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Abstract: One of the main pharmacological problems today in the treatment of chronic 

inflammation diseases consists of the fact that anti-inflammatory drugs usually exhibit side 

effects. The natural products offer a great hope in the identification of bioactive lead 

compounds and their development into drugs for treating inflammatory diseases. 

Computer-aided drug design has proved to be a very useful tool for discovering new drugs 

and, specifically, Molecular Topology has become a good technique for such a goal.  

A topological-mathematical model, obtained by linear discriminant analysis, has been 

developed for the search of new anti-inflammatory natural compounds. An external 

validation obtained with the remaining compounds (those not used in building up the 

model), has been carried out. Finally, a virtual screening on natural products was performed 

and 74 compounds showed actual anti-inflammatory activity. From them, 54 had been 

previously described as anti-inflammatory in the literature. This can be seen as a plus in the 

model validation and as a reinforcement of the role of Molecular Topology as an efficient 

tool for the discovery of new anti-inflammatory natural compounds. 

Keywords: Molecular Topology; virtual screening; natural; anti-inflammatory; linear 

discriminant analysis 
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1. Introduction 

One of the biggest pharmacological problems today is the treatment of chronic inflammations. 

Diseases like chronic asthma, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease 

(IBD), and psoriasis, are strongly debilitating and are becoming increasingly common in our aging 

society. Rheumatoid arthritis and osteoarthritis are the major inflammatory diseases affecting people 

worldwide. Increases in life expectancy and aging populations are expected to make osteoarthritis the 

fourth leading cause of disability by the year 2020. Moreover, epidemiological studies have identified 

chronic infections and inflammation as major risk factors for various types of cancer [1]. 

Several classes of drugs, such as corticosteroids, NSAIDs, and biologics, are used to treat the 

inflammatory disorders. The main problem is that these drugs possess several adverse effects or are too 

expensive to be used. Corticosteroids have long been used for the management of rheumatoid arthritis 

and IBD’s diseases, but they suffer from some serious adverse effects, such as Cushing’s habitus, 

hypertension, hyperglycemia, muscular weakness, increased susceptibility to infection, osteoporosis, 

glaucoma, psychiatric disturbances, growth arrest, etc. 

Likewise, the side effects associated with the use of NSAIDs, such as gastrointestinal ulceration and 

bleeding, and platelet dysfunction, are several and common, and because of the largest use (and abuse) 

of this class of drugs, they represent a big problem at the moment to treat chronic inflammations. 

The coxibs also exhibited cardiovascular side effects due to inhibition of prostacyclin formation in 

the infarcted heart, tipping the balance of prostacyclin/thromboxane, coupled with a diminution in 

prostacyclin in heart muscle. Therefore, it is quite clear that the clinically used anti-inflammatory 

drugs suffer from the disadvantage of side effects and high cost of treatment (in case of biologics) [1]. 

There is a valid alternative to these drugs, represented by natural products, which offer a great hope 

in the identification of bioactive lead compounds and their development into drugs for treating 

inflammatory diseases [1]. Is known that plants have been the basis of many traditional medicine 

systems throughout the world for thousands of years and they represent an exhaustive source of “raw 

materials” in order to find and synthesize new molecules with pharmacological activity [1]. 

Natural Products (NP) are classified into three groups: NPs, semi-synthetic NPs or NP-derived [2]. 

The value of natural products can be assessed by the rate of introduction of new chemical entities of 

wide structural diversity, including serving as templates for semisynthetic and total synthetic 

modification. 

An analysis of the origin of the drugs developed between 1981 and 2002 showed that natural 

products or natural product-derived drugs comprised 28% of all new chemical entities (NCEs) 

launched onto the market. In addition, 24% of these NCEs were synthetic or natural mimic compounds, 

based on the study of pharmacophores related to natural products. This combined percentage (52% of 

all NCEs) suggests that natural products are important sources for new drugs and are also good lead 

compounds suitable for further modification during the drug development process. Scrutiny of medical 

indications by source of compounds has demonstrated that natural products and related drugs are used 

to treat 87% of all categorized human diseases (48/55) [3]. 

It is noteworthy that Natural Products have played a pivotal role in immunosuppression drug 

discovery as shown by the launch of the NPs cyclosporin 72 (1983), tacrolimus (1993), sirolimus 10 

(1999) and mycophenolate sodium (2003), and the semi-synthetic NPs mycophenolate mofetil (1995), 
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everolimus 129 (2004) and fingolimod (2010). In addition, the NP-derived aspirin (acetylsalicylic acid) 

discovered in the late 1890s is still used widely as an analgesic and anti-inflammatory, while 

corticosteroids and b2 agonists modeled on adrenaline (e.g., salbutamol and salmeterol) are used to help 

control asthma [2]. A total of 13 NP and NP-derived drugs were approved for marketing worldwide 

from 2005 to 2007 , with 5 being classified as NPs, 6 semi-synthetic NPs and 2 NP-derived drugs [2]. 

