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Abstract

Efforts toward automated detection and identification of
multistep cyber attack scenarios would benefit significantly
from a methodology and language for modeling such scen-
arios. The Correlated Attack Modeling Language (CAML)
uses a modular approach, where a module represents an in-
ference step and modules can be linked together to detect
multistep scenarios. CAML is accompanied by a library of
predicates, which functions as a vocabulary to describe the
properties of system states and events. The concept of attack
patterns is introduced to facilitate reuse of generic modules
in the attack modeling process. CAML is used in a prototype
implementation of a scenario recognition engine that con-
sumes first-level security alerts in real time and produces
reports that identify multistep attack scenarios discovered
in the alert stream.

1. Introduction

Security alerts are produced mainly by intrusion detec-
tion sensors, but also by other sources such as firewalls,
file integrity checkers, and availability monitors. A com-
mon characteristic for these first-level security alerts is that
each isolated alert is based on the observation of activity
that corresponds to a single attack step (exploit, probe, or
other event). The process of “connecting the dots”, that is,
correlating alerts from different sensors regarding different
events and recognizing complex multistage attack scenar-
ios, is typically manual and ad hoc in nature, and therefore
slow and unreliable.

It would be highly desirable to automate the attack scen-
ario recognition process, but there are several challenges
facing such efforts:

• Knowledge representing attack scenarios needs to be
∗This work was funded by DARPA through the Air Force Research
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modeled, preferably in a way that is decoupled from
the specifics of a particular correlation technology.

• Producers of first-level security alerts are heteroge-
neous, and the alert content may vary.

• Attacks belonging to the same scenario could be spa-
tially and temporally distributed.

• First-level alerts could be produced in very high num-
bers as a result of false positives, repeated probes, or
as an attacker-induced smokescreen.

• An attack scenario could be executed in different ways
that are equivalent with respect to the attackers’ goal.
For example, the temporal ordering of some attacks
could be changed, or one attack could be substituted
for a functionally equivalent one.

• Some attacks that constitute part of a scenario will not
be represented in the alert stream. This could be due to
missing sensor coverage or because the attack—albeit
part of an attack scenario—is indistinguishable from
normal benign activity.

In a project called Correlated Attack Modeling (CAM),
we have developed methods and a language for modeling
multistep attack scenarios, based on typical isolated alerts
about attack steps. The purpose is to enable the develop-
ment of abstract attack models that can be shared among
developer groups and used by different alert correlation en-
gines. To verify that the language is suitable for describing
attack models to a scenario recognition engine, we have de-
veloped such an engine that consumes low-level alerts and
makes high-level conclusions based on the scenario models.

The remainder of the paper is organized as follows. Sec-
tion 2 describes a methodology and requirements for attack
modeling. Section 3 presents our modeling language in de-
tail, while the concept of attack patterns is described in Sec-
tion 4. An implementation of a scenario recognition engine
based on our language is described in Section 5. Related
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work is discussed in Section 6, directions for future work
are described in Section 7, and conclusions are found in
Section 8.

2. Modeling Attacks

Our discussion of attacks and attack steps is guided by
the following key definitions:

Vulnerability A condition in a system, or in the procedures
affecting the operation of the system, that makes it pos-
sible to perform an operation that violates the explicit
or implicit security (or survivability) policy of the sys-
tem

Exploit Single-step (atomic) exploitation of a single vul-
nerability

Attack step An exploit or other activity performed by an
adversary as part of a campaign toward the adversary’s
goal

(Composite) Attack A collection of one or several attack
steps

Attack models for scenario recognition are related to at-
tack trees/graphs used by red teams. However, the purpose
of the attack models is not to provide details on how each at-
tack is to be carried out. Instead, the emphasis is on how the
attacks are detected and reported. Our modeling methodol-
ogy includes the following tasks:

• Identify logical attacks in an attack scenario: These at-
tacks may correspond to attack subgoals, and each of
them may be further decomposed until it can be de-
tected by a sensor.

• Characterize these logical attacks from the detection
point of view: These attacks may be detected by ob-
serving certain events, observing certain system states,
or performing inferences.

