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Modeling Multiscale Subbands of Photographic
Images with Fields of Gaussian Scale Mixtures

Siwei Lyu, Member, IEEE, Eero. P. Simoncelli, Senior Member, IEEE

Abstract— The local statistical properties of photographic im-
ages, when represented in a multi-scale basis, have been described
using Gaussian scale mixtures. Here, we use this local description
as a substrate for constructing a global field of Gaussian scale
mixtures (FoGSMs). Specifically, we model multi-scale subbands
as a product of an exponentiated homogeneous Gaussian Markov
random field (hGMRF) and a second independent hGMRF. We
show that parameter estimation for this model is feasible, and
that samples drawn from a FoGSM model have marginal and
joint statistics similar to subband coefficients of photographic
images. We develop an algorithm for removing additive white
Gaussian noise based on the FoGSM model, and demonstrate
denoising performance comparable with state-of-the-art methods.

Index Terms— image statistics, Markov random field, image
denoising

I. Introduction

MANY successful methods in image processing and com-
puter vision rely on statistical models for images, and it

is of continuing interest to develop improved models, both in
terms of their ability to precisely capture image structures, and
their practicality for use in applications. A common method of
constructing such statistical models is to first identify statistical
properties of photographic images, and then develop probabilistic
models that capture these properties. The first step in this process
is to choose a representation (typically, a linear basis) in which
the statistical properties are more simply described. Early research
in image statistics was based primarily on pixel and Fourier
representations. But over the past two decades, numerous studies
have demonstrated that linear image decompositions based on
multi-scale multi-orientation localized basis functions (loosely
referred to as “wavelets”) are particularly effective in reveal-
ing statistical regularities of photographic images. For instance,
wavelet coefficients of photographic images generally have highly
kurtotic non-Gaussian marginal distributions [1], [2], [3], and the
amplitudes of nearby coefficients are strongly correlated [4], [5],
[6].

A variety of parametric models have been proposed to capture
these regularities, including the generalized Laplacian [7], [8], [9],
[10], the Bessel K [11], the multi-variate Student’s t-distribution
[12], the α-stable family [13] and the Cauchy distribution [14].
All of these non-Gaussian statistical models can be unified under
the flexible semi-parametric density family known as Gaussian
scale mixtures (GSMs) [15], [16]. By definition, a GSM density
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is an infinite mixture of zero-mean Gaussian variables with covari-
ances related by multiplicative scaling. GSMs can emulate many
of the non-Gaussian statistical behaviors observed in local groups
of wavelet coefficients of photographic images. In addition, the
underlying Gaussian structure leads to relatively simple parameter
learning and inference procedures. For these reasons, local image
models based on GSMs have been highly successful when applied
to image denoising [17], [18].

Despite this success, it has proven difficult to extend the local
GSM description to a consistent global probability model. One
can partition the coefficient space into non-overlapping clusters,
and describe each of these using an independent GSM. But such
a model will ignore important statistical dependencies between
coefficients in adjacent blocks. The inhomogeneities that arise
from treating coefficients near block boundaries differently from
those in the center can, in turn, lead to noticeable artifacts such
as blocking or aliasing in applications. This problem may be
somewhat ameliorated by using overlapping (e.g., convolutional)
blocks [17], [18]. But then treating these blocks as independent
samples is not consistent with any global model. Another option
is to retain non-overlapping coefficient clusters, but to capture
the dependencies between these clusters by linking the hidden
scaling variables in a tree-structured Markov model (e.g., [19],
[20]). Although these models are able to capture some global
statistical dependencies, they still produce artifacts due to the
inhomogeneous treatment of spatially proximal coefficients that
are assigned to different branches of the tree.

A natural means of extending the local GSM description to a
homogeneous global description is through the use of Markov
random fields (MRFs). A MRF is a global model uniquely
determined by a local statistical description. A number of authors
have developed MRF-based image models in the pixel domain
(e.g., [21], [22], [23], [24], [25], also see [26] for an overview).
In particular, the recently developed field of experts model [27]
has been used to achieve impressive performance in denoising.
However, these MRF-based models usually involve learning and
inference procedures based on statistical sampling, which are
generally computationally costly or unstable.

In this paper, we take a different approach to embedding a
local GSM description within a global consistent MRF, by mod-
eling multi-scale subbands as fields of Gaussian scale mixtures
(FoGSMs). Specifically, a FoGSM is formed by an element-
wise product of two mutually independent MRFs: a homogeneous
Gaussian MRF (hGMRF), and a positive-valued MRF obtained
by exponentiating a second hGMRF. The former captures second-
order dependencies, while the latter characterizes the variability
and dependencies of local variance. Individual coefficients in
the FoGSM model marginally follow a GSM distribution, while
the global MRF structure generates dependencies beyond local
neighborhoods. We develop a parameter estimation procedure,
exploiting the computational advantages of the underlying hGM-
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RFs, and demonstrate that samples from FoGSMs share important
statistical properties of photographic images. As an example
application, we develop a Bayesian denoising methodology using
FoGSM as a prior model for clean images. We show that the
resulting denoising method achieves performance comparable to
state-of-the-art methods. Preliminary results of this work have
been presented in [28].

II. Background

A. Photographic image statistics

Photographic images exhibit distinct statistical regularities that
are especially apparent when they are represented using a multi-
scale basis (loosely referred to as a “wavelet” decomposition).
To be more specific, the wavelet coefficients of photographic
images tend to have highly kurtotic non-Gaussian marginal dis-
tributions [1], [2], [3]. More importantly, even when they are
second-order decorrelated, there are higher-order statical depen-
dencies between coefficients at nearby locations, orientations and
scales [5], [6], [16]. Shown in Fig. 1 are empirical joint and
conditional histograms for five pairs of subband coefficients of
the “boat” image, corresponding to basis functions with spatial
separations of Δ = {1, 4, 32} samples, two orthogonal orientations
and two adjacent scales. For adjacent coefficients, we observe
an approximately elliptical joint distribution. This behavior was
originally reported for Hilbert-transform pairs of basis functions
[30], and later generalized to pairs at different positions, ori-
entations and scales [5], [6]. The “bow-tie” shaped conditional
distribution indicates that the variance of one coefficient depends
on the value of the other. This is a highly non-Gaussian behavior,
since the conditional variances of a jointly Gaussian density are
always constant, independent of the value of the conditioning
variable. For coefficients that are distant, the dependency becomes
weaker and the corresponding joint and conditional histograms
become more separable, as would be expected for two inde-
pendent random variables. Finally, although the examples shown
here were generated using a particular multi-scale oriented image
representation, these statistical properties are fairly robust to the
specific choice of decomposition as long as the basis functions
are localized and band-pass.

