
Modeling Multidimensional Databases, Cubes and Cube Operations

Panos Vassili adis
National Technical University of Athens

Abstract
On-Line Analytical Processing (OLAP) is a trend in

database technology, which was recently introduced and
has attracted the interest of a lot of research work.
OLAP is based on the multidimensional view of data,
supported either by multidimensional databases
(MOLAP) or relational engines (ROLAP).

In this paper we propose a model for
multidimensional databases. Dimensions, dimension
hierarchies and cubes are formally introduced. We also
introduce cube operations (changing of levels in the
dimension hierarchy, function application, navigation
etc.). The approach is based on the notion of the base
cube, which is used for the calculation of the results of
cube operations. We focus our approach on the support
of series of operations on cubes (i.e. the preservation of
the results of previous operations and the applicability of
aggregate functions in a series of operations).

Furthermore, we provide a mapping of the
multidimensional model to the relational model and to
multidimensional arrays.

1. Introduction

In recent database trends, data warehouses come to
fill a gap in the field of querying large, distributed and
frequently updated systems. Most researchers and
developers share the same general vision of what a data
warehouse is [19], [3]. Data are extracted from several
data sources, cleansed, customized and inserted into the
data warehouse. The logical structure and semantics of
the data, or else Enterprise Model, is stored in an
Information Directory. Next, the data warehouse data
can be filtered, aggregated and stored in smaller
speciali zed data stores, usually called data marts. Users
query the data marts and/or the data warehouse, mostly
through On Line Analytical Processing (OLAP)
applications. The main characteristics of such
applications are (a) multidimensional view of data, and
(b) data analysis, through interactive and/or navigational
querying of data [6].

The multidimensional view of data considers that
information is stored in a multi-dimensional array
(sometimes called a Hypercube, or Cube). A Cube is a
group of data cell s arranged by the dimensions of the
data [13]. A dimension is defined in [13] as "a structural
attribute of a cube that is a li st of members, all of which
are of a similar type in the user's perception of the data".
Each dimension has an associated hierarchy of levels of

aggregated data i.e. it can be viewed from different levels
of detail (for example, Time can be detailed as Year,
Month, Week, or Day). Measures (which are also known
as variables, metrics, or facts) represent the real
measured values [6].

To motivate the work describing this paper, let us
use a running example of a bookstore company. When
considering the sales of this company, three are the major
dimensions: Time, Geography and Item, while we
consider Sales as the measure of the multidimensional
cube. The dimensions, along with their dimension levels
are depicted in Figure 1, where the upper levels of each
hierarchy point to the lower levels:

Geography Region Country City

Item Category Type Product

Time Year Month Day

Sales Sales

Week

Figure 1. Dimensions and dimension levels
Consider, now, the way dimension level hierarchies

are instantiated in the real world (we consider the
instantiation for dimension Time, to be obvious):

Category Type Product
Books Literature “Report to El Greco” N. Kazantzakis

“Karamazof brothers” F. Dostoiewsky
Philosophy “Zarathustra”, F. W. Nietzsche

“Symposium” , Plato
Music Heavy

Metal
“Piece of Mind” , Iron Maiden

“Ace of Spades” , Motorhead

Figure 2. Item dimension
Region Country City
Europe Hellas Athens

Rhodes
France Paris

Asia Israel Tel Aviv
Japan Tokyo

Figure 3. Geography dimension
Navigation is a term used to describe the processes

employed by users to explore a cube interactively, by
manipulating the multidimensionally viewed data [6],



[13]. Possible operations which can be applied are:
Aggregation (or Consolidation, or Roll-up) which
corresponds to summarization of data for the higher level
of a hierarchy, Roll Down (or Drill down, or Drill
through) which allows for navigation among levels of
data ranging from higher level summary (up) to lower
level summary or detailed data (down), Selection (or
Screening, or Filtering or Dicing) whereby a criterion is
evaluated against the data or members of a dimension in
order to restrict the set of retrieved data, Slicing which
allows for the selection of all data satisfying a condition
along a particular dimension and Pivoting (or Rotation)
throughout which one can change of the dimensional
orientation of the cube, e.g. swapping the rows and
columns, or moving one of the row dimensions into the
column dimension, etc. [6], [13].

Two are the basic architectures for storing data in an
OLAP database: ROLAP and MOLAP. ROLAP
(Relational OLAP) [3] is based on a relational database
server, extended with capabilities such as extended
aggregation and partitioning of data [8]. The schema of
the database can be a star, snowflake, or fact
constellation schema [3]. On the other hand, MOLAP
(Multidimensional OLAP) is based on "pure"
Multidimensional Databases (MDDs), which logically
store data in multidimensional arrays, which are heavily
compressed and indexed, in the physical level, for space
and performance reasons.

The main motivation of this paper is to provide a
formal model for multidimensional databases. Since
multidimensional databases are defined in terms of
dimensions (which are organized in dimension
hierarchies), the model represents them formally.
Furthermore, classical OLAP operations, such as roll-up,
slice, dice etc. are also represented by the model. We also
provide a mapping to relational databases and
multidimensional arrays. We make a serious design
choice: since querying is done in an interactive way, we
give emphasis to the tracking of series of operations,
performed in a navigational way.

The major contribution of the paper is the modeling
of cubes, dimensions and cube operations, in the context
of series of operations. This formalization is currently
used, in this paper, for a direct modeling of the usual
OLAP operations. Instead of mapping OLAP operations
to complex and complicated "relational", or "calculus-
like" queries, we directly model them, in a
straightforward fashion. To our knowledge, the modeling
of the drill-down operation is introduced for the first time
in our model. Since engines are based on relational
technology, or multidimensional arrays, we also provide
a direct mapping of cubes and their operations for each of
these formalisms, so that both data warehouse designers
and the engines themselves can take advantage of it.

The rest of this paper is organized as follows: in
section 2 we present related work in the fields of models
and algebras for data warehouse and OLAP applications.
In section 3 we provide a model for multidimensional
databases and cubes. In section 4 we provide a relational

mapping of the aforementioned model and a mapping to
multidimensional arrays. In section 5, we present the
conclusions of our work and possible future extensions.

2. Related work

Research has followed the evolution of industrial
products in the field of OLAP. The data_cube operator
was introduced in [8]. There have also been efforts to
model multidimensional databases. In [1], a model for
multidimensional databases is introduced. The model is
characterized from its symmetric treatment of dimensions
and measures. A set of minimal (but rather complicated)
operators is also introduced dealing with the construction
and destruction of cubes, join and restriction of cubes and
merging of cubes through direct dimensions.
Furthermore, an SQL mapping is presented.

