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Signature-based network intrusion-detection systems (NIDSs) often report a massive number of

simple alerts of low-level security-related events. Many of these alerts are logically involved in a

single multi-stage intrusion incident and a security officer often wants to analyze the complete

incident instead of each individual simple alert. This paper proposes a well-structured model that

abstracts the logical relation between the alerts in order to support automatic correlation of those

alerts involved in the same intrusion. The basic building block of the model is a logical formula

called a capability. We use capability to abstract consistently and precisely all levels of accesses

obtained by the attacker in each step of a multistage intrusion. We then derive inference rules

to define logical relations between different capabilities. Based on the model and the inference

rules, we have developed several novel alert correlation algorithms and implemented a prototype

alert correlator. The experimental results of the correlator using several intrusion datasets demon-

strate that the approach is effective in both alert fusion and alert correlation and has the ability

to correlate alerts of complex multistage intrusions. In several instances, the alert correlator suc-

cessfully correlated more than two thousand Snort alerts involved in massive scanning incidents.

It also helped us find two multistage intrusions that were missed in auditing by the security

officers.
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1. INTRODUCTION

The wide deployment of signature based NIDSs has created a problem: secu-
rity officers are unable to handle the massive number of simple alerts gener-
ated by the NIDSs. It is well known that real-world intrusions often consist
of multiple stages, but the NIDSs only detect each individual stage. There is
a demand for tools that can automatically identify the multistage intrusions
from a large number of alerts. These tools find alerts involved in the same in-
trusion incident and correlate them into a single alert. This new alert is helpful
for intrusion analysis, since it records a rich set of data of the entire intrusion
incident. It also reduces the number of raw alerts, making alert auditing more
efficient.

To correlate alerts, we must know their logical relations. Since alerts repre-
sent attacks, we are, indeed, interested in the relations between attacks. In this
paper, we focus on the requires/provides model [Templeton and Levitt 2000].
It states that, in a multistage intrusion comprised of a sequence of attacks, the
early attacks acquire certain advantages, e.g., information about the system
under attack and the ability to perform actions on the system under attack,
and use them to support the later attacks that require them. These advantages
usually represent the accesses the attacker possesses in intrusions. We call
them capabilities.1 We chose the requires/provides model because it closely fits
our purpose to correlate alerts in the same intrusion.

To correlate attacks using the requires/provides model, we must show the
connection between the capabilities provided by the early attacks and required
by the later attacks. There are several challenges to this task. First, we have to
handle thousands of IDS signatures related to many different components and
layers of abstraction in our systems. It requires a systematic and consistent ap-
proach to model these attacks unambiguously in different contexts. Secondly,
it is impractical if not infeasible for NIDSs to monitor every single step in a
complex intrusion because some steps can be legitimate activities. Attack cor-
relation needs to handle missing data and still be able to correlate detectable
attacks. Third, different attacks can create equivalent effects from the view of
an intruder, even though they result in different system states. These attacks
generate variants of an intrusion. A good correlator should capture the equiva-
lence between results of different attacks. Previous approaches, however, have
difficulties solving these problems. They lack a systematic method of clearly
defining the capabilities delivered between attacks. Often based on connecting
system state between attacks, they are prone to missing steps in intrusions and
cannot handle variants of attacks.

1There is a superficial similarity between the definition of a capability in this paper and the usual

definition of a capability in the literature. However, they are actually different concepts.
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In this paper, we propose a systematic approach that first abstracts the basic
building blocks of the capabilities delivered between attacks and then uses
them to define the capabilities. All capabilities in different layers of a system
abstraction are defined by a single formula. The definition is more expressive
and precise than the predicates used by other alert correlation approaches. We
then abstract IDS alerts in terms of capability sets and derive logical relations
between different capabilities in terms of inference rules. This approach is able
to handle missing attacks and capture equivalent effects of different attacks.
Several algorithms are developed to correlate alerts based on alert abstractions
and inference rules. Our experience in modeling hundreds of signatures of three
popular NIDSs shows that it facilitates the task of developing the capability
sets based on our model. The experimental results of some well-known and
real-world intrusion detection datasets show that the approach is promising at
alert fusion and correlation.

2. TERMINOLOGY

A term used in intrusion detection often has different meanings in different
contexts. For example, an intrusion is traditionally defined as an action that
successfully violates certain security policy [Anderson 1980; Denning 1987].
However, today’s IDSs often try to detect not only intrusions, but also unsuccess-
ful intrusion attempts or even legitimate activities. Thus, for the sake of clarity,
we informally define several terms that will be used throughout this paper.

Definition 2.1 (Malicious Event). An event generated by a single attempt
to violate certain security policies, regardless of whether the attempt achieves
its goal.

By definition 2.1, even if an attempt fails to violate a security policy, the
events it generates are still malicious. This conforms to the common under-
standing of a malicious event [Howard 1997; Allen et al. 1999]. For example, an
attempt to overflow a buffer on a nonvulnerable web server is still malicious,
even though it fails.

Definition 2.2 (Suspicious Event). A nonmalicious event generated by an
attempt that has strong logical connections with the malicious events.

For example, some Snort [Roesch 1999] signatures detect IP sweep attempts
that do not violate the security policies of many sites. However, these events
often have a strong connection to intrusion attempts because the attackers are
trying to identify active computer systems.

Definition 2.3 (Attack (Noun)). A malicious or suspicious event detected by
the IDSs.

We shall concentrate on the events that IDSs detect, because usually attacks
are only discernable in terms of IDS alerts. Moreover, alert correlation only
works on the alerts, and not on the events that the IDSs do not detect. In
addition, this definition of attack makes it interchangeable with the IDS alert
in the following. Thus, we will not always explicitly state that an attack is
represented by the alerts.
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Definition 2.4 (Alert). A message reported by the IDSs as the result of an
attack.

We do not explicitly distinguish false positive (false alerts) from true positives
(true alerts) for now. In practice, false alerts generate some noise, but do not
cause significant difficulties to our approach.

Definition 2.5 (Intrusion Incident (Incident)). A sequence of related at-
tacks within a time frame against a single computer system by an attacker
to achieve some goals.

We define many constraints for an incident, such as a single target system,
a time frame, and a single attacker, in order to avoid arbitrarily expanding the
incident. For example, the attacker may launch attacks on the first day to break
into victim system A, and a few days later she breaks into system B from system
A. Without any constraints, all attacks in this scenario can be grouped into a
single incident. Often correlating all these attacks is unnecessary, considering
overhead and complexity.

Definition 2.6 (Alert Fusion (Aggregation)). Grouping alerts by their com-
mon characteristics; typically, grouping alerts of the same signature and net-
work addresses.

Definition 2.7 (Requires/Provides (Prerequisite) Relation). If an early at-
tack provides logical support, e.g., information of or access to the system under
attack, for a later attack that requires it, there is a requires/provides relation
between the two attacks and the corresponding alerts of the attacks.

Definition 2.8 (Alert Correlation). Grouping alerts by their requires/
provides relation.

3. RELATED WORK

In order to reduce the number of IDS alerts for better intrusion analysis, many
researchers [Bass 1999, 2000; Debar and Wespi 2001; Morin et al. 2002; Valdes
and Skinner 2001] have studied methods to fuse the alerts sharing similar at-
tributes. These approaches do not reveal the strong logical relations between
different types of alerts. Debar and Wespi [2001] and Morin et al. [2002] pro-
posed to correlate different types of alerts according to known attack patterns
in an intrusion. This approach does not capture the diversity of the intrusions.

Templeton and Levitt [2000] propose the requires/provides model that de-
fines the logical relations between different attacks in the same intrusion in-
cident. That is, the early attacks acquire accesses and use them to provide
logical support to the later attacks that require them. The accesses are de-
fined in terms of system state. The JIGSAW language uses simple predicates
to define system state. However, they do not provide a systematic approach to
develop the predicates used in the model. In addition, complex logical combi-
nations of the simple predicates are difficult to maintain and are error prone.
We propose first to create a systematic model to consistently and precisely ab-
stract the accesses obtained by the attacker as capabilities. The definitions of
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the capabilities are clear in their meanings and are easy to develop because of
their consistency. We then model IDS alerts using the capabilities and develop
several novel correlation algorithms based on the alert abstraction.

Cheung et al. [2003] propose the attack correlation language CAML for mod-
eling multistage intrusions. Their approach uses predicates to abstract the at-
tack scenarios in terms of system state. Cuppens et al. [2002]; Cuppens and
Miège [2002] present a similar approach using the LAMBDA language. One
problem with these approaches is that NIDSs generally are unable to deter-
mine host-level system state. Worse, NIDSs are unable to track every step of
the intrusions that can change system state. Furthermore, often an attack is
to discover an existing system state, but not to create or alter it. All these cause
problems with alert correlation based on state transitions. A special predicate
know, which is out of the domain of the system state, is required. Finally, the
simple predicates used in these approaches are often ambiguous, because they
do not contain adequate information. To the contrary, our approach abstracts
the effect of the attack as capabilities from the viewpoint of the attacker, e.g.,
the resources and the ability the attacker has obtained after the attacks. This
approach brings several benefits. First, variants of an attack that obtain the
same result can be abstracted to the same capability regardless of system state
in different attack scenarios. Secondly, multiple attack steps do not necessarily
change the capabilities from the view of the attacker, though the system state
may have changed. Thus, even though IDSs miss some intermediate attack
steps, the effect of the attacks do not change in our model. This facilitates cor-
relating alerts. Third, the capability of knowing a system state is not special
compared to any other capabilities. It is defined as consistently as the others.
Finally, the definitions of the capabilities contain enough information to make
their meaning unambiguous.