• Specify relationships among these attacks: In partic-
ular, there are temporal relationships (e.g., one attack
happens before another one), attribute-value relation-
ships (e.g., the target of one attack is the same as the
source of another one), and prerequisite relationships
(e.g., one attack enables another one to occur).

An attack modeling language must be able to express the
knowledge compiled in the modeling tasks described above.
In addition, an attack modeling language should fulfill the
following requirements to efficiently support attack scen-
ario recognition:

• Extensible to handle new attacks and sensors

• Expressive to cover the range of attacks in which we
are interested

• Unambiguous to enable mechanization

• Enabling event reduction to identify a high-level secu-
rity event from a large number of low-level incident
reports

• Enabling efficient implementations

• Independent of sensor technologies other than assum-
ing that sensors and correlators use a standard means
to communicate

3. Attack Modeling Language

The Correlated Attack Modeling Language (CAML) en-
ables one to specify multistage attack scenarios in a modular
fashion. A CAML specification contains a set of modules,
which specify an inference step. Moreover, the relation-
ships among modules are specified through pre- and post-
conditions.

Let us consider the following multistep attack scenario as
an example: An attacker first exploits a buffer overflow vul-
nerability of a secure socket layer (SSL) implementation,
on which a Web server depends, to obtain remote execu-
tion capability. From the Web server, the attacker mounts a
file system to access some sensitive data. Then a file cor-
responding to a Web page is modified to include this data,
which the attacker can download using an HTTP request.

The individual attacks of this attack scenario may be ob-
served by different sensors. For instance, a signature-based
network IDS may detect the buffer overflow attack step, an
anomaly detection component may detect the unusual file
access, and a file integrity checker may detect the modifica-
tion of the Web page. To recognize the “exfiltration” attack
scenario, one needs to correlate the pieces.

This scenario has many different variations. For exam-
ple, instead of using an attack that exploits the SSL vulnera-
bility, the Web server may have other vulnerabilities (e.g., a
buffer overflow vulnerability in Windows IIS indexing ser-
vice [6]) that, when exploited, would enable the remote at-
tacker to run arbitrary code on it. Instead of accessing a file,
the attacker may perform network sniffing or query an SQL
server to steal data. The large number of different combina-
tions of the attacks makes it difficult to recognize multistage
attack scenarios manually. Moreover, explicitly enumerat-
ing all these combinations makes attack models less exten-
sible. When a new attack is known, one may have to re-
visit and modify many previously defined multistage attack
models to incorporate it.

In the remainder of this section, we will first illustrate
by examples the basic elements of CAML. Then we will
describe these elements in detail.
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1 module OpenSSL-Handshake-BO-2-Remote-Exec (
2 activity:
3 r1: Event(
4 Source(
5 Node(Address(s: address)))
6 Target(
7 Node(Address(t: address))
8 Service(tp: port))
9 Classification(

10 origin == "cve"
11 name == "CAN-2002-0656"))
12 pre:
13 p1: HasService(
14 Node(Address(address == t))
15 Service(
16 imp: implement
17 ver1: version
18 port == tp))
19 p2: Depends(
20 Source(Service(
21 implement == imp
22 version == ver1
23 port == tp))
24 Target(Service(
25 implement == "OpenSSL"
26 ver2: version)))
27 VersionCmp(ver2, "0.9.6") < 0
28 Subset(r1, p1)
29 Subset(r1, p2)
30 post:
31 Event(
32 starttime == r1.starttime
33 endtime == DEFAULT_ENDTIME
34 Source(
35 Node(Address(address == s)))
36 Target(
37 Node(Address(address == t)))
38 Classification(
39 origin == "vendor-specific"
40 name == "CAM-Remote-Exec"))
41 )

Figure 1. CAML module: OpenSSL buffer
overflow to remote execution

3.1. CAML Examples

Figure 1 shows a CAML module for the SSL buffer
overflow attack step. In this example, one may first no-
tice the similarity between the structures of some CAML
constructs and the Intrusion Detection Message Exchange
Format (IDMEF) [8]. This design facilitates CAML to in-
teroperate with different types of sensors that can generate
reports in IDMEF.