In [12] a multidimensional data model is introduced
based on relational elements. Dimensions are modeled as
"dimension relations", practically annotating attributes
with dimension names. The cubes are modeled as
functions from the Cartesian product of the dimensions to
the measure and are mapped to "grouping relations"
through an applicability definition. A grouping algebra is
presented, extending existing relational operators and
introducing new ones, such as ordering and grouping to
prepare cubes for aggregations. Furthermore, a
multidimensional algebra is presented, dealing with the
construction and modification of cubes as well as with
aggregations and joins.

In [9] n-dimensional tables are defined and a
relational mapping is provided through the notion of
completion. An algebra (and an equivalent calculus) is
defined with classical relational operators as well as
restructuring, classification and summarization
operators. The expressive power of the algebra is
demonstrated through the expression of operators like the
data cube operator and monotone roll-up.

In [2] multidimensional databases are considered to
be composed from sets of tables forming denormalized
star schemata. Attribute hierarchies are modeled through
the introduction of functional dependencies in the
attributes of the dimension tables. Nevertheless, this
work is focused on the selection of an optimal set of
materialized views, for the efficient querying and update
of a data warehouse, and not in the modeling of cubes or
cube operations.

In [4], a multidimensional database is modeled
through the notions of dimensions and f-tables.
Dimensions are constructed from hierarchies of
dimension levels, whereas f-tables are repositories for the
factual data. Data are characterized from a set of roll-up
functions, mapping the instances of a dimension level to
instances of another dimension level. A query language
is the focus of this work: a calculus for f-tables along
with scalar and aggregate functions is presented,
basically oriented to the formulation of aggregate queries.
In [5] the focus is on the modeling of multidimensional
databases: the basic model remains practically the same,



whereas ER modeling techniques are given for the
conceptual modeling of the multidimensional database.

In statistical databases [17], quite a lot of similar
work has been done in the past. In [17] a comparison of
work done in statistical and multidimensional databases
is presented. The comparison is made with respect to
application areas, conceptual modeling, data structure
representation, operations, physical organization aspects
and privacy issues. The basic conclusion of this
comparison is that the two areas have a lot of overlap,
with statistical databases emphasizing on conceptual
modeling and OLAP emphasizing on physical
organization and efficient access.

In [14] a data model for statistical databases is
introduced. The model is based on "summary tables" and
operators defined on them such as
construction/destruction, concatenation/extraction,
attribute splitting/merging and aggregation operators.
The underlying algebra is a subset of the algebra
described in [15]. Furthermore, physical organization
and implementation issues are discussed. [14] is very
close to practical OLAP operations, although discussed in
the context of summary tables.

In [16] a functional model ("Mefisto") is presented.
Mefisto is based on the definition of a data structure,
called "statistical entity" and on operations defined on it
like summarization, classification, restriction and
enlargement.

In all of the aforementioned approaches the
relationship of the proposed operators to real OLAP
operations, such as roll-up, drill-down, slice and dice
seems to be weak: it is either discussed informally for a
subset of operators [1], indirectly dealt through the
introduction of aggregation [12], [9], or in a different
context [14], [16]. [2] and [5] are basically dealing with
the modeling of cubes. The best approach seems to be
given in [5]; yet a direct mapping to OLAP operations is
still not provided. Furthermore, apart for [16], series of
operations are not directly dealt with. Finally, to our
knowledge, no explicit modeling of the drill-down
operation exists.

3. A model of multidimensional space and
cubes

3.1. Multidimensional space

Let 
�

 be the space of all dimensions. For each
dimension Di there exist a set of levels, denoted as
levels(Di). A dimension is a lattice (H, <) of levels. Each
path in the lattice of a dimension hierarchy, beginning
from its least upper bound and ending in its greatest
lower bound is called a dimension path. Each dimension
path is a linear, totally ordered list of levels. We extend
the notion of the function levels, for dimension paths:
levels(Dpi) is a list, where the higher a level semantically
is, the higher its rank is in the dimension path. The total
order allows us to use comparison operators for the
dimension levels. For instance, if we consider the

dimension path [year, month, day], then day < month <
year, whereas for the dimension path [year, week, day],
day < week < year holds. A dimension D consists of a set
of dimension paths, paths(D). In the case of linear
dimensions, where there is a single dimension path in the
dimension, we will use the terms dimension and
dimension path interchangeably.

Let �  be the space of all dimension levels. We can
find the dimension where a dimension level belongs to,
through the operator h: h(DLi) = D if DLi ∈ levels(D).
We impose the restriction that a dimension level belongs
to exactly one dimension. Furthermore, we can find the
rank of a dimension level in a dimension path, through
the function level(DLi). level(DLi) = k, when DLi =
levels(Dpi)[k] (in other words, DLi is the k-th level of the
dimension path Dpi, starting the enumeration from the
lowest levels).

For each dimension level there is a set of values
belonging to it (e.g. dimension level "city" has "Athens",
"Paris", "Rome"... as values). We define dom(DLi) as the
set of all the values of a dimension level DLi. Let V be
the space of all values. A dimension level is atomic if its
domain is a subset of V. If the domain of a dimension
level is a subset of P(V) (the power set of V) then the
dimension level is multi-valued. We use bag semantics
for multi-valued dimension levels. As in [15], we use the
prefix "*" for multi-valued attributes.

A value x, can have ancestors and descendants. Let
x belong to a specific dimension level L0; then, there are
specific instances related to x, at higher (lower)
dimension levels, corresponding to more general
(detailed) terms, that is
ancestor(x, DL) = y, y ∈ dom(DL), DL0 < DL and
descendants(x, DL) = {x1, x2, ..., xk}, x1, x2, ..., xk ∈

dom(DL), DL < DL0.
For example, if we consider the dimension path

[year, month, day] then ancestor(FEB 1997, year) = 1997
and descendants(FEB 1997, day) = {1 FEB 1997, 2 FEB
1997, ..., 28 FEB 1997}. We will assume the following
properties for the ancestor relationship:
1. ancestor(x, DL) = x, if x ∈ dom(DL)
2. if x = ancestor(y, DL) and y = ancestor(x, DL), then x

= y
3. if x = ancestor(y, DL1) and y = ancestor(z, DL2), then

x = ancestor(z, DL1)
The third property guarantees that when more than

possible paths exist from z to x, in the dimension level
lattice, then all these paths are consistent.

3.2. Cubes

In this section we shall introduce the notion of
cubes, basic cubes and multidimensional databases. The
cubes are the basic entities of the model, whereas basic
cubes are cubes with the most detailed data. A
multidimensional database is a set of dimensions,
dimension levels and a basic cube.

We define a basic_cube Cb as a 3-tuple <Db, Lb,
Rb>, where



• Db = <D1, D2, ... Dn, M> is a li st of dimensions (Di,
M ∈ � ). M is a dimension that represents the
measure of the cube.