Despite this statistic, pharmaceutical companies have embraced the era of combinatorial chemistry, 

neglecting the development of natural products as potential drug candidates in favor of high-throughput 

synthesis of large compound libraries [4]. The main reasons for this include the incompatibility of 

natural product libraries with high-throughput screening and the marginal improvement in core 

technologies for natural product screening in the late 1980s and early 1990s [5]. Luckily, during the 

last years, the development of new technologies has revolutionized the screening of natural products. 

Applying these technologies compensates for the inherent limitations of natural products and offers a 

unique opportunity to re-establish natural products as a major source for drug discovery [5]. 

We have to understand that the natural product landscape offers, not only the direct introduction of 

natural products into the drug discovery process, but more often, natural products serve themselves as 

lead agents, providing the chemist with a structural platform which can be elaborated upon, or simplified, 

to yield a therapeutically valuable pharmaceutical [6]. They offer unmatched chemical diversity with 

structural complexity and biological potency. Natural product resources, especially from the marine 

environment, are resourceful and largely unexplored [7]. 

Another key point relating to natural products is that we can start from the original natural product 

and develop an analog strategy which permits us to create or modify new molecules with biological or 

pharmacological activity. As for the anti-inflammatory natural products, they have been discovered 

based on ethnopharmacological observations, thanks to some new strategies in chemical investigation. 

In this regard, through the use of topological descriptors, they could provide new potential drug targets. 

In the late 1980s, computational chemistry sped up the drug discovery process. Afterwards, 

combinatorial chemistry (including molecular evolution, multiple parallel synthesis, etc.) arrived 

combined with High Throughput Screening (HTS), in the mid-1990s. 

Virtual Screening, or in silico screening, is an approach attracting increasing interest in the 

pharmaceutical industry as a productive and cost-effective technology for the search of novel hit or 

lead compounds [8–10]. 

The principles involve the computational analysis of chemical databases, to identify those compounds 

that are most likely to show a given biological activity. Of course, these ideas are not new, but have 

been pursued for years by groups working in drug design and discovery. However, the availability of 

inexpensive high-performance computing platforms has transformed these processes in such a way that, 

at present, increasingly complex and more accurate analyses can be performed on a very large data set. 

The topological virtual screening is based on the analysis of a chemical diversity of molecules [8], 

which enables the selection of the best potential molecular choices. In principle, the molecules are not 

classified according to their biological activity, but depicted by their topological indices (TIs) and after 

a computational study of their structures, only those ones complying with a desired topological model 

are chosen for further development. 
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Then a model comes from a linear discriminant analysis (LDA) containing two sets of structures: 

One of them has a well-defined pharmacological activity, and the other one, is built from structures 

showing no this biological activity. 

The resulting model, associated with the desired pharmacological activity, generates a set of 

topological descriptors capable of differentiating potentially active compounds from those lacking activity. 

The method above represents a rather detailed and relevant framework to search for leads, 

prioritizing the selection of compounds that are advisable to be tested in a biological assay. It offers a 

new option, a new method that shows itself to be powerful in facing the hunt for new targets, new lead 

compounds that finally enable the securing of new drugs. 

This report deals with the search of natural anti-inflammatory compounds by using a database of 

natural products. The research team has gained experience in discovering new drugs applying Molecular 

Topology, and has developed several models in the field of anti-inflammatory compounds [11–13]. 

2. Materials and Methods 

2.1. Analyzed Compounds 

The model for searching new natural anti-inflammatory compounds was made up of 412 natural 

compounds, 123 active as anti-inflammatories and 289 inactive. Almost all the active compounds were 

from a paper reported by Kontogiorgis et al. [14] and the rest of them active and inactive from the 

collection Pure Natural Products from MicroSource database [15]. Compounds conforming the test set 

and Virtual screening were also achieved from these sources. Compounds forming the training set are 

shown in Supplementary material, Annex I. All sets of compounds are characterized by a large 

structural diversity 

2.2. Molecular Descriptors 

The 2D structure of each compound was drawn using the ChemDraw Ultra package [16]. Each 

compound was characterized by a set of 436 topological indices, standing among them the topological 

charge indices, quotients and differences between nonvalence and valence connectivity indices, 

topological and 2D autocorrelation descriptors. All indices were calculated with Dragon software [17]. 

In the supplementary material, Annex I, the TI’s values are given for all compounds of the model. 

2.3. Modeling Techniques 

Linear discriminant analysis (LDA) is a pattern recognition method which provides a classification 

model based on the combination of variables that best predict the category or group to which a given 

compound belongs. We built up a natural compounds database where all compounds were allocated 

into an active or inactive group according to their anti-inflammatory activity. The LDA was then 

applied to these two groups to obtain a discriminant function (DF) with the statistical software 

Statistica 9.0 [18]. The independent variables were the TIs, and the discriminatory property was the 

anti-inflammatory activity. The discriminant capability was assessed as the percentage of correct 

classifications in each set of compounds. The classification criterion was the minimal Mahalanobis 

distance (distance of each case to the mean of all the cases in a category). The quality of the 



Int. J. Mol. Sci. 2011, 12             

 

 

9485

discriminant function was evaluated using the Wilks parameter, λ, which was obtained by multivariate 

analysis of variance that tests the equality of group means for the variable in the discriminant model. 