B. Gaussian scale mixtures

A Gaussian scale mixture (GSM) vector is defined as the
product of a zero-mean Gaussian vector and an independent
positive scalar variable. Specifically, a d-dimensional GSM vector
x can be constructed as x =

√
z · u, where u is a d-dimensional

zero mean Gaussian vector, and z ∈ R+ is independent of x. The
density of x is determined by the covariance matrix, Σ, of the
Gaussian vector, and the density of z:

p(x) =
∫

z
Nx(0, zΣ)pz(z)dz

=

∫
z

1√
(2πz)d |Σ|

exp

(
−xTΣ−1x

2z

)
pz(z)dz. (1)

As a family of probability densities, GSM includes many com-
mon kurtotic distributions, including all those mentioned in the
introduction [15]. For instance, if z follows an inverse gamma
distribution, the resulting GSM density reduces to a multivariate
Student’s t-distribution [15], [31].

C. Homogeneous Gauss-Markov random fields

A Markov random field (MRF) is a global joint distribution
on a mesh of nodes that is uniquely determined by the local
density of each node conditioned on the nodes in a surrounding
neighborhood. In particular, the MRF is the maximal entropy
density consistent with the local probabilistic constraints [26]. A
Gaussian MRF (GMRF) is one in which all the local conditional
(and hence, joint) densities are Gaussian. In this case, the inverse
covariance matrix (also known as the precision matrix) of the
full set of nodes contains a zero entry for all pairs of nodes
that are not within each other’s conditioning neighborhoods.
The sparse form of the precision matrix means that it usually
provides a more convenient parameterization of a GMRF than
the full covariance matrix. A homogeneous GMRF (hGMRF) is a
GMRF with local density parameters invariant to absolute spatial
location. In particular, when the hGMRF is defined over a two-
dimensional lattice with circular boundary handling1, its precision
matrix is block circulant (see Appendix A for details), determined
by the generating kernel Q that captures nonzero dependencies
within each neighborhood. Given the relatively small set of
parameters, the block circulant structure, and the resulting close
relationship with the discrete Fourier transform (see Appendix A),
hGMRFs are significantly more computationally tractable than
general MRFs in terms of parameter estimation, sampling, and
inference. Learning and sampling with hGMRFs are described in
Appendix B and C, respectively, and a more detailed description
of GMRFs and hGMRFs may be found in reference [32].

III. Fields of Gaussian scale mixtures

The GSM model has been used successfully to describe the
statistics of local clusters of multiscale image coefficients, which
can include spatial neighbors as well as coefficients in adjacent
scale and orientation subbands [e.g., 19]. But, as mentioned in
the introduction, extending local GSM model to a global model
of images without introducing either statistical inconsistencies,
or inhomogeneities in the global model structure is difficult.
Here, we resolve this dilemma by describing each subband as
a homogeneous Field of Gaussian Scale Mixtures (FoGSM).

We define a FoGSM as the element-wise product of two
mutually independent MRFs, u and

√
z:

x
d
= u ⊗ √z, (2)

where the square root is applied to each component of z. Here,
u is a zero-mean Gaussian MRF, and z is a positive-valued
MRF of scaling variables. To eliminate the scaling ambiguity
between u and z, we assume that each component of u has unit
variance. The FoGSM model inherits from the GSM model the
construction as a product of an independent Gaussian variable and
another positive random variable, and as such, all one-dimensional
marginal densities of a FoGSM are GSMs. But unlike the local
GSM model, in which a single z variable is multiplied by every
component of a multivariate Gaussian variable u, the Gaussian
components in FoGSM each have their own z variable. This
collection of z variables form a second MRF, which can capture
higher-order statistical dependencies.

1Circular boundary handling is assumed in the definition of hGMRF. As
the dimensionality of the random field increases, the boundary handling is
less influential in the computation.
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close Δ = 1 near Δ = 4 far Δ = 32 orientation scale

Fig. 1. Histograms of pairs of subband coefficients of four photographic images, decomposed using a Steerable Pyramid decomposition [29]. Top: Contour
plots of joint histograms, drawn at equal intervals of log probability. Bottom: Conditional histograms, computed by independently normalizing each column of
the joint histogram. Image intensities are proportional to probability, except that each column of pixels is independently rescaled so that the largest probability
value is white.

To further reduce the number of free parameters in the model,
we use homogeneous FoGSMs to model each subband in a
multiscale decomposition. Specifically, we assume u to be a
zero-mean homogeneous Gaussian MRF (hGMRF), with circular
boundary handling:

p(u) ∝
√
| C(Qu)| exp

(−uT C(Qu)u
2

)
, (3)

where Qu is the generating kernel, and C(Qu) is a block circu-
lant precision matrix formed from that kernel. Furthermore, we
assume that z is derived by applying a point-wise exponential
“link” function to a second hGMRF. Alternatively, we can define
log z (where the log operator is applied element-wise) as a zero-
mean hGMRF with precision matrix C(Qz):

pz(z) ∝
√
| C(Qz)|∏

i zi
exp

(−(log z)T C(Qz)(log z)
2

)
. (4)

The inter-dependencies between components of z may be explic-
itly incorporated through the precision matrix C(Qz). This log-
normal random field is a natural extension of the univariate log-
normal density used previously for the scalar multiplier in a local
GSM model [33].

The density of x conditioned on z, may be easily written by
substituting the element-wise quotient x � √z for the vector u in
Eq. (6) and re-normalizing:

p(x|z) ∝
√
| C(Qu)|∏

i zi
exp

(−(x � √z)T C(Qu)(x � √z)
2

)
(5)

=

√
| C(Qu)|∏

i zi
exp

(−xT D(
√

z)−1 C(Qu)D(
√

z)−1x
2

)
.

where D(
√

z) in the second line denotes a square diagonal matrix
generated from vector

√
z. The resulting conditional density

on x is a zero-mean inhomogeneous GMRF, as its precision
matrix

[
D(
√

z)−1 C(Qu)D(
√

z)−1
]

no longer has a block circulant
structure.