• Lb = <DLb1, DLb2, ... DLbn, *ML> is a li st of
dimension levels (DLbi, *ML ∈ � ). ML is the
dimension level of the measure of the cube. We
demand that all the dimension levels are at the lowest
level of their respective dimensions (∀ DLb ∈ Lb,
level(l) = 1). We also demand that ML is multi -
valued.

• Rb  is a set of cell data -i.e. a set of tuples of the form
x = [x1, x2, ..., xn, *m], where ∀ i in [1, ..n], xi ∈
dom(DLbi) and *m ∈ dom(*ML).

We define a Cube C as a 4-tuple <D, L, Cb, R>,
where
• D = <D1, D2, ... D n, M> is a li st of dimensions (Di, M

∈ � ). M is a dimension that represents the measure of
the cube. We will denote M as
measure_dimension(C).

• L = <DL1, DL2, ... DLn, *ML> is a li st of dimension
levels (DL i, *ML ∈ � ). *ML is the dimension level of
the measure of the cube. We will denote *ML as
measure_dimension_level(C). We demand that ∀ DLi

∈ L, DLi ∈ levels(Di). As it will be shown from the
cube operations, we also demand that *ML is multi -
valued.

• Cb is a basic_cube. We will call Cb, the base_cube of
C (Cb = base_cube(C)). The data of Cb can be used
for the calculation of the contents of C. Furthermore,
we impose the restriction, that ∀ d ∈ C.D ∃ d' ∈ Cb.D
: d = d'. In other words, all the dimensions of a cube
must exist in its base_cube.

• R is a set of cell data -i.e. a set of tuples of the form as
a tuple x = [x1, x2, ..., xn, *m], where ∀ i in [1, ..n], x i

∈ dom(DLi) and *m ∈ dom(*ML).
We can consider basic cubes as cubes. We extend

the definition of a basic cube Cb to be a 4-tuple <Db, Lb,
Cb, Rb> -i.e. we define a basic cube to be the base_cube
of itself.

We define a Multidimensional Database as a couple
<D, C>. D is a set of dimensions and C is a basic cube,
the dimensions of which belong to D.

Cell data are the data of a cube. Each cell i s defined
by a set of values and a measure, which is also a value.
Thus, a cell x is a tuple x = [x1, x2, ..., xn, *m]. We
introduce the following shortcut notations:
dimensions(x) = <x1, x2, ..., xn>,
measure(x) = *m,
dimensions(x)(i) = xi, where C = <D, L, Cb, R> ∧ (x ∈

R),
dimensions(x)(d) = xi, where C = <D, L, Cb, R> ∧ d ∈ D

∧ d = D(i) ∧ (x ∈ R).
In our running example, let us consider that a

basic_cube for the bookstore company is instantiated as
shown in Figure 4.

Intuiti vely, it might strike the reader as strange the
fact that we define a cube in terms of another cube and
that we practicall y provide two data sets (R and Cb.Rb)
for the instantiation of a single cube. Nevertheless, there

are two major reasons for which we choose to follow this
specific approach:

Time Item Geography Sales
1997-01-01 “Report to El Greco” Rhodes 15
1997-01-01 “Ace of Spades” Paris 8
1997-01-01 “Report to El Greco” Athens 11
1997-02-06 “Symposium” Rhodes 7
1997-02-18 “Karamazof brothers” Paris 5
1997-02-18 “Report to El Greco” Athens 2
1997-03-03 “Karamazof brothers” Rhodes 4
1997-03-03 “Karamazof brothers” Athens 10
1997-03-28 “Symposium” Rhodes 5
1996-10-12 “Report to El Greco” Paris 7
1996-05-06 “Piece of Mind” Tokyo 10
1996-09-07 “Piece of Mind” Rhodes 7
1996-03-28 “Karamazof brothers” Tel Aviv 12
1996-01-01 “Karamazof brothers” Tel Aviv 40

Figure 4. Basic_Cube = <D0, L0, Basic_Cube, R0>, D0
= <Time, Item, Geography, Sales>, L0 = <Day,

Product, Region, Sales>, R0 is shown in the above
table

First, the definition of the data of a cube in terms of
its base_cube enables the direct and correct evaluation of
its contents. A specific example will help us clarify this
statement. Suppose, that we summarize the sales of
Figure 4 at the month level. Suppose then, that we would
li ke to see the average sales at the year level. This result
cannot be directly calculated from the result of the
previous cube. The existing algebras that we know of [1],
[12], [LR97] would not take this problem into account, or
would assume that the operation will be disallowed by the
system [16]. Since this kind of sequences of operations is
typical for OLAP applications, the correctness of the
result of the operations of the cube can be guaranteed, by
referring to the relevant data of the most basic
granularity.

Secondly, all the aforementioned algebras cannot
deal directly with drill-down operations (i.e. with
navigation to lower levels of dimension hierarchies). This
is obvious, since a sum cannot be analyzed to its
components unless a join operation with a cube of the
required granularity takes place. As it can easil y be
anticipated, the definition of a cube in terms of a basic
cube enables the drilli ng-down without possibly costly
join operations with other cubes. As it will be shown in
the sequel, in the case of the relational mapping of our
model (which can be used for ROLAP), joins actuall y
take place; yet they are made between a fact table and the
tables representing the dimensions of the cube.
Techniques li ke star-join [7] can be employed to
optimize this kind of operations.

3.3. Cube operations

The definition of a cube is accompanied with the
definition of cube operations. We categorize cube
operations into simple ones, such as level_climbing,
packing, function_application, projection, dicing and
complex ones, such as navigation and slicing, which are
defined on top of the simple ones. We do not deal with
pivoting since we consider it to be just a reorganization



of the presentation of the data, rather than a modification
of their value or structure. Each one of the operations
results in a new cube, when applied to an existing cube.
Slicing and navigation apply aggregate functions to the
data of the cube. The set of allowed aggregate functions
is { sum, avg, count, min, rank(n), no-operation} . All of
them are the well known relational aggregate functions,
except for no-operation which means that no function is
applied on the data of the cube and rank(n) which returns
the first n-components of an aggregated set of values
which can be ordered. In the sequel we will suppose that
the original cube C = <D, L, Cb, R>, D = <D1, D2, ..., D n,
M>, L = <DL1, DL2, ..., DLn, *ML>, Cb = <Db, Lb, Cb,
Rb> and that the new cube C', which is the result of the
operations is C' = <D', L', Cb', R'>.