The method used to select the descriptors was based on the Fisher-Snedecor parameter (F), which 

determines the relative importance of candidate variables. The variables used to compute the linear 

classification function are chosen in a stepwise manner: at each step, the variable that makes the largest 

contribution to the separation of the groups is entered into the discriminant equation (or the variable 

that makes the smallest contribution is removed). 

The validation of the selected function was done using an external test set. Compounds that comprise 

the test set, were randomly selected from approximately 20% of the data, and were not used in the set 

up of the DF equation. 

Another important parameter that usually provides a balanced evaluation of the model’s prediction 

is the Matthews correlation coefficient (MCC) [19]. This coefficient is based on the fact that in any 

prediction process there can be four different possibilities to account for: 

TP (True positive): Active compounds correctly classified or predicted. 

FP (False positive): Inactive compounds classified as anti-inflammatory. 

TN (True negative): Inactive compounds correctly classified. 

FN (False negative): Anti-inflammatory compounds classified as inactive. 

It is clear therefore, that any single number that represents the predictive power of the method must 

account for all the possibilities listed above. MCC fulfils these requirements. Matthews’ coefficient is 

defined as shown in Equation (1): 

   
       FNTPFPTPFPTNFNTN

FNFPTNTP
MCC




  (1)

The Matthews correlation coefficient ranges from −1 ≤ MCC ≤ 1. A value of MCC = 1 indicates the 

best possible prediction, in which every compound in the model was correctly classified, whereas if 

MCC = −1 then we are in the worst possible case (or anti-correlation), where no one single compound 

has been correctly labeled. Finally, a Matthews correlation coefficient of MCC = 0 is what would be 

expected for a random prediction. 

2.4. Pharmacological-Activity Distribution Diagrams 

A pharmacological distribution diagram (PDD) is a graphical representation that provides a 

straightforward way of visualizing the regions of minimum overlap between active and inactive 

compounds, as well as the regions in which the probability of finding active compounds is at a 

maximum [20]. 

Actually, a PDD is a frequency distribution diagram of dependent variables in which the ordinate 

represents the expectancy (probability of activity) and the abscissa represents the DF values in the 

range. For an arbitrary range of values of a given function, an “expectancy of activity” can be defined 

as Ea = a/(i + 1),where “a” is the number of active compounds in the range divided by the total number 

of active compounds and “i” is the number of inactive compounds in the interval divided by the total 

number of inactive compounds. The expectancy of inactivity is defined in a symmetrical way, as  

Ei = i/(a + 1). Presented with these diagrams, it is easy to visualize the intervals in which there is a 
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maximum probability of finding new active compounds and a minimum probability of finding  

inactive compounds. 

2.5. Topological Virtual Screening 

The topological model resulting from DF function was used to find new natural anti-inflammatory 

compounds. A group of compounds from MicroSource Pure Natural Products Collection database, that 

has not been employed neither in the training set nor in the test set, were screened for the search of 

potential new anti-inflammatory natural compounds. 

3. Results and Discussion  

3.1. Similarity Study 

A study of compounds’ similarity was previously carried out in order to guarantee that no simple or 

evident structural features are discriminating between the molecules that make up the data set. Thus, 

molecular weight, MW, partition coefficient, logP, (values estimated for log P with Dragon software, [17]) 

and Randic index, 1χ, have been calculated for all compounds in the database. These descriptors give 

us information about the molecular size, lipophilia and molecular branching, respectively. 

Figure 1. Average, maximum and minimum values (gray, white and black bars, 

respectively) obtained with molecular weight, MW, partition coefficient, logP, and Randic 

index, 1χ for the training and test sets of compounds. 

 

For these parameters in the training set, we obtained an average value of 300 (MW), 2.66 (logP) and 

10.4 (1χ for the active compounds, whereas average values of 372 (MW), 2.7 (logP) and 10.9 (1χ) 

were obtained for the inactive ones. Hence, the set is well balanced and no obvious structural 

differences are expected to distort the study. The results obtained with the test set are similar to those 

of the training set (see Figure 1). 
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If we compare these values to those obtained for the selected set of anti-inflammatory natural 

compounds, i.e., 276.75 (MW), 2.00 (logP) and 8.12 (1χ) value, we can see that the predicted  

anti-inflammatory natural compounds show lower values of the three parameters, and therefore the 

structures selected from natural compounds are diverse from those already well-known and used in the 

training set. 

3.2. Mathematical Modeling 

The mathematical model was developed from a training set including 412 compounds, with 

heterogeneous molecular structures. Even if the number of active compounds (123 molecules) and 

inactive (289) that comprise the training set were not similar in number, this was offset by the 

construction of a model by which every compound has the same statistical weight. 

The discriminant Equation (2), is shown below. This equation is comprised of five  

independent variables: 

DF = −0,005 × TI1 + 5,666 × ATS7m − 11,820 × ATS4v −  

9,178 × ATS7v + 28,912 × ATS1p −42,202 
(2)

N = 412, F = 46, and λ =0.663. 