In Figure 1, the activity section (cf. Lines 2–11) specifies
an event template that could match with intrusion detection
reports (which correspond to event instances) for the buffer
overflow attack. When a match occurs, the variables in the
template (s, t, and tp) are instantiated with the correspond-
ing values in the event instance. For example, s will be

instantiated with the source IP address reported by a sensor.
Moreover, if a literal is used in the template (e.g., “CAN-
2002-0656” as classification name), an event instance must
have that value in the corresponding field to match the tem-
plate.

The pre-condition section (cf. Lines 12–29) specifies the
set of conditions that must be met by the event instance and
the system state to trigger the inference of this module. The
inference results are specified in the post-condition section
(cf. Lines 30–40). Specifically, the two predicates — Has-
Service and Depends — and the function VersionCmp()1

specify that the target host must provide a service associated
with port tp that depends on a vulnerable implementation of
SSL. Moreover, every event and predicate in CAML is as-
sociated with a time interval during which it is valid (start
and end time for an event). The temporal predicate Sub-
set() is used to specify that the HasService and the Depends
predicates hold when the matching event instance, denoted
by the label r1, occurs. If the activity and the pre-condition
sections are satisfied, the post-condition section says that a
remote execution event may result.

The inference result of the OpenSSL-Handshake-BO-2-
Remote-Exec module — that is, remote execution — may
be used as an input for another module. Figure 2 shows an
example of inferring a “data theft” event from a “remote ex-
ecution” event and an “access violation” event. (The latter
may be inferred by other sensor reports such as one corre-
sponding to a suspicious file system mount request.) An-
other module (not shown here) may correlate a “data theft”
event with a “data export” event (which may in turn be in-
ferred from an “integrity violation” event corresponding to
an unauthorized Web page modification) to detect the exfil-
tration scenario. The attack model for this scenario is de-
picted by an AND/OR tree [27] in Figure 3.

3.2. CAML Modules

A module is the basic unit for specifying correla-
tion steps in CAML. A module specification consists of
three sections, namely, activity, pre-condition, and post-
condition. To support event-driven inferences, the activity
section is used to specify a list of events needed to trig-
ger the module. These events include observed events (cor-
responding to sensor reports) and inferred events. These
events are specified using event templates, which describe
the requirements for the candidate event instances. The
structure of CAML events is based on IDMEF. For in-
stance, the top-level elements of events, similar to those of
IDMEF alerts, are Analyzer, Source, Target, Classification,
Assessment, and Correlation. CAML also has other fields

1The function VersionCmp(a, b) compares two strings a and b. It re-
turns an integer less than, equal to, or greater than zero if the version num-
ber a is before, the same as, or after version number b.
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1 module Remote-Exec-Access-Violation-2-Data-
Theft (

2 activity:
3 r1: Event(
4 Source(
5 Node(Address(a: address)))
6 Target(
7 Node(Address(b: address)))
8 Classification(
9 origin == "vendor-specific"

10 name == "CAM-Remote-Exec"))
11 r2: Event(
12 Source(
13 Node(Address(address == b)))
14 Target(
15 Node(Address(c: address)))
16 Classification(
17 origin == "vendor-specific"
18 name == "CAM-Access-Violation"))
19 pre:
20 StartsBefore(r1, r2)
21 post:
22 Event(
23 starttime == r1.starttime
24 endtime == r2.endtime
25 Source(
26 Node(Address(address == a)))
27 Target(
28 Node(Address(address == c)))
29 Classification(
30 origin == "vendor-specific"
31 name == "CAM-Data-Theft"))
32 )

Figure 2. CAML module: Remote execution
and access violation to data theft

Exfiltration

Data Theft

OpenSSL-
Handshake-BO

Integrity
Violation

Remote Exec Access
Violation

Data Export

Figure 3. Attack model for the exfiltration
scenario

that do not have counterparts in IDMEF. In particular, there
are fields for indicating the start time as well as the end time
of an attack (for evaluating temporal interval relationships),
for reporting alert counts (to facilitate threshold-based anal-
yses), for reporting thread id’s (to facilitate alert threading),
and for reporting correlated results (to support correlating
of correlated results).