A. Learning and sampling FoGSMs

A FoGSM density on subband coefficients x is determined by
the generating kernels of the two constituent hGMRFs, Qu and
Qz. When fitting FoGSM to data, it is also desirable to have an
estimate of the field z. Thus, we formulate the learning of FoGSM
as simultaneous estimation of parameters Qz and Qu and variables
{zi}Ni=1, from a training set of subbands {xi}Ni=1, as

argmax
{zi}Ni=1 ,Qu ,Qz

log p({xi}Ni=1, {zi}Ni=1; Qu,Qz). (6)

Optimization of this objective function corresponds to a combi-
nation of maximum likelihood estimation of the model parameters
(Qz,Qu) and maximum a posteriori estimation of the hidden
variables {zi}Ni=1 from training data {xi}Ni=1.

We optimize equation (6) using a coordinate ascent scheme,
which alternates between maximizing each of {zi}Ni=1, Qu and Qz

while holding the remaining two fixed:

(i) z(t+1)

i = argmaxz log p(xi, zi; Q(t)
u ,Q

(t)
z ) for i = 1, · · · ,N

(ii) Q(t+1)
u = argmaxQu

log p({xi, z
(t+1)

i }Ni=1; Qu,Q
(t)
z )

(iii) Q(t+1)
z = argmaxQz

log p({xi, z
(t+1)

i }Ni=1; Q(t+1)
u ,Qz)

(7)
Running the three steps in (7) iteratively guarantees convergence
to a local maximum of the objective function in (6). Each step
may be further simplified.

The objective function in step (i) of Eq. (7) is more con-
veniently expressed in terms of the element-wise inverse square
root of variable z. We define s = 1 � √z, from which z can be
recovered using z = 1� (s⊗ s). The conditional density of x given
s may then be written:

p(x|s) ∝
∏

i

si exp

(−(x ⊗ s)T C(Qu)(x ⊗ s)
2

)
(8)

=
∏

i

si exp

(−sT [D(x)C(Qu)D(x)] s
2

)
,

and the density of s may be easily obtained by suitable transfor-
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mation of the density of z:

p(s) ∝ 1∏
i si

exp
(
−2(log s)T C(Qz) (log s)

)
. (9)

Using these new definitions, step (i) in Eq. (7) may be rewritten
as

ŝ
�
= argmax

s
log p(x, s; Qu,Qz) (10)

= argmax
s

log p(x|s; Qu) + log p(s; Qz)

= argmin
s

⎧⎪⎪⎨⎪⎪⎩
1
2 sT [D(x)C(Qu)D(x)] s

+ 2(log s)T C(Qz) (log s).

This objective function may be optimized with conjugate gradient
descent [34]. Much of the computation involves multiplying
vectors by the precision matrix. Because the precision matrix
is block-circulant, these operations are convolutions and may be
efficiently implemented using the fast Fourier transform. Empiri-
cally, we also found that the conjugate gradient iteration converges
quickly: After roughly 300 steps of iteration for a 512×512 pixel
image, the successive relative changes in the objective function
are less than 10−13.

Steps (ii) and (iii) in (7) correspond to estimating model
parameters Qu and Qz given data {xi, zi}Ni=1. Specifically, step (ii)
may be simplified to

Q̂u = argmax
Qu

log p(x, z; Qu,Qz)

= argmax
Qu

log p(x|z; Qu)

= argmax
Qu

log p(x � z; Qu) (11)

where the last line corresponds to a maximum likelihood estimate
of the generating kernel Qu of a zero-mean hGMRF given N
independent samples

{
xi � √zi

}N
i=1.

Similarly, step (iii) may be simplified as

Q̂z = argmax
Qz

log p(x, z; Qu,Qz) (12)

= argmax
Qz

log p(z; Qz)

= argmax
Qz

log p(log z; Qz)

which is the maximum likelihood estimate of parameter Qz in a
hGMRF on log z given independent samples

{
log zi

}N
i=1. Again,

both steps allow efficient computation based on the properties of
block circulant matrices. The details of parameter estimation for
hGMRFs are provided in Appendix B.

Sampling from FoGSM is simple and efficient. By definition,
a sample of FoGSM is formed by element-wise multiplication of
two independent samples of u and

√
z. The former is obtained

by sampling from hGMRF u, and the latter is obtained by
element-wise exponentiation of the square root of a sample of
hGMRF log z. Sampling from each two-dimensional hGMRF is
implemented by linearly transform a sample of white Gaussian
noise, which is again efficient due to the computational advantages
of block circulant matrices. We provide basic descriptions of these
operations in Appendix C and more information can be found in
[32].

IV. Modeling multi-scale image subbands with FoGSMs

In this section, we investigate empirically how well a FoGSM is
able to account for the statistical properties of subband coefficients

of photographic images. We fit an independent FoGSM model to
each subband of a photographic image, and examine the properties
of the u and log z fields, as well as samples from the learned
FoGSM model.

A. Experimental setup

Our data sets are multi-scale subbands of a given orientation
and scale from five standard test images of size 512 × 512
pixels (“Lena”, “Barbara”, “boats”, “hill”, and “baboon”). For
image representation, we employed an over-complete tight frame
representation known as the steerable pyramid [29] as the front-
end linear decomposition. The basis functions of this linear
decomposition are spatially localized, oriented and span roughly
one octave in bandwidth. They are polar separable in the Fourier
domain and are related by translation, dilation and rotation. We
fit the FoGSM model to subbands corresponding to the first scale
and third orientation in an 8-orientation decomposition (the peak
orientation angle of this band is at π/4 radians, relative to the
horizontal axis).

The neighborhood size of the two component hGMRFs of
the FoGSM model (corresponding to variables u and log z)
were chosen by maximizing the cross-validated likelihood. We
cut each subband into equal-sized rectangular halves, fitted the
FoGSM model of a given neighborhood size to one half of the
subband, and then computed the likelihood on the data from the
other half of the subband using Eq. (6). The best performance was
observed for 5 × 5 neighborhoods, for both hGMRFs. Once the
neighborhood size was determined, the generating kernels were
optimized using the algorithm described in the previous section.
The vector z, which represents the local signal variance, was
initialized by computing the local variances estimated within each
overlapping 5 × 5 spatial window.