Ning et al. [2004] present an alert correlation approach that is similar to
the requires/provides model. They also define predicates for alert correlation.
However, many concepts that can affect the correlation results are not clearly
defined in this approach, e.g., true and false alerts. Like other approaches,
predicates are often policy-related, e.g., compromise and access. For different
policies, the same term often has different meanings. Without context, the
meanings of the predicates are ambiguous. Moreover, the authors do not give a
systematic and consistent way to develop the predicates. We define capabilities
that are all in a consistent form. Each field of a capability is chosen from a
well-defined domain with a clear meaning. Thus, our approach provides a sys-
tematic way to develop the capabilities precisely and quickly. Furthermore, the
capabilities are policy independent so as to simplify the definition and avoid
ambiguity. We also provide a finer abstraction of IDS alerts considering differ-
ent results of the attacks. Our approach is effective in both alert fusion and
correlation.

Some researchers [Eckmann et al. 2002; Lin et al. 1998; Pouzol and Ducassé
2002] have studied state-based misuse intrusion detection and improvements
using a high-lavel abstraction of signatures. An important difference between
these approaches and alert correlation is that the latter does not focus on de-
tecting low-level simple attacks. Instead, it focuses on the attack results and
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discovers the logical relations between the attacks. We believe that having IDSs
track sophisticated multistage intrusions can be overwhelming, and make it
difficult to develop and maintain the IDSs and their signatures.

Sheyner et al. [2002] study algorithms to generate and analyze attack graphs
automatically. They use vulnerability information instead of IDS alerts to con-
struct high-level attack graphs. The attack graphs represent the possible path
the attackers may take in intrusions. This method focuses on known vulner-
abilities of the systems, but the attacker may penetrate the system through
legitimate paths or unknown vulnerabilities.

4. CAPABILITY MODEL

An intrusion incident is often composed of multiple steps in attacks. For exam-
ple, a typical network intrusion incident consists of an IP sweep, a port scan,
and a buffer overflow attack. In this incident, from the view of the intruder, the
early attacks provide certain capabilities to the later attacks that require them.
Intuitively, we want to abstract the capabilities with a well-defined model. Such
a model can provide a standardized way to develop the capabilities for thou-
sands of IDS signatures, help understand the equivalence between the attacks,
and avoid ambiguity. The model should be expressive and flexible because of
the diversity of the systems and the intrusions. In addition, the model should
be similar to other known models so that it is easy to understand and integrate
within the framework of the existing systems. Inspired by the access control
matrix model and the object-oriented model, we build up our model: the capa-
bility model.

4.1 Capability

A capability is the basic unit that describes the access that an attacker has
obtained during an intrusion. It answers the common questions asked by a
security officer when he assesses the damage of an intrusion, e.g., what advan-
tages has the attacker obtained, or what can the attacker do to the system?
Intuitively, the access to the system consists of four aspects: the subject (in-
truder) that owns the access, the object be accessed, the method, and privilege
to access the object. Thus, we define a capability as follows:

Definition 4.1 (Capability). Let D be a set of network addresses, A be a set
of actions, C be a set of credentials, S be a set of services, and P be a set of
properties. R is a set of abilities, and δ : A × C × S × P → R is a relation func-
tion. A capability is a 6-tuple: (source, destination, credential, action, service,
property), where source ∈ D, destination ∈ D, credential ∈ C, action ∈ A,
service ∈ S, property ∈ P , δ(action, credential, service, property) = r and r ∈ R.
The capability means that the attacker can access the destination from the
source and the access is to perform the action on the property of the service as
credential.

Example 4.1. The capability (mariner, spurr, smith, exec, /bin/sh, code)
means that the attacker accesses host spurr from host mariner, and the ac-
cess is to execute the code of the program “/bin/sh” as the account (user) smith.
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It is inconvenient to write a set of capabilities that share some common
fields, such as the set of two capabilities: {(mariner, spurr, smith, exec, /bin/sh,
code), (mariner, spurr, smith, exec, /bin/csh, code)}. Therefore, we introduce an
extended form of capability: (mariner, spurr, smith, exec, {/bin/sh, /bin/csh},
code), where each field of a capability can be a set of values. Readers should
notice two things: first, the sample does not mean to execute program /bin/sh
using /bin/csh’s code, or vise versa; second, if one picks a single value from the set
of each field to create a standard capability, it is an element of the capability
set represented by the extended form. In other words, a capability set in an
extended form represents a product of the set of all fields. For convenience, we
will refer to a capability set in an extended form as a capability in the following
unless the difference is important.

Sometimes, it is inconvenient to list all applicable values of a set. We intro-
duce a helper function ALL to denote the set. This function acts as a universal
quantifier and accepts two parameters: a type identifier specifying the type of
values in the set, and an optional qualifier specifying some extra constraints
for the set. For example, in function ALL (file, /), the first parameter specifies
that the type of values in the set is “file,” and the second parameter gives a
constraint for the set, i.e., the files in the “/” file system.

Similar to the function ALL, we introduce a helper function ANY as an exis-
tential quantifier. It accepts an explicit set of values as a single parameter, or
two parameters similar to function ALL. For example, suppose a running IIS
web server can be any version prior to 3.0. It is denoted as ANY ({1.0, 2.0, 3.0})
or ANY (version, ≤ 3.0).

Below, we explain each field of a capability in detail. In order to avoid ambi-
guity and facilitate the computation of different values, we introduce types as
the constraints to the values of each field.

4.1.1 Source and Destination. Ideally, we want to specify the subject of
a capability, i.e., the attacker. However this is often unavailable or is hard
to model in the computer world. We often only know the source network ad-
dress of the attacks. Thus, the source defines the source of the attacker, i.e.,
from where the attacker is able to access the system under attack. Similarly,
the destination specifies the network address of the system accessed by the
attacker.

The domain of the network address can be categorized by several subsets, e.g.,
IP address, Ethernet address, etc. Each subset is defined by a type identifier,
e.g., IP for an IP address and Ethernet for an Ethernet address. Therefore,
a network address is written in the form type:value, e.g., IP:192.168.0.1 and
Ethernet:00-08-74-4C-04-95. For convenience, we will omit the type prefix IP
for an IP address and replace a real IP address with its corresponding DNS or
host name in the following.

An attack that has an impact on a network may result in a set of capabilities
whose destinations include all the addresses in the network. For example, an
attack crashing a router gives the attacker the ability to disconnect the net-
work behind the router from the Internet. In this case, the destination of the
capability set is the network behind the router.
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A local attack generates capabilities that have the same source and destina-
tion. To correlate only the attacks on a local host, the source and destination
are implicitly ignored.

The introduction of source and destination is useful to model remote-to-local
and local-to-local attacks. By connecting the capabilities through the address
relations, we are able to construct the scenarios of complicated intrusion inci-
dents. For example, an attacker may penetrate a victim host through several
remote-to-local attacks and obtain nonroot accesses. She then obtains root ac-
cesses on the victim host using some local attacks, and finally uses the victim
host to launch remote-to-local attacks against other systems. All phases of the
intrusion could be correlated by the relations between the addresses in the capa-
bilities. In this paper, however, we will focus on correlating the remote-to-local
attacks.

4.1.2 Action. Action abstracts the access method of a capability. Previ-
ously a classification of the access method was often ignored when analyz-
ing the network intrusions. This, however, is inadequate for precisely ana-
lyzing the impact of the attacks in intrusion detection, which can be critical
for correctly correlating the attacks. For example, an attacker may exploit a
vulnerability to obtain a capability of reading arbitrary files, but not writ-
ing any files. Therefore, a later attack that requires the capability of over-
writing files should not be correlated to the earlier attack. A single concept
of access is insufficient to describe the difference between these capabilities.
Though a classification of the access methods seems complicated, it is often
needed. For example, in host-based IDSs (HIDSs), attack scenarios are often de-
scribed by specific actions, e.g., read, write, or execute files. Thus, we introduce
a simple classification for the access method called action into the capability
model.

The model defines five types of actions: Read, Write, Exec, Communicate, and
Block. The first three types, i.e., Read, Write, and Exec can be easily mapped into
relevant concepts in file system access-control mechanism. Thus, the model can
describe the accesses applied to file system objects. Furthermore, since similar
concepts are widely used in many different layers of abstraction in the com-
puter systems, e.g., from the basic operations of memory blocks to network file
sharing, this makes the model quite extensible. However, there are two major
limitations. First, it is not natural to model communications using these actions,
e.g., to connect to a network process or to send a signal to a process. Second,
it is hard to define the effect of denial of service (DoS) attacks, e.g., crashing
a network process. Therefore, two extra types, Communicate and Block, are
introduced into the model.