Labels may be associated with matching event instances
or their fields so that they can be referenced in another part
of the module. Moreover, simple constraints in the form
of event field comparisons may be used to specify the event
sets needed by a module. For example, in Figure 2, the label
b is used as a handle for the target IP address of a “remote
execution” event matched by the first event template. It is
subsequently used in a constraint for the source IP address
of an event instance matching the second event template.
CAML can handle the situations in which an event instance
may or may not provide data for a field by means of the
optional field construct. A label preceded by a “?” means
that the field is optional. An event instance does not need
to have the fields marked optional to match an event tem-
plate; however, if it does, these values will be used when
the corresponding labels are referenced.

For specifying constraints on the system states and the
event instances, predicates may be used in the pre-condition
section of a module. (We will discuss these predicates in
Section 3.3.) Examples of system state constraints include
restrictions on host or service configurations and the state of
server integrity. Examples of event constraints that can be
specified in this section include temporal interval relation-
ships among events.

If the activity and the pre-condition sections are met, the
inference result specified in the post-condition section will
hold (in our model). In particular, a module may derive
new system states (in the form of predicates) and inferred
events. The derived information may then be used to trig-
ger the inference of other modules. As a result, multistep
attack scenarios can be detected by chaining the inferences
of CAML modules.

3.3. CAML Predicates

To support attack model extension (i.e., ability to incor-
porate new attack knowledge in attack models) and module
composition, we need a uniform way to represent objects
and to express their relationships. For the former, CAML
uses an IDMEF-based representation for events and predi-
cates. For the latter, we have developed a library of predi-
cates, which functions as a vocabulary to describe the prop-
erties of system states and events. Predicate instances may
be fed to a correlation engine at startup time; they are spec-
ified using a construct called init section in CAML. Pred-
icate instances may also be acquired dynamically. In par-
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Table 1. CAML predicate categories

Category Description Example
Temporal Relationships between two time intervals, based on

Allen’s work on temporal intervals [1]
IsBefore(r1,r2) indicates time interval r1 ends strictly
before the start of time interval r2

Hosts Properties or states of a host SuspiciousHost indicates suspicious activities origi-
nated from a specified host have been observed

Services Properties or states of an operating system or an
application instance

HasService indicates a specified host provides a spec-
ified service

Files Relationships and properties pertaining to files HasFile indicates a specified host has a file with a
specified name

Users Relationships and properties pertaining to users SwitchUser indicates a specified user at a specified
host can “become” another specified user at another
specified host

Know Specifying the predicate instances known by a par-
ticular user

One may indicate a specified user knows the password
of another specified user at a specified host

ticular, the post-condition section of a module may specify
inferred predicates. Every predicate instance has an asso-
ciated time interval during which it holds. When informa-
tion needed to determine the truth value of a predicate is
not available, the correlation engine could let the evaluation
return a default value based on a policy. For example, the
policy could state that missing information should not pre-
vent a module pre-condition from being satisfied, and the
default truth values could be calculated accordingly.

Currently, several dozen predicate types have been de-
fined in CAML, and they are divided into six categories,
namely, Temporal, Hosts, Services, Files, Users, and Know.
The predicate categories are summarized in Table 1.

4. Attack Patterns

Developing attack models for multistep attack scenarios
could be quite time-consuming. Moreover, the quality of
the models depends heavily on the specifier’s experience.
Thus, it is important to identify methods for building new
attack models based on previously defined ones.

Attack patterns facilitate attack model reuse. These at-
tack patterns correspond to high-level reusable modules that
characterize common attack techniques from the detection
point of view. The concept of attack patterns is inspired by
design patterns [11], which address reuse of software de-
signs and architectures. In particular, software designs that
are proven to be effective for solving certain recurring prob-
lems in a context are distilled to form design patterns. Sim-
ilarly, attack patterns are developed to capture the essence
of commonly occurring techniques used by attackers. How-
ever, the focus for attack patterns is not to facilitate attack
development, but to facilitate detection.

A specification of an example attack pattern, called

BANDWIDTH AMPLIFIER, is shown in Figure 4. The spec-
ification consists of several parts. The Attack Goal and the
Considerations sections provide the context for the attack
pattern. The former describes the issue to which the pattern
addresses, and the latter discusses the main considerations
to determine whether to use this pattern. The Approach sec-
tion describes the attack pattern itself. Known instances of
this pattern are described in the Examples section. The De-
tection section characterizes this attack pattern from the de-
tection point of view and shows CAML specifications for
detecting it. Finally, the Related Patterns section describes
relationships between this pattern and other attack patterns.