Level_Climbing. Let d be a set of dimensions
belonging to C and dl the set of the corresponding
dimension levels of C. Without loss of generalit y we
assume that d consists of the last k dimensions of D. Let
also dlold be the original dimension levels of C, belonging
to d : dlold = { DLn-k+1, …, DLn} . Then, C' =
Level_Climbing(C, d, dl) = LC(C, d, dl) is defined as
follows:
D' = D, L' = L - dlold ∪ dl, Cb' = Cb and
R' ={ x | ∃ y ∈ R: dimensions(x)(Di) = dimensions(y)(Di)

∀ Di ∉ d ∧ dimensions(x)(Di) =
ancestor(dimensions(y)(Di), dl j), ∀ Di ∈ d, dl j ∈ dl,
dl j ∈ levels(Dj) ∧ measure(x) =  measure(y), if M ∉
d }
We impose the restrictions that d, dl are consistent

with each other and that for all the dimension levels of
dl, the respective dimension levels of dlold belong to the
same dimension path and are of lower or equal level (for
example, one cannot perform Level_Climbing between
months and weeks). Intuiti vely, Level_Climbing is the
replacement of all values of a set of dimensions with
values of dimension levels of higher level. In Figure 5, an
example of the Level_Climbing operation is presented:

Time Item Geography Sales
1997 “Report to El Greco” Europe 15
1997 “Ace of Spades” Europe 8
1997 “Report to El Greco” Europe 11
1997 “Symposium” Europe 7
1997 “Karamazof brothers” Europe 5
1997 “Report to El Greco” Europe 2
1997 “Karamazof brothers” Europe 4
1997 “Karamazof brothers” Europe 10
1997 “Symposium” Europe 5
1996 “Report to El Greco” Europe 7
1996 “Piece of Mind” Asia 10
1996 “Piece of Mind” Europe 7
1996 “Karamazof brothers” Asia 12
1996 “Karamazof brothers” Asia 40

Figure 5. C1 = LC(Basic_Cube, {Geography, Time},
{Region, Year}), C1 = <D1, L1, Cb1, R1>, D1 = <Time,

Item, Geography, Sales>, L1 = <Year, Product,
Region, Sales>, Cb1 = Basic_Cube, R1 is shown in the

above table

Packing. We define C' = Packing(C) = P(C) as
follows:

D' = D, L' = L, Cb' = Cb and
R' ={ x | ∃ y ∈ R: dimensions(x)(Di) = dimensions(y)(Di)

∀ i ∈ 1, …, n ∧ measure(x) =  { l | ∃ t ∈ R,
dimensions(y) = dimensions(t) ∧ l = measure(t)}}
Intuiti vely, packing is the consolidation of the cube,

through the merging of multiple instances having the
same dimension values into one. Packing has bag
semantics. In Figure 6, an example of the Packing
operation is presented:

Time Item Geography Sales
1997 “Report to El Greco” Europe 15, 11, 2
1997 “Ace of Spades” Europe 8
1997 “Symposium” Europe 7, 5
1997 “Karamazof brothers” Europe 5, 4, 10
1996 “Report to El Greco” Europe 7
1996 “Piece of Mind” Asia 10
1996 “Piece of Mind” Europe 7
1996 “Karamazof brothers” Asia 12, 40

Figure 6. C2 = P(C1), C2 = <D2, L2, Cb2, R2>, D2 =
<Time, Item, Geography, Sales>, L2 = <Year, Product,
Region, Sales>, Cb2 = Basic_Cube, R2 is shown in the

above table

Function_Application. Let f be a function
belonging to { sum, avg, count, min, rank(n), no-
operation} . Then, C' = Function_Application(C, f) =
F(C, f) is defined as follows:
D' = D, L' = L, Cb' = Cb and
R' ={ x | ∃ y ∈ R: dimensions(x) = dimensions(y) ∧

measure(x) =  f(measure(y)) }
Intuiti vely, Function_application is the application

of a specific function to the measure of a cube.
Projection. Let d be a projected dimension. C' =

Projection(C, d) = � (C, d) is then defined, as follows:
D' = D - d, L' = L - DL, DL ∈ levels(d), DL ∈ L,
Cb' =  <Db', Lb', Cb', Rb'>, where,

Db' = Db - d,
Lb' = Lb - levels(d)(1), and
Rb' = { x | ∀ y ∈ Rb, dimensions(x)(Di) =
dimensions(y)(Di), ∀ Di ≠d, i ∈ 1, …, n ∧
measure(x) =  measure(y)}

R' ={ x | ∃ y ∈ R: dimensions(x)(Di) = dimensions(y)(Di),
∀ Di ≠d, i ∈ 1, …, n ∧ measure(x) =  measure(y) }
Intuiti vely, projection is the deletion of a dimension

both from the cube and its base_cube.
Navigation. Let d be the dimension over which we

navigate, dl the target level of the navigation and f the
applied aggregate function. Suppose that the dimension d
is the i-th element of D. Then, we define C' =
Navigation(C, d, dl, f) as follows:

C' = Navigation(C, d, dl, f) = F(P(LC(Cb, {D1, D2, ..., d,
..., Dn}, {DL1, DL2, ..., dl, ..., DLn} )),f)
The purpose of the navigation operator is to take a

cube from a specific state, change the level of  a specific
dimension, pack the result and produce a new cube with
a new state, through the use of an aggregate function.
The dimensions of the new cube are the dimensions of
the old one. The dimension levels are also the same,
except for the one of the dimension where we change



level. Notice that the restrictions imposed by
Level_Climbing, regarding the position of the respective
dimension levels in the dimension lattice, still hold.
Furthermore, the base_cube remains the same. The
Navigation is performed at the level of the base_cube, for
reasons that will be best ill ustrated in the following
example:
C3 = Navigate(Basic_Cube, Geography, Region,

no_operation)
C4 = Navigate(C3, Time, Year, sum)
C5= Navigate(C4, Time, Month, avg)

Time Item Geography Sales
1997-01-01 “Report to El Greco” Europe 15, 11
1997-01-01 “Ace of Spades” Europe 8
1997-02-06 “Symposium” Europe 7
1997-02-18 “Karamazof brothers” Europe 5
1997-02-18 “Report to El Greco” Europe 2
1997-03-03 “Karamazof brothers” Europe 4, 10
1997-03-28 “Symposium” Europe 5
1996-10-12 “Report to El Greco” Europe 7
1996-05-06 “Piece of Mind” Asia 10
1996-09-07 “Piece of Mind” Europe 7
1996-03-28 “Karamazof brothers” Asia 12
1996-01-01 “Karamazof brothers” Asia 40

Figure 7. C3 = Navigation(Basic_Cube, Geography,
Region, no_operation), C3 = <D3, L3, Cb3, R3>, D3 =