Each type defines multiple values, which are meaningful for appropriate type
of objects and their properties in the systems. For example, in type Read, read
can denote the action to read the content of a file, and list can denote the action
to enumerate the file names in a directory or the account names in a system.
Similar to network address, each action is written in form of type:value, and
we often omit the type prefix for convenience. Table I shows the actions in our
current implementation.
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Table I. Actions

Action Type Action Value

Read read, list, know

Write create, modify, append, delete

Communicate send, recv, connect

Exec invoke, exec

Block block, delay, spoof

The action know of type Read defines the state that certain knowledge
or information is obtained after performing attacks or other actions, e.g.,
action read. For example, after reading the file “/etc/passwd” in a UNIX like
system, the attacker knows the account names. The difference between read
and know is that read is detectable by monitoring the system activities, but
know is undetectable and can only be inferred from detectable activities like
read.

4.1.3 Credential. Intuitively, every action is performed with certain priv-
ileges. This is defined as the credential.

The capability model defines five types of credentials: Root, User, Daemon,
System, and None, which denote the privileges of an administrative account, a
nonadministrative interactive account, a noninteractive account for executing
background processes (e.g., daemons in UNIX like systems), the system kernel,
and no specific privilege, respectively. Currently, these types are domain specific
with respect to operating systems, but they can be extended to other domains,
such as a relational database management system (RDBMS). Each of type Root,
System, and None contains only a single value, specifically root, system, and
none, respectively. Each of type User and Daemon contains multiple values
as defined by the systems. Similar to network address, we often omit the type
prefix for a value when it does not cause confusion.

Since there are multiple values in type User and Daemon, a value of these
types should be instantiated at runtime, if possible. For example, an attacker
may be able to execute a program as account smith or nobody. If this informa-
tion is available at runtime, the credential of corresponding capabilities should
be instantiated accordingly. Otherwise, it is instantiated as ANY (account).

Notice that none differs from the nobody account in many UNIX like sys-
tems. The latter is a special noninteractive account for executing processes and
has a type Daemon, while none means the attacker does not need any explicit
privilege. For example, to know the running status of the web server on a net-
work host, the attacker may try to connect to port 80 of the host, which does
not require the attacker to obtain any explicit privilege on the target system.

Certain actions may be performed with group privilege. In this case, the
credential is a set of multiple values denoting the accounts in the group, or
a group name prefixed by an identifier group. For example, group:workgroup
specifies that “workgroup” is a group name.

4.1.4 Service and Property. Every access is applied to certain objects,
which are specified by the service field of a capability.

There are a variety of objects in different layers of the system. For example,
at the system level there are hardware devices and the operating system (OS);
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Table II. Service Types

Type Sub Type

Hardware system Network interface, CPU

Software system OS, DBMS

Process Daemons, user processes

Account Users, daemons, root

OS kernel Kernel modules, network stacks, system calls

File system Directories, files (programs, scripts)

Table III. Types of Service Property

Service Types Property Types

CPU Architecture, processing capacity

Net interface Ethernet address, bandwidth

OS Version, patch level, running status

Network stack Running status, address, sending, replying

System calls Code

Processes Running status, version, port, protocol, option

Accounts Name, password, id, activity, shell, home directory

Directories Path, existing, permission, owner, timestamp

Files Link, path, existing, permission, owner, timestamp, content

at the OS level there are kernel modules, processes, accounts, directories, and
files; at the application level, like an RDBMS, there are tasks, stored procedures,
and accounts. Some objects are passive, such as files, and some are active, such
as processes. All of them provide certain functionality or information. Because
of this, they are called services.

Only some services are relevant to intrusion detection. Through analysis
of signatures of three popular NIDSs, i.e., Snort [Roesch 1999], RealSecure
[Internet Security Systems (ISS)], and Cisco Secure IDS [Cisco Systems Inc.],
we find six types of security-relevant services. Each type may include subtypes,
as shown in Table II. It is by no means complete and can be extended, if needed.
For example, the services of an RDBMS are not included, but can be added in
the future. The services listed in the table are sufficient for the current work.

Each type/subtype of services consists of one or more instances of object. For
example, the type of OS contains only one object, while the type of file contains
all file objects in the system. For convenience, we will use the same name for a
type and its object, if there is only one object in the type.

Similar to the object-oriented model, each service is associated with one or
more properties. An action usually does not operate on a service as a whole. In-
stead, it is only applied to specific properties of a service. For example, an action
like chmod only changes the permission of a file as a certain user, leaving the size
and other properties of the file untouched. For each property of a service, there
can be one or more actions operating on it. For example, one can read or write
the content of a file. Table III defines the types of property for each service type.2

Again, this is by no means to be a complete set, and can be extended, if needed.
Each type of property can be instantiated by one or more values. For exam-

ple, there are multiple versions of a program. Sometimes it is inconvenient to

2For a program or a script, its property content is also named code.
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instantiate the value of a property, e.g., the actual code of a program. In this
case, we use the same name for the type and its value, such as code. As a gen-
eral rule, if the value of a type is not enumerable, we use the same name for
the type and its value, e.g., code; otherwise, it is instantiated, for example by
version numbers.

Readers should notice that objects of the type daemons are instantiated by
their functionality, e.g., ftpd or httpd, instead of their names, e.g., wu-ftpd or
Apache. In fact, wu-ftpd and Apache appear as a part of the version property of
a process instead of the process itself. It is meaningless to compare an Apache
process to an IIS process in the context of process, but it is meaningful to com-
pare them in the context of the version of the web server. Thus, the version
property of an OS or a process usually consists of two parts: the product name
and a release number.

In the capability model, a set of relations are defined over the types of action,
credential, service, and property. Each relation has an unambiguous meaning.
To define a capability, a relation is chosen from the relation set by the type of
service, credential, property and action fields of the capability. Currently, the
relation set is stored in a database.

4.2 Capability Inference

We now introduce an important component of the capability model, namely
the inference rule. An inference rule defines the logical relation between two
capabilities (or capability sets). It is similar to the ontological rule proposed
by Cuppens [Cuppens and Miège 2002]. The separation of capability definition
and inference rule grants us great flexibility. In particular, we can define and
apply customized inference rules to correlate alerts differently without altering
the capabilities we have already developed for alerts. Moreover, a correlation
engine is free to pick and apply the rules in any order if needed.

We have developed several inference rules and they are discussed in the
following.

4.2.1 Comparable Inference. Comparable inference is the simplest and
most widely used inference rule in our approach. Before giving its definition,
let us look at an example.

Example 4.2. Let C1 and C2 be two capabilities: C1 = (mariner, spurr, root,
read, /etc/passwd, content), and C2 = (mariner, spurr, root, read, ALL(file, /),
content). C1 can be inferred from C2, since, if one has the capability of reading
arbitrary files, one certainly can read the file “/etc/passwd”.

Recall that C2 in example 4.2 represents a set of capabilities. If we expand it
into regular form, it will include C1. Intuitively, we want to develop a method
to determine this type of relation without expanding each extended capability.
Notice that in example 4.2, the set {/etc/passwd} is a subset of the set of all files
and the two capabilities share the same value of source, destination, action,
and credential, and the same type of service (file) and property (content). Thus,
we derive the following relation:
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Definition 4.2 (Comparable). Let C1 and C2 be two capabilities. C1 and C2

are comparable if they have the same value of source, destination, action, and
credential, and have the same type of service and property.

By definition 4.2, C1 and C2 in example 4.2 are comparable.

Definition 4.3 (Comparable Inference). Let C1 and C2 be two capabilities.
C1 can be inferred from C2 if C1 and C2 are comparable, C1.service ⊆ C2.service,
and C1.property ⊆ C2.property.

Example 4.3. Let C3 and C4 be two capabilities: C3 = (mariner, spurr,
none, know, httpd, IIS:4.0), and C4 = (mariner, spurr, none, know, httpd,
Apache:1.3.29). C3 and C4 are comparable, but C3 cannot be inferred from C4

or vice versa.

Comparable inference is implemented by the inclusion relation between sets.
One may wonder whether comparable inference indicates that this type of

inference is monotonic. Unfortunately, it is not. For example, if an attacker has
a capability to execute the shell program “/bin/sh,” she can execute arbitrary
programs from that shell program. Thus, the capability of executing arbitrary
programs is inferred from the capability of executing a single shell program.
This example shows the importance of the semantics of the capabilities.

4.2.2 Resulting Inference. Comparable inference only handles the cases
where two capabilities (sets) have the same action. However, sometimes two
capabilities (sets) have a logical relation, even if they have different actions, as
shown by the following example:

Example 4.4. Let C1 and C2 be two capabilities: C1 = (mariner, spurr, root,
know, ALL(account), name), and C2 = (mariner, spurr, root, read, /etc/passwd,
content). C1 can be logically inferred from C2, because, by reading the file
“/etc/passwd,” one can obtain the names of all accounts.