When a new attack is discovered and understood, one
may be able to factor the attack into attack patterns. As
a result, detecting this attack can be reduced to detecting
instances of the attack patterns and their relationships. To
illustrate this concept, let us consider two other attack pat-
terns:

COMMANDER-SOLDIER: This pattern corresponds to a
technique to increase the attack power and to hide the
true source of an attack by managing a set of nodes
to attack a target. There are two types of components
in this pattern, namely, commanders and soldiers. A
commander coordinates a number of soldiers to attack
the same target, and the soldiers carry out the attack
actions.

PERSISTENT INQUIRER: This pattern corresponds to a
technique that attempts to consume the resources of
a node by continuously sending requests to it to pre-
vent it from serving legitimate requests. An example
is TCP SYN flooding.

Using these attack patterns, one could model distributed
denial of service (DDOS) attacks like mstream [5] and
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Pattern Name: Bandwidth Amplifier
Attack Goal: To generate more traffic to jam a target to
reduce its availability.
Considerations:
— The communication channel between the source and the
target of an attack may have limited bandwidth.
— One may not be able to break-in and use other hosts that
have high-bandwidth channels to directly attack the target.
— The break-ins on other hosts could be detected and
traced.
— The packets sent to the target should have certain vari-
eties. Otherwise, the defender may be able to detect and to
block the attack.
Approach: Using an intermediate node that takes a
“small” input and generates a “large” output to flood the
target. (The size of the input/output may be measured by
the number of bytes or the number of packets.) Moreover,
by sending requests with a forged source address, equal
to the target’s address, to this intermediate, the interme-
diate will send the responses to the target. As a result,
the amount of traffic going to the target can be increased.
Because of the anonymous nature of this technique, it is
difficult to trace the attack back to its true source.
Examples:

1. Sending DNS requests with a forged source address
to cause (large) DNS responses to be sent to the tar-
get. The DNS server is the intermediate node. See
AusCERT Advisory AL-1999.004 [2].

2. Sending an ICMP echo request whose source address
equals the target’s address to a broadcast address. In
this case, the intermediate node is the network corre-
sponding to this broadcast address. See CERT Advi-
sory CA-1998-01 [3].

Detection: A characteristic of this pattern is that one may
observe a large amount of (unsolicited) network traffic go-
ing to a node. Moreover, the source(s) of this traffic have
the small-input-large-output property. A CAML module
for detecting this pattern is as follows:

module Packet-Flood-2-Bandwidth-Amplifier (
activity:

r1: Event(
Source(

Node(Address(s: address))
Service(n: name))

Target(
Node(Address(t: address)))

Classification(
origin == "vendor-specific"
name == "CAM-Packet-Flood"))

pre:
p1: SmallInputLargeOutput(

Node(Address(address == s))
Service(name == n))

Intersects(r1, p1)
post:

Event(
starttime == r1.starttime
endtime == r1.endtime
Source(

Node(Address(address == s))
Service(name == n))

Target(
Node(Address(address == t)))

Classification(
origin == "vendor-specific"
name == "CAM-Bandwidth-Amplifier"))

)

Related Patterns: Depending on the amplification ratio,
the amplified traffic may not be sufficient to jam the target.
Commander-Soldier may be used with Bandwidth Ampli-
fier to consume more network bandwidth of the target.

Figure 4. Attack pattern: Bandwidth Amplifier
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TFN [4]. The mstream DDOS attack uses TCP ACK flood-
ing to consume the CPU time of the target. Moreover, mul-
tiple machines are used to generate more TCP ACK pack-
ets. The mstream attack can be characterized by the at-
tack patterns PERSISTENT INQUIRER and COMMANDER-
SOLDIER and their relationships. Another DDOS attack
called TFN uses different tactics including TCP SYN flood-
ing and smurf, a DOS attack based on ICMP directed broad-
cast. A model for TFN may be constructed using three
attack patterns, namely, PERSISTENT INQUIRER, BAND-
WIDTH AMPLIFIER, and COMMANDER-SOLDIER. De-
pending on which tactic(s) an attacker uses, an instance of
TFN may exhibit only behavior pertaining to PERSISTENT

INQUIRER or BANDWIDTH AMPLIFIER. Thus, the TFN
model should specify an “or” relationship between PERSIS-
TENT INQUIRER and BANDWIDTH AMPLIFIER.