B. Decomposition and parameters

Shown in the top row of Fig. 2 are the results of decomposing
a subband from the “boats” image according to the fitted FoGSM
model. Specifically, the subband (left panel) is decomposed into
the product of the u field (middle panel) and the

√
z field (right

panel, in logarithm) using the training algorithm described in Sec-
tion III-A. Visually, we can see that the changing spatial variances
are captured by the estimated log z, and residual homogeneous
structures are captured by the estimated u. The second row in
Fig. 2 are the marginal histograms of each field in the log domain,
plotted against a Gaussian density of the same variance. Note that
the marginal distribution of u is well approximated by a Gaussian,
as assumed in the FoGSM model. The marginal distribution of
log z, while unimodal, exhibits noticeable deviations from Gaus-
sianity. In particular, it is clearly asymmetric, and this property
seems to be consistent across a variety of different subbands and
images.

Shown in the bottom row of Fig. 2 are the estimated 5 × 5
generating kernels Qu and Qz. The former reflects the orientation
anisotropy of hGMRF u, which is matched to the orientation
tuning of the subband. On the other hand, Qz shows only weak
orientation preference. We could interpret this to indicate that the
MRF for log z is close to isotropic. However, visual inspection of
the log z field suggests that the MRF frequently exhibits strongly
oriented content, but that this content is inhomogeneous (i.e., the
orientation is different in different image regions) and thus cannot
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x u log z

-0.0304 -0.0108 0.0471 0.0047 0.0059
-0.0071 -0.0309 0.1394 0.0842 0.0023
-0.0023 -0.1125 1.0000 -0.1125 -0.0023
0.0023 0.0842 0.1394 -0.0309 -0.0071
0.0059 0.0047 0.0471 -0.0108 -0.0304

0.0297 0.0483 0.0046 0.0017 0.0294
-0.0245 -0.1213 -0.2188 -0.1721 0.0447
0.0348 -0.1893 1.0566 -0.1893 0.0348
0.0447 -0.1721 -0.2188 -0.1213 -0.0245
0.0294 0.0017 0.0046 0.0483 0.0297

Qu Qz

Fig. 2. Top: Decomposition of a subband from image “boat” (left) into a hGMRF u (middle) and the corresponding multiplier field log z (right). Each
image is rescaled individually to fill the full range of grayscale intensities. Middle: log marginal histograms of x, the estimated u and the estimated log z.
Dotted lines correspond to Gaussian density of the same mean and variance. Bottom: 5 × 5 central non-zero regions for the hGMRF generating kernels of
the estimated u and log z fields.

be captured by a homogeneous GMRF. Furthermore, one can see
that the estimated u and log z are not independent, as assumed by
the FoGSM model, but have aligned structures (typically arising
from image contours).

C. Statistics of FoGSM samples

The statistical dependencies captured by the FoGSM model can
be further illustrated by examining marginal and joint statistics
of samples from the fitted model. Note that this is achieved by
fitting the global FoGSM statistical model to a subband, and
then drawing samples from this model, not by explicitly adjusting
parameters to fit the marginal or joint histograms (as was done
in [16]).

We begin by comparing the marginal distributions of the
samples and the original subband. Figure 3 shows empirical
histograms in the log domain of a particular subband from
four different photographic images (dashed line), and those of
the synthesized samples of FoGSM models learned from each
corresponding subband (solid line). For comparison, a Gaussian
with matching standard deviation is also displayed (thin dashed
line). Note that the synthesized samples have conspicuous non-
Gaussian marginal characteristics, exemplified by the high peak
and heavy tails, similar to the image subbands. On the other hand,
the synthesized coefficients are typically less kurtotic than the
real subbands. The shape of these marginal densities is dictated
by the z field, which is a hGMRF transformed with a point-wise
exponential link function. An alternative choice of link function
could be used to create distributions closer to the observed wavelet
subbands.

In addition to the marginal statistics, the FoGSM model also
has joint behaviors that are similar to those observed in multi-
scale coefficients of photographic images. Shown in Fig. 4 are
the joint and conditional histograms of synthesized samples from
the FoGSM model estimated from the same subband used to
generate the histograms in Fig. 1. Note that histograms of the
synthesized samples have a dependence on spatial proximity
similar to those of the image data shown in Fig. 1. This behavior
arises directly from the structure of the FoGSM model. The
random field z is smooth, and thus nearby components have nearly
identical marginal variance, resulting in an elliptically contoured
joint density, and strong dependency between coefficients. This
dependency is propagated from neighborhood to neighborhood
in the FoGSM model, but weakens with distance. On the other
hand, note that the dependencies between coefficients representing
different orientations or scales are not properly modeled, because
we have used an independent FoGSM to model each subband.
This is evident when comparing the fourth and the fifth columns
of Figs. 4 and 1.

Finally, Fig. 5 shows samples of u, log z, and x drawn according
to a FoGSM model whose parameters were fit to the subband
shown in Fig. 2. The u field resembles that of the subband, but
the z field is seen to lack the extended structures seen in the data.
Thus, the FoGSM model fails to fully capture the inhomogeneous
long-range interactions that arise in images around contours or
extended features.
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lo
g

p(
x)

Fig. 3. Marginal log distributions of coefficients from a multi-scale decomposition of four photographic images (dashed line), synthesized FoGSM samples
from the same subband (solid line), and a Gaussian with the same standard deviation (thin dashed line).

close Δ = 1 near Δ = 4 far Δ = 32 orientation scale

Fig. 4. Joint distribution of pairs of subband coefficients obtained from samples drawn from the best-fitting FoGSM model. See the caption of Fig. 1 for
explanation.

x u log z

Fig. 5. A sample from the hGMRFs with parameters shown in Fig. 2.

V. Application to image denoising

As a probability model for photographic images, FoGSM may
be used as a prior for Bayesian estimation of an image given an
observation corrupted by additive white Gaussian noise of known
variance. In addition to its practical relevance, image denoising
is a simple yet powerful test for the effectiveness of an image
model, providing a clear quantitative test of how well the model
can differentiate photographic image content from noise.