The molecular descriptors in Equation (2) are described in Table 1 along with their definitions  

and references. 

Table 1. Descriptors used in this model. 

Symbol Name Ref. 
TI1 first Mohar index 21 

ATS7m 
2D Broto-Moreau autocorrelation 

22 
of a topological structure-lag7⁄weighted by atomic masses 

ATS4v 
2D Broto-Moreau autocorrelation 

[23] 
of a topological structure-lag4⁄weighted by Van der Waal volumes 

ATS7v 
2D Broto-Moreau autocorrelation 

[23] 
of a topological structure-lag7⁄weighted by Van der Waal volumes 

ATS1p 
2D Broto-Moreau autocorrelation 

[23] 
of a topological structure-lag4⁄weighted by Atomic polarizabilities 

According to Equation (2), a compound should be classified as active if DF > 0.78, otherwise it is 

labeled as inactive. 

By applying this criterion to the training set (412 compounds), (see supplementary material annex I 

for details), 61 out of 123 experimentally active compounds were correctly classified as such (50% 

accuracy), and 284 out of 289 experimentally inactive compounds were also well classified (98% 

accuracy) as can be seen in Table 2. Altogether, the average of correct classification for the entire set 

of compounds (active plus inactive) was 74%. 
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Table 2. Classification matrix obtained through the selected discriminant function (DF) for 

the training and test set. 

 Percent-Correct 
Compounds 

Classified as Active 
Compounds 

Classified as Inactive
Training Set 

Active Group 50 61 62 
Inactive Group 98 5 284 

Test Set 
Active Group 59 24 17 

Inactive Group 86 6 37 

The following formula was used to calculate the percentage of correctly classified compounds 

within a particular category (active or inactive) as shown in Equation (3): 

Classification accuracy (%) = (CCC × 100/TNC) (3)

where CCC is correctly-classified compounds and TNC is a total number of compounds. 

Regarding the Matthews correlation coefficient, which returns a value between −1 and +1, our 

model shows a value of 0.6, what ensures its reliability. 

Furthermore, the Matthews correlation coefficient was calculated in a slightly different way, i.e., by 

adding +1 to each scale value, in this way the outcome it could be expressed as % accuracy. In other 

words, 0 would mean no correlation at all, 1 represents 50% and 2 stands for the maximum correlation 

(100%). By doing so, our model’s yield was 80% (MCC modified = 1.6). 

To establish the adequate range of activity, we analyzed the pharmacological distribution diagram 

obtained with the discriminant function, DF. 

Looking at Figure 2, we can appreciate that, all the compounds studied show DF values in the range 

8 > DF > −7. Outside these ranges the compound’s classification is uncertain and it is labeled as  

“not-classified” (outliers), NC. 

Figure 2. Pharmacological distribution diagram for natural anti-inflammatory compounds 

obtained using the discriminant function DF. (The black color represents the compounds 

with anti-inflammatory activity and the white color, the compounds without it). 
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An easy way to evaluate the quality of the function above is to apply it into an external group. In 

our case, this group was made up of 84 compounds (41 active and 43 inactive) which had not been 

included for DF calculation, what is about 20% of the data. Table 3 outlines the results of the prediction 

obtained for every compound of the test set. 

Table 3. Results of prediction of anti-inflammatory activity obtained applying the linear 

discriminant analysis to the test set. 

Compound TI1 ATS7m ATS4v ATS7v ATS1p 
DF Class.

Ref. 
Value Pred.

Active Group 

2',β-DIHYDROXYCHALCONE 25.6 2.79 2.81 2.57 2.91 0.82 A [24] 

3,7-DIMETHOXYFLAVONE 49 3 3.27 2.73 3.01 −2.19 I [25] 

4-METHYLESCULETIN 11.21 1.02 2.51 0.23 2.59 6.44 A [26] 

ANISODAMINE 66.85 3.2 3.02 2.93 3.05 1.22 A [27] 

BERGENIN 51.11 3.32 3.37 2.52 2.97 −0.82 I [28,29]

β-CARYOPHYLLENE ALCOHOL 23.75 0 3.12 0 2.92 5.13 A [30] 

BICUCULLINE (+) 158.89 3.69 3.66 3.24 3.25 −0.95 I [31,32]

BOLDINE 73.83 3.38 3.7 2.83 3.16 −1.75 I [33,34]

BRAZILEIN 58.35 2.98 3.35 2.24 3.08 3.31 A [35,36]

CAMPTOTHECIN 113.6 3.45 3.64 3.14 3.27 −0.33 I [37,38]

CAPSAICIN 0 3.01 2.95 2.71 3 1.8 A [39,40]

CARNOSIC ACID 54.11 2.93 3.81 2.68 3.21 −2.66 I [41] 

CARVACROL 0 0 2.08 0 2.44 3.68 A [14] 

DIHYDROTANSHINONE I 57.02 2.66 3.51 2.4 3.13 −0.49 I [42,43]