5. Implementing a Scenario Recognition
Engine

To validate the practical usefulness of the CAML mod-
eling language, we implemented a scenario recognition en-
gine that uses attack specifications written in CAML. The
implementation integrates two advanced technologies de-
veloped in the EMERALD program [17, 20], P-BEST and
eflowgen. P-BEST is an expert system shell for building
real-time forward-reasoning expert systems based on pro-
duction rules [15]. Developed as a platform for the EMER-
ALD M-correlator [19], eflowgen is an extensible applica-
tion framework where application-specific processing mod-
ules are triggered in response to events (e.g., messages,
timers, and file and network I/O). These processing mod-
ules may be dynamically created, modified, reordered, and
destroyed. In the scenario recognition engine, eflowgen re-
ceives and processes incoming reports and asserts them as
facts into the P-BEST factbase. When a fact has been as-
serted, eflowgen calls the P-BEST inference engine.

5.1. Translating CAML to P-BEST

The first step in building a P-BEST inference engine
based on a CAML model is to translate the CAML speci-
fication into the P-BEST language. In the described pilot
implementation, this translation was performed manually.
A CAML module maps fairly well into a P-BEST rule, by
letting the activity and pre-condition sections form the an-
tecedent of the rule, while the post-condition section be-
comes the consequent. Predicates are implemented as facts,
each representing a specific predicate, using a generic fact
type (P-BEST ptype) with a large number of member fields.
Each different predicate typically uses a small subset of the
available fields. In the traditional version of P-BEST, this
would have been unusable, because it required every field

of a fact to be populated. We have modified P-BEST to al-
low sparsely populated facts and added a function that can
test if a given field is populated or not. Report events are
naturally mapped into P-BEST facts.

5.2. Validation Scenario

In DARPA’s Cyber Panel program, a project called the
Grand Challenge Problem (GCP) has developed example
attack scenarios that can be used for testing and evalua-
tion of detection and correlation technologies. The example
mission system in the GCP consists of multiple enclaves
with heterogeneous subsystems that are used jointly to per-
form a mission-critical function.

For the validation of our scenario recognition engine, we
chose an attack scenario from GCP version 2.0. The scen-
ario is composed of several coordinated attacks, some of
which must occur in a certain temporal order. The resulting
CAML specification consists of 14 modules.

The GCP provides alerts in IDMEF (XML) format from
intrusion detection sensors enabled at various locations in
the example mission system during the attack scenario. The
eflowgen component of our scenario recognition engine was
instrumented to directly consume the IDMEF alerts and
map the information into P-BEST facts.

5.3. Results

The scenario recognition engine could correctly identify
the modeled attack scenario from the alert reports. How-
ever, the processing latency on a regular desktop computer
was in the order of 3 minutes, which is too slow for real-
time deployment. Analysis of the runtime behavior of the
engine showed that certain parts of the translated CAML
code caused combinatorial explosions in P-BEST (nested
loops) with pessimistic evaluation. Basically, all expres-
sions were placed in the innermost loop. This problem has
not been observed in the extensive use of P-BEST in de-
velopment of intrusion detection sensors, because such P-
BEST code typically has very few fact-matching clauses in
rule antecedents. CAML specifications, on the other hand,
tend to result in complex antecedents causing this problem
to manifest.

We addressed this problem by developing realistic (as
opposed to pessimistic) loop evaluation. The P-BEST lan-
guage was extended with hints that tell the P-BEST com-
piler on which nesting level a clause with implicit fact ref-
erences should be placed. We also added explicit syntacti-
cal constructs to the P-BEST language for placing selected
evaluations outside the nested loops. For example, this can
be used for global variables that are independent of facts.

The optimizations resulted in the processing time for the
example scenario being reduced from 3 minutes to 1 sec-
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ond, which makes it feasible to deploy the scenario recog-
nition engine in real-time situations.

6. Related Work

As observed by Eckmann et al.[10], there are several dis-
tinct classes of languages that are used to encode different
aspects of attacks. In their terminology, CAML and other
languages that are used to analyze security alerts belong to
the correlation language category.