A. Algorithm

We follow a conventional methodology, decomposing the noise-
corrupted image into wavelet subbands, computing an estimate
of the coefficients of each subband using the FoGSM model as
a prior, and then generating the denoised image by applying the

inverse wavelet transform to the denoised subbands. Since the
wavelet transform is linear, we may write y = x+w for a wavelet
subband of the noisy image, where x is the clean wavelet subband
and w is the noise that is added to the subband. Note that in
an over-complete representation such as steerable pyramid, white
Gaussian noise in the image domain is transformed into correlated
Gaussian noise, whose covariance can be computed from the basis
functions of the transform.

A standard approach to denoising is to formulate it as a
Bayesian inference problem, selecting an estimate based on the
posterior density p(x|y), which is proportional to the product of
the likelihood function p(y|x) and the image prior p(x). Two
solutions are common. The maximum a posterior (MAP) estimate
is the mode of the posterior density, x̂MAP = argmaxx log p(x|y),
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whereas the Bayesian least square (BLS) estimate, which min-
imizes the expected square error between the restored image
and the original image, is the mean of the posterior density
x̂BLS = E(x|y). Both of these solutions involve computationally
expensive (high-dimensional) integration when used with FoGSM
model. Specifically, MAP requires a high-dimensional integral
over z, while BLS requires high-dimensional integrals over both
x and z.

Although it is possible to obtain approximations to these
solutions using Markov chain Monte-Carlo sampling [26] or vari-
ational approximations [35], we instead develop a deterministic
algorithm that takes advantage of the hGMRF structure of the
FoGSM model. Specifically, we compute

(x̂, ẑ) = argmax
x,z

log p(x, z|y) (13)

and then take x̂ as the denoised subband. This strategy, known as a
“partial optimal solution” [36], greatly reduces the computational
complexity of the problem. The solution to the optimization
problem in Eq. (13) is found by coordinate ascent. Starting with
initial values for x and z, the algorithm proceeds by alternating
between the following steps:

1) Optimization of x: Given the current estimate of z, the
optimization of x in (13) can be expanded using Bayes’ rule:

argmax
x

log p(x, z|y)

= argmax
x

{
log p(y|x, z) + log p(x|z) + log p(z) − log p(y)

}
= argmax

x

{
log p(y|x) + log p(x|z)

}
,

where the first term is simplified because y and z are independent
when conditioned on x, and the last two terms are dropped
because they do not depend on x. Given the Gaussian structure
of the first two terms, the maximum is linear in y (equivalent
to a Wiener filter). Specifically, we must minimize a quadratic
expression:

argmin
x

⎧⎪⎪⎨⎪⎪⎩ (y − x)T C(Cw)−1(y − x)

+ xT D(
√

z)−1 C(Qu) D(
√

z)−1x

where the noise covariance C(Cw) is a block-circulant matrix de-
termined by a generating kernel Cw that represents the convolution
by which the subband is obtained from the image pixels. Note
that although C(Cw) may be sparse (zero beyond the support of
the filters), the inverse of C(Cw) can still be dense. It is therefore
computationally advantageous to work with C(Cw) rather than its
inverse. For this reason, we introduce t = C(Cw)−1x, and find the
optimal t by solving

argmin
t

⎧⎪⎪⎨⎪⎪⎩ (y − C(Cw)t)T C(Cw)−1(y − C(Cw)t)

+ tT C(Cw)T D(
√

z)−1 C(Qu) D(
√

z)−1 C(Cw)t

or, expanding the first line, and dropping the term independent of
t:

argmin
t

⎧⎪⎪⎨⎪⎪⎩ tT C(Cw)t − 2yT t

+ tT C(Cw)T D(
√

z)−1 C(Qu) D(
√

z)−1 C(Cw)t

Note that this the objective function is quadratic in t, guaranteeing
a global optimal solution. We compute the optimum using con-
jugate gradient descent, and then recover the optimal x through
the relationship x̂ = C(Cw)t̂.

2) Optimization of z: Given the current estimate of x, the
optimization of z in (13) can be written as

argmax
z

log p(x, z|y) =

argmax
z

{
log p(y|x, z) + log p(x, z) − log p(y)

}
.

The last term may be dropped because it is independent of z, and
the first term is dropped since y is independent of z when condi-
tioned on x. Thus, the problem is reduced to argmaxz log p(x, z),
which may be computed as in step (i) of the learning procedure
of Sec. III-A.

3) Acceleration: The alternating optimization of x and z is
guaranteed to converge to a local optimum of the objective
function in Eq. (13), but the convergence speed can be very slow.
To accelerate convergence, we include a heuristic “inertial” step
after every two steps of the optimization loop. Specifically, the
algorithm takes a step in the direction established by the optimal
values of the previous two iterations, with the step size optimized
according to:

{x̂(k+1), ẑ(k+1)} =
argmax
α∈(0,αmax)

log p
(
x̂(k) + α(x̂(k) − x̂(k−1)), ẑ(k) + α(ẑ(k) − ẑ(k−1))

∣∣∣ y)

Intuitively, such a jump ensures that the optimization does not
oscillate back and forth within a narrow valley of the objective
function. In practice, as shown in the following experiments, it
achieves a substantial reduction in the overall running time of the
algorithm.

4) Parameter estimation (optional): The denoising algorithm
described thus far assumes the model parameters Qu and Qz are
known. These model parameters can be learned as a generic
statistical model for wavelet coefficients from a large set of noise-
free photographic images using the algorithm provided in Section
III-A. The advantage of a generic image model approach is that
the training can be performed offline, which may greatly reduce
the overall running time. Alternatively, these parameters can be
adaptively learned by including a parameter estimation step in the
loop of the denoising algorithm

(Q̂(k)
u , Q̂

(k)
z ) = argmax

Qu,Qz

log p(x̂(k), ẑ(k)|y; Qu,Qz) (14)

as in Section III-A. The FoGSM model parameters (Qu,Qz) are
estimated from hGMRFs

[
x �
√

ẑ(k)
]

and
[
log z(k)

]
, as in steps (ii)

and (iii) of Eq. (7). Adaptively learning the parameters allows
the model to better account for the local structure of the image
in question, thus potentially leading to better performance. We
compare the relative performance of these two training schemes
in the following experiments.