Definition 4.4 (Resulting Inference). Let C1 and C2 be two capabilities. If
the exercise of C2 logically results in C1, then C1 can be inferred from C2.

Unlike comparable inference, this type of inference rule depends on the se-
mantics of each capability. One has to manually derive a rule for each instance
of inference, like example 4.4.

Among all the resulting inference rules, there are several special cases. In
particular, if an attacker has the capability of executing arbitrary programs
on a computer system, then any capabilities with the same credential can be
inferred from it. Besides, the attacker may launch attacks against other com-
puter systems from the victim system. The rules for these cases are defined as
follows:

Definition 4.5 (Compromise Inference). Let C1 and C2 be two capabilities.
C1 and C2 have the same source and destination value, and C2 is a capability
to execute arbitrary programs on the destination i.e., (src, dst, account, exec,
ALL(program, /), code). C1 can be inferred from C2 if C1 has the same credential
as C2.
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Definition 4.6 (External Inference). Let C1 and C2 be two capabilities. C1’s
source is the same as C2’s destination, and C2 is a capability to execute arbitrary
programs on C2’s destination i.e., (src, dst, account, exec, ALL(program, /), code).
Then C1 can be inferred from C2.

For the sake of clarity, we define a term about relations between capability
sets that will be used in the following.

Definition 4.7 (Satisfied). Let S1 and S2 be two capability sets, S1 is satis-
fied by S2 if S1 is an empty set or each capability in S1 can be inferred from a
capability in S2.

If S1 is satisfied by S2, or vice versa, then S1 and S2 have the re-
quires/provides relation.

4.2.3 Inference for Attack Correlation. The inference rule provides a
method to reason about the logical relation between capabilities, and this facil-
itates correlation of attacks. As discussed earlier, the IDSs often miss interme-
diate attack steps. Thus, the capabilities provided by an early attack may not
be identical to the capabilities required by a later attack. Consider the “Illegal
NFS Mount” scenario in Cuppens’ paper [Cuppens and Miège 2002]. After a
successful NFS mount attack, the attacker has obtained a capability to read
and write arbitrary files, including the “.rhosts” file, in the NFS exports. Since
the next rlogin attack requires a capability to write to the “.rhosts” file, by ap-
plying the comparable inference rule, we can connect the two attacks together,
regardless of whether an intermediate attack of modifying “.rhosts” is detected.
On the other hand, if correlation is based on the attack scenarios like Cuppens’
approach, an explicit intermediate attack scenario is needed. A problem to hy-
pothesize the intermediate attack is that the attacker often can use different
attacks to achieve the same goal.

5. CORRELATING IDS ALERTS USING CAPABILITY MODEL

We now use capabilities to model and correlate IDS alerts. Capabilities are the
basic primitives for modeling the requires/provides relation among multiple
attacks involved in an intrusion. Since attacks are reported by the IDSs in terms
of alerts, we model alerts using capabilities, and then construct multistage
intrusion scenarios using the requires/provides relations between the alerts.

5.1 Modeling IDS Alerts

Intuitively, each alert requires certain capabilities as preconditions, and pro-
vides certain capabilities as postconditions, if it succeeds. Thus, we abstract an
alert as follows:

Definition 5.1 (h-Alert). An h-alert H is the abstraction of an IDS alert in
terms of capabilities. It is a 4-tuple (requires, provides, failure, raw) where the
requires, provides and failure are three sets of capabilities: the requires denotes
a set of capabilities preparing for the attack of the alert, the provides denotes
a set of capabilities that are possibly possessed after the attack successfully
achieves its goal, and the failure denotes a set of capabilities that are possibly
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possessed after the attack fails to achieve its goal. The raw is a data structure
that stores facts about the IDS alert, such as the network address, network
protocol, TCP/UDP port number (if applicable), timestamp, and network packet
direction.

Next, we explain the fields of an h-alert in detail.

5.1.1 Requires. The requires field defines a set of capabilities that prepare
for the attack of the alert. However, it is not a complete set of all required ca-
pabilities for the attack, because it is impractical to include all of them. For
example, a successful buffer overflow attack may depend on many subtle run-
time environment settings, which are often impossible for an attacker to know
in advance. In addition, the attacker may launch the attacks even though she
does not have a complete set of capabilities. Therefore, we usually choose the ca-
pabilities that are explicitly stated in the documentation of the IDS signatures.

5.1.2 Provides and Failure. The provides field denotes the possible conse-
quences of a successful attack. It usually contains the requires of the attack.
This is because the requires represents the preconditions of the attack, which
usually still hold after the attack. However, this is not always true. For exam-
ple, a DoS attack crashing a running system can make previously available
services inaccessible after the attack.

Previously in alert correlation one often assumed that the attacks always
succeeded [Ning et al. 2004], because many IDSs do not verify the attack result
in alerts. Hence, the provides of an alert is the capabilities the attacker will pos-
sess. However this assumption is not always correct. In fact, it is well-known
that NIDSs often report a large number of alerts for unsuccessful attacks. This
complicates intrusion analysis. For example, suppose an attack would give an
attacker a new capability to read and write arbitrary files if it were success-
ful, but will give no new capabilities if it were unsuccessful. If we know this
attack, indeed, is unsuccessful, a future attack that requires the read or write
capabilities probably should not be connected to it.

On the other hand, even if an attack is unsuccessful, the attacker sometimes
still obtains new capabilities from the attack. For example, a CGI attack to
read and write arbitrary files on a system may fail because access to the CGI
script is forbidden. However, by analyzing the reply, the attacker can identify
the version, and then infer other possible vulnerabilities of the web server. In
this case, a new capability giving the version of the web server is stored in the
failure field of the h-alert for the attack. If IDSs can determine the result of this
attack, instead of the provides, the failure of the h-alert will be augmented to
the attacker’s capabilities. Thus, the failure provides a refined means to model
the capabilities obtained in the attack.

It is not trivial to use failure because of the limits of the IDS alerts. Sometimes
there are two separate alerts for an attack: one records the attack activity itself
and the other records the reply message from the system under attack.3 We are

3Zhou et al. [2005] discusses a stateful method to verify the result of NIDS alerts using server

responses and, thus, eliminates the second alert.
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only able to determine the attack result from the second alert. When we receive
the second alert H2 that tells us the unsuccessful result of the first alert H1, H1

was already assumed to be successful and H1.provides has already been added
to the attacker’s capabilities. We must roll back to the point before H1.provides
was added to the attacker’s capabilities, and add to H1.failure instead. We will
discuss a solution for this problem shortly.

5.1.3 Raw. The raw data structure stores the data of the raw IDS alert
and some extra information, such as packet direction and result.

A NIDS alert differs from a HIDS alert in that it is generated from some
network packets that have a direction property. For example, Snort can report
two alerts for a web CGI attack: a CGI attack alert and an attack response
alert. The first alert is triggered by the network packets flowing to the victim
web server. It is called a request alert in the following. The second alert is
trigged by the network packets sent in response by the web server. It is called
a response alert in the following. Furthermore, if the response alert indicates
that the attack is unsuccessful, its result is a failure; otherwise, its result is a
success.

Below are several examples of h-alerts.4

Example 5.1. The h-alert for an IP sweep attack from host mariner to host
spurr is captured as: requires = ∅, failure = ∅, and provides = {(mariner, spurr,
none, know, IP, run)}.

Example 5.2. The h-alert for an ftp port scanning attack from host mariner
to host spurr is captured as: requires = {(mariner, spurr, none, know, IP, run)},
provides = {(mariner, spurr, none, know, IP, run), (mariner, spurr, none, know,
ftpd, run)}, and failure = {(mariner, spurr, none, know, IP, run)}.

Example 5.3. The h-alert for an ftpd buffer overflow attack from host
mariner to host spurr is captured as:5 requires = {(mariner, spurr, none, know,
IP, run), (mariner, spurr, none, know, ftpd, run)}, provides = {(mariner, spurr,
none, know, IP, run), (mariner, spurr, none, know, ftpd, run), (mariner, spurr,
root, exec, ALL(program, /), code)}, and failure = {(mariner, spurr, none, know,
IP, run), (mariner, spurr, none, know, ftpd, run)}.

5.2 Modeling Correlated Alerts

Like Ning et al.’s [2004] correlated hyper-alerts, we introduce a convenient data
structure, namely an m-attack, to denote a set of correlated alerts.

Definition 5.2 (M-Attack). An m-attack M is a triple (haset, capset, tm-
stmp) where haset is a set of h-alerts, capset is a set of capabilities, and tmstmp
is the timestamp of M . The haset denotes the set of h-alerts that have been
correlated. The capset denotes a unioned set of capabilities obtained from each
h-alert in the haset: each h-alert contributes its provides or failure to the haset,

4Raw is omitted here as it does not affect our discussion.
5This example is simplified. In a real attack, the requires usually contains an optional capability:

knowing version of the ftpd.
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depending on its result. Each capability in haset is associated with a reference
array to record the h-alerts that supply it. The tmstmp is the timestamp of the
newest h-alert in haset.