ELLAGIC ACID 56.29 2.61 3.43 1.72 3.02 3.35 A [44,45]

EPIAFZELECHIN (2R,3R)(−) 44.79 3.02 3.06 2.53 2.98 1.45 A [46] 

EUPHOL 146.22 3.66 4.11 3.61 3.54 −1.62 I [47] 

GALLIC ACID 0 0 1.93 0 2.33 2.36 A [48] 

GENISTEIN 44.57 2.88 3.09 2.45 2.98 1.15 A [14] 

HARMALINE 26.93 1.98 2.93 1.48 2.8 1.62 A [49] 

HEMATEIN 63.65 3.11 3.4 2.34 3.1 3.01 A [50,51]

HIERACIN 53.56 3.3 3.17 2.72 3.03 1.38 A [52] 

IRIGENIN TRIMETHYL ETHER 90.88 3.73 3.75 3.27 3.17 −4.15 I [53] 

ISOLIQUIRITIGENIN 29.12 2.87 2.78 2.61 2.94 2 A [54] 

KOPARIN 2'-METHYL ETHER 59.21 3.2 3.37 2.81 3.05 −1.78 I [55] 

KYNURENINE 0 2.45 2.51 1.7 2.61 1.89 A [56] 

LAWSONE 9.48 0 2.43 0 2.59 4 A [57] 

LUTEOLIN GLUCOSIDE 171.97 4.01 3.57 3.45 3.35 2.44 A [14] 

MADECASSIC ACID 189.69 4.04 4.43 3.75 3.63 −2.1 I [58] 

METHYL ORSELLINATE 0 0.85 2.39 0.41 2.42 0.59 I [59,60]

N-METHYLANTHRANILIC ACID 0 0 2.14 0 2.32 −0.42 I [61] 

OLEANOLIC ACID 163.48 3.85 4.28 3.68 3.59 −1.63 I [14] 

OUABAIN 358.36 4.4 4.26 3.88 3.66 0.84 A [62] 

p-HYDROXYCINNAMALDEHYDE 0 1.3 1.95 0.71 2.39 4.75 A [63,64]

QUERCETIN 52.38 3.27 3.2 2.67 3.03 1.29 A [65] 

QUERCETIN TETRAMETHYL 

(5,7,3',4') ETHER 
74.79 3.59 3.54 3.09 3.11 −2.49 I [14] 

SANTONIN 31.04 1.86 3.2 1.19 2.94 4.27 A [66] 
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Table 3. Cont. 

Compound TI1 ATS7m ATS4v ATS7v ATS1p 
DF Class.

Ref. 
Value Pred.

Active Group 

SILIBININ 243.99 4.1 3.85 3.61 3.48 1.68 A [67–69]

TECTORIGENIN 53.39 3.12 3.26 2.68 3.03 −0.42 I [70,71]

UMBELLIFERONE 8.36 0 2.12 0 2.47 4.15 A [14] 

UVAOL 153.27 3.74 4.29 3.61 3.58 −2.13 I [72] 