B. Experimental setup

We evaluated the FoGSM denoising method on a set of standard
grayscale test images [17]. All images are of size 256 × 256
or 512 × 512 pixels and in 8-bit TIFF format. Noisy images
were generated by adding simulated white Gaussian noise. We
evaluate the denoising performance by visual inspection, as well
as the conventional objective performance known as peak-signal-
to-noise-ratio (PSNR), defined as 20 log10(255/σe), with σe the
standard deviation (computed by averaging over spatial position)
of the difference between the restored image and the original
image.
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Each noise-corrupted image was first decomposed into a steer-
able pyramid with multiple scales (5 levels for a 512×512 image
and 4 levels for a 256 × 256 image) and 8 orientations. These
values were chosen empirically as a trade-off between denoising
performance and computational load. The resulting representation
is approximately 11 times over-complete, relative to the original
image size. The Markov neighborhoods for hGMRFs u and log z
were both chosen to cover 5 × 5 blocks of coefficients, since
this was found to be optimal for representation of clean images.
We verified that this specific choice was also roughly optimal
for the best denoising performances across different images and
noise levels. The model parameters were obtained by training
the FoGSM model adaptively for each subband as described in
Section V-A, with initial parameter values chosen to represent
a smooth and isotropic GMRF. The initial values of x and z are
computed from subband denoised with the local GSM model [17].

C. Results

Denoising results for six test images, at seven different noise
levels, are reported in Table I. The standard deviations of PSNR
values for each image and noise level, computed by repeating
the each denoising experiment 10 times with different samples of
noise, are consistently lower than 0.1dB. In addition to the results
for our FoGSM algorithm, we also provide denoising results of the
BLS-GSM method [17]. This algorithm computes the Bayes least
squares estimate (i.e., conditional mean) of individual coefficients
based on a local GSM model. The comparison with FoGSM
allows us to assess the gain in performance that is obtained
by building a global model. We employed the implementation
described in [17], which assumes a neighborhood consisting of
3 × 3 spatial neighbors plus a “parent” coefficient in the next
coarsest scale2. Finally, we provide results of the current state-of-
the-art denoising method, BM3D [37]. The PSNR values for these
methods were directly taken from corresponding publications.
Note that the FoGSM algorithm achieves consistent improve-
ments in PSNR over the local GSM based algorithm (average
improvement is 0.52dB), clearly demonstrating the advantage of
a globally consistent statistical model. On the other hand, the
performance of the FoGSM method is comparable (sometimes
better, sometimes worse) to that of BM3D, which is not based
on any explicit statistical model. In general, BM3D relies on the
image containing repeating patterns (specifically, many blocks of
pixels that are similar). Thus it performs best on images with large
regions of the same texture (e.g., “Barbara”), or long contours
of similar orientation (e.g., “House”), and performs less well on
images with diverse content (e.g., “boats”, or ”Lena”).

In Fig. 6 we plot the PSNR performance of four recent
denoising methods relative to that of FoGSM. The perfor-
mance of FoGSM is consistently better than those of the kSVD
method [39], the BLS-GSM method [17], and the fields of experts
(FoE) [27], and (on average) comparable to those of BM3D [37],
which currently represents the state-of-the-art.

Next, we examine and compare the denoising results visu-
ally. Shown in Fig. 7 and Fig. 9 are the results of denoising
the “Barbara” image and the “boats” image with noise level
σ = 50, corresponding to a peak-signal-to-noise-ratio (PSNR)

2A MAP based denoising algorithm based on the local GSM model was
developed in [38]. However, its performance was significantly worse than the
BLS method published in [17].

of 14.15 dB. We have chosen a relatively high level of noise,
in order to provide a clear visualization of the capabilities and
limitations of the model. To better examine the details of the
denoising results, we show in Fig. 8 and 10 cropped regions of
each of the corresponding images in Fig. 7 and 9, respectively.
For these examples, the FoGSM denoising achieves substantial
improvements (+0.95 and +0.68 dB) and is seen to exhibit higher
contrast and continuation of oriented features. However, FoGSM
also introduces some noticeable artifacts in low contrast regions,
which are likely due to failures of the FoGSM model to capture all
statistical properties of photographic image wavelet coefficients.
For example, coefficient amplitudes are known to be correlated
across scale (see Fig. 4, right panel). If represented properly, this
correlation should allow the denoising algorithm to recognize
isolated large coefficients as noise, since (unlike photographic
images) they will not have corresponding large-amplitude co-
efficients in adjacent bands. But the current model treats each
subband independently, thus allowing these isolated coefficients to
remain as unsuppressed artifacts. In addition, these artifacts may
also be aggravated by the use of a MAP-like estimator. A local
MAP-GSM estimator produces similar unsuppressed coefficients,
when compared to the smoother behavior of the local BLS-GSM
estimates.

The denoising performance obtained with FoGSM is attained
with a substantial computational cost. As a rough indication, our
unoptimized Matlab code, running on an Intel workstation with
2.6 Ghz dual Opteron 64-bit processor and 16 Gb RAM memory,
takes on average of 97.3 mins (results averaging over 9 trials,
with a range of [71.8,124.4] mins) to denoise a 512 × 512 image
at noise level σ = 50, and takes on average of 35.3 mins (result
averaging over 4 images, with a range of [28.4, 47.9] mins), to
denoise a 256×256 image at the same noise level. It is likely these
values could be improved by incorporating additional acceleration
heuristics.

D. Algorithm variations

In order to understand the contribution of various aspects of
the FoGSM-based denoising method, we examined their relative
effect on the denoising performance. Shown in Table II are the
changes in PSNR and running time when various features of the
method are modified. All results are for noise level σ = 50
and averaged over three 512 × 512 images (“boats”, “Lena”,
“Barbara”). The first two columns correspond to modifications of
the front-end representation. The first (ortho wvlt) corresponds to
using an approximately orthogonal wavelet decomposition based
on quadrature mirror filters [40]. The separable QMF pyramid
splits the image frequency domain into horizontal, vertical and
mixed diagonal subbands. Using this representation results in a
substantial reduction in performance, which we believe is partly
due to the mixed orientations in the diagonal band, and partly
due to the lack of over-completeness which generally improves
denoising [41], [42].