5.3 Capability Qualifier

Ideally, the attacker would launch each step of an intrusion exactly as described
by example 5.1, 5.2, and 5.3: first an IP sweep, next a port scan, finally a buffer
overflow attack. Alert correlation thus becomes as simple as matching the re-
quires of early alerts to the provides of the later alerts. However, currently this
is rarely true. The attacker often ignores some steps, or the IDSs do not de-
tect some steps. For example, the IDSs may report only two alerts: IP sweep
and buffer overflow. Thus, in the example, the requires of the buffer overflow
alert cannot be satisfied by the provides of the IP sweep alert. The condition for
correlation is inadequate.

To solve this problem, a qualifier is associated to each capability of the re-
quires in an h-alert. For example, a qualifier optional for a capability states
that the capability can be ignored under certain conditions, e.g., if there exists
no comparable capabilities in the capability set that it is compared to. An im-
plicit qualifier mandatory for a capability means that it must be satisfied by the
capability set that it is compared to. In this way, we can tag the optional qual-
ifier to the capability (mariner, spurr, none, know, ftpd, run) for example 5.3.
Correlation of the IP sweep and buffer overflow alerts can be done even if the
port scan alert is missing. Usually, we tag the capabilities with the optional
qualifier if they are often omitted by the intruder.

The optional qualifier requires a change to the satisfied relation between
capability sets. In particular, assuming there are two capability sets S1 and S2,
an optional capability in S1 cannot be ignored unless there exists no comparable
capability of it in S2. Thus, the new satisfied relation is as follows:

Definition 5.3 (Satisfied (With the Optional Qualifier)). Let S1 and S2 be
two nonempty capability sets, let S′

1 be a subset of S1 such that all non-optional
capabilities in S1 belong to S′

1, and let S′′
1 be a subset of S1 such that every op-

tional capability that has a comparable capability in S2 is in S′′
1. Then, S1 is

satisfied by S2 if S′
1 ∪ S′′

1 is satisfied by S2.

At the first glance, the optional qualifier for the requires is similar to Ning
et al.’s [2004] partial satisfaction of prerequisites. However, there are several
differences. First, an optional capability is not unconditionally ignored as we
have discussed. Secondly, a mandatory qualifier states that a capability must
not be ignored. We believe that this finer control can help avoid potential false
correlation.

The qualifiers can be used for capability sets other than the requires, as
well. For example, in on-line correlation, one has to decide when to report an
m-attack, e.g., upon creation of a new m-attack, upon adding new capabilities
to an existing m-attack, or when the risk represented by an m-attack exceeds a
predefined threshold. For the last case, one can define the risk level for each ca-
pability in the provides using a qualifier. Thus, if an attacker obtains a high-risk
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capability, such as executing the shell program, the corresponding m-attack is
reported.

5.4 Correlation Algorithms

Alert correlation is a procedure that combines a new h-alert with one or more
existing m-attacks into a new m-attack. For convenience, let us assume the
timestamp of the new h-alert to be correlated is newer than the timestamps of
all m-attacks to be examined.

Definition 5.4 (Alert Correlation). Given a new h-alert H and a set of n
existing m-attacks S = {M1, M2, . . . , Mn}, alert correlation is finding an ap-
propriate subset S′ of S and combining H with S′. S′ is a set of m-attacks
S′ = {Mi1 , . . . , Mik } (0 ≤ k ≤ n) such that if S′ is a nonempty set, H and
all m-attacks in S′ are possibly involved in the same intrusion incident, be-
cause H.requires is satisfied by ∪k

j=1Mij .capset. In short, we say H is sat-

isfied by S′. After S′ is identified, S′ and H are combined into a new m-
attack M ′: M ′.haset = ∪k

j=1Mij .haset ∪ {H}, M ′.tmstmp = H.tmstmp, and

M ′.capset = ∪k
j=1Mij .capset ∪ H.provides, if H is successful or M ′.capset =

∪k
j=1Mij .capset∪ H.failure if H is unsuccessful. M ′ is added to the m-attack set

S, and all m-attacks in S′ may be removed from S afterward.

Therefore, an alert correlator is a program that accepts as input a sequence
of h-alerts ordered by their timestamps, correlates each h-alert, and outputs
m-attacks. The correlator maintains a set of m-attacks in its memory during
runtime, and the set initially is empty.

5.4.1 M-Attack Set Searching Algorithm. The essential part of alert corre-
lation is the algorithm to find a subset S′ of S. We want to find the subset S′

instead of a single m-attack because an h-alert H may require multiple capa-
bilities, each of which is satisfied by a different m-attack. These m-attacks may
not be satisfied by each other.

The algorithm to find the appropriate set S′ of m-attacks is nontrivial. Find-
ing a minimal set is a set-covering problem that is known to be NP-hard
[Cormen et al. 2001]. Moreover, a minimal set may not be optimal for our prob-
lem. Thus, we introduce several heuristics to find S′. (1) We assume that two
alerts having a closer time distance have a higher probability of being related
to each other, and our algorithm assigns a higher priority to them. Thus, for a
new alert, the second newest alert among the existing alerts has the highest
priority to be correlated to it. (2) The algorithm only looks through a minimal
number of m-attacks to find a set that can support the requires of a new h-alert,
even though there may be more alerts involved in the intrusion incidents. (3) If
an m-attack under consideration does not provide a new contribution to support
the new h-alert, it is not correlated. This means the algorithm will find a set
of m-attacks in sequence such that each m-attack adds some new capabilities
to support the new h-alert. Ning et al. [2004] proposed a graph connection al-
gorithm that finds all possible requires/provides relations between the alerts.
These graphs are hard to understand before graph reduction. We believe that a
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Fig. 1. M-attack set searching algorithm.

complete graph is unnecessary to discover multistage intrusions. Experiments
show that our algorithm can generate the same correlation results as their
approach.

Using these heuristics, we have developed an algorithm (Figure 1). For con-
venience, S′.capset denotes the union of capset of all m-attacks in S′. The algo-
rithm first sorts n existing m-attacks in an array A by their timestamps into
decreasing order (line 1), creates an empty m-attack set S′ (line 2), and dupli-
cates the capability set H.requires as C (line 3). It then scans from the newest
m-attack to the oldest m-attack (line 4): for each m-attack A[i], if C is satisfied
by the union of A[i].capset and S′.capset (line 5), A[i] is added to S′ and we
have found the set. The loop stops here (line 6) and S′ is returned (line 11).
Otherwise, if A[i].capset provides a nonempty subset of C (line 7), meaning A[i]
provides some new contributions to S′, but C is not completely satisfied, A[i]
is added to S′, the contribution is subtracted from C (line 8), and the loop con-
tinues on next iteration. If A[i].capset does not provide any contributions to S′,
A[i] is ignored and the loop continues on next iteration. If after the last loop
iteration, C is not satisfied by S′ (line 9), S′ is reset to an empty set (line 10).
When the algorithm stops, S′ either is an empty set, meaning that no suitable
m-attack set is found, or it is a set of the newest m-attacks by which H.requires
is satisfied.

5.4.2 Provides Replacement Algorithm. The algorithm in Figure 1 only
provides a generic method to correlate alerts. However, as discussed earlier,
IDSs can report two alerts for a single unsuccessful attack: a request alert H1

followed by a response alert H2, where H2 states that the attack of alert H1

is unsuccessful. However, before the correlator sees alert H2, it has already
processed H1: the attack is assumed to be successful and H1.provides has been
added to the attacker’s capabilities. We must roll back the capabilities obtained
from H1.provides, and replace them with H1.failure. Thus, we introduce a pro-
vides replacement algorithm to handle this case. This algorithm is invoked after
the m-attack set searching algorithm finds a nonempty m-attack set S′ for H2,
but before combining H2, with S′. In this case, H2.provides is always an empty
set so that the combination can be done later as usual without any sideeffect.
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The algorithm works as follows:

1. Determine that H2 is a response alert and denotes an unsuccessful attack:
in H2.raw, the packet direction is response and the result is failure. If not,
stop here.

2. Find H1 by walking through the haset of each m-attack in S′ and look-
ing for a request alert H1 such that H1.raw matches the network address,
port number, and network protocol, with H2.raw within a pre-defined time
frame. To maximize the accuracy, currently only alerts of the TCP and UDP
protocols are handled. If a corresponding request alert cannot be found, stop
here. Otherwise, let M denote the m-attack to which H1 belongs.

3. Subtract H1.provides from M .capset: for each capability C in H1.provides,
remove H1 from the reference array for C in M .capset. If the reference array
for C in M .capset becomes empty, C is removed from M .capset.

4. Add H1.failure. Add the capabilities of H1.failure to the M .capset. The ref-
erence array of each updated capability in M .capset is altered accordingly.