Alert correlation has been proposed to address the dif-
ficult problems of analyzing a large number of alerts (pos-
sibly generated by heterogeneous sensors), identifying the
security-critical ones and discounting the false alarms, and
producing high-level reports to summarize and to explain
the alerts. Exemplary intrusion correlation work includes
probabilistic correlation based on attribute similarity [26],
mission-impact-based correlation that employs common-
attribute aggregation, topology analysis, and mission-
criticality analysis to perform incident ranking [19], alarm
clustering to support root cause analysis [13], IBM Zurich’s
Tivoli Enterprise Console that employs common-attribute
clustering, alert duplication recognition, and event con-
sequence detection [9], Honeywell’s Scyllarus correlation
framework [12], and a simulated-annealing-based approach
for detecting stealthy portscans [24].

For detecting multistep attack scenarios, a naive ap-
proach is to use an attack signature that explicitly speci-
fies the constituent attacks and the ordering among them.
In fact, this approach is commonly used in signature-based
intrusion detection for detecting attacks that involve multi-
ple events. However, extending this approach to recognize
(complex) attack scenarios has weaknesses. In particular,
because some of the attacks may be substituted by other
functionally equivalent ones and the ordering of the attacks
could be changed without affecting the outcome, there may
be many different variations of an attack scenario. Also, it
is difficult to extend these attack signatures to incorporate
new attack information.

To address these weaknesses, an attack modeling ap-
proach based on specifying the pre-condition and the post-
condition of individual attacks has been proposed in Jig-
saw [25], LAMBDA [7], ADeLe [16], and by Ning et
al. [18]. Attacks are related to each other through match-
ing the post-condition of an attack with the pre-condition
of another. Moreover, this approach facilitates the specifi-
cation of functionally equivalent attacks and of new attacks
as these attacks can be specified individually. CAML also
uses this modular approach for modeling attack scenarios.
To support module composition and attack model extension,
it is very important to have a uniform interface among mod-
ules. This paper differs from prior work in that it focuses on
a uniform representation of objects and their relationships

and on attack model reuse. We have developed a library of
predicates, which functions as a vocabulary to describe sys-
tem states and events. Developing attack models for mul-
tistep scenarios could be time-consuming and complicated.
To facilitate reuse of the results of prior modeling efforts,
we present a method based on characterizing common at-
tack techniques and using them as higher-level abstractions
in attack scenario modeling.

Attack scenario recognition shares many similarities
with vulnerability analysis for complex computer and net-
work systems (e.g., [21–23, 28]). In particular, to discover
the vulnerabilities of a network, one may need to reason
about the configurations of individual hosts, the vulnerabil-
ities of the hosts, and the connectivity and interdependen-
cies among them. Moreover, in vulnerability analysis, char-
acterizing attacks in terms of pre- and post-conditions has
also been found useful to infer attack sequences that violate
a security policy.

7. Future Directions

We are currently developing extensions to the CAML
scenario recognition engine that will introduce dynamic and
adaptive functionality. We envision an intelligent compo-
nent that not only listens to sensors, but actively tunes sen-
sors and other components based on its global view of the
cyber battlefield. For example, in a situation of increased
threat level, it could invoke additional analysis engines, trig-
ger response components, or update configurations of sen-
sors to extend their monitoring or make sensors switch into
an active probing mode [14]. Furthermore, the engine will
be able to dynamically accept new or updated CAML mod-
els and update its knowledge base with those models during
runtime.

8. Conclusions

We have presented methods and a language, called
CAML, for modeling multistep attack scenarios in a way
that enables correlation engines to use these models to rec-
ognize attack scenarios. CAML uses a modular approach
for specifying attack scenarios, making the models expres-
sive and extensible. Each module represents an inference
step, and these modules can be linked together to recognize
attack scenarios. To facilitate module interfacing, CAML
has a set of predicates for specifying the properties of sys-
tem states and events and employs a uniform representation
for events and predicates. A concept called attack patterns
facilitates reuse of modules and attack models. To validate
our approach, we implemented a prototype scenario recog-
nition engine that uses CAML specifications to identify an
attack scenario in a stream of IDMEF-encoded alerts.
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