The second column (4 orns) shows the result of using steerable
pyramid decomposition with only four orientations (instead of
eight). Decreasing the number of orientations leads to a significant
drop in performance, accompanied by a substantial reduction
in running time. On the other hand, increasing the number of
orientations (not shown) leads to small improvements in PSNR,
at the expense of considerable computation cost.
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Fig. 6. Performance comparison of denoising methods for three different images. Plotted are differences in PSNR for different input noise levels (σ) between
FoGSM and four other methods (� BM3D [37], � BLS-GSM [17], � kSVD [39] and � FoE [27]). The PSNR values for these methods were taken from
corresponding publications.

original image noisy image (σ = 50) (PSNR = 14.15dB)

local GSM [17] (PSNR = 25.45dB) FoGSM (PSNR = 26.40dB)

Fig. 7. Denoising results using local GSM [17] and FoGSM.
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σ/PSNR
Barbara 512 × 512 boats 512 × 512 hill 512 × 512

FoGSM GSM BM3D FoGSM GSM BM3D FoGSM GSM BM3D
5/34.15 38.65 37.79 38.31 37.39 36.97 37.28 37.16 36.91 37.14

10/28.13 35.01 34.03 34.98 34.12 33.58 33.92 33.78 33.38 33.62
15/24.61 32.85 31.86 33.11 32.31 31.70 32.14 31.99 31.51 31.86
25/20.17 30.10 29.13 30.72 30.03 29.37 29.91 29.91 29.37 29.85
50/14.15 26.40 25.48 27.17 27.01 26.38 26.64 27.38 26.82 27.08
75/10.63 24.29 23.65 25.10 25.33 24.79 24.96 25.93 25.46 25.58
100/8.13 23.01 22.61 23.49 24.20 23.75 23.74 24.88 24.53 24.45

σ/PSNR
house 256 × 256 Lena 512 × 512 peppers 256 × 256

FoGSM GSM BM3D FoGSM GSM BM3D FoGSM GSM BM3D
5/34.15 38.98 38.65 39.83 38.66 38.49 38.72 37.91 37.30 38.12

10/28.13 35.63 35.35 36.71 35.94 35.61 35.93 34.38 33.73 34.68
15/24.61 33.89 33.64 34.94 34.28 33.90 34.27 32.34 31.70 32.70
25/20.17 31.64 31.40 32.86 32.11 31.69 32.08 29.78 29.18 30.06
50/14.15 28.51 28.26 29.37 29.12 28.61 28.86 26.43 25.93 26.41
75/10.63 26.69 26.41 27.20 27.37 26.84 27.02 24.53 24.11 24.48
100/8.13 25.33 25.11 25.50 26.12 25.64 25.57 23.17 22.80 22.91

TABLE I

Comparison of FoGSM denoising results with those of the local BLS-GSM method [17], and the recently published BM3D method [37], which represents

the current state-of-the-art. Performance values are expressed as PSNR, 20 log10(255/σe), where σe is the standard deviation of the difference between the

denoised image and the original image. Numbers in boldface indicate the best performance among the three methods for each image and noise level. Cases in

which the two best methods differ by less than 0.1dB (the averaged standard deviation of the PSNR values) are considered a tie.

original image noisy image (σ = 50) BLS-GSM FoGSM
(PSNR = 14.15dB) (PSNR = 25.45dB) (PSNR = 26.40dB)

Fig. 8. Zoom-up regions of the images in Fig. 7.

ortho wvlt 4 orns 3 × 3 nb 7 × 7 nb gen param no accl
ΔPSNR (dB) -0.47 -0.32 -0.07 -0.17 -0.39 0.01
Δt/t (%) -62.8 -52.6 -1.2 2.5 -41.7 163.8

TABLE II

Effects of different algorithm variations. ΔPSNR specifies the changes in PSNR resulting from a change in the corresponding attribute. Δt/t specifies the

percentage of change in running time relative to the running time of the standard algorithm described in Section V-C. All values are averages over three

512 × 512 images (“boats”, “Lena”, “Barbara”) for the noise level σ = 50.

In the next three columns, we examine the effects in the
FoGSM model structure. We first compared the effect of different
choices of MRF neighborhood size (3 × 3 and 7 × 7). As
shown, changing neighborhood size has relatively little effect
on the overall running time, but the PSNR values were lower
for both neighborhood sizes, justifying our choice of the 5 × 5
neighborhood (at least for this image and noise level). In the
fifth column (gen param), we compared the result of off-line
training of the (Qu,Qz) parameters of the FoGSM model on a

set of noise-free images (not including the three test images).
This leads to a significant reduction in the computational cost of
denoising an image, since the parameter learning step no longer
needs to be included in the denoising process. However, this
is accompanied by a significant loss in denoising performance
(an average PSNR reduction of approximately 0.4dB), since the
generically learned model parameters are less adapted to the
idiosyncrasies of the specific image/subband being denoised. The
last column (no accel) shows that the accelerating heuristics
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original image noisy image (σ = 50) (PSNR = 14.15dB)

local GSM [17] (PSNR = 26.34dB) FoGSM (PSNR = 27.02dB)

Fig. 9. Denoising results using local GSM [17] and FoGSM. Performances are evaluated in peak-signal-to-noise-ratio (PSNR), 20 log10(255/σe), where σe
is the standard deviation of the error between the restored image and the original image.

original image noisy image (σ = 50) BLS-GSM FoGSM
(PSNR = 14.15dB) (PSNR = 26.34dB) (PSNR = 27.01dB)

Fig. 10. Zoom-up regions of the images in Fig. 9.

introduced in previous section significantly improve the running
time of the denoising procedure, while having a negligible effect
on PSNR.

VI. RelatedModels

The local GSM model that underlies the FoGSM is closely
related to other local hidden variable models for images [16],
[8], [43], [31], [44]. However, the use of MRFs in the FoGSM
allow it to extend to images of arbitrary size in a statistically
consistent way, while the local scale mixture models are essen-
tially confined to describing small image patches. The underlying

MRF structure of the hidden variables in the FoGSM model also
differentiates it from mixture models with tree-structured hidden
variables [19], [20]. These models have the advantage of explicitly
capturing cross-band dependencies, but they suffer from spatial
inhomogeneities introduced by the tree partitioning.

As a global MRF-based image model, the basic architecture
of FoGSM differs from existing non-Gaussian MRF image mod-
els [21], [23], [24], [27] in that it is not defined by specification
of clique potentials, but through non-linear composition of two
hGMRFs. On the other hand, FoGSM has some resemblance to
the compound Gauss-Markov random fields model for images
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[22], which is formed by modulating a homogeneous GMRF
with a binary line process that indicates the existence of an
edge between two spatial locations [21]. A modified version,
proposed in [36], treats the hidden variables as independent. This
simplifies computation, but may lead to a loss in performance in
applications.