5.4.3 External Correlation Algorithm. The algorithms we have developed
so far focus on correlating alerts targeting the same system. Often after a sys-
tem is compromised,6 the attacker uses it to launch new attacks against other
systems. This kind of attack can be correlated using the external inference rule,
and so is called an external correlation. We have developed a simple external cor-
relation algorithm, which is invoked after the m-attack set searching algorithm
returns an empty set. This algorithm works as follows: for all m-attacks, find
one that contains the capability of executing arbitrary programs on the victim
system specified by the new h-alert H.source. If such an m-attack is found, it
is combined with H.

We must be careful when using external correlation in certain circumstances.
For example, two different attackers may compromise the same target host
simultaneously. It can be difficult to apply the external correlation algorithm
if there is not sufficient evidence to determine which attacker launched the
external attacks. In this case, our algorithm will find all candidate m-attacks
and correlate the new h-alert to each of them. The correctness of this result
must be examined by the security officer.

6. IMPLEMENTATION

We have developed a prototype alert correlator based on the capability
model discussed in Section 4, and the alert model and alert correlation al-
gorithms discussed in Section 5. This section explains the implementation of
the tool.

The tool, as shown in Figure 2, is comprised of three major components:7 a
database to store the capability sets of IDS signatures, a set of preprocessors to
convert the raw alerts of different IDSs into a uniform format, and a correlation
engine implementing the correlation algorithms.

6Compromise here means the attacker can execute arbitrary programs on the victim system.
7In the current prototype, inference rules are hard-coded in the algorithms.
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Fig. 2. Prototype alert correlator.

Fig. 3. Capability database schema.

6.1 IDS Signature Capability Database.

The database is a knowledge base storing the capability sets of every IDS signa-
ture. Currently three popular NIDSs (specifically, Snort, RealSecure, and Cisco
Secure IDS) are supported. A web-based user interface has been implemented
to maintain the database.

The schema of the database is built on top of a RDBMS and consists of
15 tables. Part of the schema is shown in Figure 3. Table sig capability is the
core of this schema. It defines the capability sets for every NIDS signature.
Each capability is a record in this table. The definition of the table refers to
many other tables. The fields in the table are:

� sp auid represents the unique identity of an IDS signature. It is defined by
tables ids and signatures. To support the signatures of a new IDS, one needs
to create a record for the IDS in table ids and one record for each signature in
table signatures. Each record in table signature has a unique identifier and
is referenced by table sig capability as sp auid.

� sp ruid refers to the unique identity of a relation defined by table relations.
A relation is defined as a 4-tuple: (action, credential, service, property), where
credential, service, and property specify the data type saved in field sp cred,
sp svc, and sp prop. It means to perform action on the property of service as
credential. For example, it can be (know, user, process, version), which means
that the data type of sp cred, sp svc, and sp prop are account name, process
name, and version, respectively.
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� sp src and sp dst specify the type and constraints of source and destination
addresses of the capability. For example, if it is src.host, its real value will
be instantiated to the source IP address stored in the raw data structure of
the h-alert. If it is dst.net, its real value will be instantiated to the subnet
of the destination IP address saved in the raw data structure of the h-alert.
These values are instantiated once when an h-alert is created.

� sp qual specifies the qualifier of the capability. It must be optional or manda-
tory for a capability of the requires capability set.

� sp type specifies the capability set that this capability belongs to. Its value
can be one of “R,” “P,” “F”, and “C,” which represent the requires, provides,
failure, and context capability sets, respectively. The context is an extension
that we will explain it shortly.

� sp svc, sp prop and sp cred specify the instantiated values whose type is
defined by the sp uid field of this record.

6.1.1 Context Set and Config Set. It is possible for NIDSs to determine
the attack results given enough context information [Lippmann et al. 2002].
Thus, we add a table host config into our database. Table host config stores
a set of capabilities, each of which is a know capability that records the
system configuration of the known hosts, e.g., the OS version and the run-
ning network services. We use the term config set to denote this capability
set. Recall that in table sig capability we introduced an extra capability set
context. Each capability of the context set is also a know capability, which
records the information of the vulnerable OS and network services under
the attack specified by the signature. At runtime, by comparing the context
set of an alert to the config set of the victim host specified by the alert, we
can tell the possible result of an attack. For example, a CodeRed worm at-
tack [CERT 2001] against an Apache web server should fail because the ca-
pability in the context set (knowing the vulnerable httpd is IIS) cannot be
inferred from the capability in the config set (knowing the running httpd is
Apache).

By Definition 5.4, if an attack fails, we should add its failure set to the at-
tacker’s capability. In practice we could simplify our approach by filtering out
the unsuccessful alerts so that they do not go through the correlation process.
This is because people tend to ignore those failed intrusion attempts. Though it
reduces the precision of the correlation result, we found that it had little impact
in our experiments.

6.2 Alert Preprocessor and Correlation Engine

We have created preprocessors to convert the alerts of two NIDSs, Snort
and RealSecure, into a uniform format. Thus, the correlation engine does
not need to handle different formats of NIDS alerts. Support for the
Cisco Secure IDS is under development. The uniform alert is comprised of
eight fields: unique signature id, signature name, timestamp, source IP ad-
dress, source port, destination IP address, destination port, and network
protocol.
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We assume that the timestamps of NIDS alerts from different sources are
correctly synchronized.8 Approaches to synchronize NIDS alert timestamps are
covered by another paper [Ristenpart et al. 2004].

The correlation engine works as follows:

1. Initialization of H-Alert Template Table The tool first initializes an
h-alert template table from the capability database. One alert template is
created for each IDS signature. Each template is an object that consists
of four capability sets. The templates are stored in a table Talert indexed by
the unique signature id. The entire table Talert is stored in memory. We chose
this approach so that an h-alert object can be instantiated from the template
object, saving the cost of repeated database queries.

2. Initialization of Config Set Table The correlator initializes a config set
for each known host from tables host and host config. These capability
sets are stored in a table Tconfig, indexed by the network address of each
host.

3. Instantiation of Alert The correlator waits for the input of uniform IDS
alerts. After a new alert arrives, an h-alert template is found from table
Talert by the signature id in the alert. A new h-alert object H is then instan-
tiated from the template as follows: i) The raw data structure of the h-alert
object is instantiated from the uniform alert; ii) The source and destination
address of each capability in the template are computed from the raw data
structure as discussed in Section 6.1; iii) The capabilities in the provides or
the failure may be instantiated from the config set. For example, an ftp alert
may provide a capability: knowing the ftp server is any version of wu-ftpd
prior to 2.6.2. The real ftp server under attack, however, is wu-ftpd 2.6.0
and this information is stored in the config set of the victim system. Then,
the capability in the provides of the ftp alert is instantiated to the correct
version number, i.e., 2.6.0 in this case.

4. M-Attack Queue The correlator maintains a m-attack queue Qmattack. A
runtime parameter timeout value is used to determine whether an m-attack
in Qmattack is too old: if the distance between the timestamp of an m-attack
and a new h-alert H is larger than the timeout value, the m-attack is re-
moved from Qmattack. This prevents the size of Qmattack from increasing in-
finitely. It also helps on-line correlation that requires fast correlation: if the
size of Qmattack is too large, it may take a long time to search the entire queue.
One can set a large timeout value in off-line correlation for correlating slow
intrusions.

5. Context Set Verification For every new h-alert H, the correlator looks up
the config set of the victim host in table Tconfig. If found, it is compared with
the context set of the h-alert. Only if it is satisfied by the context set, will the
h-alert be considered for correlation. This step is optional and can be turned
off by a runtime parameter.

8In fact, our approach is often tolerant of incorrectly synchronized alerts. For example, if we switch

the order of Example 5.1 (IP Sweep) and 5.2 (Port Scan), we still can correlate the three alerts of

Example 5.1, 5.2, and 5.3.
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6. Alert Correlation The correlator runs the m-attack set searching algorithm
to look for a suitable set S′ of m-attacks. If S′ is empty, an optional external
correlation may be invoked or a new m-attack is created from H and is added
into queue Qmattack. If S′ is not empty, the provides replacement algorithm is
invoked, and a new m-attack is created by combining H with S′. This new
m-attack is added into queue Qmattack and all m-attacks, included in S′, are
removed from Qmattack.

7. EXPERIMENTAL RESULTS

We have tested our correlator with the DARPA 2000 intrusion detection evalu-
ation (IDEVAL) dataset [MIT Lincoln Lab 2000] that is often used to evaluate
IDSs, and a real-world intrusion dataset collected at our site.

In all the experiments, we set the timeout value for queue Qmattack to 7200 s,
meaning we only correlate alerts less than 2 hours apart.

7.1 Experiments with DARPA 2000 Datasets

The DARPA 2000 dataset includes several five-phase attacks. Ning’s approach
generated some multi-stage hyper-alert correlation graphs, which are slightly
different from the description of the original dataset. (Refer to MIT Lincoln Lab
[2000] and Ning et al. [2004] for details).