Inactive Group 

2-METHYL GRAMINE 13.23 1.1 2.73 1.1 2.65 −1.78 I - 

3-DEACETYLKHIVORIN 285.72 4.57 4.44 4.14 3.62 −3.59 I - 

3-PINANONE OXIME 9.02 0 2.19 0 2.56 5.84 A - 

ASARYLALDEHYDE 0 1.2 2.61 0.92 2.41 −4.9 I - 

BAEOMYCESIC ACID 47.58 3.65 3.52 3.25 3.16 −1.82 I - 

BOVINOCIDIN  

(3-NITROPROPIONIC ACID) 
−8.58 0 1.01 0 1.63 −6.92 I - 

CHOLEST-5-EN-3-ONE 128.51 3.42 3.89 3.37 3.45 −0.65 I - 

CONESSINE 112.88 3.25 3.84 3.16 3.36 −1.57 I - 

CRASSIN ACETATE 37.49 3.91 3.71 3.52 3.23 −3.06 I - 

CRINAMINE 78.42 2.9 3.48 2.38 3.09 0.22 I - 

DEACETOXY-7-OXISOGEDUNIN 188.23 3.82 4.25 3.46 3.5 −2.23 I - 

DEOXYANDIROBIN 161.25 3.95 4.14 3.62 3.47 −2.48 I - 

DIPHENYLUREA 21.73 2.4 2.5 2.4 2.77 −0.23 I - 

DUARTIN. DIMETHYL ETHER 76.8 3.39 3.6 3.04 3.11 −3.9 I - 

EPI(13)TORULOSOL 30.87 3.08 3.56 2.87 3.13 −2.72 I - 

EUDESMIC ACID 0 1.3 2.7 0.71 2.45 −2.3 I - 

EVOXINE 76.98 3.47 3.43 2.99 3.08 −1.8 I - 

GLUCITOL-4-GUCOPYANOSIDE 0 3.66 3.06 2.82 2.83 −1.71 I - 

HEXAMETHYLQUERCETAGETIN 88.94 3.82 3.75 3.33 3.17 −4.27 I - 

ISOOSAJIN 153.22 3.79 3.85 3.61 3.42 −1.22 I - 

JUAREZIC ACID 0 2.23 2.2 1.8 2.56 1.88 A - 

KHAYASIN 274.26 4.48 4.38 4.11 3.65 −2.18 I - 

LEOIDIN 68.47 3.83 3.74 3.25 3.22 −1.74 I - 

LOMATIN 31.81 2.35 3.04 1.99 2.88 −0.07 I - 

MEDICARPIN 56.7 2.78 3.17 2.43 3.01 0.37 I - 

MEROGEDUNIN 72.24 3.21 3.94 2.75 3.27 −1.63 I - 

METAMECONINE 12.34 0.85 2.5 0.41 2.5 1.53 A - 

METHYL EVERNINATE 0 1.61 2.56 0.93 2.46 −0.68 I - 

METHYL ROBUSTONE 146.49 3.65 3.68 3.34 3.3 −1.03 I - 

N-METHYLISOLEUCINE −11.17 0 2.05 0 2.1 −5.69 I - 

PLECTOCOMINE METHYL ETHER 23.69 1.52 2.76 1.21 2.74 1.61 A - 

PODOTOTARIN 346.77 4.54 4.56 4.38 3.85 −1.06 I - 

PRENYLETIN 24.04 2.78 2.76 2.43 2.82 −0.07 I - 

PTAEROXYLIN 35.11 2.49 3.15 2.26 2.93 −1.55 I - 

RETUSOQUINONE 0 1.3 2.35 0.71 2.52 3.8 A - 

RHETSININE 94.88 3.23 3.46 2.98 3.19 −0.36 I - 

RHODINYL ACETATE −25.56 2.04 2.36 1.8 2.52 −2.14 I - 

ROBUSTIC ACID 114.56 3.69 3.71 3.36 3.28 −1.77 I - 

SARMENTOSIDE B 484.87 4.66 4.42 4.15 3.75 −0.04 I - 
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Table 3. Cont. 

Compound TI1 ATS7m ATS4v ATS7v ATS1p 
DF Class.

Ref. 
Value Pred.

Inactive Group 

SENECRASSIDIOL 6-ACETATE 41.44 2.6 3.42 2.06 3.04 0.77 I - 

THEANINE −17.76 1.76 2.01 1.31 2.22 −3.61 I - 

TROPINE 5.68 0 1.22 0 2.34 10.88 N.C. - 

XANTHOXYLIN 0 1.2 2.63 0.92 2.46 −3.75 I - 

As we can appreciate in Table 2, the success rate is increased in the active group up to 59% (24 of 

41 compounds analyzed were correctly classified). In the case of the inactive group belonging to the 

test set, there are only six compounds misclassified; the rate of correct compounds was 86% (37 of 43 

compounds analyzed were correctly classified), indicating that DF has a high specificity in recognizing 

inactive compounds, because it has the capability to predict if an inactive compound is actually 

inactive. Hence, we can ensure that the number of “false active” is going to be minimumized. 

Furthermore, although DF will lead to the loss of some of the active compounds, the important point is 

that there is a lower risk of including false active compounds when we carry out a database screening 

searching for anti-inflammatory natural compounds. 

As illustrated in Table 3, there is just one outlier or uncertain compound in the inactive group, 

namely Tropine, whose DF value exceeds the range of application of the model. 

In Equation (2), there are topological descriptors which evaluate the molecular bonds, TI1, the atomic 

masses, ATS7m, Van der Waal volumes, ATS4v and ATS7v, and finally, the atomic polarizabilities of 

the molecules, ATS1p. 

Although it is not easy to unfold the structural features explaining the discriminant equation obtained, 

some insight can be gained on the basis of the most relevant indices in the regression equation, namely 

TI1, ATS7m, ATS4v, ATS7v and ATS1p. Each one of these indices refers to a specific physical or 

chemical property of the molecule. 

For example, the Moreau-Broto (ATS) autocorrelation descriptors represent the interactions between 

atoms at topological distance k, (lag k), for a particular atomic property (weighting factor). In our case, 

the weighting factors are basically the atomic polarizability, the van der Waals volume and the atomic 

mass. These descriptors seem to be sensitive to the molecular branching and cyclicity. 

From a general overview of the active and inactive compounds, we can find some differences, for 

example the active compounds typically show hydroxyl groups (low mass and electronic acceptors) 

which, contrary to the inactive compounds, are placed in the molecule far away from the carbonyls. On 

the other hand, the inactive set includes compounds showing methoxy groups (higher mass and 

electronic donors). In general there are less cyclic compounds among the inactive set. See as examples 

(Figure 3), capsaicin or p-hydroxycinnamaldehyde among the actives or Rhodinyl acetate or theanine 

among the inactives. 

The active compounds often show a higher polarizability (taken into account by the index ATS1p), 

as compared to the inactive, which is compatible with their larger molecular volume and the presence 

of hydroxyl groups. Obviously the hydroxyl groups would also play a key role in molecular solubility 

and the molecule’s capability to form hydrogen bonding, which are also well known factors 

influencing the activity. 
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Figure 3. General overview of the active and inactive compounds by their structural and 

chemical properties.  

