently working on developing an improved 

approach to registration in kinematic experiments which will take account of the repeated 

observations at the subject level by seeking to estimate subject- and curve-specific warping 

functions. This approach, combined with the methods we present in the current manuscript, 

will eventually allow a more complete model for motion variability that takes into account 

both variability in motion duration and variability in motion trajectories.

There are several directions for further development. A full Bayesian treatment could 

estimate all quantities in model (5) jointly, or could condition on only the FPCs and jointly 

estimate all other quantities; given the very flexible nature of this model, additional 

constraints might be required in such a Bayesian treatment to improve identifiability. More 

complex models could allow for correlations between functional random effects and score 

variance random effects. Considering our data from the perspective of shape analysis may 

provide better understanding of interpretable motion features like location, scale and 

orientation (Kurtek et al., 2012; Gu et al., 2012). Lastly, an alternative approach to that 

presented here would be to model covariate-dependent score distributions through quantile 

regression. This may produce valuable insights into the complete distribution of motions, 

especially when this is not symmetric, but some work is needed to understand the 

connection of this technique to traditional FPCA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Observed kinematic data. The top row shows the first right-hand motion to each target for 

each subject; the bottom row shows the last motion. The left panel of each row shows 

observed reaching data in the X and Y plane. Targets are indicated with circles. The middle 

and right panels of each row show the P
i j
X(t) and P

i j
Y (t) curves, respectively.
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Figure 2. 
FPC basis functions estimated for various data subsets after rotating curves onto the positive 

X axis. The left panel shows the first and second FPC basis functions estimated for the X 
coordinate of motions to each target, for the left and right hand separately, and separately for 

motion numbers 1–6, 7–12, 13–18 and 19–24. The right panel shows the same for the Y 
coordinate.
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Figure 3. 
Selected results for the VB method for one simulation replicate with I = Ji = 24. This 

simulation replicate was selected because the estimation quality of the group-level score 

variances, shown in the bottom row, is close to median with respect to all simulations. Panels 

in the top row show simulated curves for two subjects in light black, the simulated functional 

random effect for that subject as a dashed line, and the estimated functional random effect 

for that subject as a dark solid line. The subjects were selected to show one subject with a 

poorly estimated functional random effect (left) and one with a well estimated functional 

random effect (right). Panels in the bottom row show, for each FPC, estimates and simulated 

values of the group-level and subject-specific score variances. Large colored dots are the 

group-level score variances, and small colored dots are the estimated score variances for 

each subject, i.e., they combine the fixed effect and the random effect.
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Figure 4. 
Estimation of FPCs using the VB method. Panels in the top row show a true FPC in dark 

black, and the VB estimates of that FPC for all simulation replicates with Ji = 24 in light 

black. Panels in the bottom row show, for each FPC and Ji, boxplots of integrated square 

errors (ISEs) for VB estimates ϕ
k
(t) of each FPC ϕk(t), defined as ISE = ∫ 0

2π[ϕ
k
(t) − ϕ

k
(t)]2dt. 

The estimates in the top row therefore correspond to the ISEs for Ji = 24 shown in the 

bottom row. Figure A.10 in Appendix F shows examples of estimates of FPCs with a range 

of different ISEs.
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Figure 5. 
Estimation of score variance fixed and random effects using VB. Panels in the top row show, 

for each FPC, group, and Ji, boxplots of signed relative errors (SREs) for VB estimates γ
lk

 of 

the fixed effect score variance parameters γlk, defined as SRE =
γ
lk

− γ
lk

γ
lk

. Panels in the 

bottom row show, for each FPC and Ji, the correlation between random effect score variance 

parameters gik and their VB estimates. Intercepts and slopes for linear regressions of 

estimated on simulated random effect score variances are centered around 0 and 1, 

respectively (not shown).
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Figure 6. 
Comparison of estimation of score variance fixed and random effects using three methods. 

Panels in the top row show, for each FPC, group, and estimation method, boxplots of signed 

relative errors (SREs) for estimates of the fixed effect score variance parameters γlk for Ji = 

24. Panels in the bottom row show, for each FPC and estimation method, the correlation 

between random effect score variance parameters gik and their estimates for Ji = 24. 

Intercepts and slopes for linear regressions of estimated on simulated random effect score 

variances are centered around 0 and 1, respectively (not shown).
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Figure 7. 
VB estimates of score variances for right hand motions to each target (in columns), 

separately for each direction (X or Y, in rows). Panels show the VB estimates of the score 

variance as a function of repetition number using the slope-intercept model (10) in red and 

orange (first and second FPC, respectively), and using the saturated one-parameter-per-

repetition number model (11), in black and grey (first and second FPC, respectively).
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Figure 8. 
VB estimates of γl1,slope. This figure shows VB estimates and 95% credible intervals for 

target-specific score variance slope parameters γl1,slope for motions by the right hand to each 

target, for the X and Y coordinates.
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Table 1

Coverage of 95% credible/confidence intervals for the score variance parameters γlk using the VB, SE and 

HMC procedures, for Ji = 24.

FPC Group VB SE HMC

1 1 0.955 0.915 0.960

1 2 0.945 0.905 0.945

2 1 0.940 0.935 0.940

2 2 0.980 0.935 0.975

3 1 0.965 0.930 0.975

3 2 0.955 0.885 0.980

4 1 0.930 0.775 0.970

4 2 0.940 0.705 0.965
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