We used Ning’s version of the RealSecure Network Sensor 6.0 alerts corre-
sponding to the DARPA 2000 dataset in order to compare our approach to his.
We developed the capabilities for all 28 different alert signatures in this dataset
and used the same fields of each signature as Ning.9 The dataset includes four
sets of alerts: two sets from the DMZ and two sets from the inside network. We
performed experiments for each set of alerts. The context set is not used in the
experiments.

When manually examining the correlation results, we first noticed an un-
expected interesting effect: the correlator clustered multiple alerts that share
the same signature and network addresses. This is understandable. If we as-
sume that the first attack (represented by the first alert) succeeds, its requires
(preconditions) should hold, and are usually carried over to its provides (post-
conditions). The successive attacks with the same signature and network ad-
dresses share the same requires, which are satisfied immediately. Thus, they
are correlated. This shows that our approach natively supports alert fusion.
Thus, unlike Ning’s, a separate fusion step is not needed.

We also found many m-attacks that only contain ftp, telnet, and sendmail
alerts. They may represent legitimate activities, but RealSecure could not dis-
tinguish them from malicious use of these services. Sessions using these ser-
vices, like the ftp authentication procedure, were also captured in our results,
because each session triggered several logically related alerts in sequence. We
used the Unix grep command to quickly filter them out as well as to filter out the
isolated alerts and the m-attacks containing alerts of a single signature. After

9The six fields we used are: timestamp, source IP, source port, destination IP, destination port and

signature id. A minor difference is that Ning used the signature name instead of id.
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Fig. 4. INT2 intrusion correlation result.

these efforts, we found several multistage intrusion incidents in the remaining
m-attacks. After analyzing these m-attacks and reexamining the description of
the dataset, we realized that each of the 12 documented multistage intrusions
was captured by an m-attack. A further study showed that all alerts involved in
these intrusions were correlated in the corresponding m-attacks, and no alerts
were missing. This is the same as Cui’s [2002] result.

Figure 4 presents an intrusion example in the dataset INT2, where the
intruder penetrated host pascal (172.16.112.50) from mill (172.16.115.20) by
exploiting a buffer overflow vulnerability in the Sadmind daemon on pascal.
The intruder then uploaded an Mstream DDoS program to pascal via ftp and
launched the program on pascal to attack other systems. This attack consists of
five major phases, in which the fourth phase includes four intermediate steps.
Our tool successfully correlated all 16 alerts in this complex incident into a
single m-attack. Below, we briefly describe the requires/provides relations be-
tween the alerts. Detailed capability definitions are omitted because of space
limitations, but can be easily deduced from the description.

1. Alert 1 (FTP User), assuming it is successful, provides three capabilities
required by Alert 2 (FTP Pass): know the running status of host pascal,
know the running status of the ftp server, and know an account name. A
new capability, know the account password, is obtained after Alert 2.

2. Alert 3 (Sadmind) requires two capabilities: know the running status of pas-
cal and know pascal’s OS version. The first is satisfied by previous alerts.
The second is optional and is thus ignored. This alert, in turn, provides
a new capability: know the running status of sadmind daemon. Alert 4
(Sadmind Amslverify Overflow) requires three capabilities: know the run-
ning status of pascal, know the running status of the sadmind daemon, and
know pascal’s OS version. It provides a new capability: execute arbitrary
programs. Alerts 5 and 6 repeat Alerts 3 and 4.

3. Alerts 7 to 9 (FTP User, FTP Pass, FTP Put) represent an ftp session and,
for them, the capabilities obtained from the first phase are reused.

4. Alert 10 (Mstream Zombie) requires three capabilities: know the running
status of pascal, know pascal’s OS version, and execute the mstream agent
program. These are satisfied by the first and second phases. This provides a
new capability: know the running status of the mstream program on pascal.

5. Alerts 11 to 13 (TelnetEnvAll, TelnetTerminaltype, and TelnetXdisplay) each
require the same three capabilities: know the running status of pascal, know
the running status of the telnet server, and know pascal’s OS version, in
which the second is optional and is only ignored for Alert 11.
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6. Alert 14 (Mstream Zombie) is correlated like Alert 10, and Alert 15
(Mstream Zombie) is correlated as the reply of Alert 14.10

7. Alert 15 (Stream DoS) requires two capabilities: know OS version of an ar-
bitrary host and know the running status of the mstream program on the
host. They are satisfied by the previous alerts when an arbitrary host is
instantiated to pascal.

In Cui’s [2002] work, the telnet alerts are not correlated. He regarded
these alerts as false alerts and ignored them. However, his definition of true
and false alerts is unclear, making it hard to decide which alerts should be
correlated or ignored. We believe that every alert generated from the attacker’s
activities relating to the complete intrusion incident should be correlated. In
fact, the description of dataset INT2 states that “the attacker notices that the
(mstream) server on pascal is not registered with the master and he/she telnets
to pascal to re-start that server” [MIT Lincoln Lab 2000]. These scenarios were
precisely captured in our results. It confirms our understanding and makes the
correlation results more complete.

In addition, the Mstream Zombie registration alert (e.g., Alert 10) often
has a broadcast destination address, since the sender does not know the ad-
dress of the receiver. To correlate these alerts, we define their requires as
executing the mstream program on the sender’s system, and the OS of the
sender’s system being Linux or Solaris. Cui [2002] defines the precondition as
compromising both the sender and receiver of the alert, which we believe is too
strong.

7.2 Experiments with Honeypot Datasets

We have set up four honeynet machines [The Honeypot Project 2001] since
June 2003. All the network traffic of these machines have been recorded using
Tcpdump [Tcpdump and Libpcap]. We also have monitored the network traffic
using Snort inline [Snort Inline]. Three honeynet machines, a Windows NT
4.0 server a Windows 2000 server, and a RedHat Linux 7.2 were repeatedly
compromised. Further, some scans to the honeynet generated several thousands
Snort alerts per incident.

In all the experiments, we used the context set to filter out alerts of unsuc-
cessful attacks, because the configuration of all tested systems was available.

7.2.1 Intrusions on RedHat Linux 7.2. There were two major intrusions
on the RedHat Linux 7.2 system. On July 31, 2003, a remote attacker exploited
a vulnerability in the OpenSSL library [The OpenSSL Project 2002] used by
the Apache web server to obtain a nonroot shell. On September 13, 2003, a
remote attacker exploited a vulnerability in the wu-ftpd server [Purczynski
and Niewiadomski 2003] to obtain a root shell.

The initial experimental result did not show anything about the first intru-
sion. After examining the data, we found that some signatures of Snort inline

10Alerts 10 and 14 differ from 15 that the latter is the reply of the former. For details, please refer

to Dittrich et al. [2000]. We can distinguish them because their port numbers differ.
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Table IV. The wu-ftpd Intrusion Alerts

Seq. # Alert Name

1–73 FTP RNFR ././ attempt

74 FTP CWD overflow attempt

75 FTP wu-ftp bad file completion attempt {
76–77 FTP RNFR ././ attempt

78 ATTACK-RESPONSES id check returned root

were turned off by default, so not a single alert about this incident was gener-
ated. We turned on all signatures, executed Snort on the Tcpdump data of July
31, 2003, and fed the generated alerts to the correlator. Five Snort alerts about
the incident were reported and were successfully correlated. The first alert was
a bad HTTP/1.1 request, which provided four capabilities to the attacker: know
the running status and OS version of the host and know the versions of the web
server and the SSL module. The second alert was an OpenSSL buffer overflow
attack, which required all four capabilities obtained from the first alert, and
provided a new capability to execute arbitrary programs. The third alert was
an attack reply alert that detected the output of a Unix id command after a
successful buffer overflow attack. It required three capabilities: know the run-
ning status and OS version of the victim host, and execute the id program. The
fourth and fifth alerts repeated the second and third alerts.

The initial experimental result of the second intrusion incident was not
satisfactory either. The intrusion resulted in 78 Snort alerts as shown in
Table IV, and Alerts 74 and 75 were not correlated. Alert 74 was missed be-
cause the context set mechanism filtered it out. The desired target of this attack
is an ftp server running on Windows, according to the documentation of the
signature, but the actual system under attack was a Linux system.11 Alert 75
was missed for a similar reason: the correlator regarded the wu-ftpd 2.6.2 run-
ning on the victim system as nonvulnerable. We found this is because of an
obvious error in the Bugtraq database [SecurityFocus 2004], which claims that
only wu-ftpd 2.6.1 and earlier are vulnerable. After we fixed the entry in the
context set for this alert and repeated the experiment, all alerts of this incident
(except Alert 74) were correlated. In this incident, the first alert provides four
capabilities: know the running status of the host and the ftp server and know
the version of the OS and the ftp server. Alerts 2–73 and 76–77 were fused to
it. Alert 75 requires all four capabilities obtained by the first alert. Alert 78
requires the three capabilities discussed in the OpenSSL intrusion.

7.2.2 Intrusions of Windows NT 4.0 and 2000. The Windows NT 4.0 server
was penetrated several times by different attackers through various vulnera-
bilities in IIS 4.0 and the anonymous ftp server. Our administrators manually
audited the observed intrusions and documented them in detail.