 

Given the high structural heterogenicity of the molecules used to build up the models, these results 

can be applied to large databases including natural compounds to search for new active compounds. 

3.3. Topological Virtual Screening 

Based on the model described above, a virtual screening was carried out on a database of 

heterogeneous natural compounds. We used some of the compounds of the library MicroSource Pure 

Natural Products Collection, that were not used for the construction of the model or for the external 

validation and we performed a virtual screening searching for anti-inflammatory natural compounds. 

The library composition can be obtained from the MicroSource Discovery Systems website [15]. 

As shown in Table 4, a set of 74 natural compounds were selected with a DF values between  

2 < DF < 6 with predicted activity as anti-inflammatory. Almost all of these were commercially available. 

Table 4. Group of natural compounds selected as anti-inflammatories. The indexes value 

for each compounds, the DF value and the known anti-inflammatory activity are outlined. 

Compound TI1 ATS7m ATS4v ATS7v ATS1p 
DF 

Value 
Ref. 

1,5-NORCARYOPHYLLEN-3-ONE 12.95 0 3.07 0 2.8 2.43 [73] 

2',4'-DIHYDROXYCHALCONE  

4'-GLUCOSIDE 
119.2 3.71 3.36 3.29 3.28 3.08 nr 

2-HYDROXYXANTHONE 24.98 1.73 2.85 1.39 2.82 2.58 [74] 

3-HYDROXYCOUMARIN 8.25 0 2.15 0 2.47 3.79 [75] 

3-NOR-3-OXOPANASINSAN-6-OL 24.04 0 3.03 0 2.89 5.32 nr 

alpha-TOCHOPHEROL 83.77 3.37 3.68 3.28 3.45 2.53 nr 
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Table 4. Cont. 

Compound TI1 ATS7m ATS4v ATS7v ATS1p 
DF 

Value 
Ref. 

APIIN 345.29 4.46 3.8 3.88 3.55 3.35 [76] 

AVOCADANE ACETATE −70.27 3.07 2.96 2.76 3.01 2.16 nr 

BATYL ALCOHOL −83.55 2.94 2.96 2.81 3.08 3.3 [77] 

BERGAPTOL 22.16 1.3 2.67 0.71 2.69 4.85 [78] 

BIXIN −103.7 3.31 3.33 3.18 3.27 2.98 [79] 

BRAZILIN 58.35 2.98 3.35 2.24 3.08 3.31 [80] 

CANTHARIDIN 18.37 0 2.32 0 2.62 6.04 nr 

CAPSANTHIN 187.67 3.83 3.96 3.77 3.77 6.06 [81] 

CARYOPHYLLENE [t(−)] 11.37 0 2.89 0 2.77 3.75 [82] 

CEDROL 23.5 0 3.14 0 2.92 4.87 [83] 

CHAULMOOGRIC ACID 0 2.69 2.77 2.57 2.99 3.14 [84] 

CHLOROGENIC ACID 48.22 3.36 3.09 2.78 3.07 3.29 [85] 

CINEOLE 6.55 0 2.08 0 2.48 4.81 [86] 

COSMOSIIN 162.44 3.92 3.54 3.41 3.33 2.27 [87] 

COTININE 11.53 0.85 2.43 0.41 2.53 3.21 [88] 

CULMORIN 25.72 0 3.2 0 2.94 4.8 nr 

DESOXYPEGANINE 

HYDROCHLORIDE 
16.37 0 2.49 0 2.65 4.82 nr 

DIALLYL SULFIDE −7.5 0 1.39 0 2.12 2.63 [89] 

DICTAMNINE 22.62 0 2.88 0 2.71 2.05 nr 

DIGITOXIN 1046.2 4.61 4.4 4.15 3.93 2.34 [62] 

DIGOXIN 1069.1 4.64 4.43 4.16 3.94 2.11 [62] 

DJENKOLIC ACID −28.53 2.37 2.28 1.86 2.69 4.92 [90] 

EPOXY (1,11)HUMULENE 15.16 0 3.05 0 2.83 3.48 [91] 

GARLICIN −9.74 0.69 1.64 0.69 2.4 5.34 [92] 

GIBBERELLIC ACID 92.61 2.83 3.8 2.26 3.27 2.08 [93] 

GUAIAZULENE 13.61 0 3 0 2.83 4.22 [94] 

GUVACINE HYDROCHLORIDE 0 0 1.32 0 2.1 2.91 nr 

HAEMATOXYLIN 63.65 3.11 3.4 2.34 3.1 3.01 nr 

HARMALOL HYDROCHLORIDE 22.47 1.65 2.81 0.87 2.77 5.94 nr 

HARMANE 19.16 0 2.76 0 2.74 4.34 [95] 

HARMOL HYDROCHLORIDE 22.47 1.65 2.81 0.87 2.77 5.94 [96] 

HARPAGOSIDE 218.6 4.16 3.56 3.65 3.4 2.86 [97] 