VII. Discussion

We have introduced fields of Gaussian scale mixtures as a
flexible and efficient tool for modeling the statistics of wavelet
coefficients of photographic images. We developed a feasible pa-
rameter estimation method, and showed that samples synthesized
from the fitted FoGSM model are able to capture structures in
the marginal and joint wavelet statistics of photographic images.
And we have applied the FoGSM to image denoising, and
demonstrated performance comparable to current state-of-the-art
denoising methods.

We envision, and are currently working on, a number of
improvements. First, the model should benefit from the introduc-
tion of more general Markov neighborhoods, including wavelet
coefficients from subbands at other scales and orientations [6],
[17], since the current model is clearly not capturing these
dependencies. A natural means of achieving this is to allow
different subbands to share the same hidden scaling field, although
this may substantially complicate the learning and inference
algorithms. A possible remedy is to capture these cross-scale
dependencies with a coarse-to-fine conditional model. Second, the
logarithmic link function used to derive the multiplier field from
a hGMRF was chosen somewhat arbitrarily, and we believe that
substitution of another non-linear transformation (e.g., a power
law, as in [19]) could lead to a more accurate description of
marginal and joint image statistics. Finally, there exist residual
inhomogeneous structures in both the u and log z fields (see
Fig. 2) that can likely be captured by explicitly incorporating local
orientation [45] or phase [46] into the model. Finding tractable
models and algorithms for handling such angular variables is chal-
lenging, but we believe their inclusion will result in substantial
improvements in modeling and in denoising performance.

Appendix A: Circulant and block circulant matrix

Given a d-dimensional vector (known as a generating kernel)

q = (q−	d/2
, · · · , q−1, q0, q1, · · · , q	d/2
−1)T ,

a d × d circulant matrix is constructed as

C(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0 q1 q2 · · · q−1

q−1 q0 q1 · · · q−2

q−2 q−1 q0 · · · q−3
...

...
...
. . .

...

q1 q2 q3 · · · q0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The rows of C(q) are circularly shifted copies of qT , and multi-
plication of C(q) with a d-dimensional vector u is equivalent to
convolving vectors q and u, with circular (Dirichlet) boundary
handling. The basis functions of the d-sample discrete Fourier
transform (DFT) form a complete set of eigenvectors for any
circulant matrix, regardless of the choice of generating kernel q.
Thus, an alternative means of multiplying by the matrix C(q)
(generally known as the convolution theorem) is

C(q) = FD(q̃)F†

where F is a matrix containing the DFT basis, F† is the complex-
conjugated transpose (used to compute the forward DFT), and
D(q̃) is a diagonal matrix containing the d-point DFT of q.
Since the DFT may be implemented with O(d log d) operations,
this expression often provides an efficient implementation of
convolution with q.

Representation of two-dimensional convolutions (e.g., for im-
ages) requires a second-order circulant (also called block circu-
lant) matrix, which can be constructed by recursively applying
the circulant structure. Analogous to the circulant matrix, the two-
dimensional DFT of the shifted symmetric reflection of Q are the
eigenvalues of C(Q), and the corresponding two-dimensional DFT
basis vectors are the eigenvectors. And again, the convolution
theorem provides an efficient means of implementing matrix
multiplication by the circulant matrix. For a full account of
the properties and computations of circulant and block circulant
matrices, readers are referred to [47].

Appendix B: Parameter Learning for 2D hGMRF

A zero-mean 2D hGMRF u of dimension N ×M is completely
determined by the generating kernel Q of its block circulant
precision matrix. The density of u can be expressed as:

p(u) =

√
| C(Q)|
(2π)MN

exp

(
−1

2
uT C(Q)u

)

where we have abused notation a bit by using u to represent the
vectorized MRF. Assuming a rectangular Markov neighborhood
of size N′ × M′, where M′ � M and N′ � N, estimation of Q
corresponds to the determination of the central N′ × M′ entries
(all others must be zero).

Given a set of independent samples of u, {uk}Kk=1, the generating
kernel Q can be estimated by maximizing the log likelihood:

L(Q) =

K∑
k=1

log p(uk)

=
K
2

log | C(Q)| − KMN
2

log 2π − 1
2

K∑
k=1

uT

k C(Q)uk.

Using the eigen-decomposition property of block-circulant matrix,
and neglecting the constant term, we can write a modified
likelihood function as:

L̃(Q) =
K
2

log |FD(Q̃)F†| − 1
2

K∑
k=1

uT
k FD(Q̃)F†uk

=
K
2

log | D(Q̃)| − 1
2

K∑
k=1

ũT

kD(Q̃)ũk,

=
K
2

MN∑
i=1

log Q̃i −
1
2

MN∑
i=1

Q̃i

K∑
k=1

(ũk)2
i .

where ũ = F†u, the DFT of u. The optimal Q is then obtained by
maximizing L̃(Q) subject to the constraint that the solution must
be a symmetric and positive definite matrix. It can be shown
that L̃(Q) is a convex function, and the constraints form a convex
set in the feasible space of Q. Thus, solving for the optimal
Q is a convex optimization problem and there are a variety of
iterative solutions that are guaranteed to converge to the global
optimum [48].
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Appendix C: Sampling 2D hGMRF

A sample of a zero-mean 2D hGMRF u of dimension N × M
with precision C(Q) can be obtained from a sample of white
Gaussian noise w of the same dimension, by computing

u = FD
(√

Q̃

)−1

F†w, (15)

That is, compute the DFT of the noise, divide (element-wise) by
the square root of the DFT of the desired generating kernel, Q̃,
and then invert the DFT. A similar algorithm has been used for
texture synthesis [49] as well as for Monte Carlo sampling for
image restoration [50].

It is easy to verify that the resulting MRF has the desired
covariance structure:

E
(
uuT

)
= E

⎡⎢⎢⎢⎢⎢⎣FD
(√

Q̃

)−1

F†wwT F† D
(√

Q̃

)−1

F

⎤⎥⎥⎥⎥⎥⎦
= FD

(√
Q̃

)−1

F†E
(
wwT

)
F† D

(√
Q̃

)−1

F

= FD
(
Q̃
)−1

F† = C(Q)−1,

where we have used the Hermitian property of matrix F and the
fact that E(wwT ) = I.
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