<Time, Item, Geography, Sales>, L3 = <Day, Product,
Region, Sales>, Cb3 = Basic_Cube, R3 is shown in the

above table

Time Item Geography Sales
1997 “Report to El Greco” Europe 28
1997 “Ace of Spades” Europe 8
1997 “Symposium” Europe 12
1997 “Karamazof brothers” Europe 19
1996 “Report to El Greco” Europe 7
1996 “Piece of Mind” Asia 10
1996 “Piece of Mind” Europe 7
1996 “Karamazof brothers” Asia 52

Figure 8. C4 = Navigation(C3, Time, Year, sum), C4 =
<D4, L4, Cb4, R4>, D4 = <Time, Item, Geography,

Sales>, L4 = <Year, Product, Region, Sales>, Cb4 =
Basic_Cube, R4 is shown in the above table

Time Item Geography Sales
1997-01 “Report to El Greco” Europe 13
1997-01 “Ace of Spades” Europe 8
1997-02 “Symposium” Europe 7
1997-02 “Karamazof brothers” Europe 5
1997-02 “Report to El Greco” Europe 2
1997-03 “Karamazof brothers” Europe 7
1997-03 “Symposium” Europe 5
1996-10 “Report to El Greco” Europe 7
1996-05 “Piece of Mind” Asia 10
1996-09 “Piece of Mind” Europe 7
1996-03 “Karamazof brothers” Asia 12
1996-01 “Karamazof brothers” Asia 40

Figure 9. C5= Navigation(C4, Time, Month, avg), C5 =
<D5, L5, Cb5, R5>, D5 = <Time, Item, Geography,

Sales>, L5 = <Month, Product, Region, Sales>, Cb5 =
Basic_Cube, R5 is shown in the above table
This example shows that the basic contribution of

the navigation operator is that it can allow any sequence
of operations along the dimension hierarchies. The

navigation from the Basic_Cube to cube C5, is
characterized by three features:
1. it preserved the previous navigations -e.g. the

navigation to the dimension level of Geography
(Region),

2. it allowed the application of the average function over
a cube whose data was previously produced through
the application of a sum function. If the definition of
the navigation was done on the result of the actual
cube, the correct calculation of the result would not be
possible,

3. it allowed the drilli ng down at the Time dimension
(i.e. moving directly from “Year” to “Month” level)
without having to join cubes directly. The drill -down
operation was mapped to Level_Climbing upwards in
the Time dimension. The consinstency of the values
between different levels in the dimension lattice
guarantees a correct result.

Dicing. Let d be the dimension over which we
perform the dicing, �  a formula consisting of a
dimension, an operator and a value v. We assume that v
belongs to the values of the dimension level of d in C and
that �  is applicable to d (in the sense presented in [15]) -
i.e. that { <, =} are applied to atomic dimension levels
and { ≡, ⊂, ∈} to multi -valued ones). Let � (v) be of the
form d op v. Then, C' = Dicing(C, d, � (v)) is defined as
follows:
D' = D, L = L',
Cb' = <Db', Lb', Cb', Rb'>, where

Db' = Cb.Db, Lb' = Cb.Lb, and
Rb' = { x | x ∈ Cb.Rb, x[d] op y = true, y ∈

descendants(v, levels(d)(1))}
R' = { x | ∃ x ∈ R, x[d] op v = true}

Intuiti vely, dicing is a simple form of selection. Yet,
it has its impact both on the cube itself and its
base_cube. We are allowed to check for descendants of v
in the base_cube, since each dimension path ends at a
dimension level of the lowest granularity and the
base_cube is in the lowest possible granularity for all
levels.

Slicing. Let d be the dimension which we sli ce and f
the applied aggregate function. We define Slicing as
follows:
C' = Slicing(C, d, f) = F(P( �

�
LC(Cb, {D1, D2, ..., d, ...,

Dn}, {DL1, DL2, ..., dl, ..., DLn} ), d)),f)
The purpose of the sli cing operator is to take a cube

from a specific state, cut out a specified dimension and
aggregate over the rest of the dimensions, using an
aggregation function. Notice that all the restrictions of
Level_Climbing implicitl y hold, without realy affecting
the Slicing operation. In Figures 10, 11, an example of
the Slicing operation is presented.

In this section we have defined cubes and cube
operations for a multidimensional model. Since in
practice, the multidimensional view of data is supported
from multidimensional (MOLAP) or relational (ROLAP)
engines, in the following section we will provide a
mapping of the structures and the operations of the



multidimensional model, to the relational model and to
multidimensional arrays.

Item Geography Sales
“Ace of Spades” Europe 8

“Karamazof brothers” Asia 26
“Karamazof brothers” Europe 6.3

“Piece of Mind” Asia 10
“Piece of Mind” Europe 7

“Report to El Greco” Europe 8.75
“Symposium” Europe 6

Figure 10. C6 = Slicing(C4, Time, avg), C6 = <D6, L6,
Cb6, R6>, D6 = <Item, Geography, Sales>, L6 = <

Product, Region, Sales>, R6 is shown in the above
table

Item Geography Sales
“Report to El Greco” Rhodes 15

“Ace of Spades” Paris 8
“Report to El Greco” Athens 11

“Symposium” Rhodes 7
“Karamazof brothers” Paris 5
“Report to El Greco” Athens 2
“Karamazof brothers” Rhodes 4
“Karamazof brothers” Athens 10

“Symposium” Rhodes 5
“Report to El Greco” Paris 7

“Piece of Mind” Tokyo 10
“Piece of Mind” Rhodes 7

“Karamazof brothers” Tel Aviv 12
“Karamazof brothers” Tel Aviv 40

Figure 11. C6 = Slicing(C4, Time, avg), Cb6 = <Db6,
Lb6, Cb6, Rb6>, Db6 = <Item, Geography, Sales>, Lb6 =

< Product, City, Sales>, Rb6 is shown in the above
table

4. A mapping of the multidimensional model
to an extended relational data model

In this section we map multidimensional cubes,
defined in Section 3, to relational tables. For this purpose
we will base our approach on the extended relational
model and algebra proposed in [15]. Atomic vs. set-
valued attributes1 (with bag semantics) are introduced.
Apart from the classical relational operations, operations
such as packing (PX(r)) (merging tuples with the same
values for several attributes into one tuple) and
function_application (r[*X, fi]) (application of a function
fi to a multi -valued attribute *X) are introduced. A more
detailed presentation for the employed model can be
found in [18].

The motivation for the relational mapping is double:
on the one hand, the engine performing ROLAP must be
able to map multidimensional to relational entities and
on the other hand, the data warehouse administrator can
be helped to check out whether a relational database
fulfill s the requirements to model a cube (and vice versa -
what kind of database one needs to construct in order to
be able to map a cube to relational tables).