HELENINE 28.19 1.79 3.07 1.26 2.91 4.05 [98] 

HESPERIDIN 421.88 4.48 3.87 3.88 3.6 3.8 [99] 

HINOKITIOL 0 0 2.26 0 2.48 2.74 [100] 

HUMULENE (alpha) 0 0 3 0 2.77 2.56 [82] 

INDOLE-3-CARBINOL 7.49 0 2.09 0 2.46 4.19 [101] 

INOSITOL 0 0 1.73 0 2.28 3.12 [102] 

ISOBERGAPTENE 25.9 0.85 2.91 0.41 2.72 2.91 nr 

ISOKOBUSONE 14.57 1.3 3.12 0.71 2.83 3.55 nr 

JUGLONE 9.48 0 2.47 0 2.59 3.48 [103] 

KOBUSONE 26.62 0 3.12 0 2.85 3.35 nr 

L(+/−)-ALLIIN −14.57 1.3 1.97 0.71 2.36 3.65 [104] 

LYCOPODINE PERCHLORATE 36.79 0 3.48 0 3.01 3.55 [105] 

MENADIONE 9.48 0 2.53 0 2.63 3.95 [106] 
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Table 4. Cont. 

Compound TI1 ATS7m ATS4v ATS7v ATS1p 
DF 

Value 
Ref. 

MENTHOL(−) 0 0 2.2 0 2.44 2.26 [107] 

MENTHONE 0 0 2.2 0 2.44 2.26 [108] 

MIMOSINE 0 2.31 2.25 1.23 2.43 3.19 [109] 

MUUROLLADIE-3-ONE 15 1.3 3.09 0.71 2.86 4.75 nr 

OCTOPAMINE HYDROCHLORIDE 0 0.94 1.94 0.3 2.36 5.54 nr 

PATULIN 7.06 0 1.81 0 2.28 2.2 [110] 

PECTOLINARIN 427.48 4.54 3.93 3.96 3.61 3.01 [111] 

PHLORIDZIN 127.51 4.08 3.47 3.57 3.31 2.28 [112] 

PICROTOXININ 68.36 2.09 3.46 1.2 3.05 5.58 nr 

PIPERINE 74.81 2.87 2.93 2.6 3 2.01 [113] 

PLUMBAGIN 10.92 0 2.67 0 2.67 3.28 [114] 

PUNCTAPORONIN B 17.9 1.41 3.3 0.57 2.91 5.6 nr 

PURPURIN 33.76 2.12 3.22 1.62 2.96 2.28 [115] 

RHAPONTIN 125.6 3.82 3.42 3.38 3.28 2.06 [116] 

RHOIFOLIN 357.18 4.51 3.85 3.93 3.57 3.3 [117] 

RUTOSIDE (rutin) 392.19 4.68 3.88 4.07 3.6 3.12 [118] 

SAFROLGLYCOL 14.58 2.26 2.4 1.4 2.54 2.79 [119] 

SCOPOLETIN 11.82 1.33 2.47 0.82 2.54 2.11 [120] 

SECURININE 31.65 0.85 3.02 0.41 2.85 5.28 nr 

SHIKIMIC ACID 0 0 1.93 0 2.33 2.36 [121,122]

THYMOQUINONE 0 0 2.31 0 2.48 2.11 [123] 

TRYPTAMINE 9.75 0.77 2.38 0.53 2.56 3.05 [124] 

XANTHURENIC ACID 13.51 1.3 2.65 0.71 2.64 3.73 [56] 

nr (is not referenced as an anti-inflammatory in literature). 

As illustrated in the Table 4, most of the compounds selected had been described previously as  

anti-inflammatory in the literature (55/74) (see column 9), which is highly encouraging and represents 

an extra proof of the model’s performance. It is pretty clear that there are many ways of applying the 

model described herein to the search for new anti-inflammatory natural compounds. Although 19 out 

of the 74 compounds do not show anti-inflammatory activity, one cannot be sure if this is because of 

their inactivity or the absence of laboratory tests developed by someone. So it will be an attractive 

challenge for us to test these compounds and see if some of them would indeed show anti-

inflammatory activity. 

Virtual screening is increasingly gaining acceptance in the pharmaceutical industry as a cost-effective 

and timely strategy for analyzing very large chemical data set. This procedure is computationally 

intensive for analyzing large databases and it provides the most detailed basis for determining which 

compounds are likely to be potent hits or leads. The results outlined here demonstrate not only that the 

Topological Virtual Screening could accurately reproduce the well-known pharmacological activity, 

but also represent a new step forward in the pathway to demonstrate the high efficiency of the in silico 

methods based in Molecular Topology. 
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4. Conclusions  

The joint use of topological-structural descriptors of compounds and a statistical treatment based on 

discriminant analysis has been demonstrated as a very efficient methodology for the selection of new 

natural compounds with anti-inflammatory activity. The mathematical model obtained can readily be 

applied to the search of new natural compounds in large databases or even for drug design. These 

results confirm the usefulness of Molecular Topology as a powerful tool in the search for new drugs. 
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