We first executed our tool on all Snort alerts for the Windows NT 4.0 server to
generate a list of correlated alerts in the form of m-attacks and manually found
the m-attacks corresponding to the intrusions identified by the administrators’

11This is possibly a documentation error, but we did not fix it, since we did not find evidence to

support this hypothesis.
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audit. We then clustered the Snort alerts involved in the intrusions based on
the attacker’s IP addresse that were recorded in the audit report. By comparing
the two results, we found they were the same. It meant our tool had successfully
correlated the alerts of all observed intrusions. In addition, no alert that should
have been correlated was missed.

The tool generated a large number of alert clusters, e.g., there were 1342
m-attacks that contained at least five Snort alerts.12 However, this number
was much smaller than the total number of Snort alerts, i.e., 63,963. We man-
ually examined the 1342 m-attacks and found many consisted of multiple
alerts of the same signature and network addresses. After removing them by
grep, we found many CodeRed v2 worm [CERT 2001] scanning incidents. They
share the same pattern of alerts. For each incident, usually 30–80 alerts were
reported, and were correlated as an m-attack. Furthermore, we observed six ex-
tensive scanning incidents, each of which generated more than 1000 alerts. The
largest included 2321 alerts for a single scan! A comparison between these large
m-attacks and simple alert clusters, based on IP addresses, shows that the two
methods produce the same result.

After filtering out the worm-scanning incidents, we found two intrusions that
happened on June 26, 2003 and August 12, 2003. The intruders exploited the
Unicode directory traversal vulnerability in the IIS server to copy files into the
system. These were missed in the audit report created by the administrators.
This result demonstrated that our tool can help reduce the workload of security
auditing while keeping important information from being missed.

The experimental results for the Windows 2000 server are similar to the
Windows NT 4.0 server. We found a lot of alert clusters that correlated up to
thousands of alerts from scans. In addition, based on previous experience, we
quickly found an intrusion that utilized a buffer overflow vulnerability in the
WebDAV search component of the IIS web server. This intrusion was docu-
mented by the audit report.

7.3 Performance

We tested the performance of our correlator on an Intel Pentium 4 3.2-GHz
computer with 1-GB RAM running the version of Slackware Linux dated Au-
gust 9, 2004, and with the Linux kernel version 2.6.7. MySQL 4.0.17 stores the
capability database. The current version of the correlator is written in Perl.

We used a file of 63,963 uniform alerts collected from the Windows NT
server to test the correlator. It consists of data collected from June 25, 2003
to January 9, 2004 and covers 4,276 distinct IP addresses. The correlator han-
dled approximately 53 alerts/s. It is a CPU-intensive process and can be im-
proved by a faster processor. In addition, we made few attempts to optimize
the implementation. We believe that there is great potential to improve the
performance.

The correlator process’s memory usage stabilized at 18 to 24 MB, the peak
usage being 24 MB. We attribute it to the timeout mechanism controlling the

12Five is an arbitrary number we chose, but seems adequate for our analysis.
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size of queue Qmattack. The largest Qmattack we found in the performance exper-
iments contained 165 m-attacks.

8. DISCUSSION

In the current prototype, we used only the comparable and external inference
rules. Since comparable inference rules require strictly matching network ad-
dresses among the alerts, intuitively we want to compare correlation results
to the approach that simply clusters alerts by the same address. Our compar-
ison shows that the two approaches generate the same result for the observed
intrusions and scans. This suggests that there are strong logical connections
among the alerts involved in the same intrusion and, if the connections are
from the same source to the same target, our approach can perform as well as
simple alert clustering. Of course, simple alert clustering enjoys higher perfor-
mance. However, alert correlation reasons about the logical connections among
the alerts and helps auditors quickly understand the intrusions. We believe
they are complementary approaches.

After we applied the inference rules other than the comparable rules,
alert correlation generated better results than simple clustering. As shown in
Figure 4, without reasoning using the requires/provides relation, it is hard to
connect Alert 16 to the earlier alerts because none of its source and destina-
tion addresses are related to earlier ones. Furthermore, many Mstream Zombie
alerts in the DARPA 2000 dataset contain broadcasting addresses. They were
all correctly correlated by our tool. This shows the benefit of our approach.

The relaxation of address checking in our experiments did not introduce
any false positives (alerts not involved in the intrusion are correlated) or false
negatives (alerts involved in the intrusion are not correlated). We attribute
this to the strong requires/provides relations between the alerts and care-
ful definition of capabilities. Real life, however, can add complexity. For ex-
ample, if an attacker penetrates system A from system B using the telnet
service, and that session is mixed with legitimate telnet sessions from B to
A, it is difficult to avoid false positives, even if we enforce the strict address
checking.

We also did some preliminary experiments to further relax checking of the
source of the ordinary alerts in order to capture potential intrusions that attack
a target from multiple sources. Unfortunately, the result is not encouraging. For
example, there are many similar worm scans in our honeynet dataset. If they
attacked the same host, and we did not check the source, alerts from all scans
would be connected together. We are investigating solutions to determine the
appropriate cases for which address checking can be relaxed.

We introduced the m-attack set searching algorithm in order to capture the
case that multiple earlier attacks together support a new attack, but they do
not support each other. Interestingly, we noticed that the correlator always
found only one m-attack in the experiments. This suggests that the attacks
we have observed are still naive. We expect that more sophisticated attacks,
in particular the attacks crossing multiple computer systems, may generate a
different result. This is for our future work.
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The development of the IDS signature capability database shows the capabil-
ity model is generic and creates a more systematic development procedure. The
model was first designed, based on hundreds of Cisco Secure IDS signatures.
We then applied it to develop the capability sets for more than 600 Snort alert
signatures (about 1/4 of all Snort alerts as of the writing of this paper). In this
procedure, our major task is to choose appropriate values from the well-defined
domains of each field of the capabilities, but not to modify the form of capability
or to categorize the value of each field. Though it is still a manual task, our
experience shows that it is feasible to develop capabilities for large number
of IDS signatures, and the development procedure is straightforward. More-
over, we believe that with our model, the experienced IDS signature developers
only need a little extra effort to define the capability sets when developing the
signatures. For example, in our current capability database, on average, each
signature has five capabilities, of which about 1.4 are used by the context set and
can be quickly identified from the signature document. The capabilities in the
context set usually have a duplicate copy in the requires set, and the capabilities
in the requires set are often carried over to the provides set. Thus, on average,
signature developers need to carefully define only two to three capabilities for
each signature. In addition, many signatures are similar. For example, there
are many signatures for ping scans that use different tools. Their capability
sets are almost identical. This significantly reduces the workload.

Our experiences also reveal many problems with existing IDSs. One major
problem is the lack of clear and consistent documentation for alert signatures.
Good capability sets for the IDS signatures depend on accurate information
about the affected systems, applications, potential damage impact, network
traffic direction, and so forth. However, this information is often unavailable or
incomplete. The capability model thus provides a new standard and framework
for better documenting the IDS signatures. Since the form of the capabilities
is uniform, documentation using this model can be consistent. Moreover, the
capabilities are defined similarly to many popular system mechanisms. This
makes documentation based on the model easy to understand. Finally, the
model provides a framework for quickly and unambiguously developing the
documentation.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach to model the capabilities obtained by
an attacker from her point of view. We showed that the model abstracts the
capabilities in a consistent and systematic manner, and the abstraction is pre-
cise without the ambiguity seen in previous work. We then applied the model
to abstract IDS alerts, where we considered the capabilities obtained not only
from successful attacks, but also from unsuccessful attacks. We also developed
several alert correlation algorithms, including a generic algorithm, and some
special algorithms to handle specific cases.

Our framework is comprised of three major components: the capability model
and capability sets, the inference rules, and the correlation algorithms. This
separation of correlation policy (inference rules and correlation algorithms)
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from modeling IDS alerts brings great flexibility to our approach. For example,
one can define certain inference rules that connect different capabilities via
only the relations of the address fields, e.g., the same source and destination.
This will turn alert correlation into simple alert clustering, based on network
addresses. In addition, we also showed that different algorithms can work to-
gether, where some act like plugins to a generic algorithm in order to handle
special cases. Thus, the approach can handle very different situations without
altering the capability model and capability sets of alerts.

We then presented a prototype alert correlator and promising experimental
results in alert fusion and correlation on different IDS datasets.

Several research problems remain unsolved. Currently the model works well
for NIDS alerts, but its effectiveness on host-based IDS alerts needs to be evalu-
ated. We only used the comparable and external inference rules in correlations
and are planning to develop and apply other inference rules in the near fu-
ture. Currently, the development of capability sets for each IDS signature is
a manual task. Approaches to automate this procedure are planned to release
this burden. In order to correlate complicated intrusions, e.g., attack steps from
different sources, new algorithms need to be developed. Finally, we realize that
the current implementation based on RDBMS, is not flexible in handling the
relations between the capabilities. Therefore, we plan an approach based on
formal languages.
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