                                                       
1 This requirement does not constraint the applicability of the algebra, since
existing DBMSs already support NF2 characteristics. The object extensions
of the upcoming SQL3 standard will formalize this kind of support [10].

At the end of the section a mapping of our
multidimensional model to multidimensional arrays
(used as logical structures in engines performing
MOLAP) is also presented.

4.1. Mapping of cubes to relations

To map multidimensional cubes to relations we need
as prerequisite, the existence of two mapping functions �
and 

�
. The function �  maps a dimension level to an

attribute of a relation, whereas 
�
 is its inverse and maps

an attribute to a dimension level. We say that a
dimension level DL represents an attribute A, and vice
versa, if � (DL) = A, and consequently 

�
(A) = DL.

A dimension level can be mapped to more than one
attributes. The reason for this is that in both star and
snowflake schemata, which are common for data
warehousing and ROLAP applications, two columns -
possibly related by foreign key constraints- in two
different tables, may represent the same entity, due to
normalization. Furthermore, we make the assumption
that an attribute and a dimension level which can be
mapped to one another, have the same structure (simple
vs. set-valued) and domain.

Definition 1. A relation r, defined over a relation
scheme R(A1, A2, …, Ak), represents a dimension path
Dp (denoted also as r = RD(Dp) ) iff
1. ∀ DL i ∈ levels(Dp) ∃ A j ∈ R: � (DLi) = A j

2. ∀ A j ∈ R ∃ DL i ∈ levels(Dp): 
�
(A j) = DL i

3. If DLs is the lowest level of Dp, ∀ �  ∈ dom(DLs), ∀ A i

∈ R, ∃ exactly one t, t ∈ r:  t[A i] = ancestor( � , 
�
(A i)),

4. ∀ t ∈ r, ∀ A i ∈ R, ∃ � , �  ∈ dom(DLs): t[A i] =
ancestor( � , 

�
(A i)),

Intuiti vely, for a table to represent a dimension path,
there must be a one to one mapping between the table
columns and the dimension levels of the dimension path
(items (1), (2) in definition 1). The instantiation of the
table is such, so that for every value of the lowest
granularity there is a tuple with all it s ancestors (item 3).
Furthermore, we require that the table contains no more
tuples than those needed to represent the values (item 4).
The tables representing dimension paths are
denormalized structures, commonly employed in star
schemata in data warehouses; they are usually
encountered with the name dimension tables. For
example, the dimension Geography, which comprises of
a single dimension path, can be represented using the
table in Figure 12.

Region Country City
Europe Hellas Athens
Europe Hellas Rhodes
Europe France Paris
Asia Israel Tel Aviv
Asia Japan Tokyo

Figure 12. Geography dimension as a table
From the definition of the ancestor operator, and its

transiti vity property it follows easil y that if we consider
the values of two attributes of the same tuple, they are



characterized from an ancestor relationship between
them.

Definition 2. A relation r, defined over a relation
scheme R = (A1, A2, …, Ak), is the base_cube_table of a
cube C = <D, L, Cbase, R> (denoted also as r = RB(C)) iff
1. ∀ DL ∈ Cbase.L, ∃ A i ∈ R: DL = � (A i)
2. ∀ x = <x1, x2, …, xk-1, *xm> ∈ Cbase.Rbase, ∃ t ∈ r:

x[xi] = t[ � (DLi)], where xi ∈ dom(DLi)
3. ∀ t ∈ r, t = <a1, a2, …, ak-1, *am>, ∃ x, x ∈ Cbase.Rbase,

: t[A i] = x[ � (A i)], where ai ∈ A i.
Definition 3. A relation r defined over a relation

scheme R = (A1, A2, …, Ak) is the cube_table of a cube
C = <D, L, Cbase, R> (denoted also as r = RC(C)) iff
1. ∀ DL ∈ C.L, ∃ A i ∈ R: DL = � (A i)
2. ∀ x = <x1, x2, …, xk-1, *xm> ∈ C.R, ∃ t ∈ r: x[xi] =

t[ � (DLi)], where xi ∈ dom(DLi)
3. ∀ t ∈ r, t = <a1, a2, …, ak-1, *am>, ∃ x, x ∈ C.R, :

t[A i] = x[ � (A i)], where ai ∈ A i.
Intuiti vely, we define a table to be a cube_table of a

cube if the dimension levels of the cube can be mapped to
attributes of the table. The measure -which is also a
dimension- is included in this definition (item 1 in
definition 3). The contents of a table should be such, that
all cell s in the result of the cube have an equivalent tuple
in the table (item 2 in definition 3). Furthermore, no
tuples should exist in the table, where no equivalent cell
exists in the result of the cube (item 3 in definition 3). A
base_cube_table differs from a cube_table in the fact
that its attributes and data can be mapped to the
base_cube of a specific cube.

Definition 4. A database �  defined over a database
scheme S represents a cube C = <D, L, Cbase, R> iff :
1. ∀ di ∈ D - measure_dimension(C), ∀ dpi ∈ paths(di),

∃ ri ∈ �  : ri = RD(dpi)
2. ∃ rB ∈ �  : rB = RB(C)
3. ∃ rC ∈ �  : rC = RC(C)

A set of relations is the dimension tables of a cube,
if for every cube dimension and for every dimension path
of these dimensions (except for its measure) there is a
relevant table in this set, representing the dimension path
(item 1 in definition 4). If the base_cube_table of the
cube also exists, then all the cube operations can be
applied, by using the base_cube_table (item 2 in
definition 4); remember that several operations in the
multidimensional model have been defined with respect
to the base cube. Furthermore, if there is a table in the
set, being the cube_table of the specific cube, then the
data of the cube can be directly accessed through the
cube_table (item 3 in definition 4). In that case we say
that the database represents the cube. Since we have
required that the values of the dimension paths of
different paths in the same dimension, are consistent
with each other, then the consistency between the values
of the dimension tables for the same dimension, comes
natural.

The full schema for the bookstore database of our
running example would be:

TIME_M(YEAR, MONTH, DAY)
TIME_W(YEAR, WEEK, DAY)

GEOGRAPHY(REGION, COUNTRY, CITY)
ITEM(CATEGORY, TYPE, PRODUCT)
DETAILED_SALES(DAY, PRODUCT,
CITY, SALES)

Supposing that the instantiantions are performed
correctly, the TIME_M, TIME_W, GEOGRAPHY, ITEM
relations are the dimension tables, whereas the
DETAILED_SALES relation is the cube_table for the
Basic_Cube.

An interesting issue is that although our definition
of dimension tables is based on the notion of
denormalized star schemata our mapping is also
applicable to full y normalized snowflake schemata, since
that the dimension table of a star schema can be
considered as a view defined on the respective tables of
the snowflake schema. This is formally proved in [18].
The result is dual: one can map snowflake schemata to
cubes and vice versa. Furthermore, cube operations can
be mapped to relational operations for a snowflake
schema.

For the rest of this paper, we assume that we have a
cube C = <D, L, Cbase, R>, D = <d1, d2, ..., dn, M>, L =
<DL1, DL2, ..., DLn, *ML>. We also assume a database �
defined over the database scheme S = (RC, RB, RD1, RD2,
..., RDn), an instantiation of S, s = (rC, rB, rD1, rD2, ..., rDn),
where rC = Rc(C), where rC is defined over RC = (AC1,
AC2, ..., ACn, ACM), rB = RB(C), defined over RB = (AB1,
AB2, ..., ABn, ABM) and ∀ di ∈ D, rDi = RD(di), defined
over RDi = (A i1, A i2, ..., A ik).

4.2. Relational mapping of cube operations

In this subsection we will provide the relational
mappings for the cube operations which were introduced
in Section 3. For each operation we will provide a
relational expression for both the cube_table and the
base_cube_table of the resulting cube. In other words,
we examine the impact a cube operation has on the cell
data of both the base_cube and the cube itself and
present tables that represent them. All formulas are full y
proved in [18].

In Table 1, one can see the relation definitions for
the base_cube_table for the results of the cube
operations, where the base_cube_table changes.
Level_Climbing, Packing, Function_Application and
Navigation do not change the base_cube of a cube.
Consequently, one would normally expect that the
base_cube_table will not change either.

The relational mapping of the result of Projection
and Slicing with respect to the base_cube of a cube, is
the performance of a projection operation on the relevant
attribute of its base_cube_table.

The mapping of Dicing is somewhat more complex
than the mappings of other operations. With respect to
the base_cube, what must be done is the mapping of the
parameter value v to its descendants, which are found at
the base_cube_table. Consequently, we join the
base_cube with the proper dimension table, representing
a dimension path which includes the respective



dimension level of the diced cube, perform the selection
at the result and then project the attributes of the
base_cube_table.

As far as the cube_tables are concerned, we also
provide a set of formulas, one for each operation. The
cube_tables represent the actual result of an operation,
expressed in a relation instance. For Level_Climbing,
first we project the dimension tables to the columns
corresponding to the dimension levels of the new cube
and the columns of the old cube. The relational mapping
of the result of Level_Climbing is the join of its
cube_table with all the dimension tables involved in the
changing of levels and the performance of a projection,
in order to keep just the attributes representing the
correct dimension levels.

C' =
Projection(C, d)

RB(C') = rB[AB1, AB2, ..., ABk-1, ABk+1,
..., ABn, ABM], defined over RB' = (AB1,
AB2, ..., ABk-1, ABk+1, ..., ABn, ABM),
where ABk = � (DLk), DLk ∈
Cbase.Lbase, DLk ∈ levels(d), d is the k-
th dimension of C.

C' =
Dicing(C, d,
� (v))

RB(C') = ((rB
���

AD1=AD1 rD')[ � (v),
AD])[AB1, AB2, ..., ABn, ABM] defined
over RB' = (AB1, AB2, ..., ABn, ABM),
and AD = � (DLk), DLk ∈ C.L, DLk ∈
levels(d), rD represents dp, dp ∈
paths(d), DLk ∈ dp, rD' = (rD)[AD1, AD]
and AD1 = � (levels(d)(1))

C' =
Slicing(C, d, f)

RB(C') = rB[AB1, AB2, ..., ABk-1, ABk+1,
..., ABn, ABM], defined over RB' = (AB1,
AB2, ..., ABk-1, ABk+1, ..., ABn, ABM),
and ABk = � (DLk), DLk ∈ Cb.Lb, DLk

∈ levels(d).
Table 1. Base_cube_table for the results of cube

operations

The relational mapping of the result of Packing in a
cube, is the performance of a packing operation on its
cube_table, on the attribute representing the measure of
the cube. The relational mapping of the result of
Function_Application, is the performance of a
function_application operation on the attribute of its
cube_table representing the measure of the cube. A
projection on the cube_table can model the results of the
Projection of a cube with respect to its cell data.

Since Navigation and Slicing have been defined as
complex operations, based on other atomic operations,
the application of the relational mappings of the cube
operations which participate at their definition, produces
the formula for the calculation of the cube_table of the
product of these operations. Notice that the restrictions
imposed by Level_Climbing still hold. The mapping of
Dicing is just the performance of a selection on its
cube_table. All formulas are presented in table 2.

4.3 A mapping of the multidimensional model to
multidimensional arrays

The multidimensional model can triviall y be
mapped to multidimensional arrays, practicall y in the
same way it is done in [5]. We assume that there exists a
mapping function enum(d) between a value d of a
dimension level l and the set of integers. In other words,
for each dimension level, we assign a unique integer to
each one of its values. The assignment is done in a
contiguous fashion. As a result, each value x = [x1, x2, ...,
xn, *m], belonging to the cell data of a cube can be
considered to be as the conjunction of coordinates
[enum(x1), enum(x2), ..., enum(xn)] with value *m.

The cube can still be considered to be a 4-tuple C =
<D, L, Cbase, R>. We do not need to change the cube
operations either: the only thing that changes is that we
now have an additional way to refer to the cell data of the
cube.

C' =
Level_Climbing(
C, d, dl)

Rc(C') = rC' = (rC ��� ACn-k+1 = ACn-k+1 rDCn-

k+1' 
���

 ACn-k+2 = ACn-k+2 rDCn-k+2' 
���  ... ���

ACn = ACn rDn')[  AC1, AC2, … ACn-k,
A'Cn-k+1, A'Cn, ACM] defined over RC'
= (AC1, AC2, …, ACn-k, ACn-k+1',...,
ACn', ACM), where d consists of the k
last dimensions of D, rDi' =
(rDi)[ � (DLi), ACi], ∀ i, k < i < n,
defined over Rdi' = (ACi', Aci).

C' = Pack(C) Rc(C') = rC' = PACM(rc), defined over
RC' = (AC1, AC2, …, ACn, ACM'),
where ACM' =
� (measure_dimension_level(C'))

C' =
Function_Applica
tion(C, f)

Rc(C') = rC' = rc[*ACM, f] defined
over RC' = (AC1, AC2, …, ACn, ACM'),
where ACM' =
� (measure_dimension_level(C')).

C' =
Projection(C, d)

Rc(C') = rC' = rC[AC1, AC2, ..., ACk-1,
ACk+1, ..., ACn, ACM]
defined over RC' = (AC1, AC2, ...,
ACk-1, ACk+1, ..., ACn, ACM),
where ACk = � (DLk), DLk ∈ L, DLk

∈ levels(d).
C' =
Navigation(C, d,
dl, f)

Rc(C') = rC' = (PABM((rB ��� AB1 = AB1

rD1' 
���

 AB2 = AB2 rD2' 
���  ... ���  ABn = ABn

rDn')[AC1, AC2, …, Acn,
ABM]))[ *ABM, f], where rDi' =
(rDi)[ABi, ACi]∀ i, 1 < i < n, ABM' =
� (measure_dimension_level(C').

C' =
Dicing(C, d, � (v))

Rc(C') = rC' = rc[
� (v), AD] defined

over RC' = (AC1, AC2, ..., ACn, ACM),
and AD = � (DLk), DLk ∈ C.L, DLk

∈ levels(d).
C' =
Slicing(C, d, f)

Rc(C') = rC' = (PABM((rB ��� AB1 = AB1

rD1' 
���

 AB2 = AB2 rD2' 
���  ... ���  ABn = ABn

rDn') [ AC1, AC2, …, ACk-1, ACk+1, ...,
ACn, ABM]))[ *ABM, f], where rDi' =
(rDi)[ABi, ACi]∀ i, 1 < i < n, d is in
k-th position of the cube, and ABM' =
� (measure_dimension_level(C').

Table 2. Cube_table for the results of cube operations



In the following section, we will conclude our
results and present topics for future work.

5. Conclusions and future work

In this paper we have proposed a model for
multidimensional databases. Dimensions, dimension
hierarchies and cubes are formally introduced in our
model. We have also introduced simple cube operations,
such as level_climbing, packing, function_application,
projection, dicing and complex ones, such as navigation
and slicing. Our approach is based on the notion of the
base_cube, which can be used in the complex operations
for the calculation of the results of the cube operations. A
major motivation for our approach was the support of
series of operations on the cubes (for example, the
preservation of the results of previous operations and the
applicabilit y of aggregate functions in a series of
operations). Eff iciency is also targeted, so that
information refinement operations (such as drill -down)
are directly performed.

Furthermore, we have provided mappings of the
multidimensional model (a) to the relational model,
where cubes and dimensions are mapped to relations and
cube operations to relational algebra operations and (b) to
multidimensional arrays, through a mapping function.

Apart from the applicabilit y to both MOLAP and
ROLAP engines, a basic contribution of our approach for
ROLAP engines is that although a cube is defined in
terms of another cube, in its relational mapping, only the
relational expressions are necessary. For example, if an
OLAP tool is to perform a navigation operation, it is not
obligatory that the result is always temporarily stored; the
definition of a view over the base_cube_table is
suff icient.

Yet, there are still i ssues which have not been dealt
with. The relaxation of several constraints imposed
throughout the definitions of the paper is a possible topic
of future research (for example, the relaxation of the
constraint that the dimension levels of the base_cube
must be of level 1). The applicabilit y of existing results of
research on view usabilit y [11] can also be investigated in
the framework we have set (especiall y since a relational
mapping is provided), in order to optimize the execution
of the operations. For example, if Navigation is to be
performed in a roll-up fashion, one could possibly use the
cell data of the cube itself, rather than calculating the
new result from the basic cube. Finall y, it is not at all
certain, that the set of cube operations that we provide is
exhaustive, so extensions and new operators are a topic
of future research.

Acknowledgment

The author wishes to thank Prof. Timos Selli s for
many helpful and detailed comments which enabled the
improvement of this paper. This research was partiall y
supported by the European Commission funded LTR

ESPRIT project "DWQ: Foundations on Data Warehouse
Qualit y", Project No. 22469 and by the General
Secretariat of Research and Technology (Greece) under
the PENED program.

6. References

[1]  R. Agrawal, A. Gupta, S. Sarawagi, "Modeling
Multidimensional Databases", IBM Research
Report, IBM Almaden Research Center, September
1995.

[2]  E. Barali s, S. Paraboschi, E. Teniente, "Materialized
View Selection in a Multidimensional Database",
Proceedings of the 23rd VLDB Conference, 1997.

[3]  S. Chaudhuri, U.Dayal, "Data warehousing and
OLAP for Decision Support", Tutorials of 22nd

VLDB Conference, 1996.
[4]  L. Cabbibo, R. Torlone, "Querying Multidimesional

Databases", 6th International Workshop on
Database Programming Languages (DBPL6), 1997.

[5]  L. Cabbibo, R. Torlone, "A Logical Approach to
Multidimensional Databases", EDBT 1998.

[6]  DWQ, "Deliverable D1.1, Data Warehouse Quality
Requirements and Framework", NTUA, RWTH,
INRIA, DFKI, UNIROMA, IRST, DWQ TR DWQ -
NTUA - 1001, 1997, available at
http://www.dbnet.ece.ntua.gr/~dwq/

[7]  C.G. Erickson, "Multidimensionalism and the data
warehouse", in the Data Warehousing Conference
(Orlando FL, February 1995).

[8]  J. Gray, A. Bosworth, A. Layman, H. Pirahesh.
"Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tabs, and Sub-
Totals", Proceedings of ICDE '96, New Orleans,
February 1996.

[9]  M. Gyssens, L.V.S. Lakshmanan, "A Foundation for
Multi-Dimensional Databases", Proceedings of the
23rd VLDB Conference, 1997.

[10]  K. Kulkarni, N. Mattos, A. Nori, "Object-Relational
Database Systems - Principles, Products and
Challenges", Tutorials of the 23rd International
VLDB Conference, 1997.

[11]  A. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava,
"Answering Queries using Views", In. PODS, 1995.

[12]  C. Li, X. Sean Wang, "A Data Model for Supporting
On-Line Analytical Processing", CIKM 1996.

[13]  OLAP Council , "The OLAP glossary".
http://www.olapcouncil .org, The OLAP Council,
1997.

[14]  G. Ozsoyoglu, M. Ozsoyoglu, F. Mata, "A Language
and a Physical Organization Technique for
Summary Tables", Proceedings of the ACM
SIGMOD Conference, 1985.

[15]  G. Ozsoyoglu, M. Ozsoyoglu, V. Matos, "Extending
Relational Algebra and Relational Calculus with
Set-Valued Attributes and Aggregation Functions",
ACM TODS 12(4), 1987.



[16]  M. Rafanelli, F.L. Ricci, "A functional model for
macro-databases", SIGMOD Record, 20(1), March
1991.

[17]  A. Shoshani, "OLAP and Statistical Databases:
Similarities and Differences", Tutorials of PODS
1997.

[18]  P. Vassiliadis, "Formal Foundations for
Multidimensional Databases" (extended version) -
NTUA Technical Report, January 1998.

[19]  J. Widom, "Research Problems in Data
Warehousing", Proc. of 4th CIKM Conference, 1995




